12102 lines
1.2 MiB
12102 lines
1.2 MiB
<?xml version="1.0"?>
|
|
<VSpy3>
|
|
<!--Created on: 9/30/2025 5:06:45 pm-->
|
|
<VersionCreatedWith>3.9.21.16</VersionCreatedWith>
|
|
<VersionHash>9b9e2e28</VersionHash>
|
|
<SimulationEnabled>True</SimulationEnabled>
|
|
<SimulationPath>C:\Users\umotz\Desktop\extracted data 2022-06-09 08-29-10-731009\Script 2022-06-09 08-29-06-211000\full trace 2022-06-10 10-26-01-291045 Partition 0.vsb</SimulationPath>
|
|
<NumberJ1850HeaderBytes>3</NumberJ1850HeaderBytes>
|
|
<AutoDetectHardwareSupport>True</AutoDetectHardwareSupport>
|
|
<DatabasePlatform>SOMEIP</DatabasePlatform>
|
|
<NetworkMappings>0</NetworkMappings>
|
|
<GenerateVScapeDecodingsOnStart>False</GenerateVScapeDecodingsOnStart>
|
|
<LoopTime>3</LoopTime>
|
|
<LINVersion>2</LINVersion>
|
|
<DoIPProtocolVersion>4</DoIPProtocolVersion>
|
|
<TextAPITCPIPEnabled>False</TextAPITCPIPEnabled>
|
|
<TextAPITCPIPPort>8000</TextAPITCPIPPort>
|
|
<TextAPICommPortServer1Enabled>False</TextAPICommPortServer1Enabled>
|
|
<TextAPICommPortServer2Enabled>False</TextAPICommPortServer2Enabled>
|
|
<TextAPICommPortServer3Enabled>False</TextAPICommPortServer3Enabled>
|
|
<TextAPICommPortServer1Port>34</TextAPICommPortServer1Port>
|
|
<TextAPICommPortServer2Port>10</TextAPICommPortServer2Port>
|
|
<TextAPICommPortServer3Port>14</TextAPICommPortServer3Port>
|
|
<UICurrentDesktop>0</UICurrentDesktop>
|
|
<GMLANSim>
|
|
<SimulateTransmitMessages>False</SimulateTransmitMessages>
|
|
<OSEK_SimOSEKNetworkManagement>True</OSEK_SimOSEKNetworkManagement>
|
|
<SimulationECUs>
|
|
<GMLANSimECU>
|
|
<ECUName>KBA_O2_1_Node_0x01</ECUName>
|
|
<Key>0</Key>
|
|
<NetworkName>HS CAN2</NetworkName>
|
|
<Description></Description>
|
|
<EnableNetworkManagement>False</EnableNetworkManagement>
|
|
</GMLANSimECU>
|
|
<GMLANSimECU>
|
|
<ECUName>KBA_NOx_1_Node_0x02</ECUName>
|
|
<Key>1</Key>
|
|
<NetworkName>HS CAN2</NetworkName>
|
|
<Description></Description>
|
|
<EnableNetworkManagement>False</EnableNetworkManagement>
|
|
</GMLANSimECU>
|
|
<GMLANSimECU>
|
|
<ECUName>KBA_NH3_3_Node_0x20</ECUName>
|
|
<Key>2</Key>
|
|
<NetworkName>HS CAN2</NetworkName>
|
|
<Description></Description>
|
|
<EnableNetworkManagement>False</EnableNetworkManagement>
|
|
</GMLANSimECU>
|
|
<GMLANSimECU>
|
|
<ECUName>THMM_38279</ECUName>
|
|
<Key>3</Key>
|
|
<NetworkName>HS CAN2</NetworkName>
|
|
<Description></Description>
|
|
<EnableNetworkManagement>False</EnableNetworkManagement>
|
|
</GMLANSimECU>
|
|
<GMLANSimECU>
|
|
<ECUName>ADMM_23692</ECUName>
|
|
<Key>4</Key>
|
|
<NetworkName>HS CAN2</NetworkName>
|
|
<Description></Description>
|
|
<EnableNetworkManagement>False</EnableNetworkManagement>
|
|
</GMLANSimECU>
|
|
<GMLANSimECU>
|
|
<ECUName>Testbed</ECUName>
|
|
<Key>5</Key>
|
|
<NetworkName>HS CAN3</NetworkName>
|
|
<Description></Description>
|
|
<EnableNetworkManagement>False</EnableNetworkManagement>
|
|
</GMLANSimECU>
|
|
<GMLANSimECU>
|
|
<ECUName>SystecTruckFlow</ECUName>
|
|
<Key>6</Key>
|
|
<NetworkName>HS CAN3</NetworkName>
|
|
<Description></Description>
|
|
<EnableNetworkManagement>False</EnableNetworkManagement>
|
|
</GMLANSimECU>
|
|
<GMLANSimECU>
|
|
<ECUName>Intecrio</ECUName>
|
|
<Key>7</Key>
|
|
<NetworkName>HS CAN3</NetworkName>
|
|
<Description></Description>
|
|
<EnableNetworkManagement>False</EnableNetworkManagement>
|
|
</GMLANSimECU>
|
|
</SimulationECUs>
|
|
</GMLANSim>
|
|
<CANTerminal>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<LogFilePath>CAN Terminal LogFile</LogFilePath>
|
|
</CANTerminal>
|
|
<EthernetNetworks>
|
|
<EthernetNetwork>
|
|
<Key>0</Key>
|
|
</EthernetNetwork>
|
|
</EthernetNetworks>
|
|
<ScreenWidgets>
|
|
<ScreenWidget>
|
|
<Key>0</Key>
|
|
</ScreenWidget>
|
|
<ScreenWidget>
|
|
<Key>1</Key>
|
|
</ScreenWidget>
|
|
<ScreenWidget>
|
|
<Key>2</Key>
|
|
</ScreenWidget>
|
|
<ScreenWidget>
|
|
<Key>3</Key>
|
|
</ScreenWidget>
|
|
<ScreenWidget>
|
|
<Key>4</Key>
|
|
</ScreenWidget>
|
|
<ScreenWidget>
|
|
<Key>5</Key>
|
|
</ScreenWidget>
|
|
<ScreenWidget>
|
|
<Key>6</Key>
|
|
</ScreenWidget>
|
|
<ScreenWidget>
|
|
<Key>7</Key>
|
|
</ScreenWidget>
|
|
<ScreenWidget>
|
|
<Key>8</Key>
|
|
</ScreenWidget>
|
|
<ScreenWidget>
|
|
<Key>9</Key>
|
|
</ScreenWidget>
|
|
<ScreenWidget>
|
|
<Key>10</Key>
|
|
</ScreenWidget>
|
|
<ScreenWidget>
|
|
<Key>11</Key>
|
|
</ScreenWidget>
|
|
<ScreenWidget>
|
|
<Key>12</Key>
|
|
</ScreenWidget>
|
|
<ScreenWidget>
|
|
<Key>13</Key>
|
|
</ScreenWidget>
|
|
<ScreenWidget>
|
|
<Key>14</Key>
|
|
</ScreenWidget>
|
|
<ScreenWidget>
|
|
<Key>15</Key>
|
|
</ScreenWidget>
|
|
<ScreenWidget>
|
|
<Key>16</Key>
|
|
</ScreenWidget>
|
|
<ScreenWidget>
|
|
<Key>17</Key>
|
|
</ScreenWidget>
|
|
</ScreenWidgets>
|
|
<AppSignals>
|
|
<Signal>
|
|
<Description>ECU Detected</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit7({B1})</Equation>
|
|
<SetValueDouble>1</SetValueDouble>
|
|
<InitValueString>1</InitValueString>
|
|
<EnableInitValue>True</EnableInitValue>
|
|
<InitValue>1</InitValue>
|
|
<SaveLastValue>True</SaveLastValue>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>Buffer</Description>
|
|
<Key>sig1</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}|0,1,0,0</Equation>
|
|
<UpperRange>0</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<SetValueDouble>0</SetValueDouble>
|
|
<SaveLastValue>True</SaveLastValue>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>Sleep</Description>
|
|
<Key>sig74</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit7({B1})</Equation>
|
|
<SetValueDouble>1</SetValueDouble>
|
|
<InitValueString>1</InitValueString>
|
|
<EnableInitValue>True</EnableInitValue>
|
|
<InitValue>1</InitValue>
|
|
<SaveLastValue>True</SaveLastValue>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>Backlight</Description>
|
|
<Key>sig3</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}|0,1,0,0</Equation>
|
|
<Format>0</Format>
|
|
<UpperRange>0</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<SetValueDouble>0</SetValueDouble>
|
|
<InitValueString>0</InitValueString>
|
|
<EnableInitValue>True</EnableInitValue>
|
|
<SaveLastValue>True</SaveLastValue>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>SFP1</Description>
|
|
<Key>sig75</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit7({B1})</Equation>
|
|
<Format>True/False</Format>
|
|
<SetValueDouble>0</SetValueDouble>
|
|
<SaveLastValue>True</SaveLastValue>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>SFP2</Description>
|
|
<Key>sig76</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit7({B1})</Equation>
|
|
<Format>True/False</Format>
|
|
<SetValueDouble>0</SetValueDouble>
|
|
<SaveLastValue>True</SaveLastValue>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
</AppSignals>
|
|
<DAQSetups>
|
|
<DAQSetup>
|
|
<Key>dq0</Key>
|
|
<Description>DAQ 1</Description>
|
|
<VScapeStandaloneLoggerOptions>
|
|
<Collection>
|
|
<ColKey>5</ColKey>
|
|
<Filename>Collection 5</Filename>
|
|
<StoreInPersistantMemory>True</StoreInPersistantMemory>
|
|
</Collection>
|
|
<EthDaqVidFPS>24</EthDaqVidFPS>
|
|
<CardSize>6</CardSize>
|
|
<TriggerEvents>3309</TriggerEvents>
|
|
<neoMoteBuzzerIndex>0</neoMoteBuzzerIndex>
|
|
<SleepType>3</SleepType>
|
|
<SleepTime>10</SleepTime>
|
|
<WNUploadTimeoutSleep>30</WNUploadTimeoutSleep>
|
|
<SignalGroup>
|
|
<LogAllData>False</LogAllData>
|
|
<LogRateMs>10</LogRateMs>
|
|
<LogPath>icsSpyLogFile</LogPath>
|
|
<LogPathExpression>icsSpyLogFile</LogPathExpression>
|
|
<EvaluatedLogPath>C:\IntrepidCS\Vehicle Spy 3\Data Directory\KBA Demo\icsSpyLogFile 2020-12-14 12-21-54-552000.csv</EvaluatedLogPath>
|
|
<StartMode>0</StartMode>
|
|
<LogPathSpec>
|
|
<Equation>icsSpyLogFile</Equation>
|
|
<EvaluateAsText>True</EvaluateAsText>
|
|
</LogPathSpec>
|
|
</SignalGroup>
|
|
<GWMode>1</GWMode>
|
|
<VScapeDiagWatch>
|
|
<AutoStopTxFromDAQECUs>True</AutoStopTxFromDAQECUs>
|
|
<RestartTxAfterTimeout>True</RestartTxAfterTimeout>
|
|
<TimeoutValue>60</TimeoutValue>
|
|
</VScapeDiagWatch>
|
|
</VScapeStandaloneLoggerOptions>
|
|
<SignalGroup>
|
|
<LogAllData>True</LogAllData>
|
|
<LoggingEnabled>True</LoggingEnabled>
|
|
<LogRateMs>10</LogRateMs>
|
|
<LogPath>icsSpyLogFile</LogPath>
|
|
<LogPathExpression>icsSpyLogFile</LogPathExpression>
|
|
<EvaluatedLogPath>C:\IntrepidCS\Vehicle Spy 3\Data Directory\EDAG\icsSpyLogFile 2021-04-13 16-20-11-154000.csv</EvaluatedLogPath>
|
|
<LogPathSpec>
|
|
<Equation>icsSpyLogFile</Equation>
|
|
<EvaluateAsText>True</EvaluateAsText>
|
|
</LogPathSpec>
|
|
</SignalGroup>
|
|
</DAQSetup>
|
|
</DAQSetups>
|
|
<Monitors>
|
|
<Monitor>
|
|
<UseFilters>True</UseFilters>
|
|
<NumberOfMessagesHistory>50000</NumberOfMessagesHistory>
|
|
<CurrentMonitorHeader>9</CurrentMonitorHeader>
|
|
<FontSize>8</FontSize>
|
|
<FontName>Tahoma</FontName>
|
|
<Key>0</Key>
|
|
<FormObjectKey>0</FormObjectKey>
|
|
<MonitorColumnSets>
|
|
<MonitorColumnSet>
|
|
<Description>(default)</Description>
|
|
<Key>0</Key>
|
|
<MonitorColumns>
|
|
<MonitorColumn>
|
|
<Position>1</Position>
|
|
<Width>62</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>1</ColType>
|
|
<Position>2</Position>
|
|
<Width>90</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>5</ColType>
|
|
<Position>3</Position>
|
|
<Width>25</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>6</ColType>
|
|
<Position>4</Position>
|
|
<Width>25</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>7</ColType>
|
|
<Position>5</Position>
|
|
<Width>178</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>8</ColType>
|
|
<Position>6</Position>
|
|
<Width>90</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>37</ColType>
|
|
<Position>7</Position>
|
|
<Width>25</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>9</ColType>
|
|
<Position>8</Position>
|
|
<Width>162</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>11</ColType>
|
|
<Position>9</Position>
|
|
<Width>90</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>12</ColType>
|
|
<Position>10</Position>
|
|
<Width>62</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>40</ColType>
|
|
<Position>11</Position>
|
|
<Width>62</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>39</ColType>
|
|
<Position>12</Position>
|
|
<Width>175</Width>
|
|
</MonitorColumn>
|
|
</MonitorColumns>
|
|
</MonitorColumnSet>
|
|
<MonitorColumnSet>
|
|
<Description>J1939</Description>
|
|
<Key>1</Key>
|
|
<MonitorColumns>
|
|
<MonitorColumn>
|
|
<Position>1</Position>
|
|
<Width>62</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>1</ColType>
|
|
<Position>2</Position>
|
|
<Width>90</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>5</ColType>
|
|
<Position>3</Position>
|
|
<Width>25</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>6</ColType>
|
|
<Position>4</Position>
|
|
<Width>25</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>7</ColType>
|
|
<Position>5</Position>
|
|
<Width>152</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>27</ColType>
|
|
<Position>6</Position>
|
|
<Width>90</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>21</ColType>
|
|
<Position>7</Position>
|
|
<Width>43</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>25</ColType>
|
|
<Position>8</Position>
|
|
<Width>31</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>24</ColType>
|
|
<Position>9</Position>
|
|
<Width>31</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>9</ColType>
|
|
<Position>10</Position>
|
|
<Width>137</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>11</ColType>
|
|
<Position>11</Position>
|
|
<Width>90</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>12</ColType>
|
|
<Position>12</Position>
|
|
<Width>62</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>40</ColType>
|
|
<Position>13</Position>
|
|
<Width>62</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>39</ColType>
|
|
<Position>14</Position>
|
|
<Width>175</Width>
|
|
</MonitorColumn>
|
|
</MonitorColumns>
|
|
</MonitorColumnSet>
|
|
<MonitorColumnSet>
|
|
<Description>Class 2</Description>
|
|
<Key>2</Key>
|
|
<MonitorColumns>
|
|
<MonitorColumn>
|
|
<Position>1</Position>
|
|
<Width>62</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>1</ColType>
|
|
<Position>2</Position>
|
|
<Width>90</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>5</ColType>
|
|
<Position>3</Position>
|
|
<Width>25</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>6</ColType>
|
|
<Position>4</Position>
|
|
<Width>25</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>7</ColType>
|
|
<Position>5</Position>
|
|
<Width>152</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>19</ColType>
|
|
<Position>6</Position>
|
|
<Width>90</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>8</ColType>
|
|
<Position>7</Position>
|
|
<Width>90</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>9</ColType>
|
|
<Position>8</Position>
|
|
<Width>137</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>17</ColType>
|
|
<Position>9</Position>
|
|
<Width>25</Width>
|
|
</MonitorColumn>
|
|
</MonitorColumns>
|
|
</MonitorColumnSet>
|
|
<MonitorColumnSet>
|
|
<Description>Ford SCP</Description>
|
|
<Key>3</Key>
|
|
<MonitorColumns>
|
|
<MonitorColumn>
|
|
<Position>1</Position>
|
|
<Width>62</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>1</ColType>
|
|
<Position>2</Position>
|
|
<Width>90</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>5</ColType>
|
|
<Position>3</Position>
|
|
<Width>25</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>6</ColType>
|
|
<Position>4</Position>
|
|
<Width>25</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>7</ColType>
|
|
<Position>5</Position>
|
|
<Width>152</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>16</ColType>
|
|
<Position>6</Position>
|
|
<Width>90</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>8</ColType>
|
|
<Position>7</Position>
|
|
<Width>90</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>9</ColType>
|
|
<Position>8</Position>
|
|
<Width>137</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>15</ColType>
|
|
<Position>9</Position>
|
|
<Width>90</Width>
|
|
</MonitorColumn>
|
|
</MonitorColumns>
|
|
</MonitorColumnSet>
|
|
<MonitorColumnSet>
|
|
<Description>GMLAN</Description>
|
|
<Key>4</Key>
|
|
<MonitorColumns>
|
|
<MonitorColumn>
|
|
<Position>1</Position>
|
|
<Width>62</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>1</ColType>
|
|
<Position>2</Position>
|
|
<Width>90</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>5</ColType>
|
|
<Position>3</Position>
|
|
<Width>25</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>6</ColType>
|
|
<Position>4</Position>
|
|
<Width>25</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>7</ColType>
|
|
<Position>5</Position>
|
|
<Width>152</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>8</ColType>
|
|
<Position>6</Position>
|
|
<Width>90</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>20</ColType>
|
|
<Position>7</Position>
|
|
<Width>43</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>28</ColType>
|
|
<Position>8</Position>
|
|
<Width>43</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>29</ColType>
|
|
<Position>9</Position>
|
|
<Width>50</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>30</ColType>
|
|
<Position>10</Position>
|
|
<Width>31</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>9</ColType>
|
|
<Position>11</Position>
|
|
<Width>137</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>12</ColType>
|
|
<Position>12</Position>
|
|
<Width>62</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>11</ColType>
|
|
<Position>13</Position>
|
|
<Width>62</Width>
|
|
</MonitorColumn>
|
|
</MonitorColumns>
|
|
</MonitorColumnSet>
|
|
<MonitorColumnSet>
|
|
<Description>LIN</Description>
|
|
<Key>5</Key>
|
|
<MonitorColumns>
|
|
<MonitorColumn>
|
|
<Position>1</Position>
|
|
<Width>62</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>1</ColType>
|
|
<Position>2</Position>
|
|
<Width>90</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>32</ColType>
|
|
<Position>3</Position>
|
|
<Width>25</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>33</ColType>
|
|
<Position>4</Position>
|
|
<Width>25</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>6</ColType>
|
|
<Position>5</Position>
|
|
<Width>25</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>7</ColType>
|
|
<Position>6</Position>
|
|
<Width>152</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>8</ColType>
|
|
<Position>7</Position>
|
|
<Width>90</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>9</ColType>
|
|
<Position>8</Position>
|
|
<Width>187</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>34</ColType>
|
|
<Position>9</Position>
|
|
<Width>62</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>35</ColType>
|
|
<Position>10</Position>
|
|
<Width>62</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>36</ColType>
|
|
<Position>11</Position>
|
|
<Width>62</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>11</ColType>
|
|
<Position>12</Position>
|
|
<Width>90</Width>
|
|
</MonitorColumn>
|
|
</MonitorColumns>
|
|
</MonitorColumnSet>
|
|
<MonitorColumnSet>
|
|
<Description>CGI</Description>
|
|
<Key>6</Key>
|
|
<MonitorColumns>
|
|
<MonitorColumn>
|
|
<Position>1</Position>
|
|
<Width>62</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>1</ColType>
|
|
<Position>2</Position>
|
|
<Width>90</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>5</ColType>
|
|
<Position>3</Position>
|
|
<Width>25</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>6</ColType>
|
|
<Position>4</Position>
|
|
<Width>25</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>7</ColType>
|
|
<Position>5</Position>
|
|
<Width>152</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>37</ColType>
|
|
<Position>6</Position>
|
|
<Width>25</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>8</ColType>
|
|
<Position>7</Position>
|
|
<Width>90</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>9</ColType>
|
|
<Position>8</Position>
|
|
<Width>162</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>38</ColType>
|
|
<Position>9</Position>
|
|
<Width>90</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>11</ColType>
|
|
<Position>10</Position>
|
|
<Width>90</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>12</ColType>
|
|
<Position>11</Position>
|
|
<Width>62</Width>
|
|
</MonitorColumn>
|
|
</MonitorColumns>
|
|
</MonitorColumnSet>
|
|
<MonitorColumnSet>
|
|
<Description>FlexRay</Description>
|
|
<Key>7</Key>
|
|
<MonitorColumns>
|
|
<MonitorColumn>
|
|
<Position>1</Position>
|
|
<Width>62</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>1</ColType>
|
|
<Position>2</Position>
|
|
<Width>90</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>5</ColType>
|
|
<Position>3</Position>
|
|
<Width>25</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>6</ColType>
|
|
<Position>4</Position>
|
|
<Width>25</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>7</ColType>
|
|
<Position>5</Position>
|
|
<Width>152</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>54</ColType>
|
|
<Position>6</Position>
|
|
<Width>25</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>8</ColType>
|
|
<Position>7</Position>
|
|
<Width>90</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>51</ColType>
|
|
<Position>8</Position>
|
|
<Width>90</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>37</ColType>
|
|
<Position>9</Position>
|
|
<Width>25</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>9</ColType>
|
|
<Position>10</Position>
|
|
<Width>162</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>11</ColType>
|
|
<Position>11</Position>
|
|
<Width>90</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>12</ColType>
|
|
<Position>12</Position>
|
|
<Width>62</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>60</ColType>
|
|
<Position>13</Position>
|
|
<Width>31</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>57</ColType>
|
|
<Position>14</Position>
|
|
<Width>25</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>58</ColType>
|
|
<Position>15</Position>
|
|
<Width>31</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>59</ColType>
|
|
<Position>16</Position>
|
|
<Width>31</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>56</ColType>
|
|
<Position>17</Position>
|
|
<Width>25</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>55</ColType>
|
|
<Position>18</Position>
|
|
<Width>25</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>50</ColType>
|
|
<Position>19</Position>
|
|
<Width>50</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>52</ColType>
|
|
<Position>20</Position>
|
|
<Width>75</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>53</ColType>
|
|
<Position>21</Position>
|
|
<Width>62</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>35</ColType>
|
|
<Position>22</Position>
|
|
<Width>62</Width>
|
|
</MonitorColumn>
|
|
</MonitorColumns>
|
|
</MonitorColumnSet>
|
|
<MonitorColumnSet>
|
|
<Description>ARINC 825</Description>
|
|
<Key>8</Key>
|
|
<MonitorColumns>
|
|
<MonitorColumn>
|
|
<Position>1</Position>
|
|
<Width>62</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>1</ColType>
|
|
<Position>2</Position>
|
|
<Width>90</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>5</ColType>
|
|
<Position>3</Position>
|
|
<Width>25</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>6</ColType>
|
|
<Position>4</Position>
|
|
<Width>25</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>7</ColType>
|
|
<Position>5</Position>
|
|
<Width>152</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>41</ColType>
|
|
<Position>6</Position>
|
|
<Width>43</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>42</ColType>
|
|
<Position>7</Position>
|
|
<Width>50</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>43</ColType>
|
|
<Position>8</Position>
|
|
<Width>31</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>44</ColType>
|
|
<Position>9</Position>
|
|
<Width>31</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>45</ColType>
|
|
<Position>10</Position>
|
|
<Width>31</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>46</ColType>
|
|
<Position>11</Position>
|
|
<Width>37</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>47</ColType>
|
|
<Position>12</Position>
|
|
<Width>31</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>48</ColType>
|
|
<Position>13</Position>
|
|
<Width>50</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>49</ColType>
|
|
<Position>14</Position>
|
|
<Width>31</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>9</ColType>
|
|
<Position>15</Position>
|
|
<Width>162</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>11</ColType>
|
|
<Position>16</Position>
|
|
<Width>90</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>40</ColType>
|
|
<Position>17</Position>
|
|
<Width>62</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>39</ColType>
|
|
<Position>18</Position>
|
|
<Width>175</Width>
|
|
</MonitorColumn>
|
|
</MonitorColumns>
|
|
</MonitorColumnSet>
|
|
<MonitorColumnSet>
|
|
<Description>MOST</Description>
|
|
<Key>9</Key>
|
|
<MonitorColumns>
|
|
<MonitorColumn>
|
|
<Position>1</Position>
|
|
<Width>62</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>1</ColType>
|
|
<Position>2</Position>
|
|
<Width>90</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>6</ColType>
|
|
<Position>3</Position>
|
|
<Width>25</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>62</ColType>
|
|
<Position>4</Position>
|
|
<Width>43</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>63</ColType>
|
|
<Position>5</Position>
|
|
<Width>43</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>70</ColType>
|
|
<Position>6</Position>
|
|
<Width>43</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>71</ColType>
|
|
<Position>7</Position>
|
|
<Width>43</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>64</ColType>
|
|
<Position>8</Position>
|
|
<Width>62</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>65</ColType>
|
|
<Position>9</Position>
|
|
<Width>56</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>66</ColType>
|
|
<Position>10</Position>
|
|
<Width>37</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>67</ColType>
|
|
<Position>11</Position>
|
|
<Width>37</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>68</ColType>
|
|
<Position>12</Position>
|
|
<Width>50</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>7</ColType>
|
|
<Position>13</Position>
|
|
<Width>152</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>9</ColType>
|
|
<Position>14</Position>
|
|
<Width>206</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>69</ColType>
|
|
<Position>15</Position>
|
|
<Width>37</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>74</ColType>
|
|
<Position>16</Position>
|
|
<Width>37</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>75</ColType>
|
|
<Position>17</Position>
|
|
<Width>37</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>11</ColType>
|
|
<Position>18</Position>
|
|
<Width>90</Width>
|
|
</MonitorColumn>
|
|
<MonitorColumn>
|
|
<ColType>39</ColType>
|
|
<Position>19</Position>
|
|
<Width>175</Width>
|
|
</MonitorColumn>
|
|
</MonitorColumns>
|
|
</MonitorColumnSet>
|
|
</MonitorColumnSets>
|
|
<Filters0>
|
|
<Description>Custom 1</Description>
|
|
</Filters0>
|
|
<Filters1>
|
|
<Description>Custom 2</Description>
|
|
</Filters1>
|
|
<Filters2>
|
|
<Description>Custom 3</Description>
|
|
</Filters2>
|
|
<Filters3>
|
|
<Description>Custom 4</Description>
|
|
</Filters3>
|
|
<Filters4>
|
|
<Description>Custom 5</Description>
|
|
</Filters4>
|
|
<Filters5>
|
|
<Description>Custom 6</Description>
|
|
</Filters5>
|
|
</Monitor>
|
|
</Monitors>
|
|
<NetworkHardwares>
|
|
<MultipleHardwareSelectType>1</MultipleHardwareSelectType>
|
|
<NetworkHardware>
|
|
<Description>Intrepid0</Description>
|
|
</NetworkHardware>
|
|
</NetworkHardwares>
|
|
<Networks>
|
|
<Network>
|
|
<Description>HS CAN</Description>
|
|
<Key>net0</Key>
|
|
<NetworkName>HS CAN</NetworkName>
|
|
<BaudRate>500000</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
<BaudRateSecondary>2000000</BaudRateSecondary>
|
|
<IsOBDNetwork>1</IsOBDNetwork>
|
|
</Network>
|
|
<Network>
|
|
<Description>MS CAN</Description>
|
|
<Key>net1</Key>
|
|
<NetworkName>MS CAN</NetworkName>
|
|
<BaudRate>500000</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
<BaudRateSecondary>2000000</BaudRateSecondary>
|
|
</Network>
|
|
<Network>
|
|
<Description>SW CAN</Description>
|
|
<Key>net2</Key>
|
|
<NetworkName>SW CAN</NetworkName>
|
|
<BaudRate>33333</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
<IsSWCAN>1</IsSWCAN>
|
|
</Network>
|
|
<Network>
|
|
<Description>J1850 VPW</Description>
|
|
<Key>net3</Key>
|
|
<NetworkName>J1850 VPW</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>3</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>ISO9141/KW2K</Description>
|
|
<Key>net4</Key>
|
|
<NetworkName>ISO9141/KW2K</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>6</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>LSFT CAN</Description>
|
|
<Key>net5</Key>
|
|
<NetworkName>LSFT CAN</NetworkName>
|
|
<BaudRate>125000</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>J1850 PWM</Description>
|
|
<Key>net6</Key>
|
|
<NetworkName>J1850 PWM</NetworkName>
|
|
<BaudRate>41600</BaudRate>
|
|
<Protocol>4</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>J1708</Description>
|
|
<Key>net7</Key>
|
|
<NetworkName>J1708</NetworkName>
|
|
<BaudRate>9600</BaudRate>
|
|
<Protocol>13</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>neoVI</Description>
|
|
<Key>net8</Key>
|
|
<NetworkName>neoVI</NetworkName>
|
|
<BaudRate>0</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>HS CAN2</Description>
|
|
<Key>net9</Key>
|
|
<NetworkName>HS CAN2 (neoVI 3G)</NetworkName>
|
|
<BaudRate>500000</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
<BaudRateSecondary>2000000</BaudRateSecondary>
|
|
</Network>
|
|
<Network>
|
|
<Description>HS CAN3</Description>
|
|
<Key>net10</Key>
|
|
<NetworkName>HS CAN3 (neoVI 3G)</NetworkName>
|
|
<BaudRate>500000</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
<BaudRateSecondary>2000000</BaudRateSecondary>
|
|
</Network>
|
|
<Network>
|
|
<Description>LIN2</Description>
|
|
<Key>net11</Key>
|
|
<NetworkName>LIN2 (neoVI 3G)</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>12</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>LIN3</Description>
|
|
<Key>net12</Key>
|
|
<NetworkName>LIN3 (neoVI 3G)</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>12</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>LIN4</Description>
|
|
<Key>net13</Key>
|
|
<NetworkName>LIN4 (neoVI 3G)</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>12</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>CGI</Description>
|
|
<Key>net14</Key>
|
|
<NetworkName>CGI (neoVI 3G)</NetworkName>
|
|
<BaudRate>625000</BaudRate>
|
|
<Protocol>18</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>LIN</Description>
|
|
<Key>net15</Key>
|
|
<NetworkName>LIN</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>12</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>ISO9141/KW2K 2</Description>
|
|
<Key>net16</Key>
|
|
<NetworkName>ISO9141/KW2K 2</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>6</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>ISO9141/KW2K 3</Description>
|
|
<Key>net17</Key>
|
|
<NetworkName>ISO9141/KW2K 3</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>6</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>ISO9141/KW2K 4</Description>
|
|
<Key>net18</Key>
|
|
<NetworkName>ISO9141/KW2K 4</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>6</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>HS CAN4</Description>
|
|
<Key>net19</Key>
|
|
<NetworkName>HS CAN4</NetworkName>
|
|
<BaudRate>500000</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
<BaudRateSecondary>2000000</BaudRateSecondary>
|
|
</Network>
|
|
<Network>
|
|
<Description>HS CAN5</Description>
|
|
<Key>net20</Key>
|
|
<NetworkName>HS CAN5</NetworkName>
|
|
<BaudRate>500000</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
<BaudRateSecondary>2000000</BaudRateSecondary>
|
|
</Network>
|
|
<Network>
|
|
<Description>UART</Description>
|
|
<Key>net21</Key>
|
|
<NetworkName>UART (neoVI 3G)</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>28</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>UART2</Description>
|
|
<Key>net22</Key>
|
|
<NetworkName>UART2 (neoVI 3G)</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>28</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>LIN5</Description>
|
|
<Key>net23</Key>
|
|
<NetworkName>LIN5 (neoVI 3G)</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>12</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>MOST (VNET A)</Description>
|
|
<Key>net24</Key>
|
|
<NetworkName>MOST (VNET A)</NetworkName>
|
|
<BaudRate>1000000</BaudRate>
|
|
<Protocol>17</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>FlexRay1A (VNET A)</Description>
|
|
<Key>net25</Key>
|
|
<NetworkName>FlexRay1A (VNET A)</NetworkName>
|
|
<BaudRate>5000000</BaudRate>
|
|
<Protocol>16</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>FlexRay1B (VNET A)</Description>
|
|
<Key>net26</Key>
|
|
<NetworkName>FlexRay1B (VNET A)</NetworkName>
|
|
<BaudRate>5000000</BaudRate>
|
|
<Protocol>16</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>FlexRay2A (VNET A)</Description>
|
|
<Key>net27</Key>
|
|
<NetworkName>FlexRay2A (VNET A)</NetworkName>
|
|
<BaudRate>5000000</BaudRate>
|
|
<Protocol>16</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>FlexRay2B (VNET A)</Description>
|
|
<Key>net28</Key>
|
|
<NetworkName>FlexRay2B (VNET A)</NetworkName>
|
|
<BaudRate>5000000</BaudRate>
|
|
<Protocol>16</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>HS CAN (VNET A)</Description>
|
|
<Key>net29</Key>
|
|
<NetworkName>HS CAN (VNET A)</NetworkName>
|
|
<BaudRate>500000</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
<BaudRateSecondary>2000000</BaudRateSecondary>
|
|
</Network>
|
|
<Network>
|
|
<Description>MS CAN (VNET A)</Description>
|
|
<Key>net30</Key>
|
|
<NetworkName>MS CAN (VNET A)</NetworkName>
|
|
<BaudRate>500000</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
<BaudRateSecondary>2000000</BaudRateSecondary>
|
|
</Network>
|
|
<Network>
|
|
<Description>SW CAN (VNET A)</Description>
|
|
<Key>net31</Key>
|
|
<NetworkName>SW CAN (VNET A)</NetworkName>
|
|
<BaudRate>33333</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>J1850 VPW (VNET A)</Description>
|
|
<Key>net32</Key>
|
|
<NetworkName>J1850 VPW (VNET A)</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>3</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>LSFT CAN (VNET A)</Description>
|
|
<Key>net33</Key>
|
|
<NetworkName>LSFT CAN (VNET A)</NetworkName>
|
|
<BaudRate>125000</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>J1708 (VNET A)</Description>
|
|
<Key>net34</Key>
|
|
<NetworkName>J1708 (VNET A)</NetworkName>
|
|
<BaudRate>9600</BaudRate>
|
|
<Protocol>13</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>neoVI (VNET A)</Description>
|
|
<Key>net35</Key>
|
|
<NetworkName>neoVI (VNET A)</NetworkName>
|
|
<BaudRate>500000</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>HS CAN2 (VNET A)</Description>
|
|
<Key>net36</Key>
|
|
<NetworkName>HS CAN2 (VNET A)</NetworkName>
|
|
<BaudRate>500000</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
<BaudRateSecondary>2000000</BaudRateSecondary>
|
|
</Network>
|
|
<Network>
|
|
<Description>HS CAN3 (VNET A)</Description>
|
|
<Key>net37</Key>
|
|
<NetworkName>HS CAN3 (VNET A)</NetworkName>
|
|
<BaudRate>500000</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
<BaudRateSecondary>2000000</BaudRateSecondary>
|
|
</Network>
|
|
<Network>
|
|
<Description>LIN (VNET A)</Description>
|
|
<Key>net38</Key>
|
|
<NetworkName>LIN (VNET A)</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>12</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>LIN2 (VNET A)</Description>
|
|
<Key>net39</Key>
|
|
<NetworkName>LIN2 (VNET A)</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>12</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>LIN3 (VNET A)</Description>
|
|
<Key>net40</Key>
|
|
<NetworkName>LIN3 (VNET A)</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>12</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>LIN4 (VNET A)</Description>
|
|
<Key>net41</Key>
|
|
<NetworkName>LIN4 (VNET A)</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>12</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>CGI (VNET A)</Description>
|
|
<Key>net42</Key>
|
|
<NetworkName>CGI (VNET A)</NetworkName>
|
|
<BaudRate>625000</BaudRate>
|
|
<Protocol>18</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>ISO9141/KW2K (VNET A)</Description>
|
|
<Key>net43</Key>
|
|
<NetworkName>ISO9141/KW2K (VNET A)</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>6</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>ISO9141/KW2K 2 (VNET A)</Description>
|
|
<Key>net44</Key>
|
|
<NetworkName>ISO9141/KW2K 2 (VNET A)</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>6</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>ISO9141/KW2K 3 (VNET A)</Description>
|
|
<Key>net45</Key>
|
|
<NetworkName>ISO9141/KW2K 3 (VNET A)</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>6</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>ISO9141/KW2K 4 (VNET A)</Description>
|
|
<Key>net46</Key>
|
|
<NetworkName>ISO9141/KW2K 4 (VNET A)</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>6</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>HS CAN (VNET B)</Description>
|
|
<Key>net47</Key>
|
|
<NetworkName>HS CAN (VNET B)</NetworkName>
|
|
<BaudRate>500000</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
<BaudRateSecondary>2000000</BaudRateSecondary>
|
|
</Network>
|
|
<Network>
|
|
<Description>MS CAN (VNET B)</Description>
|
|
<Key>net48</Key>
|
|
<NetworkName>MS CAN (VNET B)</NetworkName>
|
|
<BaudRate>500000</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
<BaudRateSecondary>2000000</BaudRateSecondary>
|
|
</Network>
|
|
<Network>
|
|
<Description>SW CAN (VNET B)</Description>
|
|
<Key>net49</Key>
|
|
<NetworkName>SW CAN (VNET B)</NetworkName>
|
|
<BaudRate>33333</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>J1850 VPW (VNET B)</Description>
|
|
<Key>net50</Key>
|
|
<NetworkName>J1850 VPW (VNET B)</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>3</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>LSFT CAN (VNET B)</Description>
|
|
<Key>net51</Key>
|
|
<NetworkName>LSFT CAN (VNET B)</NetworkName>
|
|
<BaudRate>125000</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>J1708 (VNET B)</Description>
|
|
<Key>net52</Key>
|
|
<NetworkName>J1708 (VNET B)</NetworkName>
|
|
<BaudRate>9600</BaudRate>
|
|
<Protocol>13</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>neoVI (VNET B)</Description>
|
|
<Key>net53</Key>
|
|
<NetworkName>neoVI (VNET B)</NetworkName>
|
|
<BaudRate>500000</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>HS CAN2 (VNET B)</Description>
|
|
<Key>net54</Key>
|
|
<NetworkName>HS CAN2 (VNET B)</NetworkName>
|
|
<BaudRate>500000</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
<BaudRateSecondary>2000000</BaudRateSecondary>
|
|
</Network>
|
|
<Network>
|
|
<Description>HS CAN3 (VNET B)</Description>
|
|
<Key>net55</Key>
|
|
<NetworkName>HS CAN3 (VNET B)</NetworkName>
|
|
<BaudRate>500000</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
<BaudRateSecondary>2000000</BaudRateSecondary>
|
|
</Network>
|
|
<Network>
|
|
<Description>LIN (VNET B)</Description>
|
|
<Key>net56</Key>
|
|
<NetworkName>LIN (VNET B)</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>12</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>LIN2 (VNET B)</Description>
|
|
<Key>net57</Key>
|
|
<NetworkName>LIN2 (VNET B)</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>12</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>LIN3 (VNET B)</Description>
|
|
<Key>net58</Key>
|
|
<NetworkName>LIN3 (VNET B)</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>12</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>LIN4 (VNET B)</Description>
|
|
<Key>net59</Key>
|
|
<NetworkName>LIN4 (VNET B)</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>12</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>CGI (VNET B)</Description>
|
|
<Key>net60</Key>
|
|
<NetworkName>CGI (VNET B)</NetworkName>
|
|
<BaudRate>625000</BaudRate>
|
|
<Protocol>18</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>ISO9141/KW2K (VNET B)</Description>
|
|
<Key>net61</Key>
|
|
<NetworkName>ISO9141/KW2K (VNET B)</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>6</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>ISO9141/KW2K 2 (VNET B)</Description>
|
|
<Key>net62</Key>
|
|
<NetworkName>ISO9141/KW2K 2 (VNET B)</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>6</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>ISO9141/KW2K 3 (VNET B)</Description>
|
|
<Key>net63</Key>
|
|
<NetworkName>ISO9141/KW2K 3 (VNET B)</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>6</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>ISO9141/KW2K 4 (VNET B)</Description>
|
|
<Key>net64</Key>
|
|
<NetworkName>ISO9141/KW2K 4 (VNET B)</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>6</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>HS CAN4 (VNET A)</Description>
|
|
<Key>net65</Key>
|
|
<NetworkName>HS CAN4 (VNET A)</NetworkName>
|
|
<BaudRate>500000</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
<BaudRateSecondary>2000000</BaudRateSecondary>
|
|
</Network>
|
|
<Network>
|
|
<Description>HS CAN5 (VNET A)</Description>
|
|
<Key>net66</Key>
|
|
<NetworkName>HS CAN5 (VNET A)</NetworkName>
|
|
<BaudRate>500000</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
<BaudRateSecondary>2000000</BaudRateSecondary>
|
|
</Network>
|
|
<Network>
|
|
<Description>LIN5 (VNET A)</Description>
|
|
<Key>net67</Key>
|
|
<NetworkName>LIN5 (VNET A)</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>12</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>HS CAN4 (VNET B)</Description>
|
|
<Key>net68</Key>
|
|
<NetworkName>HS CAN4 (VNET B)</NetworkName>
|
|
<BaudRate>500000</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
<BaudRateSecondary>2000000</BaudRateSecondary>
|
|
</Network>
|
|
<Network>
|
|
<Description>HS CAN5 (VNET B)</Description>
|
|
<Key>net69</Key>
|
|
<NetworkName>HS CAN5 (VNET B)</NetworkName>
|
|
<BaudRate>500000</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
<BaudRateSecondary>2000000</BaudRateSecondary>
|
|
</Network>
|
|
<Network>
|
|
<Description>LIN5 (VNET B)</Description>
|
|
<Key>net70</Key>
|
|
<NetworkName>LIN5 (VNET B)</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>12</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>Ethernet DAQ</Description>
|
|
<Key>net71</Key>
|
|
<NetworkName>Ethernet DAQ (neoVI 3G)</NetworkName>
|
|
<BaudRate>0</BaudRate>
|
|
<Protocol>29</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>Ethernet</Description>
|
|
<Key>net72</Key>
|
|
<NetworkName>Ethernet 19 : Realtek USB GbE Family Controller #4</NetworkName>
|
|
<Protocol>29</Protocol>
|
|
<IsInternalIntrepidIOHardware>True</IsInternalIntrepidIOHardware>
|
|
<IntrepidIODescription>Ethernet PCAP</IntrepidIODescription>
|
|
<IntrepidIODLLName>icsenet.dll</IntrepidIODLLName>
|
|
</Network>
|
|
<Network>
|
|
<Description>MOST (VNET B)</Description>
|
|
<Key>net73</Key>
|
|
<NetworkName>MOST (VNET B)</NetworkName>
|
|
<BaudRate>1000000</BaudRate>
|
|
<Protocol>17</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>FlexRay1A (VNET B)</Description>
|
|
<Key>net74</Key>
|
|
<NetworkName>FlexRay1A (VNET B)</NetworkName>
|
|
<BaudRate>5000000</BaudRate>
|
|
<Protocol>16</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>FlexRay1B (VNET B)</Description>
|
|
<Key>net75</Key>
|
|
<NetworkName>FlexRay1B (VNET B)</NetworkName>
|
|
<BaudRate>5000000</BaudRate>
|
|
<Protocol>16</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>FlexRay2A (VNET B)</Description>
|
|
<Key>net76</Key>
|
|
<NetworkName>FlexRay2A (VNET B)</NetworkName>
|
|
<BaudRate>5000000</BaudRate>
|
|
<Protocol>16</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>FlexRay2B (VNET B)</Description>
|
|
<Key>net77</Key>
|
|
<NetworkName>FlexRay2B (VNET B)</NetworkName>
|
|
<BaudRate>5000000</BaudRate>
|
|
<Protocol>16</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>SW CAN2</Description>
|
|
<Key>net78</Key>
|
|
<NetworkName>SW CAN2 (neoVI 3G)</NetworkName>
|
|
<BaudRate>33333</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>SW CAN2 (VNET A)</Description>
|
|
<Key>net79</Key>
|
|
<NetworkName>SW CAN2 (VNET A)</NetworkName>
|
|
<BaudRate>33333</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>SW CAN2 (VNET B)</Description>
|
|
<Key>net80</Key>
|
|
<NetworkName>SW CAN2 (VNET B)</NetworkName>
|
|
<BaudRate>33333</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>FSA</Description>
|
|
<Key>net81</Key>
|
|
<NetworkName>(FSA Virtual)</NetworkName>
|
|
<Protocol>31</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>TCP</Description>
|
|
<Key>net82</Key>
|
|
<NetworkName>(TCP Virtual)</NetworkName>
|
|
<Protocol>32</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>HS CAN6</Description>
|
|
<Key>net83</Key>
|
|
<NetworkName>HS CAN6</NetworkName>
|
|
<BaudRate>500000</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
<BaudRateSecondary>2000000</BaudRateSecondary>
|
|
</Network>
|
|
<Network>
|
|
<Description>HS CAN7</Description>
|
|
<Key>net84</Key>
|
|
<NetworkName>HS CAN7</NetworkName>
|
|
<BaudRate>500000</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
<BaudRateSecondary>2000000</BaudRateSecondary>
|
|
</Network>
|
|
<Network>
|
|
<Description>LIN6</Description>
|
|
<Key>net85</Key>
|
|
<NetworkName>LIN6</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>12</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>LSFT CAN2</Description>
|
|
<Key>net86</Key>
|
|
<NetworkName>LSFT CAN2</NetworkName>
|
|
<BaudRate>125000</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>OP (BR) ETH01</Description>
|
|
<Key>net87</Key>
|
|
<NetworkName>OP (BR) ETH1</NetworkName>
|
|
<BaudRate>100</BaudRate>
|
|
<Protocol>29</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>OP (BR) ETH02</Description>
|
|
<Key>net88</Key>
|
|
<NetworkName>OP (BR) ETH2</NetworkName>
|
|
<BaudRate>100</BaudRate>
|
|
<Protocol>29</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>OP (BR) ETH03</Description>
|
|
<Key>net89</Key>
|
|
<NetworkName>OP (BR) ETH3</NetworkName>
|
|
<BaudRate>100</BaudRate>
|
|
<Protocol>29</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>OP (BR) ETH04</Description>
|
|
<Key>net90</Key>
|
|
<NetworkName>OP (BR) ETH4</NetworkName>
|
|
<BaudRate>100</BaudRate>
|
|
<Protocol>29</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>OP (BR) ETH05</Description>
|
|
<Key>net91</Key>
|
|
<NetworkName>OP (BR) ETH5</NetworkName>
|
|
<BaudRate>100</BaudRate>
|
|
<Protocol>29</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>OP (BR) ETH06</Description>
|
|
<Key>net92</Key>
|
|
<NetworkName>OP (BR) ETH6</NetworkName>
|
|
<BaudRate>100</BaudRate>
|
|
<Protocol>29</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>OP (BR) ETH07</Description>
|
|
<Key>net93</Key>
|
|
<NetworkName>OP (BR) ETH7</NetworkName>
|
|
<BaudRate>100</BaudRate>
|
|
<Protocol>29</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>OP (BR) ETH08</Description>
|
|
<Key>net94</Key>
|
|
<NetworkName>OP (BR) ETH8</NetworkName>
|
|
<BaudRate>100</BaudRate>
|
|
<Protocol>29</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>OP (BR) ETH09</Description>
|
|
<Key>net95</Key>
|
|
<NetworkName>OP (BR) ETH9</NetworkName>
|
|
<BaudRate>100</BaudRate>
|
|
<Protocol>29</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>OP (BR) ETH10</Description>
|
|
<Key>net96</Key>
|
|
<NetworkName>OP (BR) ETH10</NetworkName>
|
|
<BaudRate>100</BaudRate>
|
|
<Protocol>29</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>OP (BR) ETH11</Description>
|
|
<Key>net97</Key>
|
|
<NetworkName>OP (BR) ETH11</NetworkName>
|
|
<BaudRate>100</BaudRate>
|
|
<Protocol>29</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>OP (BR) ETH12</Description>
|
|
<Key>net98</Key>
|
|
<NetworkName>OP (BR) ETH12</NetworkName>
|
|
<BaudRate>100</BaudRate>
|
|
<Protocol>29</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>FlexRay</Description>
|
|
<Key>net99</Key>
|
|
<NetworkName>FlexRay</NetworkName>
|
|
<BaudRate>10000000</BaudRate>
|
|
<Protocol>16</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>FlexRay2</Description>
|
|
<Key>net100</Key>
|
|
<NetworkName>FlexRay2</NetworkName>
|
|
<BaudRate>10000000</BaudRate>
|
|
<Protocol>16</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>LIN6 (VNET A)</Description>
|
|
<Key>net101</Key>
|
|
<NetworkName>LIN6 (VNET A)</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>12</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>LIN6 (VNET B)</Description>
|
|
<Key>net102</Key>
|
|
<NetworkName>LIN6 (VNET B)</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>12</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>HS CAN6 (VNET A)</Description>
|
|
<Key>net103</Key>
|
|
<NetworkName>HS CAN6 (VNET A)</NetworkName>
|
|
<BaudRate>500000</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
<BaudRateSecondary>2000000</BaudRateSecondary>
|
|
</Network>
|
|
<Network>
|
|
<Description>HS CAN6 (VNET B)</Description>
|
|
<Key>net104</Key>
|
|
<NetworkName>HS CAN6 (VNET B)</NetworkName>
|
|
<BaudRate>500000</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
<BaudRateSecondary>2000000</BaudRateSecondary>
|
|
</Network>
|
|
<Network>
|
|
<Description>HS CAN7 (VNET A)</Description>
|
|
<Key>net105</Key>
|
|
<NetworkName>HS CAN7 (VNET A)</NetworkName>
|
|
<BaudRate>500000</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
<BaudRateSecondary>2000000</BaudRateSecondary>
|
|
</Network>
|
|
<Network>
|
|
<Description>HS CAN7 (VNET B)</Description>
|
|
<Key>net106</Key>
|
|
<NetworkName>HS CAN7 (VNET B)</NetworkName>
|
|
<BaudRate>500000</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
<BaudRateSecondary>2000000</BaudRateSecondary>
|
|
</Network>
|
|
<Network>
|
|
<Description>LSFT CAN2 (VNET A)</Description>
|
|
<Key>net107</Key>
|
|
<NetworkName>LSFT CAN2 (VNET A)</NetworkName>
|
|
<BaudRate>125000</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>LSFT CAN2 (VNET B)</Description>
|
|
<Key>net108</Key>
|
|
<NetworkName>LSFT CAN2 (VNET B)</NetworkName>
|
|
<BaudRate>125000</BaudRate>
|
|
<Protocol>1</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>Ethernet (VNET A)</Description>
|
|
<Key>net109</Key>
|
|
<NetworkName>Ethernet (VNET A)</NetworkName>
|
|
<BaudRate>0</BaudRate>
|
|
<Protocol>29</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>Ethernet (VNET B)</Description>
|
|
<Key>net110</Key>
|
|
<NetworkName>Ethernet (VNET B)</NetworkName>
|
|
<BaudRate>0</BaudRate>
|
|
<Protocol>29</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>UDP</Description>
|
|
<Key>net111</Key>
|
|
<NetworkName>(UDP Virtual)</NetworkName>
|
|
<Protocol>33</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>AUTOSAR</Description>
|
|
<Key>net112</Key>
|
|
<NetworkName>(AUTOSAR Virtual)</NetworkName>
|
|
<Protocol>34</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>I2C1</Description>
|
|
<Key>net113</Key>
|
|
<NetworkName>I2C1</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>21</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>I2C2</Description>
|
|
<Key>net114</Key>
|
|
<NetworkName>I2C2</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>21</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>I2C3</Description>
|
|
<Key>net115</Key>
|
|
<NetworkName>I2C3</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>21</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>I2C4</Description>
|
|
<Key>net116</Key>
|
|
<NetworkName>I2C4</NetworkName>
|
|
<BaudRate>10417</BaudRate>
|
|
<Protocol>21</Protocol>
|
|
</Network>
|
|
<Network>
|
|
<Description>Ethernet2</Description>
|
|
<Key>net117</Key>
|
|
<NetworkName>Ethernet2</NetworkName>
|
|
<BaudRate>0</BaudRate>
|
|
<Protocol>29</Protocol>
|
|
</Network>
|
|
</Networks>
|
|
<MsgSigs>
|
|
<MsgSig>
|
|
<Description>(PID 00) CAN Supported PIDs (1-20) Response</Description>
|
|
<Key>in0</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>00</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<DisplayColor>16744448</DisplayColor>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>PID 01 Supported (PID 00)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit7({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>24</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 02 Supported (PID 00)</Description>
|
|
<Key>sig1</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit6({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>25</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 03 Supported (PID 00)</Description>
|
|
<Key>sig2</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit5({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>26</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 04 Supported (PID 00)</Description>
|
|
<Key>sig3</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit4({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>27</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 05 Supported (PID 00)</Description>
|
|
<Key>sig4</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit3({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>28</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 06 Supported (PID 00)</Description>
|
|
<Key>sig5</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit2({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>29</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 07 Supported (PID 00)</Description>
|
|
<Key>sig6</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit1({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>30</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 08 Supported (PID 00)</Description>
|
|
<Key>sig7</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit0({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>31</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 09 Supported (PID 00)</Description>
|
|
<Key>sig8</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit7({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>32</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 0A Supported (PID 00)</Description>
|
|
<Key>sig9</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit6({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>33</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 0B Supported (PID 00)</Description>
|
|
<Key>sig10</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit5({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>34</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 0C Supported (PID 00)</Description>
|
|
<Key>sig11</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit4({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>35</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 0D Supported (PID 00)</Description>
|
|
<Key>sig12</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit3({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>36</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 0E Supported (PID 00)</Description>
|
|
<Key>sig13</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit2({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>37</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 0F Supported (PID 00)</Description>
|
|
<Key>sig14</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit1({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>38</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 10 Supported (PID 00)</Description>
|
|
<Key>sig15</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit0({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>39</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 11 Supported (PID 00)</Description>
|
|
<Key>sig16</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit7({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>40</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 12 Supported (PID 00)</Description>
|
|
<Key>sig17</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit6({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>41</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 13 Supported (PID 00)</Description>
|
|
<Key>sig18</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit5({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>42</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 14 Supported (PID 00)</Description>
|
|
<Key>sig19</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit4({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>43</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 15 Supported (PID 00)</Description>
|
|
<Key>sig20</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit3({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>44</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 16 Supported (PID 00)</Description>
|
|
<Key>sig21</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit2({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>45</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 17 Supported (PID 00)</Description>
|
|
<Key>sig22</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit1({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>46</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 18 Supported (PID 00)</Description>
|
|
<Key>sig23</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit0({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>47</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 19 Supported (PID 00)</Description>
|
|
<Key>sig24</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit7({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>48</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 1A Supported (PID 00)</Description>
|
|
<Key>sig25</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit6({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>49</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 1B Supported (PID 00)</Description>
|
|
<Key>sig26</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit5({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>50</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 1C Supported (PID 00)</Description>
|
|
<Key>sig27</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit4({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>51</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 1D Supported (PID 00)</Description>
|
|
<Key>sig28</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit3({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>52</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 1E Supported (PID 00)</Description>
|
|
<Key>sig29</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit2({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>53</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 1F Supported (PID 00)</Description>
|
|
<Key>sig30</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit1({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>54</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 20 Supported (PID 00)</Description>
|
|
<Key>sig31</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit0({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>55</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 04) CAN Calculated Load Value Response</Description>
|
|
<Key>in4</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>04</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Calculated LOAD Value (PID 04)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.392156862745098|0,1,24,8</Equation>
|
|
<Format>0.000</Format>
|
|
<UpperRange>100</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>%</UnitString>
|
|
<NumScaling>0.392156862745098</NumScaling>
|
|
<Strt>24</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 05) CAN Engine Coolant Temp Response</Description>
|
|
<Key>in5</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>05</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Engine Coolant Temperature (PID 05)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}-40|0,1,24,8</Equation>
|
|
<Format>0</Format>
|
|
<UpperRange>215</UpperRange>
|
|
<LowerRange>-40</LowerRange>
|
|
<UnitString>°C</UnitString>
|
|
<NumOffset>-40</NumOffset>
|
|
<Strt>24</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 0A) CAN Fuel Pressure Response</Description>
|
|
<Key>in10</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>0A</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Fuel Pressure (Gauge) (PID 0A)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*3|0,1,24,8</Equation>
|
|
<Format>0</Format>
|
|
<UpperRange>765</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>kPa</UnitString>
|
|
<NumScaling>3</NumScaling>
|
|
<Strt>24</Strt>
|
|
<Len>8</Len>
|
|
<StepSize>3</StepSize>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 0B) CAN Intake Manifold Absolute Pressure Response</Description>
|
|
<Key>in11</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>0B</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Intake Manifold Absolute Pressure (PID 0B)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}|0,1,24,8</Equation>
|
|
<Format>0</Format>
|
|
<UpperRange>255</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>kPa</UnitString>
|
|
<Strt>24</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 0C) CAN Engine RPM Response</Description>
|
|
<Key>in12</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>0C</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Engine RPM (PID 0C)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.25|0,1,24,16</Equation>
|
|
<Format>0.00</Format>
|
|
<UpperRange>16383.75</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>rpm</UnitString>
|
|
<NumScaling>0.25</NumScaling>
|
|
<Strt>24</Strt>
|
|
<Len>16</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 0D) CAN Vehicle Speed Response</Description>
|
|
<Key>in13</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>0D</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Vehicle Speed Sensor (PID 0D)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}|0,1,24,8</Equation>
|
|
<Format>0</Format>
|
|
<UpperRange>255</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>km/h</UnitString>
|
|
<Strt>24</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 0F) CAN Intake Air Temperature Response</Description>
|
|
<Key>in15</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>0F</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Intake Air Temperature (PID 0F)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}-40|0,1,24,8</Equation>
|
|
<Format>0</Format>
|
|
<UpperRange>215</UpperRange>
|
|
<LowerRange>-40</LowerRange>
|
|
<UnitString>°C</UnitString>
|
|
<NumOffset>-40</NumOffset>
|
|
<Strt>24</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 10) CAN MAF Sensor Air Flow Rate Response</Description>
|
|
<Key>in16</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>10</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Air Flow Rate from MAF Sensor (PID 10)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.01|0,1,24,16</Equation>
|
|
<Format>0.00</Format>
|
|
<UpperRange>655.35</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>g/s</UnitString>
|
|
<NumScaling>0.01</NumScaling>
|
|
<Strt>24</Strt>
|
|
<Len>16</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 11) CAN Absolute Throttle Position Response</Description>
|
|
<Key>in17</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>11</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<DisplayColor>8421504</DisplayColor>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Absolute Throttle Position (PID 11)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.392156862745098|0,1,24,8</Equation>
|
|
<Format>0.000</Format>
|
|
<UpperRange>100</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>%</UnitString>
|
|
<NumScaling>0.392156862745098</NumScaling>
|
|
<Strt>24</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 13) CAN Oxygen Sensors Response</Description>
|
|
<Key>in19</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>13</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<DisplayColor>33023</DisplayColor>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>O2 Sensor 2-4 Present (PID 13)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit7({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>24</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>O2 Sensor 2-3 Present (PID 13)</Description>
|
|
<Key>sig1</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit6({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>25</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>O2 Sensor 2-2 Present (PID 13)</Description>
|
|
<Key>sig2</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit5({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>26</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>O2 Sensor 2-1 Present (PID 13)</Description>
|
|
<Key>sig3</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit4({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>27</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>O2 Sensor 1-4 Present (PID 13)</Description>
|
|
<Key>sig4</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit3({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>28</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>O2 Sensor 1-3 Present (PID 13)</Description>
|
|
<Key>sig5</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit2({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>29</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>O2 Sensor 1-2 Present (PID 13)</Description>
|
|
<Key>sig6</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit1({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>30</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>O2 Sensor 1-1 Present (PID 13)</Description>
|
|
<Key>sig7</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit0({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>31</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 14) CAN Oxygen Sensor 1-1 Response</Description>
|
|
<Key>in20</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>14</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<DisplayColor>33023</DisplayColor>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>O2 Sensor 1-1 Output Voltage (PID 14)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.005|0,1,24,8</Equation>
|
|
<Format>0.000</Format>
|
|
<UpperRange>1.275</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>V</UnitString>
|
|
<NumScaling>0.005</NumScaling>
|
|
<Strt>24</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>O2 Sensor 1-1 Short Term Fuel Trim (PID 14)</Description>
|
|
<Key>sig1</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.78125-100|0,1,32,8</Equation>
|
|
<Format>0.00</Format>
|
|
<UpperRange>99.22</UpperRange>
|
|
<LowerRange>-100</LowerRange>
|
|
<UnitString>%</UnitString>
|
|
<NumScaling>0.78125</NumScaling>
|
|
<NumOffset>-100</NumOffset>
|
|
<Strt>32</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 15) CAN Oxygen Sensor 1-2 Response</Description>
|
|
<Key>in21</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>15</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<DisplayColor>33023</DisplayColor>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>O2 Sensor 1-2 Output Voltage (PID 15)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.005|0,1,24,8</Equation>
|
|
<Format>0.000</Format>
|
|
<UpperRange>1.275</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>V</UnitString>
|
|
<NumScaling>0.005</NumScaling>
|
|
<Strt>24</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>O2 Sensor 1-2 Short Term Fuel Trim (PID 15)</Description>
|
|
<Key>sig1</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.78125-100|0,1,32,8</Equation>
|
|
<Format>0.00</Format>
|
|
<UpperRange>99.22</UpperRange>
|
|
<LowerRange>-100</LowerRange>
|
|
<UnitString>%</UnitString>
|
|
<NumScaling>0.78125</NumScaling>
|
|
<NumOffset>-100</NumOffset>
|
|
<Strt>32</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 16) CAN Oxygen Sensor 1-3 OR 2-1 Response</Description>
|
|
<Key>in22</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>16</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<DisplayColor>33023</DisplayColor>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>O2 Sensor 1-3/2-1 Output Voltage (PID 16)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.005|0,1,24,8</Equation>
|
|
<Format>0.000</Format>
|
|
<UpperRange>1.275</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>V</UnitString>
|
|
<NumScaling>0.005</NumScaling>
|
|
<Strt>24</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>O2 Sensor 1-3/2-1 Short Term Fuel Trim (PID 16)</Description>
|
|
<Key>sig1</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.78125-100|0,1,32,8</Equation>
|
|
<Format>0.00</Format>
|
|
<UpperRange>99.22</UpperRange>
|
|
<LowerRange>-100</LowerRange>
|
|
<UnitString>%</UnitString>
|
|
<NumScaling>0.78125</NumScaling>
|
|
<NumOffset>-100</NumOffset>
|
|
<Strt>32</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 17) CAN Oxygen Sensor 1-4 OR 2-2 Response</Description>
|
|
<Key>in23</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>17</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<DisplayColor>33023</DisplayColor>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>O2 Sensor 1-4/2-2 Output Voltage (PID 17)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.005|0,1,24,8</Equation>
|
|
<Format>0.000</Format>
|
|
<UpperRange>1.275</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>V</UnitString>
|
|
<NumScaling>0.005</NumScaling>
|
|
<Strt>24</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>O2 Sensor 1-4/2-2 Short Term Fuel Trim (PID 17)</Description>
|
|
<Key>sig1</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.78125-100|0,1,32,8</Equation>
|
|
<Format>0.00</Format>
|
|
<UpperRange>99.22</UpperRange>
|
|
<LowerRange>-100</LowerRange>
|
|
<UnitString>%</UnitString>
|
|
<NumScaling>0.78125</NumScaling>
|
|
<NumOffset>-100</NumOffset>
|
|
<Strt>32</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 18) CAN Oxygen Sensor 2-1 OR 3-1 Response</Description>
|
|
<Key>in24</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>18</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<DisplayColor>33023</DisplayColor>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>O2 Sensor 2-1/3-1 Output Voltage (PID 18)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.005|0,1,24,8</Equation>
|
|
<Format>0.000</Format>
|
|
<UpperRange>1.275</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>V</UnitString>
|
|
<NumScaling>0.005</NumScaling>
|
|
<Strt>24</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>O2 Sensor 2-1/3-1 Short Term Fuel Trim (PID 18)</Description>
|
|
<Key>sig1</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.78125-100|0,1,32,8</Equation>
|
|
<Format>0.00</Format>
|
|
<UpperRange>99.22</UpperRange>
|
|
<LowerRange>-100</LowerRange>
|
|
<UnitString>%</UnitString>
|
|
<NumScaling>0.78125</NumScaling>
|
|
<NumOffset>-100</NumOffset>
|
|
<Strt>32</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 19) CAN Oxygen Sensor 2-2 OR 3-2 Response</Description>
|
|
<Key>in25</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>19</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<DisplayColor>33023</DisplayColor>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>O2 Sensor 2-2/3-2 Output Voltage (PID 19)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.005|0,1,24,8</Equation>
|
|
<Format>0.000</Format>
|
|
<UpperRange>1.275</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>V</UnitString>
|
|
<NumScaling>0.005</NumScaling>
|
|
<Strt>24</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>O2 Sensor 2-2/3-2 Short Term Fuel Trim (PID 19)</Description>
|
|
<Key>sig1</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.78125-100|0,1,32,8</Equation>
|
|
<Format>0.00</Format>
|
|
<UpperRange>99.22</UpperRange>
|
|
<LowerRange>-100</LowerRange>
|
|
<UnitString>%</UnitString>
|
|
<NumScaling>0.78125</NumScaling>
|
|
<NumOffset>-100</NumOffset>
|
|
<Strt>32</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 1A) CAN Oxygen Sensor 2-3 OR 4-1 Response</Description>
|
|
<Key>in26</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>1A</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<DisplayColor>33023</DisplayColor>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>O2 Sensor 2-3/4-1 Output Voltage (PID 1A)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.005|0,1,24,8</Equation>
|
|
<Format>0.000</Format>
|
|
<UpperRange>1.275</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>V</UnitString>
|
|
<NumScaling>0.005</NumScaling>
|
|
<Strt>24</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>O2 Sensor 2-3/4-1 Short Term Fuel Trim (PID 1A)</Description>
|
|
<Key>sig1</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.78125-100|0,1,32,8</Equation>
|
|
<Format>0.00</Format>
|
|
<UpperRange>99.22</UpperRange>
|
|
<LowerRange>-100</LowerRange>
|
|
<UnitString>%</UnitString>
|
|
<NumScaling>0.78125</NumScaling>
|
|
<NumOffset>-100</NumOffset>
|
|
<Strt>32</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 1B) CAN Oxygen Sensor 2-4 OR 4-2 Response</Description>
|
|
<Key>in27</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>1B</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<DisplayColor>33023</DisplayColor>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>O2 Sensor 2-4/4-2 Output Voltage (PID 1B)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.005|0,1,24,8</Equation>
|
|
<Format>0.000</Format>
|
|
<UpperRange>1.275</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>V</UnitString>
|
|
<NumScaling>0.005</NumScaling>
|
|
<Strt>24</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>O2 Sensor 2-4/4-2 Short Term Fuel Trim (PID 1B)</Description>
|
|
<Key>sig1</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.78125-100|0,1,32,8</Equation>
|
|
<Format>0.00</Format>
|
|
<UpperRange>99.22</UpperRange>
|
|
<LowerRange>-100</LowerRange>
|
|
<UnitString>%</UnitString>
|
|
<NumScaling>0.78125</NumScaling>
|
|
<NumOffset>-100</NumOffset>
|
|
<Strt>32</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 1F) CAN Time Since Engine Start Response</Description>
|
|
<Key>in31</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>1F</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Time Since Engine Start (PID 1F)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}|0,1,24,16</Equation>
|
|
<Format>0</Format>
|
|
<UpperRange>65535</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>sec</UnitString>
|
|
<Strt>24</Strt>
|
|
<Len>16</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 20) CAN Supported PIDs (21-40) Response</Description>
|
|
<Key>in32</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>20</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<DisplayColor>16744448</DisplayColor>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>PID 21 Supported (PID 20)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit7({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>24</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 22 Supported (PID 20)</Description>
|
|
<Key>sig1</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit6({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>25</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 23 Supported (PID 20)</Description>
|
|
<Key>sig2</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit5({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>26</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 24 Supported (PID 20)</Description>
|
|
<Key>sig3</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit4({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>27</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 25 Supported (PID 20)</Description>
|
|
<Key>sig4</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit3({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>28</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 26 Supported (PID 20)</Description>
|
|
<Key>sig5</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit2({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>29</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 27 Supported (PID 20)</Description>
|
|
<Key>sig6</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit1({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>30</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 28 Supported (PID 20)</Description>
|
|
<Key>sig7</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit0({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>31</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 29 Supported (PID 20)</Description>
|
|
<Key>sig8</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit7({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>32</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 2A Supported (PID 20)</Description>
|
|
<Key>sig9</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit6({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>33</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 2B Supported (PID 20)</Description>
|
|
<Key>sig10</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit5({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>34</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 2C Supported (PID 20)</Description>
|
|
<Key>sig11</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit4({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>35</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 2D Supported (PID 20)</Description>
|
|
<Key>sig12</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit3({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>36</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 2E Supported (PID 20)</Description>
|
|
<Key>sig13</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit2({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>37</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 2F Supported (PID 20)</Description>
|
|
<Key>sig14</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit1({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>38</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 30 Supported (PID 20)</Description>
|
|
<Key>sig15</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit0({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>39</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 31 Supported (PID 20)</Description>
|
|
<Key>sig16</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit7({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>40</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 32 Supported (PID 20)</Description>
|
|
<Key>sig17</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit6({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>41</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 33 Supported (PID 20)</Description>
|
|
<Key>sig18</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit5({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>42</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 34 Supported (PID 20)</Description>
|
|
<Key>sig19</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit4({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>43</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 35 Supported (PID 20)</Description>
|
|
<Key>sig20</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit3({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>44</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 36 Supported (PID 20)</Description>
|
|
<Key>sig21</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit2({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>45</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 37 Supported (PID 20)</Description>
|
|
<Key>sig22</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit1({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>46</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 38 Supported (PID 20)</Description>
|
|
<Key>sig23</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit0({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>47</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 39 Supported (PID 20)</Description>
|
|
<Key>sig24</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit7({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>48</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 3A Supported (PID 20)</Description>
|
|
<Key>sig25</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit6({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>49</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 3B Supported (PID 20)</Description>
|
|
<Key>sig26</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit5({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>50</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 3C Supported (PID 20)</Description>
|
|
<Key>sig27</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit4({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>51</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 3D Supported (PID 20)</Description>
|
|
<Key>sig28</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit3({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>52</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 3E Supported (PID 20)</Description>
|
|
<Key>sig29</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit2({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>53</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 3F Supported (PID 20)</Description>
|
|
<Key>sig30</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit1({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>54</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 40 Supported (PID 20)</Description>
|
|
<Key>sig31</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit0({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>55</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 23) CAN Fuel Rail Pressure Response</Description>
|
|
<Key>in35</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>23</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Fuel Rail Pressure (PID 23)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*10|0,1,24,16</Equation>
|
|
<Format>0</Format>
|
|
<UpperRange>655350</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>kPa</UnitString>
|
|
<NumScaling>10</NumScaling>
|
|
<Strt>24</Strt>
|
|
<Len>16</Len>
|
|
<StepSize>10</StepSize>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 2C) CAN Commanded EGR Response</Description>
|
|
<Key>in44</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>2C</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>EGR Percent (PID 2C)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.392156862745098|0,1,24,8</Equation>
|
|
<Format>0.000</Format>
|
|
<UpperRange>99.99999999999999</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>%</UnitString>
|
|
<NumScaling>0.392156862745098</NumScaling>
|
|
<Strt>24</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 2D) CAN EGR Error Response</Description>
|
|
<Key>in45</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>2D</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>EGR Error (PID 2D)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.78125-100|0,1,24,8</Equation>
|
|
<Format>0.00</Format>
|
|
<UpperRange>99.22</UpperRange>
|
|
<LowerRange>-100</LowerRange>
|
|
<UnitString>%</UnitString>
|
|
<NumScaling>0.78125</NumScaling>
|
|
<NumOffset>-100</NumOffset>
|
|
<Strt>24</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 30) CAN Num Warm-Ups Since DTC's Cleared Response</Description>
|
|
<Key>in48</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>30</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<DisplayColor>32896</DisplayColor>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Number of Warm-Ups (PID 30)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}|0,1,24,8</Equation>
|
|
<Format>0</Format>
|
|
<UpperRange>255</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<Strt>24</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 33) CAN Barometric Pressure Response</Description>
|
|
<Key>in51</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>33</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Barometric Pressure (PID 33)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}|0,1,24,8</Equation>
|
|
<Format>0</Format>
|
|
<UpperRange>255</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>kPa</UnitString>
|
|
<Strt>24</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 3C) CAN Catalyst Temperature 1-1 Response</Description>
|
|
<Key>in60</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>3C</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<DisplayColor>128</DisplayColor>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Catalyst Temperature 1-1 (PID 3C)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.1-40|0,1,24,16</Equation>
|
|
<Format>0.0</Format>
|
|
<UpperRange>6513.5</UpperRange>
|
|
<LowerRange>-40</LowerRange>
|
|
<UnitString>°C</UnitString>
|
|
<NumScaling>0.1</NumScaling>
|
|
<NumOffset>-40</NumOffset>
|
|
<Strt>24</Strt>
|
|
<Len>16</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 3D) CAN Catalyst Temperature 2-1 Response</Description>
|
|
<Key>in61</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>3D</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<DisplayColor>128</DisplayColor>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Catalyst Temperature 2-1 (PID 3D)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.1-40|0,1,24,16</Equation>
|
|
<Format>0.0</Format>
|
|
<UpperRange>6513.5</UpperRange>
|
|
<LowerRange>-40</LowerRange>
|
|
<UnitString>°C</UnitString>
|
|
<NumScaling>0.1</NumScaling>
|
|
<NumOffset>-40</NumOffset>
|
|
<Strt>24</Strt>
|
|
<Len>16</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 3E) CAN Catalyst Temperature 1-2 Response</Description>
|
|
<Key>in62</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>3E</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<DisplayColor>128</DisplayColor>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Catalyst Temperature 1-2 (PID 3E)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.1-40|0,1,24,16</Equation>
|
|
<Format>0.0</Format>
|
|
<UpperRange>6513.5</UpperRange>
|
|
<LowerRange>-40</LowerRange>
|
|
<UnitString>°C</UnitString>
|
|
<NumScaling>0.1</NumScaling>
|
|
<NumOffset>-40</NumOffset>
|
|
<Strt>24</Strt>
|
|
<Len>16</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 3F) CAN Catalyst Temperature 2-2 Response</Description>
|
|
<Key>in63</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>3F</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<DisplayColor>128</DisplayColor>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Catalyst Temperature 2-2 (PID 3F)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.1-40|0,1,24,16</Equation>
|
|
<Format>0.0</Format>
|
|
<UpperRange>6513.5</UpperRange>
|
|
<LowerRange>-40</LowerRange>
|
|
<UnitString>°C</UnitString>
|
|
<NumScaling>0.1</NumScaling>
|
|
<NumOffset>-40</NumOffset>
|
|
<Strt>24</Strt>
|
|
<Len>16</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 40) CAN Supported PIDs (41-60) Response</Description>
|
|
<Key>in64</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>40</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<DisplayColor>16744448</DisplayColor>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>PID 41 Supported (PID 40)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit7({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>24</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 42 Supported (PID 40)</Description>
|
|
<Key>sig1</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit6({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>25</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 43 Supported (PID 40)</Description>
|
|
<Key>sig2</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit5({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>26</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 44 Supported (PID 40)</Description>
|
|
<Key>sig3</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit4({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>27</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 45 Supported (PID 40)</Description>
|
|
<Key>sig4</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit3({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>28</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 46 Supported (PID 40)</Description>
|
|
<Key>sig5</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit2({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>29</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 47 Supported (PID 40)</Description>
|
|
<Key>sig6</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit1({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>30</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 48 Supported (PID 40)</Description>
|
|
<Key>sig7</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit0({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>31</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 49 Supported (PID 40)</Description>
|
|
<Key>sig8</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit7({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>32</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 4A Supported (PID 40)</Description>
|
|
<Key>sig9</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit6({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>33</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 4B Supported (PID 40)</Description>
|
|
<Key>sig10</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit5({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>34</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 4C Supported (PID 40)</Description>
|
|
<Key>sig11</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit4({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>35</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 4D Supported (PID 40)</Description>
|
|
<Key>sig12</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit3({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>36</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 4E Supported (PID 40)</Description>
|
|
<Key>sig13</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit2({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>37</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 4F Supported (PID 40)</Description>
|
|
<Key>sig14</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit1({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>38</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 50 Supported (PID 40)</Description>
|
|
<Key>sig15</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit0({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>39</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 51 Supported (PID 40)</Description>
|
|
<Key>sig16</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit7({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>40</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 52 Supported (PID 40)</Description>
|
|
<Key>sig17</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit6({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>41</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 53 Supported (PID 40)</Description>
|
|
<Key>sig18</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit5({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>42</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 54 Supported (PID 40)</Description>
|
|
<Key>sig19</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit4({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>43</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 55 Supported (PID 40)</Description>
|
|
<Key>sig20</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit3({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>44</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 56 Supported (PID 40)</Description>
|
|
<Key>sig21</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit2({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>45</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 57 Supported (PID 40)</Description>
|
|
<Key>sig22</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit1({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>46</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 58 Supported (PID 40)</Description>
|
|
<Key>sig23</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit0({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>47</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 59 Supported (PID 40)</Description>
|
|
<Key>sig24</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit7({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>48</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 5A Supported (PID 40)</Description>
|
|
<Key>sig25</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit6({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>49</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 5B Supported (PID 40)</Description>
|
|
<Key>sig26</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit5({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>50</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 5C Supported (PID 40)</Description>
|
|
<Key>sig27</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit4({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>51</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 5D Supported (PID 40)</Description>
|
|
<Key>sig28</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit3({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>52</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 5E Supported (PID 40)</Description>
|
|
<Key>sig29</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit2({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>53</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 5F Supported (PID 40)</Description>
|
|
<Key>sig30</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit1({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>54</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 60 Supported (PID 40)</Description>
|
|
<Key>sig31</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit0({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>55</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 42) CAN Control Module Voltage Response</Description>
|
|
<Key>in66</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>42</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Module Voltage (PID 42)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.001|0,1,24,16</Equation>
|
|
<Format>0.000</Format>
|
|
<UpperRange>65.535</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>V</UnitString>
|
|
<NumScaling>0.001</NumScaling>
|
|
<Strt>24</Strt>
|
|
<Len>16</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 43) CAN Absolute Load Value Response</Description>
|
|
<Key>in67</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>43</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Load Value (PID 43)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.392156862745098|0,1,24,16</Equation>
|
|
<Format>0.000</Format>
|
|
<UpperRange>25700</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>%</UnitString>
|
|
<NumScaling>0.392156862745098</NumScaling>
|
|
<Strt>24</Strt>
|
|
<Len>16</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 44) CAN Fuel/Air Commanded Equivalence Ratio Response</Description>
|
|
<Key>in68</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>44</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Fuel/Air Commanded Equivalence Ratio (PID 44)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*3.05e-05|0,1,24,16</Equation>
|
|
<Format>0.000</Format>
|
|
<UpperRange>1.999</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<NumScaling>3.05e-05</NumScaling>
|
|
<Strt>24</Strt>
|
|
<Len>16</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 45) CAN Relative Throttle Position Response</Description>
|
|
<Key>in69</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>45</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Relative Throttle Position (PID 45)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.392156862745098|0,1,24,8</Equation>
|
|
<Format>0.000</Format>
|
|
<UpperRange>100</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>%</UnitString>
|
|
<NumScaling>0.392156862745098</NumScaling>
|
|
<Strt>24</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 46) CAN Ambient Air Temperature Response</Description>
|
|
<Key>in70</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>46</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Ambient Air Temperature (PID 46)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}-40|0,1,24,8</Equation>
|
|
<Format>0</Format>
|
|
<UpperRange>215</UpperRange>
|
|
<LowerRange>-40</LowerRange>
|
|
<UnitString>°C</UnitString>
|
|
<NumOffset>-40</NumOffset>
|
|
<Strt>24</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 47) CAN Absolute Throttle Position B Response</Description>
|
|
<Key>in71</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>47</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<DisplayColor>8421504</DisplayColor>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Throttle Position (B) (PID 47)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.392156862745098|0,1,24,8</Equation>
|
|
<Format>0.000</Format>
|
|
<UpperRange>100</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>%</UnitString>
|
|
<NumScaling>0.392156862745098</NumScaling>
|
|
<Strt>24</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 48) CAN Absolute Throttle Position C Response</Description>
|
|
<Key>in72</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>48</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<DisplayColor>8421504</DisplayColor>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Throttle Position (C) (PID 48)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.392156862745098|0,1,24,8</Equation>
|
|
<Format>0.000</Format>
|
|
<UpperRange>100</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>%</UnitString>
|
|
<NumScaling>0.392156862745098</NumScaling>
|
|
<Strt>24</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 49) CAN Accelerator Pedal Position D Response</Description>
|
|
<Key>in73</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>49</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<DisplayColor>8388672</DisplayColor>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Accelerator Pedal Position (D) (PID 49)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.392156862745098|0,1,24,8</Equation>
|
|
<Format>0.000</Format>
|
|
<UpperRange>100</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>%</UnitString>
|
|
<NumScaling>0.392156862745098</NumScaling>
|
|
<Strt>24</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 4A) CAN Accelerator Pedal Position E Response</Description>
|
|
<Key>in74</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>4A</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<DisplayColor>8388672</DisplayColor>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Accelerator Pedal Position (E) (PID 4A)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.392156862745098|0,1,24,8</Equation>
|
|
<Format>0.000</Format>
|
|
<UpperRange>100</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>%</UnitString>
|
|
<NumScaling>0.392156862745098</NumScaling>
|
|
<Strt>24</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 4B) CAN Accelerator Pedal Position F Response</Description>
|
|
<Key>in75</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>4B</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<DisplayColor>8388672</DisplayColor>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Accelerator Pedal Position (F) (PID 4B)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.392156862745098|0,1,24,8</Equation>
|
|
<Format>0.000</Format>
|
|
<UpperRange>100</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>%</UnitString>
|
|
<NumScaling>0.392156862745098</NumScaling>
|
|
<Strt>24</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 4C) CAN Commanded Throttle Actuator Control Response</Description>
|
|
<Key>in76</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>4C</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Commanded Throttle Actuator Control (PID 4C)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.392156862745098|0,1,24,8</Equation>
|
|
<Format>0.000</Format>
|
|
<UpperRange>100</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>%</UnitString>
|
|
<NumScaling>0.392156862745098</NumScaling>
|
|
<Strt>24</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 59) CAN Fuel Rail Pressure (Absolute) Response</Description>
|
|
<Key>in89</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>59</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Absolute Fuel Rail Pressure (PID 59)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*10|0,1,24,16</Equation>
|
|
<Format>0</Format>
|
|
<UpperRange>655350</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>kPa</UnitString>
|
|
<NumScaling>10</NumScaling>
|
|
<Strt>24</Strt>
|
|
<Len>16</Len>
|
|
<StepSize>10</StepSize>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 5A) CAN Relative Accelerator Pedal Position Response</Description>
|
|
<Key>in90</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>5A</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<DisplayColor>8388672</DisplayColor>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Relative Accelerator Pedal Position (PID 5A)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.392156862745098|0,1,24,8</Equation>
|
|
<Format>0.000</Format>
|
|
<UpperRange>100</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>%</UnitString>
|
|
<NumScaling>0.392156862745098</NumScaling>
|
|
<Strt>24</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 5B) CAN Hybrid/EV Battery Pack Remaining Charge Response</Description>
|
|
<Key>in91</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>5B</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Remaining Battery Pack Charge (PID 5B)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.392156862745098|0,1,24,8</Equation>
|
|
<Format>0.000</Format>
|
|
<UpperRange>100</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>%</UnitString>
|
|
<NumScaling>0.392156862745098</NumScaling>
|
|
<Strt>24</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 5C) CAN Engine Oil Temperature Response</Description>
|
|
<Key>in92</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>5C</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Oil Temperature (PID 5C)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}-40|0,1,24,8</Equation>
|
|
<Format>0</Format>
|
|
<UpperRange>215</UpperRange>
|
|
<LowerRange>-40</LowerRange>
|
|
<UnitString>°C</UnitString>
|
|
<NumOffset>-40</NumOffset>
|
|
<Strt>24</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 5D) CAN Fuel Injection Timing Response</Description>
|
|
<Key>in93</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>5D</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Fuel Injection Timing (PID 5D)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.0078125-210|0,1,24,16</Equation>
|
|
<Format>0.000</Format>
|
|
<UpperRange>301.992</UpperRange>
|
|
<LowerRange>-210</LowerRange>
|
|
<UnitString>deg</UnitString>
|
|
<NumScaling>0.0078125</NumScaling>
|
|
<NumOffset>-210</NumOffset>
|
|
<Strt>24</Strt>
|
|
<Len>16</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 5E) CAN Engine Fuel Rate Response</Description>
|
|
<Key>in94</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>5E</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Engine Fuel Rate (PID 5E)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.05|0,1,24,16</Equation>
|
|
<Format>0.00</Format>
|
|
<UpperRange>3276.75</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>L/h</UnitString>
|
|
<NumScaling>0.05</NumScaling>
|
|
<Strt>24</Strt>
|
|
<Len>16</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 60) CAN Supprted PIDs (61-80) Response</Description>
|
|
<Key>in96</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>60</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<DisplayColor>16744448</DisplayColor>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>PID 61 Supported (PID 60)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit7({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>24</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 62 Supported (PID 60)</Description>
|
|
<Key>sig1</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit6({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>25</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 63 Supported (PID 60)</Description>
|
|
<Key>sig2</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit5({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>26</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 64 Supported (PID 60)</Description>
|
|
<Key>sig3</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit4({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>27</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 65 Supported (PID 60)</Description>
|
|
<Key>sig4</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit3({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>28</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 66 Supported (PID 60)</Description>
|
|
<Key>sig5</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit2({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>29</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 67 Supported (PID 60)</Description>
|
|
<Key>sig6</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit1({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>30</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 68 Supported (PID 60)</Description>
|
|
<Key>sig7</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit0({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>31</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 69 Supported (PID 60)</Description>
|
|
<Key>sig8</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit7({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>32</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 6A Supported (PID 60)</Description>
|
|
<Key>sig9</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit6({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>33</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 6B Supported (PID 60)</Description>
|
|
<Key>sig10</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit5({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>34</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 6C Supported (PID 60)</Description>
|
|
<Key>sig11</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit4({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>35</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 6D Supported (PID 60)</Description>
|
|
<Key>sig12</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit3({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>36</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 6E Supported (PID 60)</Description>
|
|
<Key>sig13</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit2({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>37</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 6F Supported (PID 60)</Description>
|
|
<Key>sig14</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit1({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>38</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 70 Supported (PID 60)</Description>
|
|
<Key>sig15</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit0({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>39</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 71 Supported (PID 60)</Description>
|
|
<Key>sig16</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit7({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>40</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 72 Supported (PID 60)</Description>
|
|
<Key>sig17</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit6({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>41</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 73 Supported (PID 60)</Description>
|
|
<Key>sig18</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit5({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>42</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 74 Supported (PID 60)</Description>
|
|
<Key>sig19</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit4({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>43</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 75 Supported (PID 60)</Description>
|
|
<Key>sig20</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit3({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>44</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 76 Supported (PID 60)</Description>
|
|
<Key>sig21</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit2({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>45</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 77 Supported (PID 60)</Description>
|
|
<Key>sig22</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit1({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>46</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 78 Supported (PID 60)</Description>
|
|
<Key>sig23</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit0({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>47</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 79 Supported (PID 60)</Description>
|
|
<Key>sig24</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit7({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>48</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 7A Supported (PID 60)</Description>
|
|
<Key>sig25</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit6({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>49</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 7B Supported (PID 60)</Description>
|
|
<Key>sig26</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit5({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>50</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 7C Supported (PID 60)</Description>
|
|
<Key>sig27</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit4({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>51</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 7D Supported (PID 60)</Description>
|
|
<Key>sig28</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit3({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>52</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 7E Supported (PID 60)</Description>
|
|
<Key>sig29</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit2({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>53</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 7F Supported (PID 60)</Description>
|
|
<Key>sig30</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit1({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>54</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 80 Supported (PID 60)</Description>
|
|
<Key>sig31</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit0({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>55</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 61) CAN Driver's Demand Engine - Percent Torque Response</Description>
|
|
<Key>in97</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>61</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<DisplayColor>12615680</DisplayColor>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Driver's Demand Engine - Percent Torque (PID 61)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}-125|0,1,24,8</Equation>
|
|
<Format>0</Format>
|
|
<UpperRange>130</UpperRange>
|
|
<LowerRange>-125</LowerRange>
|
|
<UnitString>%</UnitString>
|
|
<NumOffset>-125</NumOffset>
|
|
<Strt>24</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 62) CAN Actual Engine - Percent Torque Response</Description>
|
|
<Key>in98</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>62</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<DisplayColor>12615680</DisplayColor>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Actual Engine - Percent Torque (PID 62)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}-125|0,1,24,8</Equation>
|
|
<Format>0</Format>
|
|
<UpperRange>130</UpperRange>
|
|
<LowerRange>-125</LowerRange>
|
|
<UnitString>%</UnitString>
|
|
<NumOffset>-125</NumOffset>
|
|
<Strt>24</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 63) CAN Engine Reference Torque Response</Description>
|
|
<Key>in99</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>63</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<DisplayColor>12615680</DisplayColor>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Engine Reference Torque (PID 63)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}|0,1,24,16</Equation>
|
|
<Format>0</Format>
|
|
<UpperRange>65535</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>Nm</UnitString>
|
|
<Strt>24</Strt>
|
|
<Len>16</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 80) CAN Supported PIDs (81-A0) Response</Description>
|
|
<Key>in128</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>xx</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>80</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<DisplayColor>16744448</DisplayColor>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>PID 81 Supported (PID 80)</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit7({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>24</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 82 Supported (PID 80)</Description>
|
|
<Key>sig1</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit6({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>25</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 83 Supported (PID 80)</Description>
|
|
<Key>sig2</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit5({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>26</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 84 Supported (PID 80)</Description>
|
|
<Key>sig3</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit4({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>27</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 85 Supported (PID 80)</Description>
|
|
<Key>sig4</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit3({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>28</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 86 Supported (PID 80)</Description>
|
|
<Key>sig5</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit2({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>29</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 87 Supported (PID 80)</Description>
|
|
<Key>sig6</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit1({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>30</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 88 Supported (PID 80)</Description>
|
|
<Key>sig7</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit0({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>31</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 89 Supported (PID 80)</Description>
|
|
<Key>sig8</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit7({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>32</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 8A Supported (PID 80)</Description>
|
|
<Key>sig9</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit6({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>33</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 8B Supported (PID 80)</Description>
|
|
<Key>sig10</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit5({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>34</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 8C Supported (PID 80)</Description>
|
|
<Key>sig11</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit4({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>35</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 8D Supported (PID 80)</Description>
|
|
<Key>sig12</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit3({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>36</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 8E Supported (PID 80)</Description>
|
|
<Key>sig13</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit2({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>37</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 8F Supported (PID 80)</Description>
|
|
<Key>sig14</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit1({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>38</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 90 Supported (PID 80)</Description>
|
|
<Key>sig15</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit0({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>39</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 91 Supported (PID 80)</Description>
|
|
<Key>sig16</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit7({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>40</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 92 Supported (PID 80)</Description>
|
|
<Key>sig17</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit6({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>41</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 93 Supported (PID 80)</Description>
|
|
<Key>sig18</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit5({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>42</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 94 Supported (PID 80)</Description>
|
|
<Key>sig19</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit4({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>43</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 95 Supported (PID 80)</Description>
|
|
<Key>sig20</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit3({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>44</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 96 Supported (PID 80)</Description>
|
|
<Key>sig21</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit2({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>45</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 97 Supported (PID 80)</Description>
|
|
<Key>sig22</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit1({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>46</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 98 Supported (PID 80)</Description>
|
|
<Key>sig23</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit0({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>47</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 99 Supported (PID 80)</Description>
|
|
<Key>sig24</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit7({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>48</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 9A Supported (PID 80)</Description>
|
|
<Key>sig25</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit6({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>49</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 9B Supported (PID 80)</Description>
|
|
<Key>sig26</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit5({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>50</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 9C Supported (PID 80)</Description>
|
|
<Key>sig27</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit4({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>51</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 9D Supported (PID 80)</Description>
|
|
<Key>sig28</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit3({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>52</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 9E Supported (PID 80)</Description>
|
|
<Key>sig29</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit2({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>53</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID 9F Supported (PID 80)</Description>
|
|
<Key>sig30</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit1({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>54</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID A0 Supported (PID 80)</Description>
|
|
<Key>sig31</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit0({B7})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>55</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 83) CAN NOx Sensor Response</Description>
|
|
<Key>in131</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>41</ByteString1>
|
|
<ByteString2>83</ByteString2>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<DisplayColor>10789024</DisplayColor>
|
|
<EnableISO15765>True</EnableISO15765>
|
|
<ISO15765PadSymbol>86</ISO15765PadSymbol>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>NOx Sensor Concentration 2-2 Supported (PID 83)</Description>
|
|
<Key>sig1</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit3({B3})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>20</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>NOx Sensor Concentration 2-1 Supported (PID 83)</Description>
|
|
<Key>sig2</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit2({B3})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>21</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>NOx Sensor Concentration 1-2 Supported (PID 83)</Description>
|
|
<Key>sig3</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit1({B3})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>22</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>NOx Sensor Concentration 1-1 Supported (PID 83)</Description>
|
|
<Key>sig4</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit0({B3})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>23</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>NOx Sensor Concentration 1-1 (PID 83)</Description>
|
|
<Key>sig5</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}|0,1,24,16</Equation>
|
|
<Format>0</Format>
|
|
<UpperRange>65535</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>ppm</UnitString>
|
|
<Strt>24</Strt>
|
|
<Len>16</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>NOx Sensor Concentration 1-2 (PID 83)</Description>
|
|
<Key>sig6</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}|0,1,40,16</Equation>
|
|
<Format>0</Format>
|
|
<UpperRange>65535</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>ppm</UnitString>
|
|
<Strt>40</Strt>
|
|
<Len>16</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>NOx Sensor Concentration 2-1 (PID 83)</Description>
|
|
<Key>sig7</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}|0,1,56,16</Equation>
|
|
<Format>0</Format>
|
|
<UpperRange>65535</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>ppm</UnitString>
|
|
<Strt>56</Strt>
|
|
<Len>16</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>NOx Sensor Concentration 2-2 (PID 83)</Description>
|
|
<Key>sig8</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}|0,1,72,16</Equation>
|
|
<Format>0</Format>
|
|
<UpperRange>65535</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>ppm</UnitString>
|
|
<Strt>72</Strt>
|
|
<Len>16</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(Pid 9E) CAN Engine Exhaust Flow Rate</Description>
|
|
<Key>in58</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>41</ByteString1>
|
|
<ByteString2>9E</ByteString2>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<DisplayColor>10789024</DisplayColor>
|
|
<EnableISO15765>True</EnableISO15765>
|
|
<ISO15765PadSymbol>86</ISO15765PadSymbol>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Engine Exhaust Flow Rate</Description>
|
|
<Key>sig8</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}*0.2|0,1,16,16</Equation>
|
|
<Format>0.00</Format>
|
|
<UpperRange>13107</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>kg/h</UnitString>
|
|
<NumScaling>0.2</NumScaling>
|
|
<Strt>16</Strt>
|
|
<Len>16</Len>
|
|
<EthernetPayloadType>4</EthernetPayloadType>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID A1) CAN NOx-Sensor Corrected</Description>
|
|
<Key>in65</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>41</ByteString1>
|
|
<ByteString2>A1</ByteString2>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<DisplayColor>10789024</DisplayColor>
|
|
<EnableISO15765>True</EnableISO15765>
|
|
<ISO15765PadSymbol>86</ISO15765PadSymbol>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>NOx Sensor Corrected Concentration 2-2 Supported (PID A1)</Description>
|
|
<Key>sig1</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit3({B3})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>20</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>NOx Sensor Corrected Concentration 2-1 Supported (PID A1)</Description>
|
|
<Key>sig2</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit2({B3})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>21</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>NOx Sensor Corrected Concentration 1-2 Supported (PID A1)</Description>
|
|
<Key>sig3</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit1({B3})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>22</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>NOx Sensor Corrected Concentration 1-1 Supported (PID A1)</Description>
|
|
<Key>sig4</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit0({B3})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>23</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>NOx Sensor Corrected Concentration 1-1 (PID A1)</Description>
|
|
<Key>sig5</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}|0,1,24,16</Equation>
|
|
<Format>0</Format>
|
|
<UpperRange>65535</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>ppm</UnitString>
|
|
<Strt>24</Strt>
|
|
<Len>16</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>NOx Sensor Corrected Concentration 1-2 (PID A1)</Description>
|
|
<Key>sig6</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}|0,1,40,16</Equation>
|
|
<Format>0</Format>
|
|
<UpperRange>65535</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>ppm</UnitString>
|
|
<Strt>40</Strt>
|
|
<Len>16</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>NOx Sensor Corrected Concentration 2-1 (PID A1)</Description>
|
|
<Key>sig7</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}|0,1,56,16</Equation>
|
|
<Format>0</Format>
|
|
<UpperRange>65535</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>ppm</UnitString>
|
|
<Strt>56</Strt>
|
|
<Len>16</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>NOx Sensor Corrected Concentration 2-2 (PID A1)</Description>
|
|
<Key>sig8</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}|0,1,72,16</Equation>
|
|
<Format>0</Format>
|
|
<UpperRange>65535</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>ppm</UnitString>
|
|
<Strt>72</Strt>
|
|
<Len>16</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID A0) CAN Supported PIDs (A0-BF) Response</Description>
|
|
<Key>in77</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>41</ByteString1>
|
|
<ByteString2>A0</ByteString2>
|
|
<CANFDDontCare>True</CANFDDontCare>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<EnableISO15765>True</EnableISO15765>
|
|
<ISO15765PadSymbol>1</ISO15765PadSymbol>
|
|
<ExtendedAddressFilter>0</ExtendedAddressFilter>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>PID A1 Supported</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit7({B3})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>16</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID A2 Supported</Description>
|
|
<Key>sig1</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit6({B3})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>17</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID A3 Supported</Description>
|
|
<Key>sig2</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit5({B3})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>18</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID A4 Supported</Description>
|
|
<Key>sig3</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit4({B3})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>19</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID A5 Supported</Description>
|
|
<Key>sig4</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit3({B3})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>20</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID A6 Supported</Description>
|
|
<Key>sig5</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit2({B3})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>21</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID A7 Supported</Description>
|
|
<Key>sig6</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit1({B3})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>22</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID A8 Supported</Description>
|
|
<Key>sig7</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit0({B3})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>23</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID A9 Supported</Description>
|
|
<Key>sig8</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit7({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>24</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID AA Supported</Description>
|
|
<Key>sig9</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit6({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>25</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID AB Supported</Description>
|
|
<Key>sig10</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit5({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>26</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID AC Supported</Description>
|
|
<Key>sig11</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit4({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>27</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID AD Supported</Description>
|
|
<Key>sig12</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit3({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>28</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID AE Supported</Description>
|
|
<Key>sig13</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit2({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>29</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID AF Supported</Description>
|
|
<Key>sig14</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit1({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>30</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID B0 Supported</Description>
|
|
<Key>sig15</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit0({B4})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>31</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID B1 Supported</Description>
|
|
<Key>sig16</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit7({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>32</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID B2 Supported</Description>
|
|
<Key>sig17</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit6({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>33</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID B3 Supported</Description>
|
|
<Key>sig18</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit5({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>34</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID B4 Supported</Description>
|
|
<Key>sig19</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit4({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>35</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID B5 Supported</Description>
|
|
<Key>sig20</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit3({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>36</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID B6 Supported</Description>
|
|
<Key>sig21</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit2({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>37</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID B7 Supported</Description>
|
|
<Key>sig22</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit1({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>38</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID B8 Supported</Description>
|
|
<Key>sig23</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit0({B5})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>39</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID B9 Supported</Description>
|
|
<Key>sig24</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit7({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>40</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID BA Supported</Description>
|
|
<Key>sig25</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit6({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>41</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID BB Supported</Description>
|
|
<Key>sig26</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit5({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>42</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID BC Supported</Description>
|
|
<Key>sig27</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit4({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>43</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID BD Supported</Description>
|
|
<Key>sig28</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit3({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>44</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID BE Supported</Description>
|
|
<Key>sig29</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit2({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>45</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID BF Supported</Description>
|
|
<Key>sig30</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit1({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>46</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>PID C0 Supported</Description>
|
|
<Key>sig31</Key>
|
|
<ValueType>2</ValueType>
|
|
<Equation>bit0({B6})</Equation>
|
|
<Format>True/False</Format>
|
|
<Strt>47</Strt>
|
|
<Len>1</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 31) CAN Distance traveled since last DTC clear</Description>
|
|
<Key>in79</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>04</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>31</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<DisplayColor>12615680</DisplayColor>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Kilometerstand</Description>
|
|
<Key>sig1</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}|0,1,24,16</Equation>
|
|
<Format>0</Format>
|
|
<UpperRange>65535</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>km</UnitString>
|
|
<Strt>24</Strt>
|
|
<Len>16</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>(PID 21) CAN Distance Traveled While MIL Activated</Description>
|
|
<Key>in82</Key>
|
|
<ByteString0>7E8</ByteString0>
|
|
<ByteString1>04</ByteString1>
|
|
<ByteString2>41</ByteString2>
|
|
<ByteString3>21</ByteString3>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>DistanceMILOn</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}|0,1,24,16</Equation>
|
|
<Format>0</Format>
|
|
<UpperRange>65535</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>km</UnitString>
|
|
<Strt>24</Strt>
|
|
<Len>16</Len>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
<MsgSig>
|
|
<Description>Display</Description>
|
|
<Key>in136</Key>
|
|
<ByteString0>770</ByteString0>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<EnableTCPConnections>False</EnableTCPConnections>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Brightness</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}|0,1,0,8</Equation>
|
|
<Format>0</Format>
|
|
<UpperRange>255</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>%</UnitString>
|
|
<SetValueDouble>0</SetValueDouble>
|
|
<SaveLastValue>True</SaveLastValue>
|
|
<Len>8</Len>
|
|
<EthernetPayloadType>4</EthernetPayloadType>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
</MsgSigs>
|
|
<TxMsgs>
|
|
<TxMsg>
|
|
<Key>out0</Key>
|
|
<TxMsgProperties>
|
|
<MsgSig>
|
|
<Description>TC10 Wake Request 1</Description>
|
|
<Key>out0</Key>
|
|
<ByteString0>71B</ByteString0>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<EnableTCPConnections>False</EnableTCPConnections>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Brightness</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}|0,1,0,8</Equation>
|
|
<Format>0</Format>
|
|
<UpperRange>255</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>%</UnitString>
|
|
<SetValueDouble>0</SetValueDouble>
|
|
<SaveLastValue>True</SaveLastValue>
|
|
<Len>8</Len>
|
|
<EthernetPayloadType>4</EthernetPayloadType>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
</TxMsgProperties>
|
|
</TxMsg>
|
|
<TxMsg>
|
|
<Key>out1</Key>
|
|
<TxMsgProperties>
|
|
<MsgSig>
|
|
<Description>TC10 Sleep Request 1</Description>
|
|
<Key>out1</Key>
|
|
<ByteString0>71A</ByteString0>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<EnableTCPConnections>False</EnableTCPConnections>
|
|
</MsgSig>
|
|
</TxMsgProperties>
|
|
</TxMsg>
|
|
<TxMsg>
|
|
<Key>out2</Key>
|
|
<TxMsgProperties>
|
|
<MsgSig>
|
|
<Description>TC10 Wake Request 2</Description>
|
|
<Key>out2</Key>
|
|
<ByteString0>72B</ByteString0>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<EnableTCPConnections>False</EnableTCPConnections>
|
|
</MsgSig>
|
|
</TxMsgProperties>
|
|
</TxMsg>
|
|
<TxMsg>
|
|
<Key>out3</Key>
|
|
<TxMsgProperties>
|
|
<MsgSig>
|
|
<Description>TC10 Sleep Request 2</Description>
|
|
<Key>out3</Key>
|
|
<ByteString0>72A</ByteString0>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<EnableTCPConnections>False</EnableTCPConnections>
|
|
</MsgSig>
|
|
</TxMsgProperties>
|
|
</TxMsg>
|
|
<TxMsg>
|
|
<Key>out4</Key>
|
|
<TxMsgProperties>
|
|
<MsgSig>
|
|
<Description>Display</Description>
|
|
<Key>out4</Key>
|
|
<ByteString0>770</ByteString0>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<EnableTCPConnections>False</EnableTCPConnections>
|
|
<MsgSignals>
|
|
<Signal>
|
|
<Description>Brightness</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}|0,1,0,8</Equation>
|
|
<Format>0</Format>
|
|
<UpperRange>255</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<UnitString>%</UnitString>
|
|
<SetValueDouble>0</SetValueDouble>
|
|
<SaveLastValue>True</SaveLastValue>
|
|
<Len>8</Len>
|
|
<EthernetPayloadType>4</EthernetPayloadType>
|
|
</Signal>
|
|
</MsgSignals>
|
|
</MsgSig>
|
|
</TxMsgProperties>
|
|
</TxMsg>
|
|
</TxMsgs>
|
|
<FBlocks>
|
|
<FBlock>
|
|
<Description>Request PIDs Supported</Description>
|
|
<Key>tst0</Key>
|
|
<TestType>8</TestType>
|
|
<FilePath>Capture File Function Block 1</FilePath>
|
|
<StartMode>1</StartMode>
|
|
<AppendFileValueTypeInput>True</AppendFileValueTypeInput>
|
|
<LogRate>1</LogRate>
|
|
<AfterStopTime>5000</AfterStopTime>
|
|
<StopNumberOfMessages>1</StopNumberOfMessages>
|
|
<StopAfterTime>1</StopAfterTime>
|
|
<NumberOfGenerations>1</NumberOfGenerations>
|
|
<FileSaveAsBinary>False</FileSaveAsBinary>
|
|
<StopOnVSSALSleep>True</StopOnVSSALSleep>
|
|
<ValueReplayOutKey>out1</ValueReplayOutKey>
|
|
<PlaybackSpeed>1</PlaybackSpeed>
|
|
<Steps>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>This step clears the *present* value of the RECEIVE portion of "Supported PIDs (1-20)". This is so that we can tell if a return message has been received or not later in the program</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Supported PIDs (1-20) Response (Present) :in0-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Supported PIDs (1-20) Response (Present) :in0-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Supported PIDs (1-20) Response (Present) :in0-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp38</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{i (Value) :sig55-0}</Description>
|
|
<Equation>6000</Equation>
|
|
<Format>0</Format>
|
|
<SetValueDescription>{i (Value) :sig55-0}</SetValueDescription>
|
|
<SetValueKey>{i (Value) :sig55-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp37</Key>
|
|
<StepType>14</StepType>
|
|
<StepLongValue>0</StepLongValue>
|
|
<StepLongValue2>0</StepLongValue2>
|
|
<StepDoubleValue>-1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>i (Value)</Description>
|
|
<Equation>{i (Value) :sig55-0}</Equation>
|
|
<Format>0</Format>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>50</StepLongValue>
|
|
<StepComment>This is where step 1 comes in handy. The program will WAIT UNTIL the *present* value of RECEIVE message "Supported PIDs (1-20)" changes to 1 (true), indicating the return message was received **OR** it will time out after 50ms if a return message is not received and will proceed to the next step (NOTE: Timeout use is OPTIONAL and can be turned OFF)</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Supported PIDs (1-20) Response (Present)</Description>
|
|
<Equation>{CAN Supported PIDs (1-20) Response (Present) :in0-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp40</Key>
|
|
<StepType>5</StepType>
|
|
<StepLongValue>9</StepLongValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>(PID 00) CAN Supported PIDs (1-20) Response (Present)</Description>
|
|
<Equation>{(PID 00) CAN Supported PIDs (1-20) Response (Present) :in0-0} </Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp42</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{i (Value) :sig55-0}</Description>
|
|
<Equation>{i (Value) :sig55-0}+1</Equation>
|
|
<Format>0</Format>
|
|
<SetValueDescription>{i (Value) :sig55-0}</SetValueDescription>
|
|
<SetValueKey>{i (Value) :sig55-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp41</Key>
|
|
<StepType>14</StepType>
|
|
<StepLongValue>2</StepLongValue>
|
|
<StepLongValue2>0</StepLongValue2>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp39</Key>
|
|
<StepLongValue2>5</StepLongValue2>
|
|
<StepStringValue>tst6</StepStringValue>
|
|
<StepStringValue2>STOP</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>5</StepType>
|
|
<StepLongValue>25</StepLongValue>
|
|
<StepComment>This step is checking whether PID 20 is supported. If it is NOT (ie, PID 20 (value) = 0), the statement evaluates as TRUE and jumps to the final step of this function block. If PID 20 IS supported (ie, PID 20 (value) = 1), the statement is FALSE and will proceed to the next step</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 20 Supported (Value)</Description>
|
|
<Equation>{PID 20 Supported (Value) :in0-sig31-0}=0</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp12</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>This step clears the *present* value of the RECEIVE portion of "Supported PIDs (21-40)".</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Supported PIDs (21-40) Response (Present) :in32-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Supported PIDs (21-40) Response (Present) :in32-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Supported PIDs (21-40) Response (Present) :in32-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp14</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>50</StepLongValue>
|
|
<StepComment>The program will WAIT UNTIL the *present* value of RECEIVE message "Supported PIDs (21-40)" changes to 1 (true), indicating the return message was received **OR** it will time out after 50ms if a return message is not received and will proceed to the next step</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Supported PIDs (21-40) Response (Present)</Description>
|
|
<Equation>{CAN Supported PIDs (21-40) Response (Present) :in32-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp15</Key>
|
|
<StepType>5</StepType>
|
|
<StepLongValue>25</StepLongValue>
|
|
<StepComment>Same as step 4. This step checks whether or not PID 40 is supported. If it is NOT (ie, PID 40 (value) = 0), the statement is TRUE and jumps to the final step of the function block. If PID 40 IS supported (ie, PID 40 (value) = 1), the statement is FALSE and will proceed to the next step</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 40 Supported (Value)</Description>
|
|
<Equation>{PID 40 Supported (Value) :in32-sig31-0}=0</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp17</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp16</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>This step clears the *present* value of the RECEIVE portion of "Supported PIDs (41-60)".</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Supported PIDs (41-60) Response (Present) :in64-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Supported PIDs (41-60) Response (Present) :in64-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Supported PIDs (41-60) Response (Present) :in64-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp19</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>50</StepLongValue>
|
|
<StepComment>The program will WAIT UNTIL the *present* value of RECEIVE message "Supported PIDs (41-60)" changes to 1 (true), indicating the return message was received **OR** it will time out after 50ms if a return message is not received and will proceed to the next step</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Supported PIDs (41-60) Response (Present)</Description>
|
|
<Equation>{CAN Supported PIDs (41-60) Response (Present) :in64-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp20</Key>
|
|
<StepType>5</StepType>
|
|
<StepLongValue>25</StepLongValue>
|
|
<StepComment>This step checks whether or not PID 60 is supported. If it is NOT (ie, PID 40 (value) = 0), the statement is TRUE and jumps to the final step of the function block. If PID 60 IS supported (ie, PID 60 (value) = 1), the statement is FALSE and will proceed to the next step</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 60 Supported (Value)</Description>
|
|
<Equation>{PID 60 Supported (Value) :in64-sig31-0}=0</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp22</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp21</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>Clears the *present* value of the RECEIVE portion of "Supported PIDs (61-80)".</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Supprted PIDs (61-80) Response (Present) :in96-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Supprted PIDs (61-80) Response (Present) :in96-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Supprted PIDs (61-80) Response (Present) :in96-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp24</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>50</StepLongValue>
|
|
<StepComment>The program will WAIT UNTIL the *present* value of RECEIVE message "Supported PIDs (61-80)" changes to 1 (true), indicating the return message was received **OR** it will time out after 50ms if a return message is not received and will proceed to the next step</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Supprted PIDs (61-80) Response (Present)</Description>
|
|
<Equation>{CAN Supprted PIDs (61-80) Response (Present) :in96-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp25</Key>
|
|
<StepType>5</StepType>
|
|
<StepLongValue>25</StepLongValue>
|
|
<StepComment>This step checks whether or not PID 80 is supported. If it is NOT (ie, PID 80 (value) = 0), the statement is TRUE and jumps to the final step of the function block. If PID 80 IS supported (ie, PID 80 (value) = 1), the statement is FALSE and will proceed to the next step</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 80 Supported (Value)</Description>
|
|
<Equation>{PID 80 Supported (Value) :in96-sig31-0}=0</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp27</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp26</Key>
|
|
<StepType>6</StepType>
|
|
<StepStringValue>out128</StepStringValue>
|
|
<StepComment>Clears the *present* value of the RECEIVE portion of "Supported PIDs (81-A0)".</StepComment>
|
|
<StepStringValue2>CAN Supported PIDs (81-A0) req</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{(PID 80) CAN Supported PIDs (81-A0) Response (Present) :in128-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{(PID 80) CAN Supported PIDs (81-A0) Response (Present) :in128-0}</SetValueDescription>
|
|
<SetValueKey>{(PID 80) CAN Supported PIDs (81-A0) Response (Present) :in128-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp29</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>50</StepLongValue>
|
|
<StepComment>The program will WAIT UNTIL the *present* value of RECEIVE message "Supported PIDs (81-A0)" changes to 1 (true), indicating the return message was received **OR** it will time out after 50ms if a return message is not received and will proceed to the next step</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>(PID 80) CAN Supported PIDs (81-A0) Response (Present)</Description>
|
|
<Equation>{(PID 80) CAN Supported PIDs (81-A0) Response (Present) :in128-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp43</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp26</Key>
|
|
<StepType>6</StepType>
|
|
<StepStringValue>out128</StepStringValue>
|
|
<StepComment>Clears the *present* value of the RECEIVE portion of "Supported PIDs (81-A0)".</StepComment>
|
|
<StepStringValue2>CAN Supported PIDs (81-A0) req</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{(PID A0) CAN Supported PIDs (A0-BF) Response (Present) :in77-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{(PID A0) CAN Supported PIDs (A0-BF) Response (Present) :in77-0}</SetValueDescription>
|
|
<SetValueKey>{(PID A0) CAN Supported PIDs (A0-BF) Response (Present) :in77-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp29</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>50</StepLongValue>
|
|
<StepComment>The program will WAIT UNTIL the *present* value of RECEIVE message "Supported PIDs (81-A0)" changes to 1 (true), indicating the return message was received **OR** it will time out after 50ms if a return message is not received and will proceed to the next step</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>(PID A0) CAN Supported PIDs (A0-BF) Response (Present)</Description>
|
|
<Equation>{(PID A0) CAN Supported PIDs (A0-BF) Response (Present) :in77-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp30</Key>
|
|
<StepType>4</StepType>
|
|
<StepLongValue>0</StepLongValue>
|
|
<StepStringValue>tst1</StepStringValue>
|
|
<StepComment>Now that the supported PIDs are known, we can send the inquiries to the vehicle. This starts the next block, which reads which PIDs are supported and sends those requests until such time as the program is stopped.</StepComment>
|
|
<StepStringValue2>Request Service Information (01-1F)</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp30</Key>
|
|
<StepType>4</StepType>
|
|
<StepLongValue>0</StepLongValue>
|
|
<StepLongValue2>9</StepLongValue2>
|
|
<StepStringValue>tst41</StepStringValue>
|
|
<StepComment>Now that the supported PIDs are known, we can send the inquiries to the vehicle. This starts the next block, which reads which PIDs are supported and sends those requests until such time as the program is stopped.</StepComment>
|
|
<StepStringValue2>Sound</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>8</StepType>
|
|
<StepComment>This is just to make sure that the function block is completely stopped</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp6</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp7</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp8</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp9</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
</Steps>
|
|
</FBlock>
|
|
<FBlock>
|
|
<Description>Request Service Information (01-1F)</Description>
|
|
<Key>tst1</Key>
|
|
<TestType>8</TestType>
|
|
<FilePath>Capture File Function Block 2</FilePath>
|
|
<StartMode>1</StartMode>
|
|
<AppendFileValueTypeInput>True</AppendFileValueTypeInput>
|
|
<LogRate>1</LogRate>
|
|
<AfterStopTime>5000</AfterStopTime>
|
|
<StopNumberOfMessages>1</StopNumberOfMessages>
|
|
<StopAfterTime>1</StopAfterTime>
|
|
<NumberOfGenerations>1</NumberOfGenerations>
|
|
<FileSaveAsBinary>False</FileSaveAsBinary>
|
|
<StopOnVSSALSleep>True</StopOnVSSALSleep>
|
|
<ValueReplayOutKey>out1</ValueReplayOutKey>
|
|
<PlaybackSpeed>1</PlaybackSpeed>
|
|
<Steps>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>5</StepLongValue>
|
|
<StepLongValue2>5</StepLongValue2>
|
|
<StepComment>Checks whether or not PID 04 is supported. If it IS, the program steps into the IF loop. If it is NOT, the program moves on</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 04 Supported (Value)</Description>
|
|
<Equation>{PID 04 Supported (Value) :in0-sig3-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>Sets the *present* value of RECEIVE message "Calculated Load Value" to 0 so we can identify whether or not the message was received this cycle</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Calculated Load Value Response (Present) :in4-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Calculated Load Value Response (Present) :in4-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Calculated Load Value Response (Present) :in4-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message to be received OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Calculated Load Value Response (Present)</Description>
|
|
<Equation>{CAN Calculated Load Value Response (Present) :in4-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>10</StepLongValue>
|
|
<StepLongValue2>10</StepLongValue2>
|
|
<StepComment>Checks whether or not PID 05 is supported</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 05 Supported (Value)</Description>
|
|
<Equation>{PID 05 Supported (Value) :in0-sig4-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>Sets the *present* value of RECEIVE message "Engine Coolant Temp" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Engine Coolant Temp Response (Present) :in5-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Engine Coolant Temp Response (Present) :in5-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Engine Coolant Temp Response (Present) :in5-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message to be received OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Engine Coolant Temp Response (Present)</Description>
|
|
<Equation>{CAN Engine Coolant Temp Response (Present) :in5-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>16</StepLongValue>
|
|
<StepLongValue2>16</StepLongValue2>
|
|
<StepComment>Checks for support of PID 0A</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 0A Supported (Value)</Description>
|
|
<Equation>{PID 0A Supported (Value) :in0-sig9-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>Sets the *present* value of RECEIVE message "Fuel Pressure" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Fuel Pressure Response (Present) :in10-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Fuel Pressure Response (Present) :in10-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Fuel Pressure Response (Present) :in10-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Fuel Pressure Response (Present)</Description>
|
|
<Equation>{CAN Fuel Pressure Response (Present) :in10-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>21</StepLongValue>
|
|
<StepLongValue2>21</StepLongValue2>
|
|
<StepComment>Checks for support of PID 0B</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 0B Supported (Value)</Description>
|
|
<Equation>{PID 0B Supported (Value) :in0-sig10-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>Sets the *present* value of RECEIVE message "Intake Manifold Absolute Pressure" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Intake Manifold Absolute Pressure Response (Present) :in11-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Intake Manifold Absolute Pressure Response (Present) :in11-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Intake Manifold Absolute Pressure Response (Present) :in11-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Intake Manifold Absolute Pressure Response (Present)</Description>
|
|
<Equation>{CAN Intake Manifold Absolute Pressure Response (Present) :in11-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>26</StepLongValue>
|
|
<StepLongValue2>26</StepLongValue2>
|
|
<StepComment>Checks for support of PID 0C</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 0C Supported (Value)</Description>
|
|
<Equation>{PID 0C Supported (Value) :in0-sig11-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>Sets the *present* value of RECEIVE message "Engine RPM" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Engine RPM Response (Present) :in12-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Engine RPM Response (Present) :in12-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Engine RPM Response (Present) :in12-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Engine RPM Response (Present)</Description>
|
|
<Equation>{CAN Engine RPM Response (Present) :in12-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp1</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>30</StepLongValue>
|
|
<StepLongValue2>33</StepLongValue2>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>(PID 0C) CAN Engine RPM Response (Present)</Description>
|
|
<Equation>{(PID 0C) CAN Engine RPM Response (Present) :in12-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>6</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{ECU Detected (Value) :sig0-0}</Description>
|
|
<Equation>1</Equation>
|
|
<Format>1=1/0=0</Format>
|
|
<Min>0</Min>
|
|
<Max>1</Max>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
<SetValueDescription>{ECU Detected (Value) :sig0-0}</SetValueDescription>
|
|
<SetValueKey>{ECU Detected (Value) :sig0-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp26</Key>
|
|
<StepType>17</StepType>
|
|
<StepLongValue2>33</StepLongValue2>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>6</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{ECU Detected (Value) :sig0-0}</Description>
|
|
<Equation>0</Equation>
|
|
<Format>1=1/0=0</Format>
|
|
<Min>0</Min>
|
|
<Max>1</Max>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
<SetValueDescription>{ECU Detected (Value) :sig0-0}</SetValueDescription>
|
|
<SetValueKey>{ECU Detected (Value) :sig0-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp35</Key>
|
|
<StepType>8</StepType>
|
|
<StepLongValue>0</StepLongValue>
|
|
<StepLongValue2>5</StepLongValue2>
|
|
<StepStringValue>tst6</StepStringValue>
|
|
<StepStringValue2>STOP</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp27</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp189</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>38</StepLongValue>
|
|
<StepLongValue2>38</StepLongValue2>
|
|
<StepComment>Checks for support of PID 0D</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 0D Supported (Value)</Description>
|
|
<Equation>{PID 0D Supported (Value) :in0-sig12-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>Sets the *present* value of RECEIVE message "Vehicle Speed" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Vehicle Speed Response (Present) :in13-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Vehicle Speed Response (Present) :in13-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Vehicle Speed Response (Present) :in13-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Vehicle Speed Response (Present)</Description>
|
|
<Equation>{CAN Vehicle Speed Response (Present) :in13-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>43</StepLongValue>
|
|
<StepLongValue2>43</StepLongValue2>
|
|
<StepComment>Checks for support of PID 0F</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 0F Supported (Value)</Description>
|
|
<Equation>{PID 0F Supported (Value) :in0-sig14-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>Sets the *present* value of RECEIVE message "Intake Air Temperature" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Intake Air Temperature Response (Present) :in15-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Intake Air Temperature Response (Present) :in15-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Intake Air Temperature Response (Present) :in15-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Intake Air Temperature Response (Present)</Description>
|
|
<Equation>{CAN Intake Air Temperature Response (Present) :in15-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>48</StepLongValue>
|
|
<StepLongValue2>48</StepLongValue2>
|
|
<StepComment>Checks for support of PID 10</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 10 Supported (Value)</Description>
|
|
<Equation>{PID 10 Supported (Value) :in0-sig15-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>Sets the *present* value of RECEIVE message "MAF Sensor Air Flow Rate" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN MAF Sensor Air Flow Rate Response (Present) :in16-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN MAF Sensor Air Flow Rate Response (Present) :in16-0}</SetValueDescription>
|
|
<SetValueKey>{CAN MAF Sensor Air Flow Rate Response (Present) :in16-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN MAF Sensor Air Flow Rate Response (Present)</Description>
|
|
<Equation>{CAN MAF Sensor Air Flow Rate Response (Present) :in16-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>53</StepLongValue>
|
|
<StepLongValue2>53</StepLongValue2>
|
|
<StepComment>Checks for support of PID 11</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 11 Supported (Value)</Description>
|
|
<Equation>{PID 11 Supported (Value) :in0-sig16-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>Sets the *present* value of RECEIVE message "Absolute Throttle Position" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Absolute Throttle Position Response (Present) :in17-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Absolute Throttle Position Response (Present) :in17-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Absolute Throttle Position Response (Present) :in17-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Absolute Throttle Position Response (Present)</Description>
|
|
<Equation>{CAN Absolute Throttle Position Response (Present) :in17-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>58</StepLongValue>
|
|
<StepLongValue2>58</StepLongValue2>
|
|
<StepComment>Checks for support of PID 13</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 13 Supported (Value)</Description>
|
|
<Equation>{PID 13 Supported (Value) :in0-sig18-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>Sets the *present* value of RECEIVE message "Oxygen Sensors Response" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Oxygen Sensors Response (Present) :in19-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Oxygen Sensors Response (Present) :in19-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Oxygen Sensors Response (Present) :in19-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Oxygen Sensors Response (Present)</Description>
|
|
<Equation>{CAN Oxygen Sensors Response (Present) :in19-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>63</StepLongValue>
|
|
<StepLongValue2>63</StepLongValue2>
|
|
<StepComment>Checks for support of PID 14</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 14 Supported (Value)</Description>
|
|
<Equation>{PID 14 Supported (Value) :in0-sig19-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>Sets the *present* value of RECEIVE message "Oxygen Sensor 1-1" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Oxygen Sensor 1-1 Response (Present) :in20-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Oxygen Sensor 1-1 Response (Present) :in20-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Oxygen Sensor 1-1 Response (Present) :in20-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Oxygen Sensor 1-1 Response (Present)</Description>
|
|
<Equation>{CAN Oxygen Sensor 1-1 Response (Present) :in20-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>68</StepLongValue>
|
|
<StepLongValue2>68</StepLongValue2>
|
|
<StepComment>Checks for support of PID 15</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 15 Supported (Value)</Description>
|
|
<Equation>{PID 15 Supported (Value) :in0-sig20-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>Sets the *present* value of RECEIVE message "Oxygen Sensor 1-2" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Oxygen Sensor 1-2 Response (Present) :in21-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Oxygen Sensor 1-2 Response (Present) :in21-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Oxygen Sensor 1-2 Response (Present) :in21-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Oxygen Sensor 1-2 Response (Present)</Description>
|
|
<Equation>{CAN Oxygen Sensor 1-2 Response (Present) :in21-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>73</StepLongValue>
|
|
<StepLongValue2>73</StepLongValue2>
|
|
<StepComment>Checks for support of PID 16</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 16 Supported (Value)</Description>
|
|
<Equation>{PID 16 Supported (Value) :in0-sig21-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>Sets the *present* value of RECEIVE message "Oxygen Sensor 1-3 OR 2-1" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Oxygen Sensor 1-3 OR 2-1 Response (Present) :in22-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Oxygen Sensor 1-3 OR 2-1 Response (Present) :in22-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Oxygen Sensor 1-3 OR 2-1 Response (Present) :in22-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Oxygen Sensor 1-3 OR 2-1 Response (Present)</Description>
|
|
<Equation>{CAN Oxygen Sensor 1-3 OR 2-1 Response (Present) :in22-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>78</StepLongValue>
|
|
<StepLongValue2>78</StepLongValue2>
|
|
<StepComment>Checks for support of PID 17</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 17 Supported (Value)</Description>
|
|
<Equation>{PID 17 Supported (Value) :in0-sig22-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>Sets the *present value of RECEIVE message "Oxygen Sensor 1-4 OR 2-2" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Oxygen Sensor 1-4 OR 2-2 Response (Present) :in23-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Oxygen Sensor 1-4 OR 2-2 Response (Present) :in23-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Oxygen Sensor 1-4 OR 2-2 Response (Present) :in23-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Oxygen Sensor 1-4 OR 2-2 Response (Present)</Description>
|
|
<Equation>{CAN Oxygen Sensor 1-4 OR 2-2 Response (Present) :in23-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>83</StepLongValue>
|
|
<StepLongValue2>83</StepLongValue2>
|
|
<StepComment>Checks for support of PID 18</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 18 Supported (Value)</Description>
|
|
<Equation>{PID 18 Supported (Value) :in0-sig23-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>Sets the *present value of RECEIVE message "Oxygen Sensor 2-1 OR 3-1" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Oxygen Sensor 2-1 OR 3-1 Response (Present) :in24-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Oxygen Sensor 2-1 OR 3-1 Response (Present) :in24-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Oxygen Sensor 2-1 OR 3-1 Response (Present) :in24-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Oxygen Sensor 2-1 OR 3-1 Response (Present)</Description>
|
|
<Equation>{CAN Oxygen Sensor 2-1 OR 3-1 Response (Present) :in24-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>88</StepLongValue>
|
|
<StepLongValue2>88</StepLongValue2>
|
|
<StepComment>Checks for support of PID 19</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 19 Supported (Value)</Description>
|
|
<Equation>{PID 19 Supported (Value) :in0-sig24-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>Sets the *present value of RECEIVE message "Oxygen Sensor 2-2 OR 3-2" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Oxygen Sensor 2-2 OR 3-2 Response (Present) :in25-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Oxygen Sensor 2-2 OR 3-2 Response (Present) :in25-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Oxygen Sensor 2-2 OR 3-2 Response (Present) :in25-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Oxygen Sensor 2-2 OR 3-2 Response (Present)</Description>
|
|
<Equation>{CAN Oxygen Sensor 2-2 OR 3-2 Response (Present) :in25-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>93</StepLongValue>
|
|
<StepLongValue2>93</StepLongValue2>
|
|
<StepComment>Checks for support of PID 1A</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 1A Supported (Value)</Description>
|
|
<Equation>{PID 1A Supported (Value) :in0-sig25-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>Sets the *present value of RECEIVE message "Oxygen Sensor 2-3 OR 4-1" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Oxygen Sensor 2-3 OR 4-1 Response (Present) :in26-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Oxygen Sensor 2-3 OR 4-1 Response (Present) :in26-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Oxygen Sensor 2-3 OR 4-1 Response (Present) :in26-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Oxygen Sensor 2-3 OR 4-1 Response (Present)</Description>
|
|
<Equation>{CAN Oxygen Sensor 2-3 OR 4-1 Response (Present) :in26-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>98</StepLongValue>
|
|
<StepLongValue2>98</StepLongValue2>
|
|
<StepComment>Checks for support of PID 1B</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 1B Supported (Value)</Description>
|
|
<Equation>{PID 1B Supported (Value) :in0-sig26-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>Sets the *present value of RECEIVE message "Oxygen Sensor 2-4 OR 4-2" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Oxygen Sensor 2-4 OR 4-2 Response (Present) :in27-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Oxygen Sensor 2-4 OR 4-2 Response (Present) :in27-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Oxygen Sensor 2-4 OR 4-2 Response (Present) :in27-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Oxygen Sensor 2-4 OR 4-2 Response (Present)</Description>
|
|
<Equation>{CAN Oxygen Sensor 2-4 OR 4-2 Response (Present) :in27-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>103</StepLongValue>
|
|
<StepLongValue2>103</StepLongValue2>
|
|
<StepComment>Checks for support of PID 1F</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 1F Supported (Value)</Description>
|
|
<Equation>{PID 1F Supported (Value) :in0-sig30-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>Sets the *present value of RECEIVE message "Time Since Engine Start" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Time Since Engine Start Response (Present) :in31-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Time Since Engine Start Response (Present) :in31-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Time Since Engine Start Response (Present) :in31-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>Time Since Engine Start (PID 1F) (Value [sec])</Description>
|
|
<Equation>{Time Since Engine Start (PID 1F) (Value [sec]) :in31-sig0-0}</Equation>
|
|
<Format>0</Format>
|
|
<Min>0</Min>
|
|
<Max>65535</Max>
|
|
<Units>sec</Units>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp113</Key>
|
|
<StepType>4</StepType>
|
|
<StepLongValue>0</StepLongValue>
|
|
<StepLongValue2>2</StepLongValue2>
|
|
<StepStringValue>tst2</StepStringValue>
|
|
<StepComment>This step begins the next FUNCTION BLOCK in the cycle, in this case, "Request Service Information (21-3F)"</StepComment>
|
|
<StepStringValue2>Request Service Information (21-3F)</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp264</Key>
|
|
<StepType>8</StepType>
|
|
<StepComment>This just marks the definitive END of this FUNCTION BLOCK</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
</Steps>
|
|
</FBlock>
|
|
<FBlock>
|
|
<Description>Request Service Information (21-3F)</Description>
|
|
<Key>tst2</Key>
|
|
<TestType>8</TestType>
|
|
<FilePath>Capture File Function Block 2</FilePath>
|
|
<StartMode>1</StartMode>
|
|
<AppendFileValueTypeInput>True</AppendFileValueTypeInput>
|
|
<LogRate>1</LogRate>
|
|
<AfterStopTime>5000</AfterStopTime>
|
|
<StopNumberOfMessages>1</StopNumberOfMessages>
|
|
<StopAfterTime>1</StopAfterTime>
|
|
<NumberOfGenerations>1</NumberOfGenerations>
|
|
<FileSaveAsBinary>False</FileSaveAsBinary>
|
|
<StopOnVSSALSleep>True</StopOnVSSALSleep>
|
|
<ValueReplayOutKey>out1</ValueReplayOutKey>
|
|
<PlaybackSpeed>1</PlaybackSpeed>
|
|
<Steps>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>4</StepLongValue>
|
|
<StepLongValue2>4</StepLongValue2>
|
|
<StepComment>Checks whether or not PID 23 is supported. If it IS, the program steps into the IF loop. If it is NOT, the program moves on</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 23 Supported (Value)</Description>
|
|
<Equation>{PID 23 Supported (Value) :in32-sig2-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>This step sets the *present* value of RECEIVE message "Fuel Rail Pressure" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Fuel Rail Pressure Response (Present) :in35-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Fuel Rail Pressure Response (Present) :in35-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Fuel Rail Pressure Response (Present) :in35-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message to be received OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Fuel Rail Pressure Response (Present)</Description>
|
|
<Equation>{CAN Fuel Rail Pressure Response (Present) :in35-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>9</StepLongValue>
|
|
<StepLongValue2>9</StepLongValue2>
|
|
<StepComment>Checks for support of PID 2C</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 2C Supported (Value)</Description>
|
|
<Equation>{PID 2C Supported (Value) :in32-sig11-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>This step sets the *present* value of RECEIVE message "Commanded EGR" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Commanded EGR Response (Present) :in44-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Commanded EGR Response (Present) :in44-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Commanded EGR Response (Present) :in44-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message to be received OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Commanded EGR Response (Present)</Description>
|
|
<Equation>{CAN Commanded EGR Response (Present) :in44-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>14</StepLongValue>
|
|
<StepLongValue2>14</StepLongValue2>
|
|
<StepComment>Checks for support of PID 2D</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 2D Supported (Value)</Description>
|
|
<Equation>{PID 2D Supported (Value) :in32-sig12-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>This step sets the *present* value of RECEIVE message "EGR Error" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN EGR Error Response (Present) :in45-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN EGR Error Response (Present) :in45-0}</SetValueDescription>
|
|
<SetValueKey>{CAN EGR Error Response (Present) :in45-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message to be received OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN EGR Error Response (Present)</Description>
|
|
<Equation>{CAN EGR Error Response (Present) :in45-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>19</StepLongValue>
|
|
<StepLongValue2>19</StepLongValue2>
|
|
<StepComment>Checks for support of PID 33</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 33 Supported (Value)</Description>
|
|
<Equation>{PID 33 Supported (Value) :in32-sig18-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>This step sets the *present* value of RECEIVE message "Barometric Pressure" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Barometric Pressure Response (Present) :in51-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Barometric Pressure Response (Present) :in51-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Barometric Pressure Response (Present) :in51-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message to be received OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Barometric Pressure Response (Present)</Description>
|
|
<Equation>{CAN Barometric Pressure Response (Present) :in51-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>24</StepLongValue>
|
|
<StepLongValue2>24</StepLongValue2>
|
|
<StepComment>Checks for support of PID 3C</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 3C Supported (Value)</Description>
|
|
<Equation>{PID 3C Supported (Value) :in32-sig27-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>This step sets the *present* value of RECEIVE message "Catalyst Temperature 1-1" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Catalyst Temperature 1-1 Response (Present) :in60-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Catalyst Temperature 1-1 Response (Present) :in60-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Catalyst Temperature 1-1 Response (Present) :in60-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message to be received OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Catalyst Temperature 1-1 Response (Present)</Description>
|
|
<Equation>{CAN Catalyst Temperature 1-1 Response (Present) :in60-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>29</StepLongValue>
|
|
<StepLongValue2>29</StepLongValue2>
|
|
<StepComment>Checks for support of PID 3D</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 3D Supported (Value)</Description>
|
|
<Equation>{PID 3D Supported (Value) :in32-sig28-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>This step sets the *present* value of RECEIVE message "Catalyst Temperature 2-1" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Catalyst Temperature 2-1 Response (Present) :in61-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Catalyst Temperature 2-1 Response (Present) :in61-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Catalyst Temperature 2-1 Response (Present) :in61-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message to be received OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Catalyst Temperature 2-1 Response (Present)</Description>
|
|
<Equation>{CAN Catalyst Temperature 2-1 Response (Present) :in61-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>34</StepLongValue>
|
|
<StepLongValue2>34</StepLongValue2>
|
|
<StepComment>Checks for support of PID 3E</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 3E Supported (Value)</Description>
|
|
<Equation>{PID 3E Supported (Value) :in32-sig29-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>This step sets the *present* value of RECEIVE message "Catalyst Temperature 1-2" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Catalyst Temperature 1-2 Response (Present) :in62-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Catalyst Temperature 1-2 Response (Present) :in62-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Catalyst Temperature 1-2 Response (Present) :in62-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message to be received OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Catalyst Temperature 1-2 Response (Present)</Description>
|
|
<Equation>{CAN Catalyst Temperature 1-2 Response (Present) :in62-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>39</StepLongValue>
|
|
<StepLongValue2>39</StepLongValue2>
|
|
<StepComment>Checks for support of PID 3F</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 3F Supported (Value)</Description>
|
|
<Equation>{PID 3F Supported (Value) :in32-sig30-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>This step sets the *present* value of RECEIVE message "Catalyst Temperature 2-2" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Catalyst Temperature 2-2 Response (Present) :in63-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Catalyst Temperature 2-2 Response (Present) :in63-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Catalyst Temperature 2-2 Response (Present) :in63-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message to be received OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Catalyst Temperature 2-2 Response (Present)</Description>
|
|
<Equation>{CAN Catalyst Temperature 2-2 Response (Present) :in63-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp113</Key>
|
|
<StepType>4</StepType>
|
|
<StepLongValue>0</StepLongValue>
|
|
<StepLongValue2>3</StepLongValue2>
|
|
<StepStringValue>tst3</StepStringValue>
|
|
<StepComment>This step starts the next FUNCTION BLOCK, in this case, "Request Service Information (41-5F)"</StepComment>
|
|
<StepStringValue2>Request Service Information (41-5F)</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp51</Key>
|
|
<StepType>8</StepType>
|
|
<StepComment>This marks the definitive END of this FUNCTION BLOCK for this cycle</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
</Steps>
|
|
</FBlock>
|
|
<FBlock>
|
|
<Description>Request Service Information (41-5F)</Description>
|
|
<Key>tst3</Key>
|
|
<TestType>8</TestType>
|
|
<FilePath>Capture File Function Block 2</FilePath>
|
|
<StartMode>1</StartMode>
|
|
<AppendFileValueTypeInput>True</AppendFileValueTypeInput>
|
|
<LogRate>1</LogRate>
|
|
<AfterStopTime>5000</AfterStopTime>
|
|
<StopNumberOfMessages>1</StopNumberOfMessages>
|
|
<StopAfterTime>1</StopAfterTime>
|
|
<NumberOfGenerations>1</NumberOfGenerations>
|
|
<FileSaveAsBinary>False</FileSaveAsBinary>
|
|
<StopOnVSSALSleep>True</StopOnVSSALSleep>
|
|
<ValueReplayOutKey>out1</ValueReplayOutKey>
|
|
<PlaybackSpeed>1</PlaybackSpeed>
|
|
<Steps>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>4</StepLongValue>
|
|
<StepLongValue2>4</StepLongValue2>
|
|
<StepComment>Checks whether or not PID 42 is supported. If it IS, the program steps into the IF loop. If it is NOT, the program moves on</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 42 Supported (Value)</Description>
|
|
<Equation>{PID 42 Supported (Value) :in64-sig1-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>This step sets the *present* value of RECEIVE message "Control Module Voltage" to 0 so that we can identify later whether or not this message was received in this cycle</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Control Module Voltage Response (Present) :in66-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Control Module Voltage Response (Present) :in66-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Control Module Voltage Response (Present) :in66-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message to be received (indicated by *present* value changing to 1) OR times out and continues after 100ms.</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Control Module Voltage Response (Present)</Description>
|
|
<Equation>{CAN Control Module Voltage Response (Present) :in66-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>9</StepLongValue>
|
|
<StepLongValue2>9</StepLongValue2>
|
|
<StepComment>Checks whether or not PID 43 is supported. If it IS, the program steps into the IF loop. If it is NOT, the program moves on</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 43 Supported (Value)</Description>
|
|
<Equation>{PID 43 Supported (Value) :in64-sig2-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>This step sets the *present* value of RECEIVE message "Absolute Load Value Response" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Absolute Load Value Response (Present) :in67-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Absolute Load Value Response (Present) :in67-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Absolute Load Value Response (Present) :in67-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message to be received OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Absolute Load Value Response (Present)</Description>
|
|
<Equation>{CAN Absolute Load Value Response (Present) :in67-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>14</StepLongValue>
|
|
<StepLongValue2>14</StepLongValue2>
|
|
<StepComment>Checks whether or not PID 44 is supported. If it IS, the program steps into the IF loop. If it is NOT, the program moves on</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 44 Supported (Value)</Description>
|
|
<Equation>{PID 44 Supported (Value) :in64-sig3-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>This step sets the *present* value of RECEIVE message "Fuel/Air Commanded Equivalence Ratio" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Fuel/Air Commanded Equivalence Ratio Response (Present) :in68-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Fuel/Air Commanded Equivalence Ratio Response (Present) :in68-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Fuel/Air Commanded Equivalence Ratio Response (Present) :in68-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message to be received OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Fuel/Air Commanded Equivalence Ratio Response (Present)</Description>
|
|
<Equation>{CAN Fuel/Air Commanded Equivalence Ratio Response (Present) :in68-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>19</StepLongValue>
|
|
<StepLongValue2>19</StepLongValue2>
|
|
<StepComment>Checks for support of PID 45</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 45 Supported (Value)</Description>
|
|
<Equation>{PID 45 Supported (Value) :in64-sig4-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>This step sets the *present* value of RECEIVE message "Relative Throttle" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Relative Throttle Position Response (Present) :in69-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Relative Throttle Position Response (Present) :in69-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Relative Throttle Position Response (Present) :in69-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message to be received OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Relative Throttle Position Response (Present)</Description>
|
|
<Equation>{CAN Relative Throttle Position Response (Present) :in69-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>24</StepLongValue>
|
|
<StepLongValue2>24</StepLongValue2>
|
|
<StepComment>Checks for support of PID 46</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 46 Supported (Value)</Description>
|
|
<Equation>{PID 46 Supported (Value) :in64-sig5-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>This step sets the *present* value of RECEIVE message "Ambient Air Temperature" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Ambient Air Temperature Response (Present) :in70-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Ambient Air Temperature Response (Present) :in70-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Ambient Air Temperature Response (Present) :in70-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message to be received OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Ambient Air Temperature Response (Present)</Description>
|
|
<Equation>{CAN Ambient Air Temperature Response (Present) :in70-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>29</StepLongValue>
|
|
<StepLongValue2>29</StepLongValue2>
|
|
<StepComment>Checks for support of PID 47</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 47 Supported (Value)</Description>
|
|
<Equation>{PID 47 Supported (Value) :in64-sig6-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>This step sets the *present* value of RECEIVE message "Absolute Throttle Position B" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Absolute Throttle Position B Response (Present) :in71-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Absolute Throttle Position B Response (Present) :in71-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Absolute Throttle Position B Response (Present) :in71-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message to be received OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Absolute Throttle Position B Response (Present)</Description>
|
|
<Equation>{CAN Absolute Throttle Position B Response (Present) :in71-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>34</StepLongValue>
|
|
<StepLongValue2>34</StepLongValue2>
|
|
<StepComment>Checks for support of PID 48</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 48 Supported (Value)</Description>
|
|
<Equation>{PID 48 Supported (Value) :in64-sig7-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>This step sets the *present* value of RECEIVE message "Absolute Throttle Position C" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Absolute Throttle Position C Response (Present) :in72-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Absolute Throttle Position C Response (Present) :in72-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Absolute Throttle Position C Response (Present) :in72-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message to be received OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Absolute Throttle Position C Response (Present)</Description>
|
|
<Equation>{CAN Absolute Throttle Position C Response (Present) :in72-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>39</StepLongValue>
|
|
<StepLongValue2>39</StepLongValue2>
|
|
<StepComment>Checks for support of PID 49</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 49 Supported (Value)</Description>
|
|
<Equation>{PID 49 Supported (Value) :in64-sig8-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>This step sets the *present* value of RECEIVE message "Accelerator Pedal Position D" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Accelerator Pedal Position D Response (Present) :in73-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Accelerator Pedal Position D Response (Present) :in73-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Accelerator Pedal Position D Response (Present) :in73-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message to be received OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Accelerator Pedal Position D Response (Present)</Description>
|
|
<Equation>{CAN Accelerator Pedal Position D Response (Present) :in73-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>44</StepLongValue>
|
|
<StepLongValue2>44</StepLongValue2>
|
|
<StepComment>Checks for support of PID 4A</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 4A Supported (Value)</Description>
|
|
<Equation>{PID 4A Supported (Value) :in64-sig9-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>This step sets the *present* value of RECEIVE message "Accelerator Pedal Position E" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Accelerator Pedal Position E Response (Present) :in74-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Accelerator Pedal Position E Response (Present) :in74-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Accelerator Pedal Position E Response (Present) :in74-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message to be received OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Accelerator Pedal Position E Response (Present)</Description>
|
|
<Equation>{CAN Accelerator Pedal Position E Response (Present) :in74-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>49</StepLongValue>
|
|
<StepLongValue2>49</StepLongValue2>
|
|
<StepComment>Checks for support of PID 4B</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 4B Supported (Value)</Description>
|
|
<Equation>{PID 4B Supported (Value) :in64-sig10-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>This step sets the *present* value of RECEIVE message "Accelerator Pedal Position F" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Accelerator Pedal Position F Response (Present) :in75-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Accelerator Pedal Position F Response (Present) :in75-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Accelerator Pedal Position F Response (Present) :in75-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message to be received OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Accelerator Pedal Position F Response (Present)</Description>
|
|
<Equation>{CAN Accelerator Pedal Position F Response (Present) :in75-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>54</StepLongValue>
|
|
<StepLongValue2>54</StepLongValue2>
|
|
<StepComment>Checks for support of PID 4C</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 4C Supported (Value)</Description>
|
|
<Equation>{PID 4C Supported (Value) :in64-sig11-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>This step sets the *present* value of RECEIVE message "Commanded Throttle Actuator Control" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Commanded Throttle Actuator Control Response (Present) :in76-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Commanded Throttle Actuator Control Response (Present) :in76-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Commanded Throttle Actuator Control Response (Present) :in76-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message to be received OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Commanded Throttle Actuator Control Response (Present)</Description>
|
|
<Equation>{CAN Commanded Throttle Actuator Control Response (Present) :in76-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>59</StepLongValue>
|
|
<StepLongValue2>59</StepLongValue2>
|
|
<StepComment>Checks for support of PID 59</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 59 Supported (Value)</Description>
|
|
<Equation>{PID 59 Supported (Value) :in64-sig24-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>This step sets the *present* value of RECEIVE message "Fuel Rail Pressure (Absolute) Response" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Fuel Rail Pressure (Absolute) Response (Present) :in89-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Fuel Rail Pressure (Absolute) Response (Present) :in89-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Fuel Rail Pressure (Absolute) Response (Present) :in89-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message to be received OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Fuel Rail Pressure (Absolute) Response (Present)</Description>
|
|
<Equation>{CAN Fuel Rail Pressure (Absolute) Response (Present) :in89-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>64</StepLongValue>
|
|
<StepLongValue2>64</StepLongValue2>
|
|
<StepComment>Checks for support of PID 5A</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 5A Supported (Value)</Description>
|
|
<Equation>{PID 5A Supported (Value) :in64-sig25-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>This step sets the *present* value of RECEIVE message "Relative Accelerator Pedal Position" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Relative Accelerator Pedal Position Response (Present) :in90-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Relative Accelerator Pedal Position Response (Present) :in90-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Relative Accelerator Pedal Position Response (Present) :in90-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message to be received OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Relative Accelerator Pedal Position Response (Present)</Description>
|
|
<Equation>{CAN Relative Accelerator Pedal Position Response (Present) :in90-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>69</StepLongValue>
|
|
<StepLongValue2>69</StepLongValue2>
|
|
<StepComment>Checks for support of PID 5B</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 5B Supported (Value)</Description>
|
|
<Equation>{PID 5B Supported (Value) :in64-sig26-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>This step sets the *present* value of RECEIVE message "Hybrid/EV Battery Pack Remaining Charge" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Hybrid/EV Battery Pack Remaining Charge Response (Present) :in91-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Hybrid/EV Battery Pack Remaining Charge Response (Present) :in91-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Hybrid/EV Battery Pack Remaining Charge Response (Present) :in91-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message to be received OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Hybrid/EV Battery Pack Remaining Charge Response (Present)</Description>
|
|
<Equation>{CAN Hybrid/EV Battery Pack Remaining Charge Response (Present) :in91-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>74</StepLongValue>
|
|
<StepLongValue2>74</StepLongValue2>
|
|
<StepComment>Checks for support of PID 5C</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 5C Supported (Value)</Description>
|
|
<Equation>{PID 5C Supported (Value) :in64-sig27-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>This step sets the *present* value of RECEIVE message "Engine Oil Temperature" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Engine Oil Temperature Response (Present) :in92-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Engine Oil Temperature Response (Present) :in92-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Engine Oil Temperature Response (Present) :in92-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message to be received OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Engine Oil Temperature Response (Present)</Description>
|
|
<Equation>{CAN Engine Oil Temperature Response (Present) :in92-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>79</StepLongValue>
|
|
<StepLongValue2>79</StepLongValue2>
|
|
<StepComment>Checks for support of PID 5D</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 5D Supported (Value)</Description>
|
|
<Equation>{PID 5D Supported (Value) :in64-sig28-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>This step sets the *present* value of RECEIVE message "Fuel Injection Timing" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Fuel Injection Timing Response (Present) :in93-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Fuel Injection Timing Response (Present) :in93-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Fuel Injection Timing Response (Present) :in93-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message to be received OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Fuel Injection Timing Response (Present)</Description>
|
|
<Equation>{CAN Fuel Injection Timing Response (Present) :in93-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>84</StepLongValue>
|
|
<StepLongValue2>84</StepLongValue2>
|
|
<StepComment>Checks for support of PID 5E</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 5E Supported (Value)</Description>
|
|
<Equation>{PID 5E Supported (Value) :in64-sig29-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>This step sets the *present* value of RECEIVE message "Engine Fuel Rate" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Engine Fuel Rate Response (Present) :in94-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Engine Fuel Rate Response (Present) :in94-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Engine Fuel Rate Response (Present) :in94-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message to be received OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Engine Fuel Rate Response (Present)</Description>
|
|
<Equation>{CAN Engine Fuel Rate Response (Present) :in94-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp113</Key>
|
|
<StepType>4</StepType>
|
|
<StepLongValue>0</StepLongValue>
|
|
<StepLongValue2>4</StepLongValue2>
|
|
<StepStringValue>tst4</StepStringValue>
|
|
<StepComment>Starts the next FUNCTION BLOCK, in this case, "Request Service Information (61-7F)"</StepComment>
|
|
<StepStringValue2>Request Service Information (61-7F)</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp188</Key>
|
|
<StepType>8</StepType>
|
|
<StepComment>Marks the definitive END of this FUNCTION BLOCK for this cycle</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
</Steps>
|
|
</FBlock>
|
|
<FBlock>
|
|
<Description>Request Service Information (61-7F)</Description>
|
|
<Key>tst4</Key>
|
|
<TestType>8</TestType>
|
|
<FilePath>Capture File Function Block 2</FilePath>
|
|
<StartMode>1</StartMode>
|
|
<AppendFileValueTypeInput>True</AppendFileValueTypeInput>
|
|
<LogRate>1</LogRate>
|
|
<AfterStopTime>5000</AfterStopTime>
|
|
<StopNumberOfMessages>1</StopNumberOfMessages>
|
|
<StopAfterTime>1</StopAfterTime>
|
|
<NumberOfGenerations>1</NumberOfGenerations>
|
|
<FileSaveAsBinary>False</FileSaveAsBinary>
|
|
<StopOnVSSALSleep>True</StopOnVSSALSleep>
|
|
<ValueReplayOutKey>out1</ValueReplayOutKey>
|
|
<PlaybackSpeed>1</PlaybackSpeed>
|
|
<Steps>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>4</StepLongValue>
|
|
<StepLongValue2>4</StepLongValue2>
|
|
<StepComment>Checks whether the value of the SIGNAL "PID 61 Supported" is 1 or 0 (Supported or Not Supported). If it IS (value of 1), the program steps into the IF LOOP. If it IS NOT, the program will skip down to the next IF block.</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 61 Supported (Value)</Description>
|
|
<Equation>{PID 61 Supported (Value) :in96-sig0-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>This step sets the *present* value of RECEIVE message "Driver's Demand Engine - Percent Torque" to 0 so that we can identify later whether or not this message was received in this cycle</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Driver's Demand Engine - Percent Torque Response (Present) :in97-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Driver's Demand Engine - Percent Torque Response (Present) :in97-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Driver's Demand Engine - Percent Torque Response (Present) :in97-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message to be received (indicated by *present* value changing to 1) OR times out and continues after 100ms.</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Driver's Demand Engine - Percent Torque Response (Present)</Description>
|
|
<Equation>{CAN Driver's Demand Engine - Percent Torque Response (Present) :in97-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>9</StepLongValue>
|
|
<StepLongValue2>9</StepLongValue2>
|
|
<StepComment>Checks whether or not PID 62 is supported. If it IS, the program steps into the IF loop. If it is NOT, the program moves on</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 62 Supported (Value)</Description>
|
|
<Equation>{PID 62 Supported (Value) :in96-sig1-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>This step sets the *present* value of RECEIVE message "Actual Engine - Percent Torque" to 0 so that we can identify later whether or not this message was received in this cycle</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Actual Engine - Percent Torque Response (Present) :in98-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Actual Engine - Percent Torque Response (Present) :in98-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Actual Engine - Percent Torque Response (Present) :in98-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message to be received (indicated by *present* value changing to 1) OR times out and continues after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Actual Engine - Percent Torque Response (Present)</Description>
|
|
<Equation>{CAN Actual Engine - Percent Torque Response (Present) :in98-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>14</StepLongValue>
|
|
<StepLongValue2>14</StepLongValue2>
|
|
<StepComment>Checks whether or not PID 63 is supported. If it IS, the program steps into the IF loop. If it is NOT, the program moves on</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 63 Supported (Value)</Description>
|
|
<Equation>{PID 63 Supported (Value) :in96-sig2-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>This step sets the *present* value of RECEIVE message "Engine Reference Torque" to 0</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{CAN Engine Reference Torque Response (Present) :in99-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{CAN Engine Reference Torque Response (Present) :in99-0}</SetValueDescription>
|
|
<SetValueKey>{CAN Engine Reference Torque Response (Present) :in99-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message to be received OR times out after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>CAN Engine Reference Torque Response (Present)</Description>
|
|
<Equation>{CAN Engine Reference Torque Response (Present) :in99-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp113</Key>
|
|
<StepType>4</StepType>
|
|
<StepLongValue>0</StepLongValue>
|
|
<StepLongValue2>6</StepLongValue2>
|
|
<StepStringValue>tst27</StepStringValue>
|
|
<StepComment>Starts the next FUNCTION BLOCK, in this case, "Request Service Information (81-9C)"</StepComment>
|
|
<StepStringValue2>Request Service Information (81-9F)</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp188</Key>
|
|
<StepType>8</StepType>
|
|
<StepComment>Definitive END for this FUNCTION BLOCK in this cycle</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
</Steps>
|
|
</FBlock>
|
|
<FBlock>
|
|
<Description>Main</Description>
|
|
<Key>tst8</Key>
|
|
<TestType>8</TestType>
|
|
<FilePath>Capture File Function Block 9</FilePath>
|
|
<AppendFileValueTypeInput>True</AppendFileValueTypeInput>
|
|
<LogRate>1</LogRate>
|
|
<AfterStopTime>5000</AfterStopTime>
|
|
<StopNumberOfMessages>1</StopNumberOfMessages>
|
|
<StopAfterTime>1</StopAfterTime>
|
|
<NumberOfGenerations>1</NumberOfGenerations>
|
|
<FileSaveAsBinary>True</FileSaveAsBinary>
|
|
<StartOnVSSALWake>True</StartOnVSSALWake>
|
|
<StopOnVSSALSleep>True</StopOnVSSALSleep>
|
|
<ValueReplayOutKey>out1</ValueReplayOutKey>
|
|
<PlaybackSpeed>1</PlaybackSpeed>
|
|
<Steps>
|
|
<Step>
|
|
<Key>stp16</Key>
|
|
<StepType>6</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{ECU Detected (Value) :sig0-0}</Description>
|
|
<Equation>1</Equation>
|
|
<Format>1=1/0=0</Format>
|
|
<Min>0</Min>
|
|
<Max>1</Max>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
<SetValueDescription>{ECU Detected (Value) :sig0-0}</SetValueDescription>
|
|
<SetValueKey>{ECU Detected (Value) :sig0-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp17</Key>
|
|
<StepType>6</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{DistanceMILOn (Value) :in82-sig0-0}</Description>
|
|
<Equation>1</Equation>
|
|
<Format>0</Format>
|
|
<Min>0</Min>
|
|
<Max>65535</Max>
|
|
<Units>km</Units>
|
|
<SetValueDescription>{DistanceMILOn (Value) :in82-sig0-0}</SetValueDescription>
|
|
<SetValueKey>{DistanceMILOn (Value) :in82-sig0-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp34</Key>
|
|
<StepType>2</StepType>
|
|
<StepLongValue>0</StepLongValue>
|
|
<StepLongValue2>-1</StepLongValue2>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Equation>200</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp14</Key>
|
|
<StepType>4</StepType>
|
|
<StepLongValue>0</StepLongValue>
|
|
<StepLongValue2>0</StepLongValue2>
|
|
<StepStringValue>tst0</StepStringValue>
|
|
<StepStringValue2>Request PIDs Supported</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp14</Key>
|
|
<StepType>4</StepType>
|
|
<StepLongValue>0</StepLongValue>
|
|
<StepLongValue2>10</StepLongValue2>
|
|
<StepStringValue>tst12</StepStringValue>
|
|
<StepStringValue2>Backlight</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp9</Key>
|
|
<StepType>8</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp1</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp2</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp23</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp6</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp7</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp8</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp9</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
</Steps>
|
|
</FBlock>
|
|
<FBlock>
|
|
<Description>Request Service Information (81-9F)</Description>
|
|
<Key>tst27</Key>
|
|
<TestType>8</TestType>
|
|
<FilePath>Capture File Function Block 2</FilePath>
|
|
<StartMode>1</StartMode>
|
|
<AppendFileValueTypeInput>True</AppendFileValueTypeInput>
|
|
<LogRate>1</LogRate>
|
|
<AfterStopTime>5000</AfterStopTime>
|
|
<StopNumberOfMessages>1</StopNumberOfMessages>
|
|
<StopAfterTime>1</StopAfterTime>
|
|
<NumberOfGenerations>1</NumberOfGenerations>
|
|
<FileSaveAsBinary>False</FileSaveAsBinary>
|
|
<StopOnVSSALSleep>True</StopOnVSSALSleep>
|
|
<ValueReplayOutKey>out1</ValueReplayOutKey>
|
|
<PlaybackSpeed>1</PlaybackSpeed>
|
|
<Steps>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>4</StepLongValue>
|
|
<StepLongValue2>4</StepLongValue2>
|
|
<StepComment>Checks whether the value of the SIGNAL "PID 61 Supported" is 1 or 0 (Supported or Not Supported). If it IS (value of 1), the program steps into the IF LOOP. If it IS NOT, the program will skip down to the next IF block.</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 83 Supported (PID 80) (Value)</Description>
|
|
<Equation>{PID 83 Supported (PID 80) (Value) :in128-sig2-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<Min>0</Min>
|
|
<Max>1</Max>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>This step sets the *present* value of RECEIVE message "Driver's Demand Engine - Percent Torque" to 0 so that we can identify later whether or not this message was received in this cycle</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{(PID 83) CAN NOx Sensor Response (Present) :in131-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{(PID 83) CAN NOx Sensor Response (Present) :in131-0}</SetValueDescription>
|
|
<SetValueKey>{(PID 83) CAN NOx Sensor Response (Present) :in131-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message to be received (indicated by *present* value changing to 1) OR times out and continues after 100ms.</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>(PID 83) CAN NOx Sensor Response (Present)</Description>
|
|
<Equation>{(PID 83) CAN NOx Sensor Response (Present) :in131-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>9</StepLongValue>
|
|
<StepLongValue2>9</StepLongValue2>
|
|
<StepComment>Checks whether or not PID 62 is supported. If it IS, the program steps into the IF loop. If it is NOT, the program moves on</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID 9E Supported (PID 80) (Value)</Description>
|
|
<Equation>{PID 9E Supported (PID 80) (Value) :in128-sig29-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<Min>0</Min>
|
|
<Max>1</Max>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>This step sets the *present* value of RECEIVE message "Actual Engine - Percent Torque" to 0 so that we can identify later whether or not this message was received in this cycle</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{(Pid 9E) CAN Engine Exhaust Flow Rate (Present) :in58-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{(Pid 9E) CAN Engine Exhaust Flow Rate (Present) :in58-0}</SetValueDescription>
|
|
<SetValueKey>{(Pid 9E) CAN Engine Exhaust Flow Rate (Present) :in58-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message to be received (indicated by *present* value changing to 1) OR times out and continues after 100ms</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>(Pid 9E) CAN Engine Exhaust Flow Rate (Present)</Description>
|
|
<Equation>{(Pid 9E) CAN Engine Exhaust Flow Rate (Present) :in58-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp113</Key>
|
|
<StepType>4</StepType>
|
|
<StepLongValue>0</StepLongValue>
|
|
<StepLongValue2>7</StepLongValue2>
|
|
<StepStringValue>tst28</StepStringValue>
|
|
<StepComment>Starts the next FUNCTION BLOCK, in this case, "Request Service Information (81-9C)"</StepComment>
|
|
<StepStringValue2>Request Service Information (A1-BF)</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp188</Key>
|
|
<StepType>8</StepType>
|
|
<StepComment>Definitive END for this FUNCTION BLOCK in this cycle</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
</Steps>
|
|
</FBlock>
|
|
<FBlock>
|
|
<Description>Request Service Information (A1-BF)</Description>
|
|
<Key>tst28</Key>
|
|
<TestType>8</TestType>
|
|
<FilePath>Capture File Function Block 2</FilePath>
|
|
<StartMode>1</StartMode>
|
|
<AppendFileValueTypeInput>True</AppendFileValueTypeInput>
|
|
<LogRate>1</LogRate>
|
|
<AfterStopTime>5000</AfterStopTime>
|
|
<StopNumberOfMessages>1</StopNumberOfMessages>
|
|
<StopAfterTime>1</StopAfterTime>
|
|
<NumberOfGenerations>1</NumberOfGenerations>
|
|
<FileSaveAsBinary>False</FileSaveAsBinary>
|
|
<StopOnVSSALSleep>True</StopOnVSSALSleep>
|
|
<ValueReplayOutKey>out1</ValueReplayOutKey>
|
|
<PlaybackSpeed>1</PlaybackSpeed>
|
|
<Steps>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>4</StepLongValue>
|
|
<StepLongValue2>4</StepLongValue2>
|
|
<StepComment>Checks whether the value of the SIGNAL "PID 61 Supported" is 1 or 0 (Supported or Not Supported). If it IS (value of 1), the program steps into the IF LOOP. If it IS NOT, the program will skip down to the next IF block.</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>PID A1 Supported (Value)</Description>
|
|
<Equation>{PID A1 Supported (Value) :in77-sig0-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<Min>0</Min>
|
|
<Max>1</Max>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>This step sets the *present* value of RECEIVE message "Driver's Demand Engine - Percent Torque" to 0 so that we can identify later whether or not this message was received in this cycle</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{(PID A1) CAN NOx-Sensor Corrected (Present) :in65-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{(PID A1) CAN NOx-Sensor Corrected (Present) :in65-0}</SetValueDescription>
|
|
<SetValueKey>{(PID A1) CAN NOx-Sensor Corrected (Present) :in65-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>100</StepLongValue>
|
|
<StepComment>Waits for the message to be received (indicated by *present* value changing to 1) OR times out and continues after 100ms.</StepComment>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>(PID A1) CAN NOx-Sensor Corrected (Present)</Description>
|
|
<Equation>{(PID A1) CAN NOx-Sensor Corrected (Present) :in65-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>18</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp113</Key>
|
|
<StepType>4</StepType>
|
|
<StepLongValue>0</StepLongValue>
|
|
<StepStringValue>tst1</StepStringValue>
|
|
<StepComment>Starts the next FUNCTION BLOCK, in this case, "Request Service Information (81-9C)"</StepComment>
|
|
<StepStringValue2>Request Service Information (01-1F)</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp188</Key>
|
|
<StepType>8</StepType>
|
|
<StepComment>Definitive END for this FUNCTION BLOCK in this cycle</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
</Steps>
|
|
</FBlock>
|
|
<FBlock>
|
|
<Description>Sleep Control</Description>
|
|
<Key>tst39</Key>
|
|
<TestType>8</TestType>
|
|
<FilePath>Capture File Function Block 11</FilePath>
|
|
<StartMode>3</StartMode>
|
|
<AppendFileValueTypeInput>True</AppendFileValueTypeInput>
|
|
<LogRate>1</LogRate>
|
|
<AfterStopTime>5000</AfterStopTime>
|
|
<StopNumberOfMessages>1</StopNumberOfMessages>
|
|
<StopAfterTime>1</StopAfterTime>
|
|
<NumberOfGenerations>1</NumberOfGenerations>
|
|
<FileSaveAsBinary>True</FileSaveAsBinary>
|
|
<ValueReplayOutKey>out1</ValueReplayOutKey>
|
|
<PlaybackSpeed>1</PlaybackSpeed>
|
|
<Steps>
|
|
<Step>
|
|
<Key>stp1</Key>
|
|
<StepType>2</StepType>
|
|
<StepLongValue>10000</StepLongValue>
|
|
<StepLongValue2>-1</StepLongValue2>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Equation>10000</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp2</Key>
|
|
<StepType>3</StepType>
|
|
<StepComment>Wait for user timeout in milliseconds</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Equation>{TIME SINCE MESSAGE (MS)} >= 10000</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp31</Key>
|
|
<StepType>14</StepType>
|
|
<StepComment>--- Sleep detected ----</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>4</StepType>
|
|
<StepLongValue>3</StepLongValue>
|
|
<StepLongValue2>0</StepLongValue2>
|
|
<StepStringValue>tst0</StepStringValue>
|
|
<StepStringValue2>Request PIDs Supported</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>4</StepType>
|
|
<StepLongValue>3</StepLongValue>
|
|
<StepLongValue2>2</StepLongValue2>
|
|
<StepStringValue>tst2</StepStringValue>
|
|
<StepStringValue2>Request Service Information (21-3F)</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>4</StepType>
|
|
<StepLongValue>3</StepLongValue>
|
|
<StepStringValue>tst1</StepStringValue>
|
|
<StepStringValue2>Request Service Information (01-1F)</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>4</StepType>
|
|
<StepLongValue>3</StepLongValue>
|
|
<StepLongValue2>5</StepLongValue2>
|
|
<StepStringValue>tst8</StepStringValue>
|
|
<StepStringValue2>Main</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>4</StepType>
|
|
<StepLongValue>3</StepLongValue>
|
|
<StepLongValue2>3</StepLongValue2>
|
|
<StepStringValue>tst3</StepStringValue>
|
|
<StepStringValue2>Request Service Information (41-5F)</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>4</StepType>
|
|
<StepLongValue>3</StepLongValue>
|
|
<StepLongValue2>4</StepLongValue2>
|
|
<StepStringValue>tst4</StepStringValue>
|
|
<StepStringValue2>Request Service Information (61-7F)</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>4</StepType>
|
|
<StepLongValue>3</StepLongValue>
|
|
<StepLongValue2>6</StepLongValue2>
|
|
<StepStringValue>tst27</StepStringValue>
|
|
<StepStringValue2>Request Service Information (81-9F)</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>4</StepType>
|
|
<StepLongValue>3</StepLongValue>
|
|
<StepLongValue2>7</StepLongValue2>
|
|
<StepStringValue>tst28</StepStringValue>
|
|
<StepStringValue2>Request Service Information (A1-BF)</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp6</Key>
|
|
<StepType>2</StepType>
|
|
<StepLongValue>10000</StepLongValue>
|
|
<StepLongValue2>-1</StepLongValue2>
|
|
<StepComment>Wait for DPID / CCP / XCP Time outs on the net to stop tx'ing data</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Equation>10000</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>35</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>4</StepType>
|
|
<StepLongValue>0</StepLongValue>
|
|
<StepLongValue2>5</StepLongValue2>
|
|
<StepStringValue>tst8</StepStringValue>
|
|
<StepStringValue2>Main</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp6</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp7</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp8</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp9</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
</Steps>
|
|
</FBlock>
|
|
<FBlock>
|
|
<Description>Sound</Description>
|
|
<Key>tst41</Key>
|
|
<TestType>8</TestType>
|
|
<FilePath>Capture File Function Block 42</FilePath>
|
|
<StartMode>1</StartMode>
|
|
<AppendFileValueTypeInput>True</AppendFileValueTypeInput>
|
|
<LogRate>1</LogRate>
|
|
<AfterStopTime>5000</AfterStopTime>
|
|
<StopNumberOfMessages>1</StopNumberOfMessages>
|
|
<StopAfterTime>1</StopAfterTime>
|
|
<NumberOfGenerations>1</NumberOfGenerations>
|
|
<FileSaveAsBinary>True</FileSaveAsBinary>
|
|
<ValueReplayOutKey>out1</ValueReplayOutKey>
|
|
<PlaybackSpeed>1</PlaybackSpeed>
|
|
<Steps>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>TODO: Add step commands here</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{PWM Output 1 (PWM Frequency (Hz)) :neo0-po0-1-index(0)}</Description>
|
|
<Equation>400</Equation>
|
|
<SetValueDescription>{PWM Output 1 (PWM Frequency (Hz)) :neo0-po0-1-index(0)}</SetValueDescription>
|
|
<SetValueKey>{PWM Output 1 (PWM Frequency (Hz)) :neo0-po0-1-index(0)}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp1</Key>
|
|
<StepType>2</StepType>
|
|
<StepLongValue>150</StepLongValue>
|
|
<StepLongValue2>-1</StepLongValue2>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>duration (Value)</Description>
|
|
<Equation>150</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>TODO: Add step commands here</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{PWM Output 1 (PWM Frequency (Hz)) :neo0-po0-1-index(0)}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{PWM Output 1 (PWM Frequency (Hz)) :neo0-po0-1-index(0)}</SetValueDescription>
|
|
<SetValueKey>{PWM Output 1 (PWM Frequency (Hz)) :neo0-po0-1-index(0)}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp1</Key>
|
|
<StepType>2</StepType>
|
|
<StepLongValue>300</StepLongValue>
|
|
<StepLongValue2>-1</StepLongValue2>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>duration (Value)</Description>
|
|
<Equation>300</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>TODO: Add step commands here</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{PWM Output 1 (PWM Frequency (Hz)) :neo0-po0-1-index(0)}</Description>
|
|
<Equation>400</Equation>
|
|
<SetValueDescription>{PWM Output 1 (PWM Frequency (Hz)) :neo0-po0-1-index(0)}</SetValueDescription>
|
|
<SetValueKey>{PWM Output 1 (PWM Frequency (Hz)) :neo0-po0-1-index(0)}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp1</Key>
|
|
<StepType>2</StepType>
|
|
<StepLongValue>150</StepLongValue>
|
|
<StepLongValue2>-1</StepLongValue2>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>duration (Value)</Description>
|
|
<Equation>150</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>6</StepType>
|
|
<StepComment>TODO: Add step commands here</StepComment>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{PWM Output 1 (PWM Frequency (Hz)) :neo0-po0-1-index(0)}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{PWM Output 1 (PWM Frequency (Hz)) :neo0-po0-1-index(0)}</SetValueDescription>
|
|
<SetValueKey>{PWM Output 1 (PWM Frequency (Hz)) :neo0-po0-1-index(0)}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp1</Key>
|
|
<StepType>8</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp2</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp6</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp7</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp8</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp9</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
</Steps>
|
|
</FBlock>
|
|
<FBlock>
|
|
<Description>Backlight</Description>
|
|
<Key>tst12</Key>
|
|
<TestType>8</TestType>
|
|
<FilePath>Capture File Function Block 12</FilePath>
|
|
<StartMode>1</StartMode>
|
|
<AppendFileValueTypeInput>True</AppendFileValueTypeInput>
|
|
<LogRate>1</LogRate>
|
|
<AfterStopTime>5000</AfterStopTime>
|
|
<StopNumberOfMessages>1</StopNumberOfMessages>
|
|
<StopAfterTime>1</StopAfterTime>
|
|
<NumberOfGenerations>1</NumberOfGenerations>
|
|
<FileSaveAsBinary>True</FileSaveAsBinary>
|
|
<ValueReplayOutKey>out1</ValueReplayOutKey>
|
|
<PlaybackSpeed>1</PlaybackSpeed>
|
|
<Steps>
|
|
<Step>
|
|
<Key>stp11</Key>
|
|
<StepType>6</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{VividCAN Backlight}</Description>
|
|
<Equation>100</Equation>
|
|
<SetValueDescription>{VividCAN Backlight}</SetValueDescription>
|
|
<SetValueKey>{VividCAN Backlight}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp11</Key>
|
|
<StepType>6</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{Backlight (Value) :sig6-0}</Description>
|
|
<Equation>100</Equation>
|
|
<SetValueDescription>{Backlight (Value) :sig3-0}</SetValueDescription>
|
|
<SetValueKey>{Backlight (Value) :sig3-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp15</Key>
|
|
<StepType>6</StepType>
|
|
<SignalSpec>
|
|
<Description>{Display (Present) :in136-0}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{Display (Present) :in136-0}</SetValueDescription>
|
|
<SetValueKey>{Display (Present) :in136-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp13</Key>
|
|
<StepType>3</StepType>
|
|
<StepLongValue>200</StepLongValue>
|
|
<StepLongValue2>-1</StepLongValue2>
|
|
<StepDoubleValue>1</StepDoubleValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>Display (Present)</Description>
|
|
<Equation>{Display (Present) :in136-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp14</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>8</StepLongValue>
|
|
<StepLongValue2>10</StepLongValue2>
|
|
<SignalSpec>
|
|
<Description>Display (Present)</Description>
|
|
<Equation>{Display (Present) :in136-0}</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp18</Key>
|
|
<StepType>6</StepType>
|
|
<SignalSpec>
|
|
<Description>{Backlight (Value) :sig3-0}</Description>
|
|
<Equation>{Brightness (Value [%]) :in136-sig0-0}</Equation>
|
|
<Format>0</Format>
|
|
<Min>0</Min>
|
|
<Max>255</Max>
|
|
<Units>%</Units>
|
|
<SetValueDescription>{Backlight (Value) :sig3-0}</SetValueDescription>
|
|
<SetValueKey>{Backlight (Value) :sig3-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>6</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{VividCAN Backlight}</Description>
|
|
<Equation>{Brightness (Value [%]) :in136-sig0-0}</Equation>
|
|
<Format>0</Format>
|
|
<Min>0</Min>
|
|
<Max>255</Max>
|
|
<Units>%</Units>
|
|
<SetValueDescription>{VividCAN Backlight}</SetValueDescription>
|
|
<SetValueKey>{VividCAN Backlight}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp16</Key>
|
|
<StepType>17</StepType>
|
|
<StepLongValue2>10</StepLongValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>6</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
<SignalSpec>
|
|
<Description>{VividCAN Backlight}</Description>
|
|
<Equation>{Backlight (Value) :sig3-0}</Equation>
|
|
<SetValueDescription>{VividCAN Backlight}</SetValueDescription>
|
|
<SetValueKey>{VividCAN Backlight}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp17</Key>
|
|
<StepType>18</StepType>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepLongValue>3</StepLongValue>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp6</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp7</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp8</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp9</Key>
|
|
<StepType>14</StepType>
|
|
<StepStringValue2>txt</StepStringValue2>
|
|
</Step>
|
|
</Steps>
|
|
</FBlock>
|
|
<FBlock>
|
|
<Description>SFP1</Description>
|
|
<Key>tst42</Key>
|
|
<TestType>8</TestType>
|
|
<FilePath>Capture File Function Block 1</FilePath>
|
|
<AppendFileValueTypeInput>True</AppendFileValueTypeInput>
|
|
<LogRate>1</LogRate>
|
|
<AfterStopTime>5000</AfterStopTime>
|
|
<StopNumberOfMessages>1</StopNumberOfMessages>
|
|
<StopAfterTime>1</StopAfterTime>
|
|
<NumberOfGenerations>1</NumberOfGenerations>
|
|
<FileSaveAsBinary>True</FileSaveAsBinary>
|
|
<ValueReplayOutKey>out1</ValueReplayOutKey>
|
|
<PlaybackSpeed>1</PlaybackSpeed>
|
|
<Steps>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>14</StepType>
|
|
<StepComment>TODO: Add step commands here</StepComment>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp1</Key>
|
|
<StepType>3</StepType>
|
|
<SignalSpec>
|
|
<Description>TC10 Sleep Request 1 (Has Transmitted)</Description>
|
|
<Equation>{TC10 Sleep Request 1 (Has Transmitted) :out0-32} = 1</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp2</Key>
|
|
<StepType>6</StepType>
|
|
<SignalSpec>
|
|
<Description>{TC10 Sleep Request 1 (Has Transmitted) :out0-32}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{TC10 Sleep Request 1 (Has Transmitted) :out0-32}</SetValueDescription>
|
|
<SetValueKey>{TC10 Sleep Request 1 (Has Transmitted) :out0-32}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>6</StepType>
|
|
<SignalSpec>
|
|
<Description>{SFP1 (Value) :sig75-0}</Description>
|
|
<Equation>0</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<Min>0</Min>
|
|
<Max>1</Max>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
<SetValueDescription>{SFP1 (Value) :sig75-0}</SetValueDescription>
|
|
<SetValueKey>{SFP1 (Value) :sig75-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>3</StepType>
|
|
<SignalSpec>
|
|
<Description>TC10 Wake Request 1 (Has Transmitted)</Description>
|
|
<Equation>{TC10 Wake Request 2 (Has Transmitted) :out1-32} = 1</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>6</StepType>
|
|
<SignalSpec>
|
|
<Description>{TC10 Wake Request 1 (Has Transmitted) :out1-32}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{TC10 Wake Request 1 (Has Transmitted) :out1-32}</SetValueDescription>
|
|
<SetValueKey>{TC10 Wake Request 1 (Has Transmitted) :out1-32}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>6</StepType>
|
|
<SignalSpec>
|
|
<Description>{SFP1 (Value) :sig75-0}</Description>
|
|
<Equation>1</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<Min>0</Min>
|
|
<Max>1</Max>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
<SetValueDescription>{SFP1 (Value) :sig75-0}</SetValueDescription>
|
|
<SetValueKey>{SFP1 (Value) :sig75-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp6</Key>
|
|
<StepLongValue>2</StepLongValue>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp1</Key>
|
|
<StepType>14</StepType>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp2</Key>
|
|
<StepType>14</StepType>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>14</StepType>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>14</StepType>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp6</Key>
|
|
<StepType>14</StepType>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp7</Key>
|
|
<StepType>14</StepType>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp8</Key>
|
|
<StepType>14</StepType>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp9</Key>
|
|
<StepType>14</StepType>
|
|
</Step>
|
|
</Steps>
|
|
</FBlock>
|
|
<FBlock>
|
|
<Description>SFP2</Description>
|
|
<Key>tst43</Key>
|
|
<TestType>8</TestType>
|
|
<FilePath>Capture File Function Block 1</FilePath>
|
|
<AppendFileValueTypeInput>True</AppendFileValueTypeInput>
|
|
<LogRate>1</LogRate>
|
|
<AfterStopTime>5000</AfterStopTime>
|
|
<StopNumberOfMessages>1</StopNumberOfMessages>
|
|
<StopAfterTime>1</StopAfterTime>
|
|
<NumberOfGenerations>1</NumberOfGenerations>
|
|
<FileSaveAsBinary>True</FileSaveAsBinary>
|
|
<ValueReplayOutKey>out1</ValueReplayOutKey>
|
|
<PlaybackSpeed>1</PlaybackSpeed>
|
|
<Steps>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>14</StepType>
|
|
<StepComment>TODO: Add step commands here</StepComment>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp1</Key>
|
|
<StepType>3</StepType>
|
|
<SignalSpec>
|
|
<Description>TC10 Sleep Request 2 (Has Transmitted)</Description>
|
|
<Equation>{TC10 Sleep Request 2 (Has Transmitted) :out2-32} = 1</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp2</Key>
|
|
<StepType>6</StepType>
|
|
<SignalSpec>
|
|
<Description>{TC10 Sleep Request 2 (Has Transmitted) :out2-32}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{TC10 Sleep Request 2 (Has Transmitted) :out2-32}</SetValueDescription>
|
|
<SetValueKey>{TC10 Sleep Request 2 (Has Transmitted) :out2-32}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>6</StepType>
|
|
<SignalSpec>
|
|
<Description>{SFP2 (Value) :sig76-0}</Description>
|
|
<Equation>0</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<Min>0</Min>
|
|
<Max>1</Max>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
<SetValueDescription>{SFP2 (Value) :sig76-0}</SetValueDescription>
|
|
<SetValueKey>{SFP2 (Value) :sig76-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>3</StepType>
|
|
<SignalSpec>
|
|
<Description>TC10 Wake Request 2 (Has Transmitted)</Description>
|
|
<Equation>{TC10 Wake Request 2 (Has Transmitted) :out3-32} = 1</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>6</StepType>
|
|
<SignalSpec>
|
|
<Description>{TC10 Wake Request 2 (Has Transmitted) :out3-32}</Description>
|
|
<Equation>0</Equation>
|
|
<SetValueDescription>{TC10 Wake Request 2 (Has Transmitted) :out3-32}</SetValueDescription>
|
|
<SetValueKey>{TC10 Wake Request 2 (Has Transmitted) :out3-32}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>6</StepType>
|
|
<SignalSpec>
|
|
<Description>{SFP2 (Value) :sig76-0}</Description>
|
|
<Equation>1</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<Min>0</Min>
|
|
<Max>1</Max>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
<SetValueDescription>{SFP2 (Value) :sig76-0}</SetValueDescription>
|
|
<SetValueKey>{SFP2 (Value) :sig76-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp6</Key>
|
|
<StepLongValue>2</StepLongValue>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp1</Key>
|
|
<StepType>14</StepType>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp2</Key>
|
|
<StepType>14</StepType>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>14</StepType>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepType>14</StepType>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp6</Key>
|
|
<StepType>14</StepType>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp7</Key>
|
|
<StepType>14</StepType>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp8</Key>
|
|
<StepType>14</StepType>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp9</Key>
|
|
<StepType>14</StepType>
|
|
</Step>
|
|
</Steps>
|
|
</FBlock>
|
|
<FBlock>
|
|
<Description>Display</Description>
|
|
<Key>tst44</Key>
|
|
<TestType>8</TestType>
|
|
<FilePath>Capture File Function Block 1</FilePath>
|
|
<AppendFileValueTypeInput>True</AppendFileValueTypeInput>
|
|
<LogRate>1</LogRate>
|
|
<AfterStopTime>5000</AfterStopTime>
|
|
<StopNumberOfMessages>1</StopNumberOfMessages>
|
|
<StopAfterTime>1</StopAfterTime>
|
|
<NumberOfGenerations>1</NumberOfGenerations>
|
|
<FileSaveAsBinary>True</FileSaveAsBinary>
|
|
<ValueReplayOutKey>out1</ValueReplayOutKey>
|
|
<PlaybackSpeed>1</PlaybackSpeed>
|
|
<Steps>
|
|
<Step>
|
|
<Key>stp0</Key>
|
|
<StepType>14</StepType>
|
|
<StepComment>TODO: Add step commands here</StepComment>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp10</Key>
|
|
<StepType>15</StepType>
|
|
<StepLongValue>5</StepLongValue>
|
|
<StepLongValue2>5</StepLongValue2>
|
|
<SignalSpec>
|
|
<Description>Brightness (Value [%])</Description>
|
|
<Equation>{Brightness (Value [%]) :out4-sig0-0}<>{Backlight (Value) :sig3-0}</Equation>
|
|
<Format>0</Format>
|
|
<Min>0</Min>
|
|
<Max>255</Max>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp1</Key>
|
|
<StepType>6</StepType>
|
|
<SignalSpec>
|
|
<Description>{Brightness (Value) :out4-sig0-0}</Description>
|
|
<Equation>{Backlight (Value) :sig3-0}</Equation>
|
|
<Format>0</Format>
|
|
<Min>0</Min>
|
|
<Max>255</Max>
|
|
<SetValueDescription>{Brightness (Value) :out4-sig0-0}</SetValueDescription>
|
|
<SetValueKey>{Brightness (Value) :out4-sig0-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp2</Key>
|
|
<StepType>1</StepType>
|
|
<StepLongValue2>4</StepLongValue2>
|
|
<StepStringValue>out4</StepStringValue>
|
|
<StepStringValue2>Display</StepStringValue2>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp11</Key>
|
|
<StepType>18</StepType>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp3</Key>
|
|
<StepType>2</StepType>
|
|
<StepLongValue>0</StepLongValue>
|
|
<StepLongValue2>-1</StepLongValue2>
|
|
<SignalSpec>
|
|
<Equation>50</Equation>
|
|
</SignalSpec>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp4</Key>
|
|
<StepLongValue>2</StepLongValue>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp5</Key>
|
|
<StepType>14</StepType>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp6</Key>
|
|
<StepType>14</StepType>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp7</Key>
|
|
<StepType>14</StepType>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp8</Key>
|
|
<StepType>14</StepType>
|
|
</Step>
|
|
<Step>
|
|
<Key>stp9</Key>
|
|
<StepType>14</StepType>
|
|
</Step>
|
|
</Steps>
|
|
</FBlock>
|
|
</FBlocks>
|
|
<DiagJobs>
|
|
<DiagJob>
|
|
<Description>$09 Request Vehicle Info</Description>
|
|
<Key>dgn0</Key>
|
|
<J1979JobRequestVehicleInfo>
|
|
<UsePadding>True</UsePadding>
|
|
<NetworkKey>net0</NetworkKey>
|
|
<RequestID>7e0</RequestID>
|
|
<ResponseID>7e8</ResponseID>
|
|
<JobSignals>
|
|
<Signal>
|
|
<Description>Number of data items</Description>
|
|
<Key>sig0</Key>
|
|
<ValueType>1</ValueType>
|
|
<Equation>{Raw Value}|0,1,16,8</Equation>
|
|
<Format>0</Format>
|
|
<UpperRange>255</UpperRange>
|
|
<LowerRange>0</LowerRange>
|
|
<SetValueEquation>0</SetValueEquation>
|
|
<Strt>16</Strt>
|
|
<Len>8</Len>
|
|
</Signal>
|
|
<Signal>
|
|
<Description>Vehicle Identification Number</Description>
|
|
<Key>sig1</Key>
|
|
<ValueType>4</ValueType>
|
|
<Equation>B4 Length: 17|3,16</Equation>
|
|
<Format>0</Format>
|
|
<Strt>24</Strt>
|
|
<Len>136</Len>
|
|
</Signal>
|
|
</JobSignals>
|
|
<ID>2</ID>
|
|
</J1979JobRequestVehicleInfo>
|
|
</DiagJob>
|
|
</DiagJobs>
|
|
<SignalGroups>
|
|
<SignalGroup>
|
|
<Description>New Group 2</Description>
|
|
<Key>sgr1</Key>
|
|
<PlotSettings>
|
|
<StackYAxes>True</StackYAxes>
|
|
<XAxisKey>spc0</XAxisKey>
|
|
</PlotSettings>
|
|
<LogAllData>False</LogAllData>
|
|
<LogRateMs>10</LogRateMs>
|
|
<LogPath>icsSpyLogFile</LogPath>
|
|
<LogPathExpression>icsSpyLogFile</LogPathExpression>
|
|
<EvaluatedLogPath></EvaluatedLogPath>
|
|
<StartMode>0</StartMode>
|
|
<LogPathSpec>
|
|
<Equation>icsSpyLogFile</Equation>
|
|
<EvaluateAsText>True</EvaluateAsText>
|
|
</LogPathSpec>
|
|
</SignalGroup>
|
|
</SignalGroups>
|
|
<Dialogs>
|
|
<Dialog>
|
|
<Caption>Cockpit</Caption>
|
|
<Key>dia2</Key>
|
|
<BackColor>0</BackColor>
|
|
<ForeColor>12632256</ForeColor>
|
|
<BarGraph>
|
|
<Key>bgr1</Key>
|
|
<Width>108</Width>
|
|
<Height>246</Height>
|
|
<Top>14</Top>
|
|
<Left>36</Left>
|
|
<BackColor>16777215</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>1</BorderStyle>
|
|
<FontSize>12</FontSize>
|
|
<FontName>Arial Black</FontName>
|
|
<ForeColor>8421376</ForeColor>
|
|
<Caption></Caption>
|
|
<ShowCaption>0</ShowCaption>
|
|
<Maximum>200</Maximum>
|
|
<Minimum>0</Minimum>
|
|
<BarColor>16776960</BarColor>
|
|
<Style>0</Style>
|
|
<SignalSpec>
|
|
<Description>Vehicle Speed Sensor (PID 0D) (Value [km/h])</Description>
|
|
<Equation>{Vehicle Speed Sensor (PID 0D) (Value [km/h]) :in13-sig0-0}</Equation>
|
|
<Format>0</Format>
|
|
<Min>0</Min>
|
|
<Max>255</Max>
|
|
<Units>km/h</Units>
|
|
</SignalSpec>
|
|
</BarGraph>
|
|
<BarGraph>
|
|
<Key>bgr2</Key>
|
|
<Width>111</Width>
|
|
<Height>245</Height>
|
|
<Top>14</Top>
|
|
<Left>325</Left>
|
|
<BackColor>16777215</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>1</BorderStyle>
|
|
<FontSize>12</FontSize>
|
|
<FontName>Arial Black</FontName>
|
|
<ForeColor>8421376</ForeColor>
|
|
<Caption></Caption>
|
|
<ShowCaption>0</ShowCaption>
|
|
<Maximum>6000</Maximum>
|
|
<Minimum>0</Minimum>
|
|
<BarColor>4227072</BarColor>
|
|
<Style>0</Style>
|
|
<SignalSpec>
|
|
<Description>Engine RPM (PID 0C) (Value [rpm])</Description>
|
|
<Equation>{Engine RPM (PID 0C) (Value [rpm]) :in12-sig0-0}</Equation>
|
|
<Format>0.00</Format>
|
|
<Min>0</Min>
|
|
<Max>16383.75</Max>
|
|
<Units>rpm</Units>
|
|
</SignalSpec>
|
|
</BarGraph>
|
|
<BarGraph>
|
|
<Key>bgr3</Key>
|
|
<Width>40</Width>
|
|
<Height>133</Height>
|
|
<Top>83</Top>
|
|
<Left>153</Left>
|
|
<BackColor>16777215</BackColor>
|
|
<Transparent>0</Transparent>
|
|
<BorderStyle>1</BorderStyle>
|
|
<FontSize>12</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>8421504</ForeColor>
|
|
<Caption></Caption>
|
|
<ShowCaption>1</ShowCaption>
|
|
<Minimum>0</Minimum>
|
|
<BarColor>128</BarColor>
|
|
<IsInteger>1</IsInteger>
|
|
<Style>0</Style>
|
|
<SignalSpec>
|
|
<Description>Engine Coolant Temperature (PID 05) (Value [°C])</Description>
|
|
<Equation>{Engine Coolant Temperature (PID 05) (Value [°C]) :in5-sig0-0}</Equation>
|
|
<Format>0</Format>
|
|
<Min>-40</Min>
|
|
<Max>215</Max>
|
|
<Units>°C</Units>
|
|
</SignalSpec>
|
|
</BarGraph>
|
|
<TextDisplay>
|
|
<Key>txt5</Key>
|
|
<Width>60</Width>
|
|
<Height>30</Height>
|
|
<Top>220</Top>
|
|
<Left>145</Left>
|
|
<BackColor>0</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>10</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>12632256</ForeColor>
|
|
<Caption>TCool</Caption>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<LED>
|
|
<Key>led0</Key>
|
|
<Width>11</Width>
|
|
<Height>10</Height>
|
|
<Top>222</Top>
|
|
<Left>145</Left>
|
|
<BackColor>0</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontName>Arial Narrow</FontName>
|
|
<Caption></Caption>
|
|
<ShowCaption>0</ShowCaption>
|
|
<LEDOnColor>32768</LEDOnColor>
|
|
<LEDOffColor>128</LEDOffColor>
|
|
<SignalSpec>
|
|
<Description>Engine Coolant Temperature (PID 05) (Value [°C])</Description>
|
|
<Equation>({Engine Coolant Temperature (PID 05) (Value [°C]) :in5-sig0-0} > 50) and ({Engine Coolant Temperature (PID 05) (Value [°C]) :in5-sig0-0} < 95)</Equation>
|
|
<Format>0</Format>
|
|
<Min>-40</Min>
|
|
<Max>215</Max>
|
|
<Units>°C</Units>
|
|
</SignalSpec>
|
|
</LED>
|
|
<BarGraph>
|
|
<Key>bgr4</Key>
|
|
<Width>40</Width>
|
|
<Height>133</Height>
|
|
<Top>84</Top>
|
|
<Left>216</Left>
|
|
<BackColor>16777215</BackColor>
|
|
<Transparent>0</Transparent>
|
|
<BorderStyle>1</BorderStyle>
|
|
<FontSize>12</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>8421504</ForeColor>
|
|
<Caption></Caption>
|
|
<ShowCaption>1</ShowCaption>
|
|
<Minimum>0</Minimum>
|
|
<BarColor>8404992</BarColor>
|
|
<IsInteger>1</IsInteger>
|
|
<Style>0</Style>
|
|
<SignalSpec>
|
|
<Description>Calculated LOAD Value (PID 04) (Value [%])</Description>
|
|
<Equation>{Calculated LOAD Value (PID 04) (Value [%]) :in4-sig0-0}</Equation>
|
|
<Format>0</Format>
|
|
<Min>0</Min>
|
|
<Max>100</Max>
|
|
<Units>%</Units>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
</SignalSpec>
|
|
</BarGraph>
|
|
<TextDisplay>
|
|
<Key>txt6</Key>
|
|
<Width>41</Width>
|
|
<Height>18</Height>
|
|
<Top>219</Top>
|
|
<Left>214</Left>
|
|
<BackColor>0</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>10</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>12632256</ForeColor>
|
|
<Caption>Load</Caption>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<GraphicalDisplay>
|
|
<Key>gdp2</Key>
|
|
<Width>478</Width>
|
|
<Height>271</Height>
|
|
<BackColor>0</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>1</BorderStyle>
|
|
<FontName>Arial</FontName>
|
|
<ForeColor>255</ForeColor>
|
|
<Stretch>1</Stretch>
|
|
<TransparentColor>16777215</TransparentColor>
|
|
<BitmapList>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #0</Name>
|
|
<Index>0</Index>
|
|
<Width>480</Width>
|
|
<Height>270</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPls7pDy/Lx4AAADpBwAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7d3hdfI8sK5hl6JSXIpLcSn+cdaug9+nil3C6YDzSbIs2QbCmwAJ+Jq1npVgMCHWjG5GkjVdxxhjjDHGGGOMMcYYY4wxxhhjjDHGGGOMsd+w8/lM9FFijLF3MP014S9jjL3e9NeEv4wx9nrTXxP+MsbY601/TfjLGGOvN/014S9jr7e+r2LHNP014S9jr7VxDN3p1P2nkDROoeuD63I0018T/rJPsjav/Iu5ZeRsYu6wfiwPPp7prwl/2adYZFjOKbslv4y55l/KLeNnGaf1d4PE381njHyO7vyVxvEY/Tv+EolT9nctsiiyrWXdX3OJy/yNj8P6NWPmMv7iL5E4FbOvaKt1/rrRFL7m77i9Xm/C3xD4Cv4SiVMx+2vtVfm7/dmldUqfwd+wMLgfSv7LV/CXSJyK2b/XXn0XvnxNnDON871rnvd/rg3zPHW3rH2+NYbMT/CXSJyK2b/eXpG/aS3TkPPKMod6ROMn2ohInIrZV7VXHdsNT80t+Ym41kZE+Ku9GD/RRkTiVMxqL37CT/CX8FfMai/85SfaiEiciln85Sf8BH8Jf8Ws9uIn/EQbEYnTY8Yt29s9+05GtXtt8hFxTCRWxa02+z3+5j2v+Yc4JhKr4lab8Q/+gb+Ev+JWm/EP/qGdiMSquMVf/oG/RGJV3Goz/sE/tBORWNW/Mv6Bv0RiVdy+Q5v1fch1dfvN8dAtx28+F/iHmNZORGJV//ovNp5y3aNcW3euax/W9XZr3d18TnldPTfs+Mw/xLR2IsJf/esN/k5rdhaWxhqE7b2y+R7Z9Wv6LuTHU/ewmoWrvHpY59bXcnH+gb9EYlXc/mab1Xz1ku67Tin/Tfzd1wEuf3b75xOrH8TfyPw2H4/vm2oUj93qf4nfG/gH/hKJVXH7d/h7Xcn6/TmReSnXHObcNvJu+Ff+PoaH8bOMw/pY/Dzpc86fPY+N4y/+EolVcfu+bZbyySmOIefcsjA3MXX4F/4+5vPk7wDzfPMYlvVd6TtCWH/u7ePzD/Z/5h/imEisittXtlkcx01jvEOZc81Qi/lvYtzQLfPBJecsnC5zsSk3HR7bXoW5aX46XJmnXvH3a/bmNWSBf4hjIrEqbn+93RLjTjOHTzXPrHOudT62nxkbWVvmacdmXfRDPs8Qlu8Aifszd/PnCgub8zrtwDfwl0isilvt9gj+jpnnca43r8HO/M1rrGcWD93d68n4hjgmEqviVrt9bSXXzbl1k3P3zX3HMVcf+Ab+EolVcavdnsLiwDf4Bf4S/opb7cY3+IW2IhKvYhd/+QX+EolXsavd+AW/0FZE4lU/y/iFtiISr2JXu/ELfqGtiPBXuzF+oa2IxKvY1W4/t7v3fx75hRgmEq9iV7u9nL/T/r5ifiGGicSr2NVu/IJf4C/hr9g9Tru1tYXaY4tCczysn7vnHH4hnrUVEf5qtwusHXK93WKl3mDZc7mtf7Qcn2sGl7qEZd/mek5YzuEX4llbEeGvdttbqjU01sfbmr5LPeB+X3sosbnP86ttzpvqGI38QjxrKyL8/fx2yzlpt8lPu1WeepW/w56pxQp3v+LvLabzC/GsrYjw9xPbLdWln9Zjxmvd4O+wzX/Dmr8D/opnbUUkXsXuo9otcrWw9yZ/+5a/4U7+PrZOL78Qz/prEq9i92P4G+qaqZa/qcb9lPmcGD3Ve2fjn07H+/wzPe7r/hbleHzfn+S/ZZ319vGj11bzCzFMJF7F7m+0W8lp27XK8VhdzzyzOGTo5bXRdY65MDbl0fP4d+H3T6y8X2RtXP8V/+XyedLnDfwCf4nEq9jVbg/5LjCvsy7z2CmnHtZrqUvOfumeZX6Bv0TiVexqt3+3nHPP+fc4/x5yLr26Hyrm133btvfpUk7OL8QwkXgVu4fPf0MdCy9zyIXL/bDmdJv/llz5lk6nfrXHCL8Qw0TiVexqt4bB/bx2a6j3Op2mff5r/Bl/icSr2NVuj7V2/8vM27zWq66t7vAXf4nEq9jVbk+w9v6lcv/xsh575Bf4SyRexa52e5a9ooYSvxDDROJV7Go3fsEv8JfwV+xqN37BL7QVkXgVu/jLL/CXSLyKXe3GL/iFtiISr/rZ71qqazDv7bw61l+udZCP7++/Xc4J4SXrpvgF/hKJV7H7zu2Wag8OYfX4fK7338Z9owpra/2D8ppyTmjuD3rs/sz8QjzjL+Gv2P1Y/o71cao3OLbPh6Wu4L72b1hqD7Y5b9qfeQgva9v4Oc737P888gsxTCRexe7j263UDVrnovX4Zf7e3s+i8LnsgbHj75DZtj/nD/J32o+ni2cxTCRexe5P2i3VLljxd69bfG0fl/0dl72Yr/K3W/LfW+/JL8SztiLCX+0283ooc78b/g5rhm/3gFzzN+CveNZWROJVP/sv/A11jHqb/5b6fkXl9fHPptqAfeb2+VzeJ3O75sz4K561FRH+6mevMjhydOovjD/Xdcxtrb+8zrl5biz3Ha3nnePr3uUeJH4hhonEq9j9i+12i6N99yaQ5RdimEi8il3txi/4hbYiwl/t9ses7r0VLhwPF/fk4hf4SyRexa52+wF7h819y6eZu0O+v3e1v9aDGMwvxDCReBW7R2+3tG/WmOeVI1/TOq6+rvVKjA6P3d+SX4hhIvEqdvG3W3G28DfdDzWsOY2/+EskXsWudnsUfy+PM+/52634W+pBnO/Yf5JfiGEi8Sp2tduGv3Ev6qHu77Hcd/wfN8f+Fn+/3v851nGKfOcXYphIvIpd7bblb91TOu/DFRbeLscH66/wl0i8il3t9kgr3C11JMqYc1mDVfbjeuTelvxCDBOJV7Gr3fgFv8Bfwl+xq934Bb/QVkTiVew+vt1KLaOkYb2vVN2Har/fVK2NFDbHw9Vz+IV41lZEx+OvNrvM3jSnOnXduNQhLPte1PnW5T6gIZ/X7k1VXhMtr5Fa10F61D26/EM84y/hr7j9GP7219cRb9c45TXH9ZzW2uMp7+1CfY+Bf4hn7USEv5/dZjUf3e+hHLXjb1ifU2r5tkzdsbrfv1c5vv1Y6f6hkX+IZ+1EhL9H4O91XbMyz5v2uJjvt73M3+4Kfzv8FdPaiUis6l9vcHb1uF/zMT0+Ff6u527zXPHt8Wf8FdPaiUis6l/v4PHM0mW/x6nuj3ya6p7LUeW5pfbQUNdMlznk+LHSGHZfef1K/sa/df5yD8qQ1pjxD3FMJFbF7W+2Wd7jcebSVMecC4/L/HCqNxTCcs6lvajGYV5z1Tz3ynuQ7uFv+Y7AP8QxkVgVt9qMf/AP/CX8FbcHa7Mee/mHdiISq+JWm/EP/oG/hL/iVnthMB/RRkRiVdziLx/BXyKxKm61Fx/hI9qISKzqWxkfwV8isSputddPbFX7sG+O993T6hvyEXFMJFbF7ZHbq+ydtdSFmPfXirWF1/UlHlvfkI+IYyKxKm6Pzt+yR2SqRTyFXX2IXKO41iTmI/hLJFbFrbb6mY1DWPahLjUSF/6OzevGbldfODL5fM8elAM/EcdEYlXcvq6ttvOqqY5CaJ7v93Ou6/PCxTpK5b0eYaXGYTvOnNg6rfPdLX9zTvz9Ggz8RBwTiVVx+6y2qrUTmhoKM8O29YLLn4vP13O61TmZZ+v52h/zd1jnubEWU67BFDb5b7iax+rfPzOu9deEv2L2bfk7hKs1AdM4b9g87vd1BCP32ud279H//DtCqcVUaiQWJp/mHDh/J+jwF3+JxKmY/ZW2ijza5q3LuuEL9f8iu5acdequjsO2PN4yNTFxKuuRL5zzQybmNVdNfj62x0NzPLgHCX+JxKmY/XP8vTUWnFg21NyysDNztXJ6yT+3/D09L//lK+Iafwl/xezHjT+P6zHb9HhsWL7KLxumDlv+hhv8DXxFXGsfIvzVThv+lhy1cLTlbPx9uwa63He7nDPNrwv1Xp50f9Awc/l98ctftA2ROBWzT2mnMoea51e75T7bls3tOHY6p6+vX+aV+8vn3JpP5i/iWtsQ4a92YvxF2xCJUzGrnfgLf8Ffwl8xq53wl79oGyJxKmax918tzlGf79iHks+IZSJxKmbx95H8/Xof6FuXVWyLZSIxKl7xl9/wG/wl/BWv2gh/+Y12IRKj+lHGb/CXSIyKV23Ed/iNNiHSt+Mvw19tQiRGxav24Tt8B3+J8PcQ7dPjKN/RJkRiVLxqn3/46tB8d4h1I3L9pXV9pXq8e3jdJb4jnonE6HHj9SEcC/uagn0XFsYlpm34teZa2HHxWcxrLdcyDEudxLYuU1vvsNZl6jEYf4nEqFj9E20TeZQZFVZ1AqNVfuXnzk0t3+3r436O6ZypMrCc0+apj+VvqSscls+cPsNY6iHWOoj5/3z8Z+FDYppIfOo7v8Xffr3PceRUedtcr7fh2pBZHI+1dYHje9RzwiqHTiwcn83ffZ3i/N2h5t+5rvGev/Hzng++D6WYJhKfYvVnbdPmnfufV/gb8vjxMp48rPm7mmPtK5O3TC3npHy3C2sWPp2/mfP1b4Ydf9PxaT9nfA9/t++Dv2KaSHweO1Yv8eiWbllha+F1er8pfIu/rT2Dv2kMvOFr4u+0/5u78edpn//eMx/81WvEt5gmEp/H5u8/Wd9yO1xk6eX8N+eWbb55m7+PH38ubE25dmjGmvvmO0IcK5/y3855fVjxmB/hL5H4FKu/3S5lTnc3/jzVMds0zjuFfGxc8648Lsxe3qvfzyE/whJzx/W4cPpsp3Wuv3zmOaePDOZH+EskPsXqX2mXPJbbcmrLr5lrU82H8xrjsKx9HmcQxnNb5j1r7pcfiXH8JfwVp5/QJo+8L7Zdf3UU40/agUhs6i8Zf8JfIvwVp9oEf/mTdiDS1+svGX/CXyKxKU61B5/iU9qACH+1B+NT2oBIbIpT/H2tT3yt7V4lfEpcE4nN48Qow19+hb+Ev2JUWzC+5foTiUt9JONb+EuEv2JUW+Av33L9ifT57x2jjH/xL/wl/BWf79cOpSZRUmiOd2GpfbTdB7o9Z3U8XH4vhr+uPZG4xN9qsY5gqUkUVd4u8vN87la1+0rNovZYOTe917Cul5Tr7eLu0X3MtScSk0foG1v2rX+/fI9MOr1fn9/3Ya4x2HB6qLV9t+9T6tenesFDe05lM3tvP3PdicSk+LzdBlv+ns/rPPbSOHL5GblbWLq1zNf6c/03S63g9Xj0pdf+prVj4qtx8vl/X14XLo+t8zPxTSQmxeej22CbI48zi2M+mzg6ZV3lb//3+Rvz+fg9ofzejhGMY0jcjWPs6/GDwM/wl0hMis+HXv/Mm3W+W/LfZf53mvk0rXPkHdcu5M5/jr+nlr/h4tx0Oh6vSRea7xYYLL6JxKTYfOz1TznuWMdbSw67/b2sgY6Kfzo9no+nx2HOKad6Tnn8V+zU8ndo8typ5u3x99Uc9lTPWY4N9+1JGee/+ZsYJxKP+HvJIjfb8daY+6Xjfc4FK6PmseiQc+acF4dlXXSZM03PleNTeMoc6nctsrSs4c7/ex1zHsu4+4a347SfB46vv4u/I38T40Ti8dNi89X2zvfyRp7GXLRlacnf83eNkMamo50249KnaZ//8jkxTiQe9YXPAdbHNO3M17oWvDA35bxTm7NX3i7j7sPlNeN8TowTicfjxiX7N2vvXy5Mrmuga467rPU+hTkXDk/5PPxOnBPhr+vO1vaqsXa+J86J8Nd1Z93Lx935nmtNhL+uO+N7+EskFsUl9mIw/8Nfos9lgWvO+OAxfFB/TfgrJvGXFct7ifFBsU6Ev64344f4SyQOxST+voflPTxrrcdrOp36i/c2iX2xTnQkHrjW7Ff42/NH8U6Ev64144/4S4S/4vHV13pbV6DUMEoKV473m3P6y+cw/uj6EonBd4/HZ9k41fHQvD9y2NUiLGOr9bmw1BssdQvK8Vvjq4xPurZE+PsJ13nNym5Vjzf+fpG3w/qc87nW90n1eof9a0udoGL5nplyHdc577a+LjueX7q2ROLvU2LxkqXccwpN3rnmcap7Hy7xt6mt13cLXwt/29y1fX7L1Ja/q/cf8ffovum6Eom/I/dxt+ZhC1Pz7yHVni/HL/J3wF++ib9E4u9YsfgMa8eaW+amseOheV0Zfx7CYfj7V9aPiX/8JfpE/rq+Nbfd8XeqY9PlcVmXFddKp+NjWLibc+mQjw91bda727U1ZLfWfvNRcU8k9vRt91heX1XniROTp66ZQ27YPNb55TZPTmPTp/m5qa6Lfmv2pv/pyvx5mlcPyxhCnXPv0/cQPiruicTe+8ch+z3+Rq6m3/t2nVseb0/fMfr6msTlsVvu1eKn4p5I7L13DP59UH0of/vM2srinOfH47FZ0njzUF9TOb1/n/P5a7Xvw1fFPhH+uq5HtbHf5LZxXH1m62m+r6tldHrNsM9/f8pf/oq/RPjruh6GvWOY57rXx9M6taHJi/uwz3/HPDfc2k/Ho/kr/hJ9AidcU3YPf8uaqhVH+5z7luYp/E1rwkNdr3ZUvxX/ROIOf9lPLO8rdvke5pQXT5vHp/meqyk8bd9rfou/RPjrejK+i79EYk4fxvCX7+Iv4a/Yw17Gh10/IvGm72L4y4fxl/BX7GEv48euHdGxuPGO1/Gn943u6wSEi3UCyl4SSeHr44wvv2ufoL8m/BV3r7iG7duez22tgHpva6k/uNrbeFjXRjrNex8/srYA48+uGxH+fso1jPes1tpFeZ+IceZsu5diy+ZS23d5j6HUMFrXEIz5ryHyx9k47+Nxvrkn5fX7ifUJ+Ev0Dvx9x3Hn01JvJzS/13z0Wp+e2Nmv6wSU97zG37aPL3lvruVz+Rz2M8v7e3zN37b9MBh/ifD3Ndev1pTdsPcGf/MeiJG/YcfLc1MzL/6s/A0X+BtSHoy//Bp/icSZPqphZBeuP9fPOW24wN+p7pMY53ijpT0Th/358l8M/sS+QX9N+CvennntypqqLX/b9c8l5037HE/1eB7Dru+xHB9v18hj/Bt/icTYu8Tbo62d401cbdZcteueUw481vuLxmZ+OdXP6+c5yrEZ/06MDoDHx9+6f9BfE/6KNcb4uutEhL+uGcNf/CXC30+PNcb4u2tE9Kk8cb3Yqy3Np4fN4/7SPqDP2deTz+Mv4a84w94jWlzzVtaorff1rPt99sP23u5wc48Nfo+/RO/EFNeJvdrKnlYLf8e6X3ZZS57Xmme152zvs+b/+EuEv/jL7uVvWOe/43r/ksTfITO57H2Sjm/2P+H/+Ev0rlxxjdjv8DfXvlj2NRnbmlPzPp/hApenbsXjdGz4el/ofA93EAf4S/iLv9h7XPYOlasLf4dQ9zLp11ze8neb/xZ2f6Wv6kGKBfwl/D16bLHP529ZU1XWM6e9w6Z5zneoe3eWfTwLk9Pvw3HiQR9BhL/Yyx5pqW5ys5Y5r62q489ljDnOE7f1JMcrtazEBP4S4S/+svc1MYG/hL/6Gfbp9lfLU4gN/CX8PVJc/bQfv7Q/0vZ4Wwd4u87n4jk9Rh7V9Bn4S/h7lJj6ruVagGF330q6v2VzPK2vDdv9lJpzhu1z/e5eF4bBR+o39NeEv/qVa1bYWR/Pa2jHum9Ssj7fg5LX0IbNe8zHp81eD0OsCYxDGIy/RPj7+ext17rudMfa18zSsLtvNP/v9R6Wi/w9rceccz6MQfh73L5Df034+5nxdJmfW/6u7z3ZrtnJx+t9o4Wx3+Pvem//S7kyw2D8JcLfd4+lR1jhb5oHbvbmv83fcJm/05q/Y78Zw2b4e7D+Q39N+Pt5sXTV+m/wd9yvWS5jx/Fn2e+w5LeJw0OuvVPWXNVaO3UPxMzzAEBvbuU71/mr/SmnN48d/CX6k/z91P+/7E9Yx6jb58JSM3Zs1la154ynmifnceuwei/3IH0Gf8937A/91fqCI/Yh+mvC38+Jo6f3teEfXtuFjjFxhL+Ev/qM5/KWMfGEv4S/+gvG8Bd/iT6XQ9jLmLjCX6Jj8pcxDMZfoiPxCHsZE2P4S3S8eRuGDa/yh10dq/5Kfav+cq0ssYa/hL+fEjf4Rq/yiXLfdh8yUPP93f1q/9LI2ng/d1vfKu3b8iEM5uNE5mzwl36Dv+2e3mVPtGKJzcO6vkapQ/mo/VU+9fryW9IP+S6Ov/z+Fn/HZu+qUqujcjbX5ljV3egfy99PjTt+S/oh7P1R//ykfa748t/Kf8tYcmZtuDD+XOtnlfHobb2r8537VF4bt/60a8xvST/0+eyN/dml9TKlX0x1FELYH+/nc0N39blPvd78PrI27+t9mmpb78afp7ke1oa/23pX9/J3/OP7RPNxomPx90d96DjnFaeifmHn+vi6vmCprRCfi68rDN+eE/tm/P1Mv4/fy3J7h4a3Tc4758KF0WkuuJ/9Z3re9zP8JTpOP/TX/p9/6de2tXpjH1mOtWtUYx8a6xXl/7fbjCW254RVTrOa99M3fdz3zlSzalr7Xl7rXP2isDqzOazWYvk+zMdJP/SOcXK1T2xy03YeLumL8bvC3x3TG5Zu/3Qahxz3LL/0Wn3TZ/H3Lxv+En12P/QX/49xxd5ux+I2Py71eJe69+XezL6uXU2/T7W+746/Y4e/+IvBD77e/Jb0Q5/7/Tqxc+hWrE7rUkMzlzvP58WfY/8Ff4d97tzODeIv/mIwHyf90LvG9aNtWZvaR+bWNanLfSX9fm10/BglR15y5rIWtjmnrO3CX/w9IoP5ONFz+qFP6UPrWuayXjlUrk7reeQ0Fh0qc2vOHJb7kMr61+X4gL/4i8F8nOg952Veac+8Zxd/8feIvsPHid5zTOhtrMdf/MXgR15/fkv6IezVf+IvH8JfoqPwl+mb+NN1K/uznef9t86X9oqe93J715jmt6Qfwl78xd+/6QNf6559tv5qO/Bb0g9hL/7iL396fVvwW9IPdfpH/MVffvXy9uC3dPR+SN+Iv/jLt/CX6LX9kH4Rf/GXf/1Wm/BbOmo/pE/8HOt9P+AEb8hg/TUdkb/6Q8bYb/cF+mvCX+xl37e+i/ehDl3ZCLs87sexPjcMq3PiofF/p64L/fr41Kfz0vNt0fvt37rz/f78tQvr+h/tvUTtc6tz+nyp+wf+q7/VL+mv6Wj8/avcvdQHXeqj1s/VWgrtvs6rc8IBWbjh0yv5Gxla2Pld/l4779P4W+pnret85Joeuf5HWNW0jrUz2zrX8fWPNPwles/5lp9Y26eUvX4KR2v/FJb6vanvauoQLX3UkGsYrc/Z1+z9CMZeKLxUnuv/41P8eTqN3f/7v//z37Uav82wwsR7Ps/2PX7yt07jf+05TR/P33HcMzTVqB5qDERfj8dKHc30mv45tadf2Uforwl/f3+sOb5NyVPjz1JjN/ZNpX8q9f9Kn9OeU/qsUmsw1upd+q6xe3ie8Nf5247d9oVrM8uexd++H3bv+5O/Ffky/u+4es2n8Tc24flcctnqz+n3fs3p0+zfrc9f4288/3zH3lm3+I2/RI/j4av+Vls3d/379XjfvlXKZfuSH1x+7fac8trC7qWP6/OxI/F3y8uWT8/ib8yz/880/YiX27+1ffxp/F3+r1C/O5Zx5jV/57Gfcfs99Rp/w938vTU/8+w+Q39NR+DvKzm/rmkfVvNY1/LQ0heU15W3x9/v8XfLpzaXfBZ/S/77E17u+Dt0+1z+w/Lf7TjzNf6W8Z04P/wVf/+F+79p+ms60vjzr/c3obvK33bN1Dj3SXEc+Z/4O9TceTk+HG/8+RJ/41xwPOcrhvXd9/gb3zv+nZgHl/de2HwjH7/1t7af9dP4W9ZTFZ8/zfO7ye+nblnPkOZ/x/UYdPmu+c6mvyb8/X1bxtZm/i7571D7pzIe3c7/tueUdVZ5nUq9T6OsXcHf+/j7k/VX6fUxV9uMdY+ncZXQxfc8/QeTfhxWn7Fl9/LaZh1Web80zj2/X9+t11y/VVuGbjU/s86FmzWHY9uOde3zOOAvEf7+sB8a1v3QuOuHmvszhtIXhWUNdM4PMpf7frP2uTnnyPx99vhz+3nKeq++C3U99szcdp74NHTLGu0tjy+9f/k9v9+wfr9H3hDL8JfoIPy9nz3h388Jn3YN9vwsOeLCpzvWX313TPge/j7avrovmL2n6a8Jf/8YXz6Mlw+/PjOD+uae3i1/L43PbsdwfzImfOnzPJW/Q52bxt/PMf014S97Jyu8G+c9NsrY7W58ttl/o70vaPWab44JX/o8z+Tv9v/C388w/TXhL2Pft757Pn+jxRw/fkfA388x/TXhL2OMvd7014S/jDH2etNfE/4yxtjrTX9N+MsYY683/TXhL2OMvd7014S/jDH2etNfE/4y9u/2/wFQSwECFwsUAAIACADaiD5bO6Q8vy8eAAAA6QcABAAJAAAAAAAAAAAAAIAAAAAAZGF0YVVUBQAHJQ7caFBLBQYAAAAAAQABADsAAABiHgAAAAA=</Data>
|
|
</Bitmap>
|
|
</BitmapList>
|
|
</GraphicalDisplay>
|
|
<TextDisplay>
|
|
<Key>txt11</Key>
|
|
<Width>52</Width>
|
|
<Height>25</Height>
|
|
<Top>25</Top>
|
|
<Left>2</Left>
|
|
<BackColor>0</BackColor>
|
|
<Transparent>0</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>12</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>16776960</ForeColor>
|
|
<Caption>0 km/h</Caption>
|
|
<ShowCaption>1</ShowCaption>
|
|
<SignalSpec>
|
|
<Description>Vehicle Speed Sensor (PID 0D) (Value [km/h])</Description>
|
|
<Equation>{Vehicle Speed Sensor (PID 0D) (Value [km/h]) :in13-sig0-0}</Equation>
|
|
<Format>0</Format>
|
|
<Min>0</Min>
|
|
<Max>255</Max>
|
|
<Units>km/h</Units>
|
|
</SignalSpec>
|
|
<NumDigits>3</NumDigits>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt12</Key>
|
|
<Width>60</Width>
|
|
<Height>30</Height>
|
|
<Top>24</Top>
|
|
<Left>431</Left>
|
|
<BackColor>0</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>12</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>16776960</ForeColor>
|
|
<Caption>0 rpm</Caption>
|
|
<ShowCaption>1</ShowCaption>
|
|
<SignalSpec>
|
|
<Description>Engine RPM (PID 0C) (Value [rpm])</Description>
|
|
<Equation>{Engine RPM (PID 0C) (Value [rpm]) :in12-sig0-0}</Equation>
|
|
<Format>0</Format>
|
|
<Min>0</Min>
|
|
<Max>16383.75</Max>
|
|
<Units>rpm</Units>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
</SignalSpec>
|
|
<NumDigits>4</NumDigits>
|
|
</TextDisplay>
|
|
<GraphicalDisplay>
|
|
<Key>gdp1</Key>
|
|
<Width>46</Width>
|
|
<Height>42</Height>
|
|
<Top>20</Top>
|
|
<Left>213</Left>
|
|
<BackColor>0</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>1</BorderStyle>
|
|
<FontName>Arial</FontName>
|
|
<Stretch>1</Stretch>
|
|
<TransparentColor>16711935</TransparentColor>
|
|
<BitmapList>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #0</Name>
|
|
<Index>0</Index>
|
|
<Width>80</Width>
|
|
<Height>80</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPlviprs6TwcAAABkAAAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7Zt3TxRBGMbnQ4gFsCBGUWJUBBEUEAuKLWIBC1GDSBUVK2piELBrVLCAXWIBUdRvaH6TvJu5c28PuNnjOOePJ7eZ3Z3yzNtnLyMjQ2U4ODg4ODg4ODg4ODg4ODg4ODg4ODg4pDGys7NVY2OjunjxYsK4dOmSunz5smpvb1crV65Me+42bNighoaG1O/fv63iz58/amRkRK1duzYtecvNzVXXr19Xv379ss6d8MfvnTt30o677du3q+Hh4X/WCuAzEUgf0u/79+9jzmPWrFkaM4W3RYsWqWvXrvny9urVK63LyGWi+PTpk9fvhw8fvPGXL1+url69qp4+ferh2bNn6vbt22rXrl0pzd22bdvUx48fPd6Eu58/f6rW1laVlZVlbSw4k/6Fv4ULF+rrWPqOzDY1NVmbQzy5Zi8bGhrUuXPn4uLWrVtqfHz8nzkjcyUlJdb3yuRJ9PfQoUP/yLwfh4WFhdbmcfLkSfX8+XPV0dGh5s6d67UzxtevXyPsTBCiZY73zp8/rxYsWBCKrPvxd/r06Qiu2E+ByWtbW5uVORQXF3v9sl7TPty/f3/KfvPdu3eqoqIiVFth8if6G83f1q1btc3Iz8/XaxH+7t27Z2UOO3bsiLDz9fX13j3iqslwJlxfuHBB26Gwba3J3/fv39WVK1fUixcvIua0adMm/ezs2bPVly9fPP148+aNbrPFn/Qr/NE3c5J5vH79WvvN0tJS/SvXAmlbs2ZN0nxVkJ+Q/TR1ABsl6xwdHVXz5s1LGn+MnQxOJiMTpv+NBZM/4heT25ycnGnl79SpUzomAfjovLw8tX//fn1v/fr1qq6uTl8vW7ZMtbS06Lx179692kft27dPyyq/K1as0OMdP35crV69Ws9J+gXc9+NZ4qQgiP4C8iDznl+/yeJP7Al80ceWLVu0HrPH2OvBwUH15MkTfY3uw01VVZV6+fKlfqe7u1vt3LlTxzzl5eXabzEOfUl9gGsQS07gmrw3CPPnz/ee7+zsjODPRs5sgz94IdYhxoM/ZPHx48eaP7jp7+/X7xAz4JeJ0eBN+CPPe/v2rc4RuBb+6Jd43Iadl/FN/mzEpInyR3zHvOAC+UPWsEsbN27U/GF/4IV3iCHWrVun5Un46+np0T4T/cZ/Cn93797V/drMFZqbmyP4Kysrs8ofv9H8Sbsff8TWBw8e1LqHnYE/7HJNTY1atWqVp7/UrU6cOKGfI87F7gl/6DGyh56Z/JG/8jwwdTARsBcmf+iGbf7wCYsXL9b5+djYWKD/YD7kLGfOnFHHjh3T9pj66Jw5c9SSJUvU0aNHvRyQZ6h3wg85IxwXFBToX1nH7t27NbfwKv0C5hMGf2HInxkHmwgrfklmXQlfbq4TfQmDPz/E4y8RG5/ou0Ewnz179mzEmoqKiqadP2I78rWbN2+qzZs3e/u8dOlSfY1f4BlqFNg3gG3jLAQbyfWNGze0L2S99IW9wwagu0E6ht388eNHTGB/zPiZscw12Tg3MfNfQNzW29ur+vr6IvTYjz/WOzAwoO0c3FFrhityS2IzdJP+sGnEMzwn+R41GXwJ8TQ+gnfhjbwKe4ddpO4VVC+cbP7Gusx72Pgw4hfWHc//AvINfDCyIudrvIdcIEfUQj5//qz5e/Tokd5/YkNiRjiEH9kH3qUf+CN2obaMf5lM/hutQ9H8sddyLxXyX+I4ajQSXyBzzAn5I9/An8KD8Ef8tWfPHi2rtCF/YqPgiryOdVH7Z63x1mfyh76iM+ydH3+Mw15Kuzn2dNYPurq6dAyMzYMrdI81wCX3if1Ef8k/4RC5RNaQM7giryLuRlfhD72iHZsaxGG8+h88Sf7LvMz634MHD6zW/6bKHzJDnkUcje2jjVxYas7IGrVAYjziOsCY9J+ZmaltH7ZOclzuwRngWvqcSv1ZzobJk6SWKfzhi1OBv+mEWX8R+autrQ2MJ6TOTn0onfkjT3748KEGtlNgtnGmJzyJ/KH7YudinbVjL2zNc6L8Yc+TyV9lZWXgmVX0WZXMj3ljb/El1HqQS7gF1DEOHz7sxQu2+QuqH2A/+EbCD8wpLP4mCmpi02FDsP2mv5KcX+q7ph2Jtimy/zb1IRZ/nD+ir4BYRa6Zo3nmlWzg94g7xFeZOQ21lInsfTL4o3ZCjB0Nm7o4VZCrkkdR3zTbiSHw86Yd9JPFZPBHXS3V/P9EQVyLX5O6IDG9yR9xMLkGuYUtRNeayPtmKn9+5zZBeaeNb/pM3wqoX6cLf+QN4ltscxerjmKj1plKIK/89u1b6PzBHbqcTtwJ8H/Y+erq6riI/i4FG0fsGet57hFbBeW//xPwMaZMwX2Ydf2ZAtaIX+a8LQjkq9HfTsR7R2pX6cojNSq+LU702/lYoA6A35hJ335PBgcOHAjdf3C+nq7yR200rP91CDhHSVf+WNeRI0f0N0O2Qf2Jb2uS8R1rKvLqd3490fb/we86ODg4ODg4ODg4ODg4ODg4ODg4OMx0/AVQSwECFwsUAAIACADaiD5b4qa7Ok8HAAAAZAAABAAJAAAAAAAAAAAAAIAAAAAAZGF0YVVUBQAHJQ7caFBLBQYAAAAAAQABADsAAACCBwAAAAA=</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #1</Name>
|
|
<Index>1</Index>
|
|
<Width>80</Width>
|
|
<Height>80</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPlsUkBzgcw4AAABkAAAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7VtnlBXlGX7YdsvcO73cXRZ26UVYSgSkdxYUQQhNMLB0kSbFRAQpKkVAiiy7FGlL2YLG4594iMEYc06Cx9iiBmPEQvEcDTFqEhVhl7zfN3OHu3BZkL0I7pkfz5m9c+98880zb3ne9/vWMAwYHjx48ODBgwcPHjx48ODBgwcPHjx48ODh5oRuQjNM6PS3yf42NYLugp2PIt75eOcMQ4dJn9NNlT6bzrmay59Bz2llNICYtwahmQcgzNpXLQRn70fg/v0ITSmE1rxbzeUtaj8dByGQ/3cklVSgVlk5apVWVA8l5zmSS8/DX/QFtFb9+L1qkh1GNAtq/eYIz38GvpJzSC47R89+PqFIIaQVn0do6WHo+k/bj01ucxaPcSYd1T7jIGz/lJ6x3H7esgokk82klp5DWsn3SCu9dgTKvkNKSTmSnHH9W45D09NpHrbNW7pj/xwGh+nETT5fisE3G38sR6g0Lz2rKaR5BzlPqWQbSWW2rTDfDW08CrXDEKj1WlQP2TkIbD9FY9pjB7acgEr8mcSP2qQ9QnNLEFj9GuF1BB5/A8HVb0BY8jvIuVMRYXZK8zQT8ty6Yzt6pZhlOXzo/F2a/PvYPBkP7N2rvcYiuO0k2UUF8UZx6mAF5y31wBmIkzZDy8jivzMde71W6KZBNnfKvkcMf3qdpghv+4jiYgVAcTYWKTQPZrNi3ia6Xud+Um2bYdw4usC1bc6dgQzKmUqTdpDGrkL4vp0ITX+qSggLn4fvwFl6JttfGYfJZIP+je9BaT84wfZuwkf8wblXoPAEzdmCNHQexYgKl9d48JecgdY6l3NY/ZhlQrpnBYLr3oE4bQvMSIadx2hsqU0ugrtOI6W4gr+75LIrgL9zll/P87iUSjFOnr4TamZjHm8S8b4vx59QeJzrwPD4tZy/Wtz+y+EvPkP4luZyhvt6dJ7S5ALyserzp7TvT/H4LB83jXKkOmCya3/SY39AUvG15MRysocPoXa+G6alXqecWJm/YOFJekc6xHEb3Hmw+Ct3z4OS3hBis85kd/ScB8v5/IRHXnZzTXUg9cuj8c7xd5ZMc5FHLnP8Oh2h3V+6vhj1xypRbM85PLMIRt0GPB5cv9qgMn++ov8hNPsg/OuO2vNleZ5iXbjrSHoWC7KeidDOz7leTKO5CvkfQTUi1Z6H2Hcifx9Jjg/Ko2z+FCMDwr6vHL1Kc9n0IeTbBkPrMBjKbQ463HUB9FnqNBBq664J9tOr4+9i8LxM/Eldh7vawPfEO9xGmGYU9nwNNVL3R+Mvbd3bpE10Ow+bF2DwGGzHkQirSWNyZCSaK53cxH5vOXncMjT+t+XmfzvnW849jOiR6RE3v8XWNhbSiD+m/VisZboyiuhnlvelLiPd8QOLX3L9KbX4HLTsJtX2jau2P8ovWkx9xHKdMm41QhMLEJqcD2ncSmiNOkAaNJ9rC6XdQCjDfsXnrTRug/CEfIRm7YV8+yyKiZnQBs6GmtMb8sBZlOM7QbZovNGPQGvZC3KfyVTXboQwYQvCk/JhNL31knmrpgVh60mK2eUUMy4FeyaW+9Vuw1z7C85/lvi2ayCWQ4ym7Xl8MW8Af6oZoXjyT0h3zoPSdwK0HqOhtb8LwsMvwUjPRvjJ9+Bb9Tr0jGyImz4gbh6F0nMCAuv/BnXIDIgLDkHtNxnCQ7+F3mkYlNx7qcYrp7HGU/zcB3lmMbQ+E6H1ngy9XuNLnpFpLiWnO9Q2vSG1Jc7b9nZhf+5FsaQP6cFsty4OzNjt1N42f7pTM98I+2OxV9lxGsLgOZB750GleasdBiJIPhLKW4ngilfhf/wvUDoPh7DmTaqFIxDJToXNxyGTRmNaUek3Bb5Fz0MkjkIFx+Bb8xbZ3gQEib/wrH1Q2Li9x3Cfrq6fsZgsTtkco03PQ+9wh13n3SD7E3aeJt28GwJpKaPvVOJvMHybjkHa+iHEjkMRWPUalC7DqYZ6E4pJOaVZByht74CW1ZzzJ+dORmDRIYTXvUv+vRnCnAMuf8FlL9O4m6GPXw+Z3lW1+SM/FSZsrMSf1GUwP58I/rjuLY3yZ/J8z/hLLquCv13kv0PmQ+s/BRrpBKnjQNLZ5yAOmgM9pwuEla9DS6+P0Kb3IY9eQT46FVLhJ9BadSe/PQS5/0QEH3oegYKPoGfWh3B/GSTyX4HiZGhuMZT+U6HnTnF9sLq9jdD4DRfxN8zRCnq1+eN5jMYOj11DtfktkLPaQCT+kqrIH/LEtQjduxXi1K1QRi6G1rQd5PGraa61qcZvBXnEIuh6BCqdD0/ZRvwQJ70m0fUa1EGzobTpAfXOOTA6DefjKrn3QSVu5dxJkKYV0DXbIdHYZnazBNgf46+y/Ymdf55Q/uy4SnmL57Szdm8oquUv4i92XqbTC4rqE9PprXP9ohtcfxjGhe+YfUccHRPR7XPR7yyn96S7PQ3dub7yfW39pPFxLKfH4SL6O1YzOnNjY4YmFSDp4DmXP5n8xdIT47+1qqi3q+LvQj689nlcy7VMdyhqXcpjGWTjUdR2kEFzJbsnP4jyx+JccNpO4i0mf7Tt5/abEslfUqVjxWX54zbQ6GcQqV4TFjwHkTSMStpPn/QkzIatucaVJj4JvTH58phVkGaXInx/CeQ5xZAz68Fo2RXinFIEf/lrqsMH8pyVMXMHtNoNoZMeVKeQ73YaAotyt3mRj+ms17L5GFL2f0P49hKk7fsOvr3f8PxlOFo+OLfMfTamX9TmXVytX13+UkrtdQn/xvchLHoR4YcP8x5xVC/F40+jHKOs/SuEEUshdxsDZfspGA3bQdz8D9LBPWFoVDNt/AByqx6US16BNHwx1XqDYRCkLMorW6gGHTAbWr9pUJ4iXZPRFFLRF9CzciBTXAxtOAqV9KMaN0f+sPqN2Z//4Rdc/lgfUK1/C41tODVUIvQL3W/UEmimConp471fu3YZjz+18a2Qd50mfVGHP4+S0QhiRIdMdhGeUQQlby1SdvyLcnEvpK08AoFyqjDuccrPc4nDOxFe/x7v8xtks2rtBjQO5fyiLyEsIw1J70Jk+vey9lGZP16zOXVbPP7YOGlPvEW8nec5xLfnP1DT6/BnuhH6j0GmvBgqIv4yG9g6qlVXaFZdSPnHoI56DOIAqim2fQotpycCy8n+xm+CePt08vO7Yeb0QLiAbM5M59dGWC1n1YGy9wtIc56FsPZtaFTfm1fZP2D+Glr0e/jyP4nLn0L2ENjxma0nqC4WCj/+cfsvcfhjzybOK4O48BDEiYXkvx9DyWpJ9vcB0nO6ce0S2HiM+OtF/nsE4vxnIJKG1UjjKGYm5KUvQ3ygmGx1J+T8o1AijYi/01DqtYQ072lIDz5HHGby9fYr9p+3nKA5U0zMWx/jw+SjXUbxvn6YxrTjUQXXGIFH/5SQPlB1+FNY/rAyqMYah/BdD0ClXGIxTdHtHpiZDW3t0e0XMOuSb3YeQfpuEmSq2bR+eaTPSSOmZ8GgulciLajXa8Jzj9E3DzpxZppZ0KiujjRqc5kaqzJ//kLij3iK5a/W02fh3/MV/FQnpVFc4M9SZvuvdN+WG86fEbNuZJIm1p2cHO132L0uzebF2cPhXhPtezGdyL8jjaZZfK2dnWOaT3Z6WAq/zqy8XkW2LWw94ep7P9mfTOfEoQ/ydeaUmD5BdM2dxUi2FugvPgu5/YCbgr/rBfXW/vAvP2JjxZ9dBJY7WHEEafvPcHuy/fc4+SnVyZRThR2fV+qbx661pxK34Rm7ETG1hDyL5PCXfBF/MmnPYGz/9Il3nPVM01k3uADLqSmMBKzHuLGh20j4+LzKuS1djFRnfTTZ6dWzfGNq6XavplVPCItfgK/gBFK3nISv0IZ/zRtQhi2AGrH4XgUjQfylRvnj/YOl9vwpPjH7Q7Suo3wfXPpSXEhDF3OfS6RtSl1HX9i3UAWYT6aVnYU6eAH3fXdtXLe4jyusd6Pb4DVigtcWlD5jeQ+Xr9Wy/uWIhU6/LB2hrSdR62DMM5Q5e39cVHCEZuyx45ZhXjf+0oq/h+/AN3Qk0NF34Fv4CcGtp6CMXMZ73tFaNuIcGY9GdI3B1J21hMTyp2a1gLjtJPeJQNG/od/SyV1fkPKia6lV20CA+DMTHBsv5i84fgP09IaQMuuTTm/gQiMdZFhqtft41167a1AatoVJulZr1tF9P3wfSXomxGlPwVf0X3dNgYHF4Nh6OTh9j7NnyO5zJAJyt1H8ntF7yPesc3L6hdpbszS7BudrT/oN4e+KfQ7Gb+1srmnl7BxIdFQ73c3jevTZhEdehNif6orbpyFMEGMQjsHVnmdHZeJmvk4bvUd47GrOn8XqvZuQpyr3pDm+afI4osFq0YvH7Ggtnlrm9B9K4+yNjI2XV33e1gJMqyU565HhMcsd/syfFH+X7lGj+Ex1qX/bca69UHY+4XsiK2k24o/tK2Fr9DLVZzern/4ge2T1QteRCO76yt0rVBWupD8udw07slpBZWvAzr7MmrQ/V8vMhkZxXsqdUCWU3PEIrHvX1eL+0nO8DyP3u/w1/Duqq6Umbdx+c03hLYp0zYq7D5bl4Sj4s5Pd+Jf90a2pAiVnoWc0dG3p4t9f2M9hOr0DvUb+f0K6FiH9Rb6c3YLqzhwXRgzYZ61+S6pdX3F7mwGKZ3LjLlCz28b9PT/Waw2F4izrXVnmTzvmXVbb1GkEcfWrCJSehZ/ysZ+OvlL7GAX7LJC9pTj9j+g+OHY+UBb/9/xv4ji44zO+Jq85+4drGn/yoPlV7pO9mtr1Sr8RFv6G9/f1GmiDWvfRfB/Y9dQv2oxdNn810H81MwJx+CL4lxyGb8mLLvwxuJbz9vEwRLZ3um6TmD5tzYIZs4ey8p5Kw8W1nOd/s56TWfM4qwT+vw9a3P8DMeL03H/IeaZZInoN58+DBw8ePHjw4MGDBw8ePHjw4MGDBw83FP8HUEsBAhcLFAACAAgA2og+WxSQHOBzDgAAAGQAAAQACQAAAAAAAAAAAACAAAAAAGRhdGFVVAUAByUO3GhQSwUGAAAAAAEAAQA7AAAApg4AAAAA</Data>
|
|
</Bitmap>
|
|
</BitmapList>
|
|
<SignalSpec>
|
|
<Description>DistanceMILOn (Value [km])</Description>
|
|
<Equation>{DistanceMILOn (Value [km]) :in82-sig0-0}>0</Equation>
|
|
<Format>0</Format>
|
|
<Min>0</Min>
|
|
<Max>65535</Max>
|
|
<Units>km</Units>
|
|
</SignalSpec>
|
|
</GraphicalDisplay>
|
|
<TextDisplay>
|
|
<Key>txt9</Key>
|
|
<Width>60</Width>
|
|
<Height>30</Height>
|
|
<Top>297</Top>
|
|
<Left>182</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontName>Arial</FontName>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt13</Key>
|
|
<Width>51</Width>
|
|
<Height>18</Height>
|
|
<Top>245</Top>
|
|
<Left>214</Left>
|
|
<BackColor>0</BackColor>
|
|
<Transparent>0</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>12</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>16776960</ForeColor>
|
|
<Caption>0 km</Caption>
|
|
<ShowCaption>1</ShowCaption>
|
|
<SignalSpec>
|
|
<Description>Kilometerstand (Value [km])</Description>
|
|
<Equation>{Kilometerstand (Value [km]) :in79-sig1-0}</Equation>
|
|
<Format>0</Format>
|
|
<Min>0</Min>
|
|
<Max>65535</Max>
|
|
<Units>km</Units>
|
|
</SignalSpec>
|
|
<NumDigits>6</NumDigits>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt10</Key>
|
|
<Width>64</Width>
|
|
<Height>22</Height>
|
|
<Top>220</Top>
|
|
<Left>268</Left>
|
|
<BackColor>0</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>10</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>12632256</ForeColor>
|
|
<Caption>TAmb</Caption>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<BarGraph>
|
|
<Key>bgr5</Key>
|
|
<Width>40</Width>
|
|
<Height>133</Height>
|
|
<Top>84</Top>
|
|
<Left>276</Left>
|
|
<BackColor>16777215</BackColor>
|
|
<Transparent>0</Transparent>
|
|
<BorderStyle>1</BorderStyle>
|
|
<FontSize>12</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>8421504</ForeColor>
|
|
<Caption></Caption>
|
|
<ShowCaption>1</ShowCaption>
|
|
<Maximum>215</Maximum>
|
|
<Minimum>-40</Minimum>
|
|
<BarColor>16744448</BarColor>
|
|
<IsInteger>1</IsInteger>
|
|
<Style>0</Style>
|
|
<SignalSpec>
|
|
<Description>Ambient Air Temperature (PID 46) (Value [°C])</Description>
|
|
<Equation>{Ambient Air Temperature (PID 46) (Value [°C]) :in70-sig0-0}</Equation>
|
|
<Format>0</Format>
|
|
<Min>-40</Min>
|
|
<Max>215</Max>
|
|
<Units>°C</Units>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
</SignalSpec>
|
|
</BarGraph>
|
|
</Dialog>
|
|
<Dialog>
|
|
<Caption>Speedo</Caption>
|
|
<Key>dia5</Key>
|
|
<BackColor>0</BackColor>
|
|
<ForeColor>12632256</ForeColor>
|
|
<GraphicalDisplay>
|
|
<Key>gdp0</Key>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<Top>37</Top>
|
|
<Left>140</Left>
|
|
<BackColor>0</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>1</BorderStyle>
|
|
<FontSize>14</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<TransparentColor>16711935</TransparentColor>
|
|
<BitmapList>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #0</Name>
|
|
<Index>0</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPlvQvmL9J0AAAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J33X5THvsc/f8k959xzTmLXRI2xa2LsRCUWVOzGctUAilhARcCCqID0LiC9LnXpvSpYECyJ0dhbYkzOL/f+kjvfgVlnH0F2YRd34fnh8wKWbc88855vme/M/P1v/8TfVX00/e2//ttgqe2laij0e2t4f1WqzNVP1e+kSuXBsH63aNESLpcDrnBxcUVwSAQuxiYyJSC/oBhNl6+iqfkqGpta0dDYwlXfcAV19ZdRV9eM2rom1NQy1TQiLCyaKQqhoVE4fOgoHBz2Ye3aDZg3bxEmjJ9k1HdX76UqczDR03Nmz/4Gmzdvg4fnacRfSkEN69ut19rRcvUmrrS2Md3A5RamK9fRfOUa4+LaOy6aFFzUExfNOi6qaxpQVc1UVY/KyjpUVNaioqIG5eU1KCurRmlpFVMlSkoqEBUVC2/vc9i9yxFzv1mA4cNGq7yoGlAeRo4Yg1V29vDy8salxDRcu3GL6+r1DrReb9dx0cK5aJO4YBJcNLfqbAZxUd9wmbNBXNQSF7XEBZPgoqqOsUFc1Oq4KCsTXFSiuLgCxUXlKNKWQasthbawBIUFJSjIL0Z8XCJOnvDGpg1bMW3KTJUVVf3iorv/2dgsw6HDR6HJKcT1m3dwve02rrW944KzIbgQNoO4aNHnIjevCNEx8YiKJsVh374DXHv3kly4nJxI++HkuB+Ojs5cXswuhTDfLDiYKSic2wziooS4KGZcFJV1slFYquOiIL8I+Xla5OUWIpd971xNAXKy85HMmPb0OImVy1fj888mqqyo6pOtsLNbBz//YDSwfn2j/Q5u6Li4/R4XrRIXsXFJ8Dnrh/0uh7FixWosXPgttznm+P7Tp81iftRCbGG+3e5dDvD3C2L2IolxUcS4YGwILjT50GTnQZOVi+zMHGRl5CAzXYOMtGxcYK9ZZ78Rn42boLKi6oO2QjDRyJhoa7/LuLjbycXN251sEBfCl2JcZLD+dtzjFDZt+h6zZs2xmOsbPmwUvpkzHzt37Ga25xS3GdmZuZ1cZGgYG9mMjSykp2YiLSUDackZSE1Kh+85f6xds/49VlROhq6tmPTFFJw46YMy5t+3dfyo4OKOjgtSJvNPKAZfvGip1V0/+VIrltvh+DEvxMcmIj0ls5OL5HSkJKUxhlKRnJCCpEvJSIxPguuhI7BdutwoP1TV4OHCbvU6RLIY4Oatnzq5YHqPC6aw8BiemzKXj/SxNGXydOzZ7YjQoLAuLlIYF8lIYP5ZAovpL8UmIP7iJYSzuGfT+s0YN3a8yskQ4GLr1p0or6zjXNzs4kLPZhATEcTE9kHHRE8if2oL8xEDmW8puIiLiUccGz9io+JwMTIWMREX4cB4InurcjK4uBg5cixcXd3RdOV6j1xks1h285ahw0RPmjxpKpwc9iEsOBwXoxgXkRcZGzGIDo9GVFgUIkMj4cZ8r5nTZ6ucWHnczblwk7gQvlQXFw1NrfD1C+Lze2r76WvYpyOx9FtbnGTxveAiMiQSEcERCA8KRxjzyw67HMaMabNUTqwwH0V+VLPEhWwzSstr+HzGULcVhopsxX4nF4QHd3IRGhiK0IAQhFwIRrB/EA46H8TY0Z+pnFgBFzY2tiivqkd7D1xsYT6U2nZ909gxn2PXjt06LoL8AhHkG4jA8wEIOH8B21nbfvrJCJURC2SD4sbk1EyVi4HghNmKndv+B4G+nVxcOOcP/7N+8PfxhTfzx5baLFNtiQXZDIox2m/f048xOlh80dzKuNihtpuZNIZxQjaDuPA7cx6+3udw/vRZnDvlg0PM55o2ZYbKyEdkQ/hSyhiDakLU+GLgRBzs+2EvZ4PL+yx8GS9+Puex0X6j6nMNEBvid8pLnTx1tltfKiIyFl8ocvSqBkYL5i7EaeZfkS3xP+vL/C4/5n/54+RxL0yfOlNlZABsxldfzUVufnGXzdCPMWwUfq/HcU/uA6jtaD4573PBNKnvk60gmxHAYpJAFpsE+QWwWD6QxfRBsF+9rscxT1X/2XBwdFbEGJ01IV4nzrznSxUVFaOy9v8weUaI2pZmjD/evn2Lv/76C3ar1uj9j+zFKY+TCPEPQmhAMMICQxAeFAovd0+MG/O5aktM7E+JWillXspmsb7N2L1zJ/85c6Ydvpj9huuTYSvVNjWD0tIyOBsNDY3879WrVmH85xP0bMnWjVsRHhiKiKAwRIaEIyo0gtuT+XMXqIyYyJ/i9VKKmhCa95ZtxoZ16957r4VLyzkfn00uVdvWxFq4YDFnQ7Ydo9k49sm/h2PunLn8d/Fcml88x+L2qNBIRIdHISYiGrGRMdi5bafKSD/Y2Lp1B1+rrawJsbOz1z1HjFeTv3w/Jv/nP6fja5vfOSPDRjmqbWxCkc0gNsiGKP8n+JDvCdWrHHA+gItdbMRFX0R8TBw8mb9F/1NjEuPYoDUZyrpzqiFU5qYWL1z8wfcdOc6b8zF+egf+8Y9xalubKCYnNij2kGNzpbqz6atXrkF8dCwuMTYSYuORGHcJwSx2n/LlNJURA9gYOWIsX8OnrK/19QvU86cozujOZihFTMxe9IgzQqyo7d3/mPzRo8ecDz9ff4Nes9fBQe9vqhGOCotEUlwCkuMTkZKQhNioi/haqhNVGemeDU2e9r01fHt+2Kv3GkPvi862M9+K+Jg48yH3udR277uo7YkNYsTY3Lmc4yKfytfnPFITkpGWmIL05FRkpKRhxXcr1ZikuxwVsw2aXK0eF/WNLVi16l2sIewFxYZRUTFGfdaMec2ckTET4tV+3g9t+34HZ4N+GvM6ul/EB8WLFMPTY8O7YpL05DTGRjoyUzOQlZ6JlcvthjwjejkqZlcpVyuvba1ruPLeugzKH8o+MMnQz6Mcr5rvNZ2PZSxTNFcr7qGcAyY57nFEVlomstOzoMnIRk6WBm6H3IYsI/K1EgOUkxJrW0lZmny9WEPmQjkmkS0x+L4y20F8rNnyRJebpLHwQzHmYBCN2+J65ZwsXbeIJeR5DOFDiRjcWFshiz6juxyXmKcSIpuRk5mNXMZGXnYO8jW5OOp6dMgx0h0b8j4hWdnv2BD59A+NY9T2ho5nFHtQDCLne2me3dh4xtpEfZT6urKdaEwXfqqIu4kbYkI8l54juOmLnaH27e7+kK9M91a2JatWrOZcFOTkoTA3H9q8ArgfcR8yjMjXR2xQfCHvRZiZrW83qA3leabuZGwsosz3EhuDnQ9ha6nfU18X16u8dvqfsDWy7ekrH73Zd2JD6RvYrVzDuSjKL0RxgRYlhUU4fuz4oM9r6eepxqCkrFpvL8LM7DwdG921m6H+bW9atGg1lqx+q8v3DgU+aPwWuSPhU1G/NScfxsSHNJ9I0vnTdmtRzLgo0RajtKgEZcWlcNjjOGgZUbKRpSnQ24swM+sdG3Qv+1Jza+hr6H7naf9Xl++NiUk3mK3B4l+1t3fwdiA2ZP+KHhd1I+K51MfJRzL2Xhgz5pCPQJLjwLWr7TkX5SVlqCgtR2VZBdatXT/oGHmfjXy9/c4zFGzQPSKZsy6dxsMdTn9yRvYdfjbo43Ph6yjj8IGIz42xN/R5ss2xX7OOcVGOqvJKVFdUoaayGuvtNwwqRuRrOO8boLevc0Zmrl68QWOXqJc2NyNyvvdf/14wZHKHlijBRnf1XGQzaiqrUFtVjbrqGpQwWzZzxleDghH5u9O+tbr9zq/dRHVtkx4bJzzcB5wRke9V63sti43vt2zRy2vt2LYT9TW1aKitQ2NdPcpLyzBxwpdWndOSv/Omzdu6uOg8I4POfhH7nVM7KOeLBooROd/76Ygtan+1ILuhzP2ePuWNxvoGNDEfsLmxCWkpabrx1dr40MvjMg7ovLHOs2M6z1SiM/nEcymH212d4UAxIud71T5rGWyIcVOZw7wYHYPLTc240nwZLZevIDQ41Cr9LDke1xaV652ptGvXuzxdbzlcmZG+5uB7E82BEBtqfa/lsCFLXms1csRoZKSmo/VKC662tOJa61Xs2e1gVYzI3zEkNFLvfEofH7/3xoje3o8YEfl6+XHKT8r1oNTmIp+vXAvdm+T6XnWNyMDx0Rsboo/INRSzZ32NOhaLXL96FTeuXUPb9RuwWbzEKmIR+bvt2u2odz5lalq2zl/8bpmtQWs3PiR5bovyj+SDiXw+tb2xOVuK0dX63oGTMWMY2Q+5XmvVytWMi+u4eeMG2tva0NzUZPGxiMwuxd7y+ZQVlXWYOHFyZ87IRHGEzEdP88DGvJ+a7zVcct2ImF8n0TyieJzGrO4eN5VOeJ1E+82b6Ghvx62ODsRINUaWyIgcc6Sla96d23r5Kj+nUh43jKkpHCg+OLtqvtcgye0r6rnEfLyYaxdrRMT9NnYOvqd7LvsF+bl5uN1xC3du38bdO3ew12mfRTIifxd39xOMjWt8XwU609j7zHk9OyliCmqzvowpggVz8KHme43nQ44Fhc2gx0xV4yh8DuovyntKe5K3trTgxzt38dOPP+I6i0e+nDTFoviQ/So6y1ic9d3Y3IrcPG2PNYd0zWSnjVnjJF5HsQbltQQT9B5y/CHXZxsrNd/74bZX8iFsA7U9/W5qPmgMpfcXdoP246D4VfyfbMY9xsbPP93D/Xs/Izsr26JsiPwd8vKL+dnIjU2taGhsYddmwx//UJ069W1j18qK+jdT5a9kqfneD9sNuldK/0r8LnNgCj7k9SlKyfmd+Lh43P/5Zzy4fx8PHzzAfmcXi2BE/mxn50M6LkhHjnro/qfcL6y3MeJjS833fth2y3vC0XhEsQb1f/opbDr9Tc+ln2TPjamRFv5UT3WR1JfkvYNGsb8pVn/4yy949PAhbt+6xR+zFD6oFqahi436hivQ5BRgxPB3uVxD28TUOY7+SM339nyfiA3Zf6X7Ro/1NEdlzH0V63ENec2sGbN0cyP7nQ/g8aNHePL4MZ4+eYKU5JSPakPkz4yKjuNc1DdcRl39ZSzo8quM4cPSZM5872IWp9GcltthNxx1Owr3Y8c7fYnIKBRpixAUGIQz3j7w9j6D06e9sWePA76zXcF8imlDKs7pTeSXyHOHeXl5ePb0KZ4/e4YXz5/D1nb5R+FDjsmXL7fjbBAXdXXN8PcP0tlAa2VDaOwXWf3O9877ZgFf++Z3zg852RpeP0S1ETTve7ujAz/dvYsHP9/nYx/d19evXuH339/gzz//4Hr7++/47bdf+eMvXjzH06dPkJOTi7M+57B92873ziMfapLr976ZM59z8fLFC7x6+RL1dXUfxYbIn6XRFDA2mlHL2CgqLseErrpjZf2lNYryvcKGGJrvHT5sJFZ+twonPLz4HgMlzB7Q+jda29NQV8/5KCrUIjEhEQH+F/TsxwGXg9i4YROvVZXtR0lxCbcrgo9HjKUHLA69d+8e7t65i8qKSj5fRrUXQ5EPuZ9d8A/Aq1cv8fr1K/z662tue5Vj+kDZjh07dnMuamubUFPbCCen/brndZevtkYZmu9dtsQWRw658b0As9i10z41xEfSpUR4sr6/ncWaC+cvNkF/mIp19hs4U5kZmZwPmj++2daG61evQVtQCPejx1lMOGnI+GKUExDzBKNHjWNjx31uc9+8+Y2NJQ/5YwNlQ8RnjBg+mtmLCs4FrefQasv4YyIvJ+ozLSkv1RdR/krMGSrzvXS+xbo16/nZSLTnMu0nS3wE+gVg4/pN7LpnmP37jRo5hu9nQH2krraO17bS+giyVeGhEbBdtnzQskFMiPXB8pyXK4vryEd9+/Z3/PHHW26LB8KGyO/v5OSCGsZFdXUDqqrrYW+/8b38nLyGme6ftZ51psz3jmHj0fat2/kZ4HTuS0x4FC6c98eWjVvx2biP61OuXGGHoIAgzkdNVQ0qyyuQwpglhgYLF2I+Rd7jT5kLvnXrFo/f/vOfP/Hs2dMBsSGy7SB7UUVsVNUjPV2jew6tjZTrSJTXYex8uaXo86lNmDb3BdZvCOVntNLZk8SH2wFXLLFZanHfl/wrt8NHkJ+Xj9LiUhQVaBEWEoY5X8+zWi5E7lc57sp9T/zu4ODE2SARJxTLmTNW17Mdjvs5F5WVdaiorIX92nd7SnQ3Dyj2NBbXZex8uSVo6VJnnPMOgd8ZX87HfidnvTNZLVU0lv2w24Hv+5yfkw8Ni4s8jnl8dDtnrMhnF2vlxNoRpT+iXDNx585tzgb5WE+ePDarDZFtR0FBSScbFbVIS83SPUd5zoNSxDpdoyXNA/YmOkvS9aAbizGCEXD+AjyOHMdXXWvnrUnDh43CEdejnI9M1rdiWbxEe0xZy/cXew71VntK8+oin+XwgyNng+IQEuUCzRWHiPezX7uRc1FeUYPy8mqsXfPOdnxor1w5NrGWezJ/7kIE+QcjPDic87Fm5Rq9s+6tUVOnTEeAXwBSk1KRGJ/IbYl8vpm5+rbwg+j+yz43/U6PkY8h2wfl/nL0HEN8c+Wcwq1bHTxWJz18+NAsPpb8XmlpWYyLGpSVVSMl5d36yIMuzn16b1HvJiR8L3Ovr+lNex2dcTEqFlFh0fB098IXXeu7Bou+37KN80FnAIYEhPAzNAeCDxr7qS5L/E/s5Uj3WMTYYg/Hvn6efIbCD3sc8ObNG57rpZyvWK9uDj6WLVvBuSgrq0JpaSX7bCejbEd3onYRcyVyrY451tcY5IewsfQcizEuxSZwPrZt3TGouNDz1ydNxQXmM8ZExCAiJAI20r4y5uJD7Nko7rc4X0LpN/WHD+W+/1S3SGzQfGFbW5tJbYj8HsFB4YyLKpSUVEKjydfNd/TVdgg7QXaVGKAYTPhfplxfY6imTJ6O2Jh4JF1KRkRYFPevBisbQp3nyh7kfJAd2fH9TpO9N411Yv5O9q/EWh2S8K9MyQeJapuEDTl18jR+ff2az6m/evWK17KZmo8J4yehlHFRUlKB4uJyuB/z+mDOyhiJmlBhSz4GH1OnzMCluESkJqcjOCB0yNQCCq1bu4HzEeAbwHyv7SZ5T4oXaOyTz1jpyb+i+yv8K7In9Lr+fLa87wnlrah+jepOXr58gWgTrlUXrz/g4sq4YGwUlaNIW4bp02bpxgiKGfo6R65sO3OszzSEjaSEFGSw2MqP+RvDzRyvWqqorpj48PXx5XOdpmJEjrf7Gp/3RbI9iomO4XWLVMP2/PlzjBrV//Uh8muTElNZXy6DVluKiHD9+QtiQ6xtNXavb9EuplxfY4zou6cmZyA7MxcB/kE8DzoU2RBatMCG8+Fzygcb12+2uu9PrFFfIT9EzndRnQ3V9lKNNM2nUy2oqfhYuuQ7bjO0haUoLCjBarvOvDnV39MaFeV4oYwlDOmjplpfY4zIBmakZyM3pwBBgaFDng2hBfMWcT5OeZ7Cemnu15Il/Bjqe8KXIf9K7p9XW1v5+hBaP1VZWdkvH0t+zbGjHigsLGFsFKMgv0jXj8jH6yn2ELUAllpPQrmFrKxcdj3FCA2OUNlQiHITxIfnUU8stbHMdTxiTkT0M+V4THzI51J5enhxNmiNIa23+XLSVJPwkZGu4f0oP68IJ0+c0bGhtB3WpOjoeG4T4+OSVDZ60Nw58zkfHkc8MG+O5e2ZR0z0toaCxm9Rd0JrAx4/fsTZoHXq586e7zcfS7615Vzk52mRl1uIb22WWT0fnh6n+PwN2Y+hcHZUv/Jaa9ZzPjyYDzFxvPWtKSE2aE8g8Xd5eTkePvyFz4k0NTb2yceSn3vEzZ1xoWU+eiGPY7uzW9YkW9uVvD6G+KC4SmWgdznudoK3lzcOH3C1yvoaeb6Q9v755cEDvhcQac7Xc/vFR2pKJo9fczT58GL+qOBD3l/FWkRrfwu1pZyPgwfc1L5voOh+k/3wO+uLzf/P3nn/NZVtbXz9NdPeuXeaZZqOXUfF3h07owiIioBSpCiKgoAQCAQIJfTesVBsIPaG2Mt0p9+ZO/cPePezZWe2ZxISwiGco+eH9QGPIdlJ9vfstfZe61nrNulu/LIeOmIOcAG9rCePH9Ou4BCP+UC9O7hoakBedAstG9DRHe554GhZbm4hr1kpKioz5v0QbfJnUzkfWSbziOZqjSTj4vfe8+c5G48fPeJ1/UP1scTjgneGci4amJ/eUNdkj2OV/eH0YGvXbuS18uBjog6/Xy0YaibBR0pisu7GLudAod4Wer2PHjykhw8e8Bpld/mQH4MzAXBRX9tEGelm+3W91clCA7ij8yznQ9aQMGxohtgDa0h+jpX5Wfo7OxQ2f95CzgU03+/fu0+rBupghsIH1gpwUVfbSHU1DbRlIG9N9JqXde21/nmEhIZzbccG5ica83x4hhxf8JFnydV8DaJ8PoLcDDkH/MG9+7wvArRIkb84VD7mss8BXCAnqaaqnqZOeR7ny73j5DpgvDbOzLW2X4q+POi1AD4WL15uzHEVLCYqhkqLiml3yG7NjQ35SjhHFzrBsoER8biqyiq6e+cu3WWPa2lqcTsGEf+/PSiYc1FTWUfVlS/2iQMDMpfKcQw1B2skLenIUc4HNFCNua2OTZo4hfNRw+bY++8Nfw1R5p460qZ2VS8na0rJJnLplX4ONIDQe6r/dj/d7rvtVn82+f8OJyRxLpDvnXDged2uo567MIwV48O4HfXekN+bXFcv8v+V19Uy1PyhNyj4mP35PGNuq2jxcfGcj8jwyGE/l7LWQ+hayddc1csJvwaPE3myyvmEc0Jxpg39437Gxe1bfdR365adH3f5qK5gbJTXUGVZNW0L2G7fI/Nk3wrjFrkAsh8m15GBc7VzdHfvjuJ8FBSWGnNaZYNGBfhobmgcdn6Oo1oopRaUq3oHsODKt1dqkfYxNm7dvEW3btykPbsj3OZjyuTpVFleTRVlVVRRWmnvcwP+PDn7kHP5wTY4UL5HZY80NexczyXOx3qVahkMe9HS2fcFPgL9t3kcPzvjQ7mGqFUPJGumo9cUNFlvXL9OJbYSt2PzL1atZVxUUXlJJZUVV9j3KVz1uXH1WYiaDtEvYiT52LhxC1270U9txzuNuTxCtnTxcs5HWUmpR/NBrBHOamllXUS1+JDzPlKSU+nGtetcTx9ak65idHE90D+IvecKxkY5ldrK7L6Vp/mIcj9guQfaSPJhySngfITtjjTm8ghaVXkFnTx2nGbNGHp+L+aEqBmU54qISeU9WbXq5XB/F/f4wIAgrld8ldmVy1d4nyd39rDi9x3kXEDDA9o2g8Xm7pjY5xLvTcROom5Q1FuqVQc1btzHdLPvHufjZdPl0ZpFRUZxPuL3eTZfRW2czIyISZW1cWrUy2EOi3zeObN96Crj4sqly7zvxJyBOMIRH/K1PIuVSlhMW1xYQju377Jz56mGj/y+5RhK6DIorw/XNm3awvmoq28x5vAI2zyfBZyPthb9fdbY0wUXl5hdvHDRvh/gig9wYSsopqJ8m70GGTlXch69li03r4jzESjpcxk2ctZQV0dnTnXR57PmaH6s2MOKiYqw/xu9IC4y/+XC+V6K3hvjkg/kadryGRtWGxWyeYazIL19X339Dzgfhm/lHYuLieN87ArepYvxyn5Qfl4+9fb00vnu85SXY3W5dzVrxhyuG1iQV8h19QQf8IEQOwmdEvwU5zVaylf08VnI+WjvOGPMXS/ZqpWrOR/WvDzNjlHEOfCh5F40pjQTY6OHes51s3Ww3ukelvj3+jUbOBf5OflktVgHfU0ROwhmtJB7FREZw/lIPZphzF0v2Zj3x3E+LpzvGfWxIM6V7+HipzhzU8b2wTtDqPtsN9/fRY9IV3ysY3xYB9jIy35+P8DeleyzadnyWMwEPrYFBRtz14tWW13N+cCe0GivE64egz0sUU8YvGMXY+MsnT19hjF+xiUf0RHRnAvoscbH/q0hqpd6qK7TPZyPuXMXGvPWi5aanML5CPAP1PxYZe3RWTPncC5Od52m052n7JrLzs5A9obvpVxzDuVk5lDkwNkazgX10su8/+4jzocxZ71rO3cEcz7iYuM0P1asHeKse9bM2bxH46nOLurq6KSZA+eczvhAryRLpoWyM7IpIizCzpsetHx8fBZxPjq6zhlz1su2eNESzoetqEhffLD1oqujizrbO3mfRkd8yL+nJadRtimL90vy3xJgfz49+FeCj7KKWmPOetlw9gE+amuqNT9WOQ8dOpqdjIuOE+3UfvwkbQsIGpSPrPQsMqeZeW/WVcuf9wTGuaAe9K4io2I5HwcOJhpz1suGeQY+rl29oov4Q+51287YOMnYOHHsBM/JGowPcJF5NIMyUk12PoabW+JtPiIiYow5OwqmFz6UdpJxgf7Xx1uP2XP1nfEBLtCn1cT8rJXLnueN6SW3xODD4MPd9UM+rzjeepyOtRyjtpY2CtgaOCgfYCOdsZF25CitGNCDU8NEDrOoG5T7o6j1GqYMC+cjaLs+8hxeNqssL+d8+MydN+x5AhM9nUXdrDjbkPvryNeHGoOI38FFW3MrtTa1kL9fwODxOeMiLSmVjiam0IolK/g1nDnKPWYdmbKPgfJv8F5E7aDoUStqZNTSCKqubeR8+PgYZx+jYflWq6p84HeRByLOwTGv5P5scv8xYcqeyI7MKvVYAxctjc3U3NBMW7f4D8oHuEg9nEwph47Q8gE9HMxfR9oQsinHKHrICbbF+1bWQbnq927w8WrzIXL8hG6BO3V18vrizOTnABdN9U3UWN9IfpsH5yNlgA3Ox8D6IddpODNHaxzej2Ddm3ysGOhvZZh++BBzQMmHUt/GHT6UNVaOTM7DamJcNNY1UENtPeNj66B8JCckcTawhoj4Yzjng+Aea5nMh+xfiXp0Nb6fBDZuIz4fPevsaOd8TJk8dUh/J+YBGFDyIbjBvVZo4Mj+lejlN5TXk2tsYQ21DVRfU0911XW0ZaDe3Rkf4AI+FmKQlcue8zGc/BJRR+uN+NzYv9Lv/pVgZLD4XNxHhxuf4yxPPs8DF3VVtVRbWUObfbcMHp8zLtJZjI793VUD+7uI9fXQ08Dgw9jf9cRqq2qohrFRXVFNX27aPCgf2NvFHm9mqolWS+fn8nmjVm37jlDOB+prjfnqXRvzwXjOx7mz2q9Lgy8k6/yAi6ryKqosqyTfjf/kQ7boiL2UedRE5rQMCg8N19V3ZORfjZ6J/Cs95CfK9vGHn1IV46KytIIqSspp9co1g/IRHrKHstIzKdtkpsgBzUW9rB/jx33M+ei9dN2Ys162LZv9OB9ZZrPmx4rYQ8TTUyZPowrGRjljo6y4jCZPmjYoHxFh4WTJyKKczGyK2hOpq/gDJuo/hB63YV6K/cIjOR9hodrreaA07MeK/F3oCIOLUlsplRSVcH0SR3zYtRP9Aik300J5WTncz8I1sKGX+qjm1hNG/eAomCUrm/OxbKn2e6ygXkPU1y5asIRKGRclhcVUXGDj/TsH42Pt6rWcDWt2HuUP6DOAD2f57eIsBntxWtBnSEs3cz7Cw6ONeetFE/oM4wY0OkfLMAdd6elgLovzvI3rN1ExY8PG2CjKL/oHD8p/48w835JHBTlWKszNp3ff+YBfl3VK5J/izEYrfaN8ff04H6Vl2q/TeVkMNXfgo7O9fdTHgnk4FP0S5FuBi0JrIRXmFbjkA3pX4KKIPdbG/mbyZ8/1r/TSkxMxutCHM+audywoMIjzYUpL1+wYlfpX4npsdBzj4rnWW3Sk83MzwceHbH6Bi2LGVAlbcxbNX2yP0fWiYYL6c/CxfOD8xrCRtYx0E+dj7Zp1mh+rcq8plffjfa5nFabIQXfEBwxxSinzyRC3bBroLQN/zVP9djlO8YY+dfyBRM5HcorJmL8jbOgdBX1q8DF2zHjNj1d5VmHlvXjzKDc7l9asXufQt1JeO3IoicpspVReXEoH9x8c9piUvRtEzpmyv4FaebzI3wUf6B9lzOGRtRXLVnI+bIX6y1mAL57HuIDWW445h+bNme+UD9n2RuylipIyqiwtJ0tmtv36gX2xHo1D3tty1h9HxFFqvfee3iu8/8eyZdrvz65nSzmSwvnY7LvZ4+eQcxJR7yHyV0WvGHGPHW7NICxw61Z7nDBj2izOhdCzmvjppEH5ENd9N35JVaUVVF1eSTUVVcP+DBETiX0DwcFI94/aH3+I83EkOc2YxyNk6O2M/mrgY8wH41ThA/ND1KKKvsfu1Ay6a3IMvWbVWs5FlimLzOlmh76UIz7QR6emvIpqK6qprqqGpk2Zzq8j/vBE50f0rBY/3a1zGY5Nnjyd84H+nGONPgcjYtu37eB8HE44NKznkfnAuiDWBjFH1JoriMvl2AP6h1kmM2Mjk2KkvStXfLz/7hieC4+c+PrqOlq3Zr2dPU/yTBzVCOKeIPd3dlTDPlyzlVRwPkJD9aGtrSd74/X/o+JCG+dj/jzPchUc1Qxi3otYVfTvVIsP7F3JOjwpSSmUmZZJGUczyO/LrS5jD/n/EJ831NRRY22DvQc82BhM5wfci97m8nVlvbzcq1NZP6nmd7hhw2bOx6nTPUY+lsq2aYMv739emF/g0d87qxl0NPfdqRkER5hnIl5xZNiDFf7VO+z1wYUp1UTpKen2cwxXsbmwePb6TXUN1FzfSEX5hQ75wHvEeET/TRE/qb0ODMfajnfQxcs3KCRkjzGvVVw7rJZczsdw8q2c1QyKXq6yT+EqPoffrtRfEHon4jHIIRR5JYghZC2rTz+e6BYf9j45azdQS0MTtTY2U1tTC+NurH2NAKfifSkN4xyMYW/b+vW+nI+OzrP01pvGGqLKZ8r87dKiYsrJsmhmTJhzmJfyfVoY9sEwL+X79hZfP641fZSxkZqU6jL2UP4/eIIuEHSzjrW0sdh8lX0c8muDE7EfpdXvs6X1JPVeuEp792pfe1/za8drb5HZlMn5WLJoqSbHiHs4WIBfI7QPxFwVj9kXvY9zkZKYQsFBu4bMBwx7V9AkhTZpbHSsfU3E64oe5nr4TmfPnsf56O65RBN12G9USxbgF0j5OVZ+hqyXMcPHEvonfA6//S7nIvlwMnsfR2jZgM6bO7GH/JjDCYf53nb78RNUWVbxwj6ZHvSqX9wjsHE+LJZ8Y54P476M/VDwIeqI9GLyvuvnM+dQ8iHGRsIRSjqYxPsnDiU2l88JO5jf1nmynbraO+zni4hz9JKrKGzsmA/p5MlTdOZsL1v7/I35PkR7nflV8EnAR9BADwA92Z6wEPvv6GuTlJBEiQcS2Xva77ZvpXwcuOo62UGnOjrpdGcX7QjaaX+M3tYPmB/7XMBHK4tHJkyYbMz7IdjGdZtYLJvK813feP0tXb+X+Jh4OnzgMB2KP0Qb1mwc8t/LHBUVFPG+hWe6TlMJi8kc8agns1isdOpUNxXkF/OeLsbcd23Tp86kw/GHOR8TNFIHNxTDmbnwd+AXHmZcJOxPoIR9B3kO1lDWDiUjOBs8e+oM7w3dfeYcjf1A+znMgxl0mlpbTlBHx2mKjdlvzH8X9v57YylqTxTnY+1q7dd3uDKsFwn7Euhg3EE6EHvA7gd5ysdnzA/pPnOWes6eo/Pnuu3676hv14PmjyNDT1/wceJ4J23c8KXBgRPD3AkLDqN9e/dR6M5QXb4H5AvKZ9qxkbGcC/hYvtJ37ykfMGhb93b30IWe81RZXuHW32PvF3tqauYcqmm+m/w4H20sFllu5MD/Mx5nbOzaEUL7WfwatTtKc/Em5hfOA12du8l7rZMmTKH42Hj+nsD89CkzPWJDyUhIcChdON9LF3sv0KULF2nSQE26UucXhr1mjBtnJFrRbHBmMcy/Ah/NTW3kM3eBwYVkWzf7cx89as9eev/dsZocIxgR54D4qTyPg48jrx3wDwUbcVFxHvtWSj6wNwouLl+8RFcuXaa42H0v8OlqnFq26L1xnI/y0ir65KMJBhuIZzdu5vuf4OOD97TJhtKwjuC+DBP3ZVkzAb8LLmCo/fDUt3L0d9jHunr5Cl27cpW6WSwirou8F0/zS/D3IgdArheTte3l62ob6qezzDnUUNdMtdX1tGSx9vXNRsyneu0t2h6wneddgI+Z0z9X5Xmd5aPLeevyPHDUj2woawr+VuR42P2aWXM5F2BkP/MbPhvY3/eUDSUjG9ZvoutXr9KNa9fo5vXrPL9Zjc8On494H6JeDL/jsxLrEOIYNfuEOGLkSGIK56OqooYWL9RmXtFIGvKqYtlainxv8DFrxmzVnlvmA/6FyM1FPhS+Z1yT81rho8s5vZ6anLsbujOM+1aIzcOleiC1+ID1dHfTrRs3qO/mTeaPlNmvI2fY0/5SIg9Z6M/hc8J1+fNR1seMlO0Ji+B8lJdUkL9f4CvDBjSdsF6gzjTp0BHV9/CVfIg8Qfl7VdbQDYcP+PzyfPxo/Cd8vwp7uoeYz7hk0TJV2BDPIZ4nfv8BxsYtut3XR/23b3PtazEeT/NNZG0TsCGYHw0+YNsCd3A+SopK+f0UtQ4vMxsL5y/iXEDDA+uGmvqg+C6FvyP7S6Lnnrf42LxxC4+lcIaTdDCR782pxYf8POPHfkT9fbfpzu1+unvnDpnSTS+sIULz15P1Q46xxOcj/Cux/nprzixasJTzUWgtosw0s91XfZnsTcb9rp0hXOsM2oHY94SPpeZr4HsTtRcyH6Kvt6grVfrZovexGmz86+13eR5JIuMC+YjDOfNwx8dKTzPRvTt36f7de/Tg3n2uISTG5Qkfyvhc5CB7Kz536nOwNflochpZLflcAwY6ea+/pu+8I2FTp0yn7EwL1/UHH1sGaq9HwvB9Ooq3Rc9wd+Nzd/dElVrqyBuD74hc9tSkFLvvqBYbSkbm+SxgXNyjh/fv06MHD8mc+bcuiqwbP9jegpbqCweNWdk9NihgO+cjK93MYrt4mjp5un7XjDfe5vlCddW1vJ8YtAOR662HsWM/ylUvcOzhymsH6jyS0Ys5MYXXCYYGh6m+djh6vtrqGnr08CE9efSInj5+zO61z5lADOKMD1n3Cz/1dEaCvH7EdahXPpqYSsFBwfZ6ZT3YW2++TYH+26i6spoa6xs5H2Ehu3UTWwl/S6wtzs6elWvH8qUreU4l76mZarLnVqrNhpIR6Lk8YVw8ffKEvnr6lCzZFqdjRIymrK3Xkn6DuwbfauWyVZwP9IdPTz5Ke0L22GtitMnFv3hNQlNDE68BbW1qJXOGmaZNmaG7z1/Urco+N3wRcZ9V3pvxfSHmMKWmsxgyg/ZIvTRHmg9YQ30Dff3VV/TN11/Tt998w8b2yQtxiKv3o1fDmv0li/HAhzktk/faiomMpoXztNNfC/kO0VExdOLYcTrddYo6TnawWKOUVrwEeWaO7rfwTZR8+LFrGegzi16aGVkutUPVZmTB/EWci+++/Za+/+47ysvN+8e+hav1UNecMM79N/tzPtBLCP0g0FcItXWjkacCfa+NG3zJVmjjuUC9Pefp3JlzVFNVQ6tXfvHS7b9hjslaJWBG3HuhbQXdN9Q6Qj86KjxqxNcOR8/f3NxMP3z/HT374Qf68dkzmjF9lp1xoRehZV0TNeydf79P675YT+kpaVRuK6XqskqqZ/cD9CKKZusK7iMjVYc1lflJO3fsosqKSn4mdfP6DZ7/Az5MaSZarFF9ETXvUfBJxB6yuB68PZiyGRc5ZgvXZ/9s4mSvsKFkZPq0mfTsGWPjx2f0008/0nG2nsv7d57s9+p67Z81l3azuLfMVsJ19Y41t3Jti1MdXSwmruN746EhYTR39jzymTvf7ef9+KNP+VwPYDH2/n3x1NTUTF8x3/YxiwEf3H/Az6LAR0NdPQUGbOP+1avymWPPStbsnThhEuciNzuHrDl5FBPlWld3JNeQfGs+/fzzT/TLLz/Tr7/+QuvX/V3PCy35V4kP2eax+R8aHEr5uVbOB+ov4fMgB/r61Ws8D+Eem9ePHjygvlt91MzmfFtrG51gPHW0d9CVK5fpr7/+S3/+8Qf9/vtv9Osvv/B70A8/fM/8im85H7du3qTCgiLawe6X48d5V4NbnI3Le0xCS1l+nLim7PunlkEzXc7diI+LJyvzc/G5F1oL7P0zvcWGkpGPPvyUnj59Qr/99iv/Hvv7+/mZpXgcxq5HLQe1DecMW/38eb+74qJi6mQMCD6+evKUx3HwUcHBH3/8h7Mh8wFujrUd4+vHmi/W2fsQj5bJZxHibE/OFcJ1+DxyXyS1a+WUOU3Ll67g2kPwbW35hfZa19HkA5Zw8BD95/ff+ff6559/kNmcZf8/aAG5o/kueh68iuxgri9csJgWLVzC/agli5fR0iXazrOX+RB9YsX/idwpZd8bd3LohrL3L/snOMvJysjiWtHICciz5NrPd7zNhiNG7rB74X/ZPULc92bNnP0C54MxgrUXe1xDWYOF9rvy2mjmpLxK5ugsW9QC4btU8uFujqnYvx3sHMBRr9jwsHCyMV8TGjtlxSXsvrzEPkdHkw/x2rjfgYv//e8vblcuX7Y/DnG6Mz6ELv1Qz0XweLmXIcybNSOvqoleeTIf+Mwxr3Fd5El4yod4PvhmzvwJzCW5Vyx815JCG5XaSv6/vTP9j6q84vj5T/qum21tFVBB1AKCbC6IKEvIShK2glSjsiUh+76Qfd+XSUL2newJISyCtFS0VukLW+3Hlta/oM/vGc7wzM2dmXvDTEgy98X5AMNkMvfe5/uc9TmHGusaKDE+8YnZVe50SGFhkUN//Pjj/yglOdXpmrRn1dVZWgt9Vuo9f1I18f4knNvi2UZ8r/nf3L+c9yv8m+uyWa+Yeb7aOR/aOlj7rIUyOUu2qb6RbI3N9LvfrloSbGgZgV9+7949yQZsLfgiWzZvdVwX145hn1HPeixUtDrE4mPxGFHnHPFex+cCtedBtWd7zAjPl2G7QFsDK2fJ1jcILpqopclG4WERS0Z36NlZu3fvkVwg7gJ/XRvP0l6vN/S9au8+qTMjlvhOXO2nB/YFyL7pLU3N1GZroVTFXlkqbOh9n/z8Avrvgwf04MF/ZGyyre2Sk//lDSa0M1As/9w/fB/+O3Km8Mdbm1voUgvORNfLebpP2ic3amddFToVbCAv8u8ffqBjxx71/Nbrm2WJf4kZ+wGxKtUf/8XPn6JcwQrOWbRjRualdpn7WKq6Q8/Ogt9x//43MqeOnBfy61yftRB7dznWxFuiL7CHkTc0yog2nvtx1CeCizZZT9PV0UFnT59d8mzofT/oDHCB+pN/ff893b51W+iWR3FeI/UnfD4T4q/5w5XmS3BttxFGsEZUfxyzxjuEvd7V3kHdnV1UXFgkz0UuBzb0GKmoqJR1Q99/952sn5icmHR6r7tZVCobZmODlphbs1zfx3UMqvAahu+oV2NlVvA5nhjRywFu2riZOsFFRyf1dqGfX4v43i8taZ/DCCNTk5P0T8EG6uD/8e23VFry6KwI9ga93kC+YEPtmY0/+blgbXAPGvV1f/J71R4yfJ5CnVeP+8Jzl/lPXzKi9TnWrX1J9kbv6eqivp4eGujto73v7Vs2dpU7X+RXQkd8+cUX9K1gA2epUIunzfuo/rqv9AZihNxrhv+O1/F8EL/H6zyz3l/5wDrFfdfG/rT5cm/1N9RjBGtBrbeA/VRdWUV93T3U39tLg/39dFyJ9yw3NvQYwVmRe59/Lmuzce4Q53IjlfpK1iG+tKnUZ6zmD/09r6jt3wY2sHeoesKb/ds8MaLyATbgY/T3CC76+mloYIBio2OXPRt63/9w5FHJxd8h9+/L3g6REYed1qYv/Q0+k8l12BwT81c+cP3c15X5YFuT38NnQH3Fh5YR9d6DjZKiYhro65NcYFZsVUWF4zzmcvM5jDACnQEuvoF8/bXsg4J+KGrsbyFsGPEZ1R7IvEf6Mx+8LsGAnn3FdVV4H9uleI33GXfcLeS78O/i16LPRUtbanhwkEaGh4WNVbni2NBjJPp8rOTib19BvqLbt27Jnn6ufDNPos5+X4j/wb0uud5RPcvgD4zgmtX7p9ZNMTfMiLbGSk/wf1r/0p3AntKexY45HyPPJl8eGqLRy5elT77q2TUrkg09RgryC2WPub9++aU8Q/3pzZsORji2BxvU09kqnldlxa+WluCZeKolwnOGaGP88C+Yi7GREemT41z5SvE5jPjrkPy8fBnX+uLePeG735NnRsJCw532FXd1KHxOwFqPS1PwbNztNVo7AX0eL8TESlsKXEyMjUrfQ+0PvlLZcMXIxdw82e8aPTj+cvcu3f3zXcGI80xZ3EM9PYL7v5h9tdg30dZre6OO+3FtJD0dqu7h3K9Pazf5UvBsXPmS2tnH8Cvge4+NXKbx0VGaHMd84X5Hbx5/YMMVI+h7g5kJmJ2APjV/unOHQkPCnPYZ6F/VRmVfcTG/t6tZPtzDD69jPSy2TnMVU1BjTlzvz2eY4JcvlGMzexLfK3fPEmzA97ZzMUZTExPCJx/wSzZcMZIj7iH63Nz57A7duf2Z7HWWmZE1T4/o3XOjPrw39kyur1D7DZiNf/F5VL3PVV9Xe+a4s1OM8KHNcXjqhe7qe4N/9RyzEVH3Mm0/HvgVrTabsKXAxTjNTE1K38Of2XDFyB+On6DPbt+WdYy3Pr0l+0QVFhTJ3pnaZ2R2v+P4+uPUAbNu4DNZC+VD+x69Pjgce1Xn9OmtSa6XUj+P3+dtPiD4LrheszE+PV8EPTzge08KLqYnJ+nK9BQ1NTTQ6lXP+T0brhgJCQ6VXKBPJubl3hDSYmuZ1xNQe0bf07rW5p4Wal95I/+ufY9eHxztetbr1cr5CW0vCo5R+4IPNYdrxD7j2C3YUPkIPxQhfYzpyQmaEVzMzsxQc1Oj2At/bbHxE/ex3+3bdop7NyFnraPfIPrJjo2Myr5QamyQY8Du+piafZ6e7AS1Ro/Xm9oXDfu8p9i/Oz74/4yuZ67H0eoP3udVnrX66HHiUp72G47b4hmp9hR8jYT4BOljwJaanZmmq7NXKDUlxcHGSs1veJORV17eQLZmG83NzsmziFevzMr+nJiZp9Uj2KP4eejt+d6sV+EabyP+g97Pgh1v8sGfq/29bHe56gH6ODkefA7vOa7yhOjFoY3Nw9eoq62lacHFFXBxZUbsfbMUEx3j0p6wxDUj2E8Q/wUXV6ZnxH4zI/TxNJUWl9IqzQxivVwJ761m/En8jK9ixryvqz04IXp9cMCRGm+CvvJlLFtbd2VEl/L8DfV16Apt7BYSER4pa6jgY8wKLuYEF+NjoxQUGGyx8Zg+CXTGzNS0YGNK6OVJaXv19/bLfpzan0U/0x3bdjh6/+jNevRkO/jy2jinqfq3evmTJ5GvMONz8wxavr+wcQMDAua9D/ZUTla2eH5T0paam0WP7qsyZgUbwWLDO4xsfW07DfQN0MTYBI2PjtP4yJjsi56emqE7X8PV/ubJL/Dnc+7g1Mz1a/Wz9hwoegkjj8E+xrW5WeFTzlFhQYFTTNLiwjuMgIOigiLpq48KNkaGR+TssK72TjmHRvvs2G7RO5/4uPsn10Qu9Votzgsa7XVk1E9jX4/1m2r7SZ2RnSNsqUc+xnXBBeK4wUEhls7wMSeHQsOpu6OLLg8O0/DAEA31D8r5k7nZuYKF1U42gP39oU7P1JX9babOkf3TpT43DtdkJl8B7o1cE2wp7Dva/QHneYaHBu0+xkNb6ub1a9TW2kprVj9vsbFIjDz7zBrKy8mjQcEG7C74I309fdTb3UtHIo86elqo8nGUPfal1w+C+y4btUP4vJtRu80XtpAvvivWuzuWsNfoxdNh/zbU1zt8jGuCixvX5+jTm9fpo6iPXMZgLPFdfAuCmZRtwiboE1z0dvVQT2e30C3d1NzQTHuUnmGqnDpxYh4nZmwrs3uymfdp+9q6ix+Z1XVGbUG9fvrgQs9OXf3sc5SUmGSP14KLq3Yf4+aN61RbU2PpjCWhS1ZTYnyS5KKrvYs6hT/ScamDOtraqbyknHZsf90tJ7DRzfQi5dyb0Z8xupY5V2NE3+A7G8138uca9b3VOAX6T+lxAR/j3JlzMl579WG89vo1YUvduCZz4qiDcPfMLFlcRiCbNm6hyrJKyQX6TmImZputjVqbWyk5MYW2b93pdv3CbvA0C07NjRnZj7GGja5LM3yY6UPFsTwjvjez4Oq94OLU+3+c52PcED4GbKm42AvzYlMWF0uLk4MHgqiuuk5y0dLUQrZGG9mEvdVc3yRncOnlTSA8Cw65X3fzfMzUcplZx2b4AKdGz7ByjY27WDfnVvVyexDkYxMTEuVZ8Hk+xkNb6vevbLS4WCacwD8PD42g6opq2QO/SbDRWNdIDbUNVF9TT3nZeRQcGOqYUacK+MA+ij95ZgkL1zoatZnwPqN2vxk+zNhtEM6VqjYZ9gDkUt3Vem7dsk1yMaOpCbH7GNckFzu277RsqWXEiBMnYv2HhRyiitIKyQX0Sm1VLdVU1lCNYKe6vIpOHn9fcLBB19bg+i5eP5wzNmr7m1nDZvkwE1PgmkLoHFwPuIAtqeWfbaiA/QfpUmubo+7cyccQtlRtdbXFxQqyuaAnQoJCqbSw5CEX1VRVVkWVpZVUUVJB5cXllJ6SQXvefpee/s0zLmNB3DcNawv2mDfXsC/0B/daAxfc88tVLeeut96m+Lj4eXXnqo9RY3Gx4jl58/VdlJWe5eCirKhMcFNKJQUlVJxfTEV5RRR7LpZ2v/UOPe3CNlL5iD57Wvr2+Df7Lrz+fMkH+9C83tle4u8E/Yfv5K7+H3Ol4wQ76J9jP8PnXHfONSHpaWnisy0u/MXugmx5dSt9eCpK6pSSgmLBRpFgo5AKLxZQQW4B5efkSz/l3OnzFBQQTC+ufcnt72G/RbXHeI/nOCn+jxlin5g5U/ngc9p8fkJ9P8+F4M8GE/CrVT/CVU0N8qr79u6XfULQ69neJ8R+tlXWnSs1IWAm6sMopxyGxYX/cQJ76p1deyg5IdmJi4tZFyk3M5dyMnIoOz2bstKyKCkuiY5GHqM3dr5F615Yb/h3q30JeN41c8ExI5UPzsdh7bONxHzwn0by/cgNoT9l1AdRVF5a5uhFqPYJYR+D685TU1Jpz+53DeljS/zH9oKsWfU8BR8MofiYeCcuMlMzKUP4J+nJ6ZSWlEapiamUkpBCyfHJ9MHJD2jvnv1iLb9OLzy3zmMOxVeybu162rnjDToceUTOAK+trnH0OwcX3HPN0ScEPsbDuvO83IsUdDDI6Xyruz3FEv/WKRDUTrz3zl765MPTlJEs2EgSbCQKNhIEG/GCjbhkSrqQRImxiZQQk0Dx0fEUdz6OLpy7QGeiztDhQ0coLOgQ7XpzN+0U7Kx9/kWpc7Rnu4wI/CbkFza8som2b90hazTDw8IpJSmF8nIuyplKnQ9nKvV2d8t+546+zg4uRhw+xtDgAOXm5FCgDhOWrrDELCs/++kv6bXN2ygkMJTOfHTGJRexZ2Ol4O94PSE2Qdpk4ClN6BzoH+ii7PQsyhX6CTZcfk6e9Hng/5QIX6isuJQqSsqpqqySqiuqqLaqhupr6qixtp6a6hvJ1thMrc02Obe1vc0+n5JnKsnZMeCiH/3OB516EaIX+qmTp2Qtodnrt8QSM2sF/sDL6zdI/XIk/KgTF2AF3IAh2F+wxaB7MoV9BlstR3KRK7mAv4OYAOIDZUWlVF5SRpVlFTIvU1tZTXXVtdQguWgQXGDWt43abK1yPmWnnE/ZaZ+p1G2fqcS2FGYtZaSlSx2DPjoLvU5LLDHDirt1hDlZ8D/eFvZUcEAInTh6ks6fPi/9lqy0TMFFtvT34fsX5OZLLooFF4iflRcLLkorqKq8Us71llxAZ9Q1yPx/S1Oz4KJF5ux4PmWPsKWyM7Pk+dVjR47Tvvf2y7nB3rgWSyzxNS9a+2z9upelwI8/sC9A5qgPHgikwANBMn4cfFBIYAghjxkaHCbz/uxnRByKoE0bXpUzKl/duNmn39USS3zNzGKvxSf9+y2xxFvr1pti3WNLLLHEEkssWVryf1BLAQIXCxQAAgAIANqIPlvQvmL9J0AAAABxAgAEAAkAAAAAAAAAAAAAgAAAAABkYXRhVVQFAAclDtxoUEsFBgAAAAABAAEAOwAAAFpAAAAAAA==</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #1</Name>
|
|
<Index>1</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPlvlELiRK0AAAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J33X1TH3sc/f8lz731yb2LXWGIsqEmMnajEgordWB41gCIWUBFQRJQivQtIr0tdeq8KFgRLYokttsSY3N/zzHdgltkDKAsL7sL54fNi2XJ2zznznm+Z78z88x+f4J+qPpr+8T//22ep10vVSGj35nB8VaoGq52qv0mVykPf2t3Spcu5HA87wdHRCUHB4bgUk8AUj7z8IjReuYbGpmtoaGxBfUMzV139VdTWXUFtbRNqahtRXcNU3YDQ0CimSISEROLY0ROwtT2IDRs2Y+HCpZg6ZbpBv129l6oGg4ne3vPVV99i27adcHU7i7jLyahmbbvlehuar93C1ZZWppu40sx09Qaarl5nXFzv4qJRwUUdcdGk46Kquh6VVUyVdaioqEV5RQ3Ky6tRVlaN0tIqlJRUMlWguLgckZEx8PS8gH177bDg28UYPWq8youqIeVh7JgJWGttA3d3T1xOSMX1m7e5rt1oR8uNNh0XzZyLVokLJsFFU4vOZhAXdfVXOBvERQ1xUUNcMAkuKmsZG8RFjY6L0lLBRQWKispRVFiGQm0ptNoSaAuKUZBfjPy8IsTFJuDMaU9s3bwDs2fOVVlRNSAuenrN0nIljh47AU12AW7cuosbrXdwvbWLC86G4ELYDOKiWZ+LnNxCREXHITKKFIuDBw9zHThAcuSytycdgr3dIdjZOXC5M7sUzHyzoCCmwDBuM4iLYuKiiHFRWNrBRkGJjov8vELk5WqRm1OAHPa7czT5yM7KQxJj2s31DNasWofJn09TWVHVL1thbb0Rvn5BqGft+mbbXdzUcXGnGxctEhcxsYnwOu+LQ47HsHr1OixZ8h23OYPx+y1mz2N+1BJsZ77dvr228PMNZPYikXFRyLhgbAguNHnQZOVCk5mDrIxsZKZnIyNNg/TULFxkn9loswWfT5qqsqLqvbZCMNHAmGhtu8e4uNfBxa07HWwQF8KXYlyks/Z2ytUDW7f+gHnz5pvM+Y0eNQ7fzl+EPbv3MdvjwW1GVkZOBxfpGsZGFmMjE2kpGUhNTkdqUjpSEtPgc8EPG9Zv6saKysnItRXTv5iJ02e8UMr8+9b2nxRc3NVxQcpg/gnF4MuWrjC78ydfavUqa5w66Y64mASkJWd0cJGUhuTEVMZQCpLik5F4OQkJcYlwOnocVitWGeSHqho+XFiv24gIFgPcuv1zBxdM3bhgCg2L5rmpwfKRPpZmzrDA/n12CAkM7eQimXGRhHjmn8WzmP5yTDziLl1GGIt7tm7ahkkTp6icjAAuduzYg7KKWs7FrU4u9GwGMRFOTOwadkz0JvKntjMfMYD5loKL2Og4xLL+IyYyFpciYhAdfgm2jCeytyonw4uLsWMnwsnJBY1Xb/TKRRaLZbdtHzlM9KYZ02fB3vYgQoPCcCmScRFxibERjaiwKESGRiIiJALOzPeaa/GVyomZx92cC2eJC+FLdXJR39gCH99APr6nXj99jfpsLFZ8Z4UzLL4XXEQERyA8KBxhgWEIZX7ZMcdjmDN7nsqJGeajyI9qkriQbUZJWTUfzxjptqKvIltxyN4RYUEdXIQEhCDEPxjBF4MQ5BeIIw5HMHH85yonZsCFpaUVyirr0NYLF9uZD6Veu/5p4oTJ2Lt7n46LQN8ABPoEIMDbH/7eF7GLXdvPPh2jMmKCbFDcmJSSoXIxFJwwW7Fn5/8hwKeDi4sX/OB33hd+Xj7wZP7YCsuVqi0xIZtBMUbbnfv6MUY7iy+aWhgXu9XrNkiawDghm0Fc+J7zho/nBXifPY8LHl44ynyu2TPnqIx8RDaEL6WMMagmRI0vhk7EwcEfD3A2uDzPw4fx4uvljS02W1Sfa4jYEI8pL3XG43yPvlR4RAy+UOToVQ2NFi9YgrPMvyJb4nfeh/ldvsz/8sOZU+6wmDVXZWQIbMbXXy9ATl5Rp83QjzEsFX6v6yk37gOo13Hw5HDQEbOltk+2gmyGP4tJAlhsEujrz2L5ABbTB8Jm3cZe+zxVA2fD1s5BEWN01IS4nz7XzZcqLCzC33//jcjIaPVaDmL88e7dO36drdeu13uN7IWH6xkE+wUixD8IoQHBCAsMgbuLGyZNmKzaEiP7U6JWSpmXslymbzP27dnD/9L9ovtGkvs3VcZTamo6v7719Q38/3Vr12LK5Kl6tmTHlh0ICwhBeGAoIoLDEBkSzu3JogWLVUaM5E/xeilFTQiNe8s2Y/PGjd2ORfdNvn+qjKcli5fp+h9hO8azfuzT/4zGgvkL+GPxXhpfvMDi9siQCESFRSI6PAoxEdHYs3OPysgA2NixYzefq62sCbG2ttG9R/RXM77sHpOT3VDeQ1XGkeh7yIYoXxN8yPeE6lUOOxzGpU42YqMuIS46Fm7M36LX1JjEMDZoToay7pxqCJW5qWVLlr33uL4+fvw+PnnyVL3ORozJ6ZpS7PE+37Unm75uzXrERcXgMmMjPiYOCbGXEcRi95lfzlYZ6QMbY8dM5HP4lPW1Pr4Bev4UxRk92Yz3xZDEinq9Bx6TU19jyPU8YGur9z/VCEeGRiAxNh5JcQlIjk9ETOQlfCPViaqM9MyGJlfbbQ7f/h8PdLMJn3xi0a/+Tr3mA5Nsjw3Nncs+LvlUPl7eSIlPQmpCMtKSUpCenIrV369RY5KeclTMNmhytHpc1DU0Y+3arliD7MW//jUJFvNLMW3uY/7YkFwLxZRqGx+Ydv6wm7NBfw35HOXZiQ+KFymGp+dGd8YkaUmpjI00ZKSkIzMtA2tWWY94RvRyVMyuUq5WnttaW3+127wMyh8SE5NnNeKLr97i8xklapv9SD6WoUzRWK24h3IOmGS33w6ZqRnISsuEJj0L2ZkaOB91HrGMyOdKDFBOSsxtJWVq8vRiDbqm8uf//Z/F3H4QI+MmB/U79yL8hOE+PiKPBcn5PDpvEUvIeXDhQwmf1FBbIYu+o6cclxinEiKbkZ2RhRzGRm5WNvI0OTjhdGLEMdITG/I6IZlZXWyIfHpPxxk1zo7zQfpszPY+fz/5WG1t7br/aZx9uMftIs+t7PepTxf1BSLuJm6ICfFeek9/x4/oGHR9e7I35CvTvZVtydrV6zgX+dm5KMjJgzY3Hy7HXUYMI/L5ERsUX8hrEWZk6dsNuobyOJNSZDuID7IlfY3X6f7L95vYGAl5LeKA2j2duzhf5bnTa8LW9Ha9DP3O98V8xIbSN7Bes55zUZhXgKJ8LYoLCnHq5Klhn9fSz1NNQHFpld5ahBlZuTo2erpuvUnEIvRX5aP3flzkjoRPRe12MPmgnCGpL++l8USSzp+23oAixkWxtgglhcUoLSqBLYtRhisjSjYyNfl6axFmZHaxQffSkPiP7IaIRSZMjesTH7J/Rb6xiB1Hin9F50/XgdiQ/St6XtSNiPdSGycfyVAeDelzyEcgyXHghnU2nIuy4lKUl5ShorQcGzdsGnaMdGcjT2+983QFG3SPSIYwQvGHiEUoLlHj8559HWUcPhTxuSH2hr5Ptjk26zcyLspQWVaBqvJKVFdUYZPN5mHFiHwO3j7+eus6p2fk6MUb1HeJsW5DGRk7yVMXi1B+a6TkAoeDBBs91XORzaiuqERNZRVqq6pRzGzZ3DlfDwtG5N9O69bq1ju/fgtVNY16bJx2dRkwIzQeImIRQ8YOVZkWGz9s366X19q9cw/qqmtQX1OLhto6lJWUYtrUL806pyX/5q3bdnZy0bFHBu39ItY7p+ugHC/qLyPEhCGxiCrTtRvK3O9ZD0801NWjkfmATQ2NSE1O1fWv5saHXh6XcUD7jXXsHdOxpxLtySfeSzncnuoM+8vIp6PWGBSLqDI9NkS/qcxhXoqKxpXGJlxtuoLmK1cREhRiln6WHI9rC8v09lTau7erzX4ohyszYkiOUcQiJDUWMT82ZMlzrcaOGY/0lDS0XG3GteYWXG+5hv37bM2KEfk3BodE6O1P6eXl262P+NDxiBGRr5efp/ykXA9K11zk8+n5iV9kcj6mWLSrsYiJ8vEhNkQbkWsovpr3DWpZLHLj2jXcvH4drTduwnLZcrOIReTftnefnd7+lCmpWTp/8fuVVn2au/E+yWNblH8kH0zk8+naW1gs5WwQI8SK2i5NS4bM5yT7IddrrV2zjnFxA7du3kRbayuaGhtNPhaR2aXYW96fsryiFtOmzeCvGWu9HZmP3saBybcSftaYCc5quzSS5LoRMb5OonFE8Tz1WT09byyddj+Dtlu30N7Whtvt7YiW1qkxRUbkmCM1TdO1b+uVa3yfSrnfILs6UE76wgc9Ji4EIxS7q+174JKvr6jnEuPxYqxdzBER99vQMfje7rk8lpuXk4s77bdx984d3Lt7FwfsD5okI/JvcXE5zdi4ztdVoD2NPc9569lJEVP0d76SYKGvfHCbNTVON3aoxiLG5UOOBYXNoOeMVeMofA5qL0qfjNYkb2luxk937+Hnn37CDRaPfDl9pknxIftVtJex2Ou7oakFObnaXmsO6ZzJTve1hk3+HMUalNcSTNAx5PhDrs8mqXOqjCNxTWU+hG2ga0+Pjc0H9aF0fGE3aD0Oil/F62Qz7jM2Hvx8Hw/vP0BWZpZJ2RD5N+TmFfG9kRsaW1Df0MzOzZI//746dWrbhq5xKOrf3pe/Un5GnlNF+V+1vffPbtC9UvpX4rHMgTH4kOenKCXnd+Ji4/DwwQM8evgQjx89wiEHR5NgRP5uB4ejOi5Ix0+46l5Trhf2oT5isCTPqVJjkf7ZD7LT8npi1B9RrEHtn/4Km07/03vpL9lzQ2qkhT/VW10ktSV57aBx7H+K1R//8guePH6MO7dv8+dMhQ+qhanvZKOu/io02fkYM7orl9vXazIU6yfIsYgha6Co6rpPxIbsv9J9o+d6G6My5L6K+bh9+cy8OfN0YyOHHA7j6ZMnePb0KZ4/e4bkpOSPakPk74yMiuVc1NVfQW3dFSzu9KsM4WMoZeicKmNrGYvTaEzL+ZgzTjifgMvJUx2+REQkCrWFCAwIxDlPL3h6nsPZs57Yv98W31utZj7F7BEV53xI5JfIY4e5ubn49flzvPj1V7x88QJWVqs+Ch9yTL5qlTVng7iorW2Cn1+gzgaaIhskeU5Vf9Z3MEQLv13M5775XvBFdpaG1w9RbQSN+95pb8fP9+7h0YOHvO+j+/rm9Wv88cdb/PXXn1zv/vgDv//+G3/+5csXeP78GbKzc3De6wJ27dzTbT/ykSa5fu/b+Ys4F69evsTrV69QV1v7UWyI/F0aTT5jowk1jI3CojJM7aw7VtZfmprkOVWGrO/wIY0eNRZrvl+L067ufI2BYmYPaP4bze2pr63jfBQWaJEQnwB/v4t69uOw4xFs2byV16rK9qO4qJjbFcHHE8bSIxaH3r9/H/fu3kNFeQUfL6Pai5HIh9zOLvr54/XrV3jz5jV+++0Nt73KPn2obMfu3fs4FzU1jaiuaYC9/SHd+3rKV5ua5PUdBlrHuHK5FY4fdeZrAWayc6d1aoiPxMsJcGNtfxeLNZcsWmaE9jALG202c6Yy0jM4HzR+fKu1FTeuXYc2vwAuJ06xmHD6iPHFKCcgxgnGj5vE+o6H3Oa+ffs760se8+eGyoaI7xgzejyzF+WcC5rPodWW8udEXk7UZw5FXspYsYihY4e0v8XG9Zv43ki05jKtJ0t8BPj6Y8umrey85ww+42Mn8PUMqI3U1tTy2laaH0G2KiwkHFYrVw1bNogJMT9YHvNyYnEd+ajv3v2BP/98x23xUNgQ+fj29o6oZlxUVdWjsqoONjZbuuXn5DnMdP9Mca+z/sypmsD6o107dvE9wGnfl+iwSFz09sP2LTvw+aSP61OuWW2NQP9Azkd1ZTUqysqRzJglhoYLF2I8RV5DQJkLvn37No/f/vvfv/Drr8+HxIbItoPsRSWxUVmHtDSN7j00N1KuI1Geh6Hj5UOhvs6pInthvWod36OV9p4kPpwPO2G55QqTOyfyr5yPHUdebh5KikpQmK9FaHAo5n+z0Gy5ELlfZb8rtz3x2NbWnrNBIk4olhvMWF3Pdtgd4lxUVNSivKIGNhu61pToaRxQrGkszssU9wT80PoOlJM97+EF33M+nI9D9g56e7Kaqqgv+3GfLV/3OS87DxoWF7medP3ods5Qkc8u5sqJuSNKf0Q5Z+Lu3TucDfKxnj17Oqg2RLYd+fnFHWyU1yA1pWtuhXKfB6WIdTpHU11HXazvIM+por0knY44sxgjCP7eF+F6/BS+7pw7b04aPWocjjud4HxksLYVw+IlWmPKXH6/WHNIWRupFI2ri3yW7Y92nA2KQ0iUCxysOEQcz2bDFs5FWXk1ysqqsGF9l+3oba1cZb7BVO8BMSHPqVq0YAkC/YIQFhTG+Vi/Zr3eXvfmqFkzLeDv64+UxBQkxCVwWyLvbzZYbVv4QXT/ZZ+bHtNz5GPI9kG5vhy9py++uXJM4fbtdh6rkx4/fjwoPpZ8rNTUTMZFNUpLq5Cc3DU/8oijQ7+OLerdhITvNdjza3qTmFN1zLkClyJjEBkaBTcXd3zROb9ruOiH7Ts5H7QHYLB/MN9Dcyj4UK5fKdZypHssYmyxhmN/v0/eQ+HH/bZ4+/Ytz/VSzlfMVx8MPlauXM25KC2tRElJBftue4NsR0+i6yLGSuRancGYX9MnP4T1pd4XInA5Jp7zsXPH7mHFhZ6/Pn0WLjKfMTo8GuHB4bCU1pUZLD7Emo3ifov1K5V+00D4UK77T3WLxAaNF7a2thrVhsjHCAoMY1xUori4AhpNnm68o7+2Q9gJsqtiHVzhfxlzfk1fNXOGBWKi45B4OQnhoZHcvxqubAh17Ct7hPNBdmT3D3uMdmzq68T4nexfibk6JOFfGZMPEtU2CRviceYsfnvzho+pv379mteyGZuPqVOmo4RxUVxcjqKiMricdH9vzsoQiZpQYUs+Bh+zZs7B5dgEpCSlIcg/ZMTUAgpt3LCZ8+Hv4898r11GOSbFC9T3yXus9OZf0f0V/hXZk4HuFSmve0J5K6pfo7qTV69eIsqIc9XF5w87OjEuGBuFZSjUlsJi9jxdH0ExQ3/HyJXXbjDmZ/aFjcT4ZKSz2MqX+RujBzleNVVRDpv48PHy4WOdxmJEjrf7G5/3R7I9io6K5nWLVMP24sULjBs38Pkh8mcTE1JYWy6FVluC8DD98QtiQ8xtNXStb3FdjDm/xhDRb09JSkdWRg78/QJ5HnQksiG0dLEl58PLwwtbNm0zu99PrFFbIT9EzndRnQ3V9lKNNI2nUy2osfhYsfx7bjO0BSUoyC/GOuuOvDnV39McFWV/oYwl+tJGjTW/xhCRDUxPy0JOdj4CA0JGPBtCixcu5Xx4uHlgkzT2a8oSfgy1PeHLkH8lt89rLS18fgjNn6qoqBiQjyV/5uQJVxQUFDM2ipCfV6hrR+Tj9RZ7iFoAU6wnIVFuITMzh51PEUKCwlU2FKLcBPHhdsINKyxNcx6PGBMR7UzZHxMf8r5Ubq7unA2aY0jzbb6cPssofKSnaXg7ysstxJnT53RsKG2HOSkqKo7bxLjYRJWNXrRg/iLOh+txVyycb3rrGBMTH5pDQf23qDuhuQFPnz7hbNA89QvnvQfMx/LvrDgXebla5OYU4DvLlWbPh5urBx+/IfsxEvaOGlBea/0mzocr8yGmTTG/OSXEBq0JJP4vKyvD48e/8DGRxoaGfvlY8nuPO7swLrTMRy/gcWxPdsucZGW1htfHEB8UV6kMfFh2++zh6e6JY4edzLK+Rh4vpLV/fnn0iK8FRJr/zYIB8ZGSnMHj12xNHtyZPyr4kNdXMRfR3N8CbQnn48hhdT3evoruN9kP3/M+2LZ5u9n9fnk9dIo5iAtaL+vB/fs4eMCh33zQfHfiIjuL6qJz8f/snfdfU9nWxtdfM+2de2euY5mmY9dRsXfHzigCoiKgFCmKICAgBEINJfTesVBsIPaG2EenO/1OuX/Au58tO7M9k5AQDuEcPT+sD3gMyU6yv2evtfdaz1o5qKM70vPAsbK8vCJes1JcXG7M+2HatE9mcD6yTOZRzdUaTcbF730XLnA2vnj8mNf1D9fHEo8L3BPMuWhkfnpjfbMtjlX2h9ODbdiwhdfKg48pOvx+tWComQQfKYnJuhu7nAOFelvo9T5++IgePXzIa5Rd5UN+DM4EwEVDXTNlpP+tg6PlHHV7Bg3gzq5znA9ZQ8Kw4RliD6whBbkW5mfp7+xQ2KKFSzgX0Hx/cP8BrR2sgxkOH1grwEV9XRPV1zbS9sG8NdFrXta11/rnERQcyrUdG5mfaMzzkRlyfMFHfk6e5msQ5fMR5GbIOeAP7z/gfRGgRYr8xeHysYB9DuACOUm11Q00Y/rzOF/uHSfXAeO1cWautf1S9OVBrwXwsWzZKmOOq2BREVFUVlxC+4L2aW5syFfCObrQCZYNjIjHVVdV07279+gee1xrc6vLMYj4/10BgZyL2qp6qql6sU8cGJC5VI5juDlYo2lJR49xPqCBasxtdWzqlOmcj1o2x8b9Z+RriDL31J42tbN6OVlTSjaRS6/0c6ABhN5TA3cG6E7/HZf6s8n/lxCfxLlAvnf84ed1u/Z67sIwVowP41b23lC+N7muXuT/K6+rZaj5Q29Q8DHv04XG3FbRYmNiOR/hoeEjfi5lrYfQtZKvOauXE34NHifyZJXzCeeE4kwb+scDjIs7t/up//ZtGz+u8lFTydioqKWq8hra6bfLtkfmzr4Vxi1yAWQ/TK4jA+dq5+ju2xfB+SgsKjPmtMoGjQrw0dLYNOL8HHu1UEotKGf1DmDBmW+v1CLtZ2zcvnWbbt+8Rfv3hbnMx/Rps6iqooYqy6upsqzK1ucG/Llz9iHn8oNtcKB8j8oeaWrY+d7LnI9NKtUyGPaipbPvC3z4++50O352xIdyDVGrHkjWTEevKWiy3rxxg0qtpS7H5p+t3cC4qKaK0ioqL6m07VM463Pj7LMQNR2iX8Ro8rFly3a6fnOA2k90GXN5lGzFslWcj/LSMrfmg1gjHNXSyrqIavEh532kJKfSzes3uJ4+tCadxejiur9vAHvPlYyNCiqzltt8K3fzEeV+wHIPtNHkIye3kPMRsi/cmMujaNUVlXTq+AmaO3v4+b2YE6JmUJ4rIiaV92TVqpfD/V3c4/39Arhe8TVmV69c5X2eXNnDij0Yx7mAhge0bYaKzV0xsc8l3puInUTdoKi3VKsOauLED+lW/33Ox8umy6M1iwiP4HzEHnRvvoraOJkZEZMqa+PUqJfDHBb5vPPnedE1xsXVy1d434n5g3GEPT7ka/k5FiplMW1JUSnt2bXXxp27Gj7y+5ZjKKHLoLw+Utu6dTvno76h1ZjDo2wLvRZzPtpb9fdZY08XXFxmduniJdt+gDM+wIW1sISKC6y2GmTkXMl59Fq2vPxizoe/pM9l2OhZY309nT3dTZ/Ona/5sWIPKyoizPZv9IK4xPyXixf6KPJAlFM+kKdpLWBsWKxUxOYZzoL09n31DzzkfBi+lWcsJiqG87E3cK8uxiv7QQX5BdTX20cXei5Qfq7F6d7V3NnzuW5gYX4R19UTfMAHQuwkdErwU5zXaClf0ctrCeejo/OsMXc9ZGvXrON8WPLzNTtGEefAh5J70ZjSTIyNXuo938PWwQaHe1ji35vWb+ZcFOQWkCXHMuRrithBMKOF3Kuw8CjOR+qxDGPuesjGj5vI+bh4oXfMx4I4V76Hi5/izE0Z2wfuCaKecz18fxc9Ip3xsZHxYRlkIz/7+f0Ae1eyz6Zly2cxE/jYGRBozF0PWl1NDecDe0JjvU44ewz2sEQ9YeDuvYyNc3TuzFnG+FmnfESGRXIuoMcaG/23hqhe6qG6z/RyPhYsWGLMWw9aanIK58PP11/zY5W1R+fOmc+5ONN9hs50nbZpLjs6AzkQeoDyzLmUm5lL4YNnazgX1Govc6UN3HvM+TDmrGdtz+5AzkdMdIzmx4q1Q5x1z50zj/doPN3VTd2dXTRn8JzTER/olZSTmUPZGdkUFhJm400PWj5eXks5H53d540562FbtnQ558NaXKwvPth60d3ZTV0dXbxPoz0+5N/TktMo25TF+yX5bvezPZ8e/CvBR3llnTFnPWw4+wAfdbU1mh+rnIcOHc0uxkXnyQ7qOHGKdvoFDMlHVnoWmdPMvDfr2lXPewLjXFAPelfhEdGcj8Nxicac9bBhnoGP69eu6iL+kHvddjA2TjE2Th4/yXOyhuIDXGQey6CMVJONj5Hmlniaj7CwKGPOjoHphQ+lnWJcoP/1ibbjtlx9R3yAC/RpNTE/a83K53ljesktMfgw+HB1/ZDPK060naDjrcepvbWd/Hb4D8kH2EhnbKQdPUarB/Xg1DCRwyzqBuX+KGq9hikjh/MRsEsfeQ4vm1VVVHA+vBYsHPE8gYmezqJuVpxtyP115OvDjUHE7+CivaWN2ppbydfHb+j4nHGRlpRKxxJTaPXy1fwazhzlHrP2TNnHQPk3eC+idlD0qBU1MmppBNXUNXE+vLyMs4+xsAKLRVU+8LvIAxHn4JhXcn82uf+YMGVPZHtmkXqsgYvWphZqaWyhHdt9h+QDXKQmJFPKkaO0alAPB/PXnjaEbMoxih5ygm3xvpV1UM76vRt8vNp8iBw/oVvgSl2dvL44Mvk5wEVzQzM1NTSRz7ah+UgZZIPzMbh+yHUajszeGof3I1j3JB+rB/tbGaYfPsQcUPKh1LdxhQ9ljZU9k/OwmhkXTfWN1FjXwPjYMSQfyfFJnA2sISL+GMn5ILjHWibzIftXoh5dje8nno3biM/Hzro6Ozgf06fNGNbfiXkABpR8CG5wrxUaOLJ/JXr5Def15BpbWGNdIzXUNlB9TT1tH6x3d8QHuICPhRhkzcrnfIwkv0TU0XoiPjf2r/S7fyUYGSo+F/fRkcbnOMuTz/PARX11HdVV1dI27+1Dx+eMi3QWo2N/d+3g/i5ifT30NDD4MPZ33bG66lqqZWzUVNbQ51u3DckH9naxx5uZaqJ10vm5fN6oVdu1O5jzgfpaY7561sa/N4nzcf6c9uvS4AvJOj/gorqimqrKq8h7yz/5kC0y7ABlHjOROS2DQoNDdfUdGflXY2ci/0oP+Ymyffj+x1TNuKgqq6TK0gpat2b9kHyEBu2nrPRMyjaZKXxQc1Ev68ekiR9yPvou3zDmrIdt+zYfzkeW2az5sSL2EPH09GkzqZKxUcHYKC8pp2lTZw7JR1hIKOVkZFFuZjZF7A/XVfwBE/UfQo/bMA/FfqHhnI+QYO31PFAa9mNF/i50hMFFmbWMSotLuT6JPT5s2ok+/pSXmUP5Wbncz8I1sKGX+qiWtpNG/eAYWE5WNudj5Qrt91hBvYaor126eDmVMS5Ki0qopNDK+3cOxceGdRs4G5bsfCoY1GcAH47y28VZDPbitKDPkJZu5nyEhkYa89aDJvQZJg5qdI6VYQ4609PBXBbneVs2baUSxoaVsVFcUPwPHpT/xpl5QU4+FeZaqCivgN595z1+XdYpkX+KMxut9I3y9vbhfJSVa79O52Ux1NyBj66OjjEfC+bhcPRLkG8FLoosRVSUX+iUD+hdgYti9lgr+5tpnzzXv9JLT07E6EIfzpi7nrEA/wDOhyktXbNjVOpfievRkTGMi+dab5Hhjs/NBB/vs/kFLkoYU6VszVm6aJktRteLhgnqz8HHqsHzG8NG1zLSTZyPDes3an6syr2mVN6P97meVYgiB90eHzDEKWXMJ0PcsnWwtwz8NXf12+U4xRP61LGHEzkfySkmY/6OsqF3FPSpwceE8ZM0P17lWYWF9+LNp7zsPFq/bqNd30p57eiRJCq3llFFSRnFHYob8ZiUvRtEzpmyv4FaebzI3wUf6B9lzOHRtdUr13A+rEX6y1mAL57PuIDWW645lxbOX+SQD9kOhB2gytJyqiqroJzMbNv1wwej3RqHvLflqD+OiKPUeu+9fVd5/4+VK7Xfn13PlnI0hfOxzXub288h5ySi3kPkr4peMeIeO9KaQZj/jh22OGH2zLmcC6FnNeXjqUPyIa57b/mcqssqqaaiimorq0f8GSImEvsGgoPR7h91KPYI5+Nocpoxj0fJ0NsZ/dXAx/j3JqrCB+aHqEUVfY9dqRl01eQYev3aDZyLLFMWmdPNdn0pe3ygj05tRTXVVdZQfXUtzZw+i19H/OGOzo/oWS1+ulrnMhKbNm0W5wP9OScYfQ5GxXbt3M35SIg/MqLnkfnAuiDWBjFH1JoriMvl2AP6h1kmM2Mjk6KkvStnfIx7dzzPhUdOfENNPW1cv8nGnjt5JvZqBHFPkPs726thH6lZSys5H8HB+tDW1pO98fr/UUmRlfOxaKF7uQr2agYx70WsKvp3qsUH9q5kHZ6UpBTKTMukjGMZ5PP5Dqexh/x/iM8ba+upqa7R1gMebAyl8wPuRW9z+bqyXl7u1amsn1TzO9y8eRvn4/SZXiMfS2Xbutmb9z8vKih06+8d1Qzam/uu1AyCI8wzEa/YM+zBCv/qHfb64MKUaqL0lHTbOYaz2FxYLHv95vpGamloouKCIrt84D1iPKL/poif1F4HRmLtJzrp0pWbFBS035jXKq4dlpw8zsdI8q0c1QyKXq6yT+EsPoffrtRfEHon4jHIIRR5JYghZC2rjz+c4hIftj45GzZTa2MztTW1UHtzK+Nugm2NAKfifSkN4xyKYU/bpk3enI/OrnP01pvGGqLKZ8r87bLiEsrNytHMmDDnMC/l+7Qw7INhXsr37e3ePlxr+hhjIzUp1Wnsofx/8ARdIOhmHW9tZ7H5Wts45NcGJ2I/SqvfZ2vbKeq7eI0OHNC+9r7m147X3iKzKZPzsXzpCk2OEfdwsAC/RmgfiLkqHnMw8iDnIiUxhQID9g6bDxj2rqBJCm3S6Mho25qI1xU9zPXwnc6bt5Dz0dN7mabosN+olszPx58Kci38DFkvY4aPJfRP+Bx++13ORXJCMnsfR2nloM6bK7GH/JiE+AS+t91x4iRVlVe+sE+mB73qF/cIrJyPnJwCY56P4L6M/VDwIeqI9GLyvuunc+ZT8hHGRvxRSopL4v0ThxOby+eEncxv6zrVQd0dnbbzRcQ5eslVFDZh/Pt06tRpOnuuj619vsZ8H6a9zvwq+CTgI2CwB4CebH9IkO139LVJik+ixMOJ7D0dctm3Uj4OXHWf6qTTnV10pqubdgfssT1Gb+sHzId9LuCjjcUjkydPM+b9MGzLxq0slk3l+a5vvP6Wrt9LbFQsJRxOoCOxR2jz+i3D/nuZo+LCYt638Gz3GSplMZk9HvVkOTkWOn26hwoLSnhPF2PuO7dZM+ZQQmwC52OyRurghmM4Mxf+DvzCBMZF/KF4ij8Yx3OwhrN2KBnB2eC502d5b+ies+dpwnvaz2EeyqDT1NZ6kjo7z1B01CFj/juxcf+ZQBH7IzgfG9Zpv77DmWG9iD8YT3ExcXQ4+rDND3KXj0+YH9Jz9hz1njtPF8732PTfUd+uB80fe4aevuDj5Iku2rL5c4MDB4a5ExIYQgcPHKTgPcG6fA/IF5TPtKPDozkX8LG8pe/eXT5g0Lbu6+mli70XqKqi0qW/x94v9tTUzDlU07y3+nA+2lksssrIgf9nPM7Y2Ls7iA6x+DViX4Tm4k3ML5wHOjt3k/dap06eTrHRsfw9gflZ0+e4xYaSkaDAYLp4oY8u9V2kyxcv0dTBmnSlzi8Me80YN85ItKLZ4MiimH8FPlqa28lrwWKDC8l2bPPlPnrE/gM07t0JmhwjGBHngPipPI+DjyOvHfAPBRsxETFu+1ZKPrA3Ci6uXLpMVy9foZjogy/w6WycWrbIAzGcj4qyavrog8kGG4hnt2zj+5/g473/aJMNpWEdwX0ZJu7LsmYCfhdcwFD74a5vZe/vsI917cpVun71GvWwWERcF3kv7uaX4O9FDoBcLyZr28vX1TbUT2eZc6mxvoXqahpo+TLt65uNmk/12lu0y28Xz7sAH3NmfarK8zrKR5fz1uV5YK8f2XDWFPytyPGw+TVzF3AuwMgh5jd8Mri/7y4bSkY2b9pKN65do5vXr9OtGzd4frManx0+H/E+RL0YfsdnJdYhxDFq9gmxx8jRxBTOR3VlLS1bos28otE05FVFs7UU+d7gY+7seao9t8wH/AuRm4t8KHzPuCbntcJHl3N63TU5dzd4Twj3rRCbh0r1QGrxAevt6aHbN29S/61bzB8pt11HzrC7/aVEHrLQn8PnhOvy56Osjxkt2x8SxvmoKK0kXx//V4YNaDphvUCdadKRo6rv4Sv5EHmC8veqrKEbCR/w+eX5+MGkj/h+FfZ0jzCfcfnSlaqwIZ5DPE/socOMjdt0p7+fBu7c4drXYjzu5pvI2iZgQzA/FnzAdvrv5nyUFpfx+ylqHV5mNpYsWsq5gIYH1g019UHxXQp/R/aXRM89T/Gxbct2HkvhDCcpLpHvzanFh/w8kyZ8QAP9d+junQG6d/cumdJNL6whQvPXnfVDjrHE5yP8K7H+emrOLF28gvNRZCmmzDSzzVd9mexNxv3ePUFc6wzagdj3hI+l5mvgexO1FzIfoq+3qCtV+tmi97EabPzr7Xd5Hkki4wL5iCM583DFx0pPM9H9u/fowb379PD+A64hJMblDh/K+FzkIHsqPnfoc7A1+VhyGllyCrgGDHTyXn9N33lHwmZMn0XZmTlc1x98bB+svR4Nw/dpL94WPcNdjc9d3RNVaqkjbwy+I3LZU5NSbL6jWmwoGVnotZhxcZ8ePXhAjx8+InPm37oosm78UHsLWqovHDJmZffYAL9dnI+sdDOL7WJpxrRZ+l0z3nib5wvV19TxfmLQDkSutx7Gjv0oZ73AsYcrrx2o80hGL+bEFF4nGBwYovraYe/56mpq6fGjR/Tk8WN6+sUX7F77nAnEII74kHW/8FNPZyTI60dch3rlY4mpFBgQaKtX1oO99ebb5O+7k2qqaqipoYnzERK0TzexlfC3xNri6OxZuXasWrGG51TynpqpJltupdpsKBmBnssTxsXTJ0/oy6dPKSc7x+EYEaMpa+u1pN/gqsG3WrNyLecD/eHTk4/R/qD9tpoYbXLxL16T0NzYzGtA25rbyJxhppnTZ+vu8xd1q7LPDV9E3GeV92Z8X4g5TKnpLIbMoP1SL83R5gPW2NBIX335JX391Vf0zddfs7F99EIc4uz96NWwZn/OYjzwYU7L5L22osIjaclC7fTXQr5DZEQUnTx+gs50n6bOU50s1iij1S9Bnpm9+y18EyUfPuxaBvrMopdmRpZT7VC1GVm8aCnn4ttvvqHvvv2W8vPy/7Fv4Ww91DUnjHPfbb6cD/QSQj8I9BVCbd1Y5KlA32vLZm+yFll5LlBf7wU6f/Y81VbX0ro1n710+2+YY7JWCZgR915oW0H3DbWO0I+OCI0Y9bXD3vO3tLTQ9999S8++/55+ePaMZs+aa2Nc6EVoWddEDXvn3+No42ebKD0ljSqsZVRTXkUN7H6AXkSRbF3BfWS06rBmMD9pz+69VFVZxc+kbt24yfN/wIcpzUTLNKovouY9Cj6J2EMW1wN3BVI24yLXnMP12T+ZMs0jbCgZmTVzDj17xtj44Rn9+OMPdIKt5/L+nTv7vbpe++cuoH0s7i23lnJdveMtbVzb4nRnN4uJ6/neeHBQCC2Yt5C8Fixy+Xk//OBjPtf9WIx96GAsNTe30JfMt/2CxYAPHzzkZ1Hgo7G+gfz9dnL/6lX5zLFnJWv2Tpk8lXORl51Lltx8iopwrqs7mmtIgaWAfvrpR/r555/ol19+pk0b/67nhZb8q8SHbAvZ/A8ODKaCPAvnA/WX8HmQA33j2nWeh3CfzevHDx9S/+1+amFzvr2tnU4ynjo7Ounq1Sv0119/0h+//06//fYr/fLzz/we9P333zG/4hvOx+1bt6iosJh2s/vlpIme1eAWZ+PyHpPQUpYfJ64p+/6pZdBMl3M3YmNiycL8XHzuRZZCW/9MT7GhZOSD9z+mp0+f0K+//sK/x4GBAX5mKR6HsetRy0FtwznDDh9f3u+upLiEuhgDgo8vnzzlcRx8VHDw++//5WzIfICb4+3H+fqx/rONtj7EY2XyWYQ425NzhXAdPo/cF0ntWjllTtOqFau59hB8W2tBka3WdSz5gMXHHaH//vYb/17/+ON3MpuzbP8HLSBXNN9Fz4NXkR3M9SWLl9HSJcu5H7V82UpasVzbefYyH6JPrPg/kTul7HvjSg7dcPb+Zf8EZzlZGVlcKxo5Afk5ebbzHU+zYY+Ru+xe+Ce7R4j73tw5817gfChGsPZij2s4a7DQfldeG8uclFfJ7J1li1ogfJdKPlzNMRX7t0OdA9jrFRsaEkpW5mtCY6e8pJTdl5fb5uhY8iFeG/c7cPG///3F7eqVK7bHIU53xIfQpR/uuQgeL/cyhHmyZuRVNdErT+YDnznmNa6LPAl3+RDPB9/MkT+BuST3ioXvWlpkpTJrKVWUllNcbNyY+VVDrSFZWdm29ePPP/+ghCOJ/9/eebZHcV1x/HyTvEtPnNiAbTC2AxhMc8EYmyJUkUQLmNiyTZOEei+o915WEuoddQkhisEkxLLj2OSFEzuPE/IRcv93Ocvd0ezujNgVknZenAdYVqudmfu7p95znK5Je1ZdnaW12Gel3vOnVRPvT8K5LZ5txPea/839y3m/wr+5Lpv1ipnnq53zoa2Dtc9aKJOzZJvqG8nW2Ey//92aZcGGlhH45fPz85IN2FrwRbZt3e64Lq4dwz6jnvVYrGh1iMXH0jGizjnivY7PBWrPg2rP9pgRni/DdoG2BlbOkq1vEFw0UUuTjcLDIpaN7tCzs/bu3Se5QNwF/ro2nqW9Xm/oe9XefVpnRizxnbjaTw8dCJB901uamqnN1kKpir2yXNjQ+z75+QX0v4cP6eHD/8rYZFvbFSf/yxtMaGegWP65f/g+/HfkTOGPtza30JUWnImul/N0n7ZPbtTOui50KthAXuQ/P/5IJ0487vmt1zfLEv8SM/YDYlWqP/6Ln/+KcgUrOGfRjhmZV9pl7mO56g49Owt+x4MH38qcOnJeyK9zfdZi7N2VWBNvib7AHkbe0Cgj2njuJ1GfCi7aZD1NV0cHnT97ftmzoff9oDPABepP/v3DD3T3zl2hWx7HeY3Un/D5TIi/5g9Xmy/Btd1GGMEaUf1xzBrvEPZ6V3sHdXd2UXFhkTwXuRLY0GOkoqJS1g398P33sn5icmLS6b3uZlGpbJiNDVpibs1yfR/XMajCaxi+o16NlVnB53hiRC8HuGXzVuoEFx2d1NuFfn4t4nu/vKx9DiOMTE1O0r8EG6iD/+d331FpyeOzItgb9HoD+YINtWc2/uTngrXBPWjU1/3J71V7yPB5CnVePe4Lz13mP33JiNbn2LD+Zdkbvaeri/p6emigt4/2v39gxdhV7nyRXwsd8dWXX9J3gg2cpUItnjbvo/rrvtIbiBFyrxn+O17H80H8Hq/zzHp/5QPrFPddG/vT5su91d9QjxGsBbXeAvZTdWUV9XX3UH9vLw3299NJJd6z0tjQYwRnRea/+ELWZuPcIc7lRir1laxDfGlTqc9YzR/6e15R278NbGDvUPWEN/u3eWJE5QNswMfo7xFc9PXT0MAAxUbHrng29L7/0cjjkot/QB48kL0dIiOOOq1NX/obfCaT67A5JuavfOD6ua8r88G2Jr+Hz4D6ig8tI+q9BxslRcU00NcnucCs2KqKCsd5zJXmcxhhBDoDXHwL+eYb2QcF/VDU2N9i2DDiM6o9kHmP9Gc+eF2CAT37iuuq8D62S/Ea7zPuuFvMd+Hfxa9FX4iWttTw4CCNDA8LG6ty1bGhx0j0xVjJxd+/hnxNd+/ckT39XPlmnkSd/b4Y/4N7XXK9o3qWwR8YwTWr90+tm2JumBFtjZWe4P+0/qU7gT2lPYsdczFGnk2+OjREo1evSp98zXPrViUbeowU5BfKHnN/++oreYb6s9u3HYxwbA82qKezVTyvyopfLS/BM/FUS4TnDNHG+OFfMBdjIyPSJ8e58tXicxjx1yH5efkyrvXl/Lzw3eflmZGw0HCnfcVdHQqfE7DW4/IUPBt3e43WTkCfx0sxsdKWAhcTY6PS91D7g69WNlwxcjk3T/a7Rg+Ov96/T/f/cl8w4jxTFvdQT4/g/i9lXy32TbT12t6o435SG0lPh6p7OPfr09pNvhQ8G1e+pHb2MfwK+N5jI1dpfHSUJscxX7jf0ZvHH9hwxQj63mBmAmYnoE/Nn+/do9CQMKd9BvpXtVHZV1zK7+1qlg/38MPrWA9LrdNcxRTUmBPX+/MZJvjli+XYzJ7E98rdswQb8L3tXIzR1MSE8MkH/JINV4zkiHuIPjf3Pr9H9+5+LnudZWZkLdAjevfcqA/vjT2T6yvUfgNm4198HlXvc9XX1Z457uwUI3xocxyeeqG7+t7gXz3HbETUvUzbjwd+RavNJmwpcDFOM1OT0vfwZzZcMfLHk6fo87t3ZR3jnc/uyD5RhQVFsnem9hmZ3e84vv4kdcCsG/hM1mL50L5Hrw8Ox17VOX16a5LrpdTP4/d5mw8Ivguu12yMT88XQQ8P+N6TgovpyUm6Nj1FTQ0NtHbN837PhitGQoJDJRfok4l5ubeEtNhaFvQE1J7R97SutbmnxdpX3si/a9+j1wdHu571erVyfkLbi4Jj1L7gQ83hGrHPOHYLNlQ+wo9ESB9jenKCZgQXszMz1NzUKPbC31hs/MR97Hfnjt3i3k3IWevoN4h+smMjo7IvlBob5Biwuz6mZp+nJztBrdHj9ab2RcM+7yn2744P/j+j65nrcbT6g/d5lWetPnqSuJSn/YbjtnhGqj0FXyMhPkH6GLClZmem6frsNUpNSXGwsVrzG95k5NVXNpGt2UZzs3PyLOL1a7OyPydm5mn1CPYofh56e74361W4xtuI/6D3s2DHm3zw52p/L9tdrnqAPkmOB5/De46rPCF6cWhj8/A16mpraVpwcQ1cXJsRe98sxUTHuLQnLHHNCPYTxH/BxbXpGbHfzAh9PE2lxaW0RjODWC9XwnurGX8SP+OrmDHv62oPToheHxxwpMaboK98GcvW1l0Z0aU8f0N9HbpCG7uFRIRHyhoq+Bizgos5wcX42CgFBQZbbDyhTwKdMTM1LdiYEnp5Utpe/b39sh+n9mfRz3TXjl2O3j96sx492Q6+vDbOaar+rV7+5GnkK8z43DyDlu8vbNzAgIAF74M9lZOVLZ7flLSl5mbRo/u6jFnBRrDY8A4j21/fSQN9AzQxNkHjo+M0PjIm+6Knp2boztdwtb958gv8+Zw7ODVz/Vr9rD0Hil7CyGOwj3Fjblb4lHNUWFDgFJO0uPAOI+CgqKBI+uqjgo2R4RE5O6yrvVPOodE+O7Zb9M4nPun+yTWRy71Wi/OCRnsdGfXT2Ndj/abaflJnZOcIW+qxj3FTcIE4bnBQiKUzfMzJkdBw6u7ooquDwzQ8MERD/YNy/mRudq5gYa2TDWB/f6jTM3Vlf5upc2T/dLnPjcM1mclXgHsj1wRbCvuOdn/AeZ7hoUG7j/HIlrp98wa1tbbSurUvWGwsESPPPbuO8nLyaFCwAbsL/khfTx/1dvfSscjjjp4WqnwSZY996fWD4L7LRu0QPu9m1G7zhS3ki++K9e6OJew1evF02L8N9fUOH+OG4OLWzTn67PZN+jjqY5cxGEt8F9+CYCZlm7AJ+gQXvV091NPZLXRLNzU3NNM+pWeYKmdOnVrAiRnbyuyebOZ92r627uJHZnWdUVtQr58+uNCzU9c+9zwlJSbZ47Xg4rrdx7h96ybV1tRYOmNZ6JK1lBifJLnoau+iTuGPdFzpoI62diovKaddO99wywlsdDO9SDn3ZvRnjK5lztUY0Tf4zkbznfy5Rn1vNU6B/lN6XMDHuHDugozXXn8Ur715Q9hSt27InDjqINw9M0uWlhHIls3bqLKsUnKBvpOYidlma6PW5lZKTkyhndt3u12/sBs8zYJTc2NG9mOsYaPr0gwfZvpQcSzPiO/NLLh6L7g488GfFvgYt4SPAVsqLvbSgtiUxcXy4uTwoSCqq66TXLQ0tZCt0UY2YW811zfJGVx6eRMIz4JD7tfdPB8ztVxm1rEZPsCp0TOsXGPjLtbNuVW93B4E+djEhER5FnyBj/HIlvrDq5stLlYIJ/DPw0MjqLqiWvbAbxJsNNY1UkNtA9XX1FNedh4FB4Y6ZtSpAj6wj+JPnlnCwrWORm0mvM+o3W+GDzN2G4RzpapNhj0AuVR3tZ7bt+2QXMxoakLsPsYNycWunbstW2oFMeLEiVj/YSFHqKK0QnIBvVJbVUs1lTVUI9ipLq+i0yc/EBxs0rU1uL6L1w/njI3a/mbWsFk+zMQUuKYQOgfXAy5gS2r5Zxsq4OBhutLa5qg7d/IxhC1VW11tcbGKbC7oiZCgUCotLHnERTVVlVVRZWklVZRUUHlxOaWnZNC+d96jZ377rMtYEPdNw9qCPebNNewL/cG91sAF9/xyVcu55+13KD4ufkHduepj1FhcrHpO3npjD2WlZzm4KCsqE9yUUklBCRXnF1NRXhHFXoilvW+/S8+4sI1UPqLPn5W+Pf7NvguvP1/ywT40r3e2l/g7Qf/hO7mr/8dc6TjBDvrn2M/wOdedc01Ielqa+GyLC3+xuyDbXttOH52JkjqlpKBYsFEk2CikwssFVJBbQPk5+dJPuXD2IgUFBNNL6192+3vYb1HtMd7jOU6K/2OG2CdmzlQ++Jw2n59Q389zIfizwQT8atWPcFVTg7zqgf0HZZ8Q9Hq29wmxn22VdedKTQiYifooyimHYXHhf5zAnnp3zz5KTkh24uJy1mXKzcylnIwcyk7Ppqy0LEqKS6LjkSfozd1v04YXNxr+3WpfAp53zVxwzEjlg/NxWPtsIzEf/KeRfD9yQ+hPGfVhFJWXljl6Eap9QtjH4Lrz1JRU2rf3PUP62BL/sb0g69a8QMGHQyg+Jt6Ji8zUTMoQ/kl6cjqlJaVRamIqpSSkUHJ8Mn14+kPav++gWMtv0IvPb/CYQ/GVbFi/kXbvepOORh6TM8Brq2sc/c7BBfdcc/QJgY/xqO48L/cyBR0Ocjrf6m5PscS/dQoEtRPvv7ufPv3oLGUkCzaSBBuJgo0EwUa8YCMumZIuJVFibCIlxCRQfHQ8xV2Mo0sXLtG5qHN09MgxCgs6Qnve2ku7BTvrX3hJ6hzt2S4jAr8J+YVNr26hndt3yRrN8LBwSklKobycy3KmUuejmUq93d2y37mjr7ODixGHjzE0OEC5OTkUqMOEpSssMcvKz376S3p96w4KCQylcx+fc8lF7PlYKfg7Xk+ITZA2GXhKEzoH+ge6KDs9i3KFfoINl5+TJ30e+D8lwhcqKy6lipJyqiqrpOqKKqqtqqH6mjpqrK2npvpGsjU2U2uzTc5tbW+zz6fkmUpydgy46Ee/80GnXoTohX7m9BlZS2j2+i2xxMxagT/wysZNUr8cCz/uxAVYATdgCPYXbDHonkxhn8FWy5Fc5Eou4O8gJoD4QFlRKZWXlFFlWYXMy9RWVlNddS01SC4aBBeY9W2jNlurnE/ZKedTdtpnKnXbZyqxLYVZSxlp6VLHoI/OYq/TEkvMsOJuHWFOFvyPd4Q9FRwQQqeOn6aLZy9KvyUrLVNwkS39ffj+Bbn5kotiwQXiZ+XFgovSCqoqr5RzvSUX0Bl1DTL/39LULLhokTk7nk/ZI2yp7MwseX71xLGTdOD9g3JusDeuxRJLfM2L1j7buOEVKfDjDx0IkDnqw4cCKfBQkIwfBx8WEhhCyGOGBofJvD/7GRFHImjLptfkjMrXNm/16Xe1xBJfM7PUa/Fp/35LLPHWuvWmWPfYEkssscQSS5aX/B9QSwECFwsUAAIACADaiD5b5RC4kStAAAAAcQIABAAJAAAAAAAAAAAAAIAAAAAAZGF0YVVUBQAHJQ7caFBLBQYAAAAAAQABADsAAABeQAAAAAA=</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #2</Name>
|
|
<Index>2</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPlu/ZLS3jj8AAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J33W5RHu8e/f8l53+uc67yvPc3ExBaNxk5UooiK2NtRAyhiARtgQZQivTell13q0ntViiL2FntLjMn7e87cA7POPoCysAssPD/cF8vW55mZz9xl7nvmn//4H/xTlSGTf/zXf/dZ1PZSZTSMe0v4flVUMdc4Va9JFZWHvo27xYuXcnE54AoXF1cEh0QgNi6RySXk5Reh8XIrGpta0dDYgvqGZi519VdQW3cZtbVNqKltRHUNk+oGhIVFM4lCaGgUDh86CgeHfVi7dj3mz1+MyV9NMera1b5UxRxM9Pae2bN/xKZN2+DucQYJF1NQzcZ2S1sHmluv40pLO5NruNzM5MpVNF1pY1y0feCiUcFFHXHRpOeiqroelVVMKutQUVGL8ooalJdXo6ysGqWlVSgpqWRSgeLickRFxcHL6zx273LEvB8XYuyYiSovqgwqD+PHTcIqWzt4enrhYmIa2q7d5NJ69QZarnbouWjmXLRLXDARXDS16HUGcVFXf5mzQVzUEBc1xAUTwUVlLWODuKjRc1FaKrioQFFROYoKy1CoK4VOVwJdQTEK8ouRn1eEhPhEnDrphY3rt2D61O9VVlQZEBc9vWZltRyHDh+FNrsAV6/fxtX2W2hr/8AFZ0NwIXQGcdFsyEVObiGiYxIQFU0Sj337DnDZu5fEhYuTE8l+ODnuh6OjMxdPppdCmG0WHMwkKJzrDOKimLgoYlwUlnayUVCi5yI/rxB5uTrk5hQgh113jjYf2Zo8JDOmPdxPwWbFanz5xdcqK6r0S1fY2q6Dn38w6tm4vtZxG9f0XNzqxkWLxEVcfBK8z/lhv8thrFy5GosW/cR1jjmuf8b0WcyOWoTNzLbbvcsB/n5BTF8kMS4KGReMDcGFNg9aTS60WTnQZGYjKyMbmelaZKRpcIF9Zp3dBnzx+WSVFVU+qisEEw2MifaOO4yLO51cXL/VyQZxIWwpxkUGG28n3E9j48atmDVr7rC5v7FjJuDHuQuwc8dupntOc52hyczp5CJDy9jQMDaykJ6aibSUDKQlZyA1KR2+5/2xdo19N1ZUTkavrpjyzVScPOWNUmbft9+4q+Ditp4Lkkxmn5APvmTxMou7f7KlVq6wxYljnkiIS0R6SmYnF8npSElKYwylIvlSCpIuJiMxIQmuh47AetkKo+xQVUYOF7ar1yGS+QDXb97r5IJJNy6YhIXH8NiUuWykoZKp383Ant2OCA0K6+IihXGRjEvMPrvEfPqLcZeQEHsR4czv2Wi/CZ9/9pXKySjgYsuWnSirqOVcXO/iwkBnEBMRxMT2EcdEb0L21GZmIwYy21JwER+TgHg2f8RFxSM2Mg4xEbFwYDyRvlU5GVlcjB//GVxdj6PxytVeudAwX3bT5tHDRG/y3ZRpcHLYh7DgcMRGMS4iYxkbMYgOj0ZUWBQiQyPhxmyv72fMVjmxcL+bc+EmcSFsqS4u6htb4OsXxNf31PYzlDH/Ho9lP1njFPPvBReRIZGICI5AeFA4wphddtjlMGZOn6VyYoHxKLKjmiQuZJ1RUlbN1zNGu67oq5Cu2O/kgvDgTi5CA0MRGhCCkAvBCPYPwkHng/hs4hcqJxbAhZWVNcoq69DRCxebmQ2ltl3/5LNJX2LXjt16LoL8AhHkG4hAnwAE+FzAdta2//7XOJWRYcgG+Y3JqZkqF4PBCdMVO7f9HwJ9O7m4cN4f/uf84O/tCy9mjy2zWq7qkmGkM8jH6Lh139DHuMH8i6YWxsUOtd3MJJMYJ6QziAu/sz7w9ToPnzPncP60Nw4xm2v61JkqI0PIhrCllD4G5YSo/sXgCXGw75e9nA0uXufgy3jx8/bBBrsNqs01SGyIxxSXOnX6XI+2VERkHL5RxOhVGRxZOG8RzjD7inSJ/zlfZnf5MfvLH6dOeGLGtO9VRgZBZ/zwwzzk5BV16QxDH8NKYfe6n/DgNoDajuYT530umC6NfdIVpDMCmE8SyHyTIL8A5ssHMp8+CHar1/U656kycDYcHJ0VPkZnTojnybPdbKnCwiL8/fffiIqKUdvSjP7H+/fveTvbrlpj8Brpi9PupxDiH4TQgGCEBYYgPCgUnsc98PmkL1VdYmJ7SuRKKeNSVksMdcbunTv5X+ov6jcSeX5TxXSSlpbB27e+voH/v3rVKnz15WQDXbJlwxaEB4YiIigMkSHhiAqN4PpkwbyFKiMmsqd4vpQiJ4TWvWWdsX7dum7fRf0m958qppNFC5fo5x+hOyayeexf/zsW8+bO44/Fe2l98Tzz26NCIxEdHoWYiGjERcZg57adKiMDYGPLlh28VluZE2Jra6d/j5ivvvu2u09OekPZh6qYRsTcQzpE+ZrgQ+4Tylc54HwAsV1sxEfHIiEmHh7M3qLXVJ/EODaoJkOZd045hMrY1JJFSz76vX6+/rwfnzx5qrazCX1yalPyPT5mu/ak01fbrEFCdBwuMjYuxSUgMf4igpnvPvXb6SojfWBj/LjPeA2fMr/W1y/QwJ4iP6MnnfExH5JYUdt74D45zTXGtOdeBweD/ylHOCosEknxl5CckIiUS0mIi4rFHClPVGWkZza0ubpuNXx7ftnbTSf0d75T23xgIutjY2Pnso1LNpWvtw9SLyUjLTEF6cmpyEhJw8qfbVSfpKcYFdMN2hydARd1Dc1YteqDryH0BfmGxsZtyU6mz6ljfGCybesOzgb9NeZz1F/EB/mL5MPTc2O7fJL05DTGRjoyUzOQlZ4JmxW2o54RgxgV06sUq5VrW2vrr3Sry6D4oawTSNQxOzQ2lrFM0Vqt6EM5BkziuMcRWWmZ0KRnQZuhQXaWFm6H3EYtI/K9EgMUkxK1rSRZ2jwDX0PmQjkn9UcniNiLsBNG+vqIvBYkx/PovoUvIcfBhQ0lbFJjdYUs9Bs9xbjEOpUQ0hnZmRrkMDZyNdnI0+bgqOvRUcdIT2zI+4RkaT6wIeLpH5vHqO2Nmc+Ip46OG/r/aZ19pPvtIs6tbCea04WdKvxu4oaYEO+l9/R3/Yi+g9q3p/4hW5n6VtYlq1au5lzkZ+eiICcPutx8HD9yfNQwIt8fsUH+hbwXYabGUG9QG8rrTL2Nd2N8Eep/ub+JjdEQ16I2onFP9y7uV3nv9JrQNb21l7G/+TH9TmwobQNbmzWci8K8AhTl61BcUIgTx06M+LiWYZxqEopLqwz2IszU5OrZ6Knd+mrfqnz0PI+L2JGwqWjcmpMPY/xDWk8k0dvTtmtRxLgo1hWhpLAYpUUlcGA+ykhlRMlGljbfYC/CzKwPbFBf9ifntq+fof6W7Suyz/rK1kixr+j+qR2IDdm+oudF3oh4L41xspGM7Qtj5hyyEUhkP3DtajvORVlxKcpLylBRWo51a+1HHCPd2cgz2O88Q8FGY2MHjri3mjUvfbT558LWUfrhg+GfG6Nv6PdknWO3Zh3jogyVZRWoKq9EdUUV7O3WjyhG5Hvw8Q0w2Nc5IzPHwN+guctu65/4ZvY72NpfUWs3RokINnrK5yKdUV1RiZrKKtRWVaOY6bLvZ/4wIhiRr532rdXvd952HVU1jQZsnHTvjFOMmeDI+VAZGb1sbN282SCutWPbTtRV16C+phYNtXUoKynF15O/teiYlnzNGzdt6+Ki84wMOvtF7HdO7aBcL1IZUfWGMvZ75rQXGurq0chswKaGRqSlpOnnV0vjwyCOyzig88Y6z47pPFOJzuQT76UYbk95hiojo5cNMW8qY5ix0TG43NiEK02X0Xz5CkKDQy3SzpL9cV1hmcGZSrt2fYjTfSqGq2REHVejgw1Z5Fqr8eMmIiM1HS1XmtHa3IK2llbs2e1gUYzI1xgSGmlwPqW3t1+3OeJT3yczMmlygv55ik/K+aDU5iKer9ZCWQYfn2JDjBE5h2L2rDmoZb7I1dZWXGtrQ/vVa7BastQifBH52nbtdjQ4nzI1TaO3F39ebt2n2o2PMSKvbVH8kWL3Ip6v1pwPfzFmDiP9IedrrbJZzbi4iuvXrqGjvR1NjY3D3heR2SXfWz6fsryiFl9//R1/rb9+hJIRmY/e1oHVcWgekfNGxPo6Ca0jiudpzurpeVPJSc9T6Lh+HTc6OnDzxg3ESDlGw5ER2edIS9d+OLf1cis/p1KeN4zNKeyJkX2HX6h8DJHI7SvyucR6vFhrFzUior+NXYPvSej7ZbsgLycXt27cxO1bt3Dn9m3sddo3LBmRr+X48ZOMjTa+rwKdaex11sdAT9Jfmkv6W6+0YUuSnpHpP2hUPoaYD9kXFDqDnjNVjqOwOWi8KPuU9iRvaW7G3dt3cO/uXVxl/si3U6YOKz5ku4rOMhZnfTc0tSAnV9drziHdM+lpY2uc6HNnfdoMbC36Dtn/kPOzVTGdiDaV+RC6gdqeHpuaD5pD6fuF3qD9OMh/Fa+TzrjP2Hhw7z4e3n8ATZZmWOkQ+Rpy84r42cgNjS2ob2hm92bFn/9YnjqNbWNrZamfrG3CujGixq/Mrzeor5T2lXgsc2AKPuT6FKXI8Z2E+AQ8fPAAjx4+xONHj7Df2WVYMCL/trPzIT0XJEeOuutfU+4X9qk5YiBxLVXMqz9IT8v7idF8RL4GjX/6K+xc+p/eS39JnxuTIy3sqd7yImksyXsHTWD/k6/++Ndf8eTxY9y6eZM/N1z4oFyY+i426uqvQJudj3FjP8Ry+9om/fFHVEYGnxFiQ7Zfqd/oOWX/Cb/EmH4V9bh9+cysmbP0ayP7nQ/g6ZMnePb0KZ4/e4aU5JQh1SHyb0ZFx3Mu6uovo7buMhZ22VXG8DEQsTRGljA/jda03A674ajbURw/dqLTloiMQqGuEEGBQTjr5Q0vr7M4c8YLe/Y44GfrlcymmD6q/JxPCdkl8tphbm4uXjx/jpcvXuDVy5ewtl4xJHzIPvmKFbacDeKitrYJ/v5Beh04GGwMd0bm/7iQ1775nfdDtkbL84coN4LWfW/duIF7d+7g0YOHfO6jfn375g3++OMd/vrrTy7v//gDv//+G3/+1auXeP78GbKzc3DO+zy2b9vZ7Tzy0SZy/t6PcxdwLl6/eoU3r1+jrrZ2SHSI/FtabT5jowk1jI3CojJM7so7VuZfjhZGxo4ZD5ufV+GkuyffY6CY6QOqf6PanvraOs5HYYEOiZcSEeB/wUB/HHA5iA3rN/JcVVl/FBcVc70i+HjCWHrE/ND79+/jzu07qCiv4OtllHsxGvmQx9kF/wC8efMab9++wW+/veW6VzmnD5bu2LFjN+eipqYR1TUNcHLar39fT/HqkczI8qXWOHLIje8FmMXunfapIT6SLibCg4397czXXLRgiQnGwzSss1vPmcrMyOR80Prx9fZ2XG1tgy6/AMePnmA+4ZRRY4tRTECsE0yc8DmbOx5ynfvu3e9sLnnMnxssHSJ+Y9zYiUxflHMuqJ5Dpyvlz4m4nMjP7E9cylIYofMt1q2x52cj0Z7LtJ8s8RHoF4AN9hvZfc80+71OGD+J72dAY6S2ppbntlJ9BOmq8NAIWC9fMWLZICZEfbC85uXK/DqyUd+//wN//vme6+LB0CHy9zs5uaCacVFVVY/KqjrY2W3oFp+Ta5ip/wZzzc6cjExi89H2Ldv5GeB07ktMeBQu+Phj84Yt+OLzyUM6ZmxW2iIoIIjzUV1ZjYqycqQwZomhkcKFWE+R9xBQxoJv3rzJ/bf//OcvvHjxfFB0iKw7SF9UEhuVdUhP1+rfQ7WRch6J8j4Gc09QUzNC+sJ2xWp+RiudPUl8uB1wxVKrZcNuDJF95Xb4CPJy81BSVILCfB3CQsIwd858i+VCxH6V86489sRjBwcnzgYJcUK+nDl9dQPd4bifc1FRUYvyihrYrf2wp0RP64BiT2NxX4N5JqCpGKGY7LnT3vA768v52O/kbHAm63AVmst+2e3A933Oy86DlvlF7sfch1zPGStks4tzKkTtiNIeUdZM3L59i7NBNtazZ0/NqkNk3ZGfX9zJRnkN0lKz9O9RnvOgFGKd7nGw91EfCCN0lqTrQTfmYwQjwOcC3I+cwA9dtfOWJGPHTMAR16Ocj0w2tuKYv0R7TFnK9Ys9hz6Ve0rr6iKe5fCLI2eD/BASigWayw8R32e3dgPnoqy8GmVlVVi75oPu+NheubJvMhTt2x9GFsxbhCD/YIQHh3M+1tisMTjr3hJl2tQZCPALQGpSKhITErkukc83M9fYFnYQ9b9sc9Njeo5sDFk/KPeXo/f0xTZXrincvHmD++okjx8/NouNJX9XWloW46IapaVVSEn5UB950MW5X98t8t2ECNvLHPU1xjCy19EZsVFxiAqLhsdxT3zTVd81UmTr5m2cDzoDMCQghJ+hORh8KPevFHs5Uh8LH1vs4djf35PPUPhljwPevXvHY70U8xX16ubgY/nylZyL0tJKlJRUsN92Mkp39CTULmKtRM7VMUd9TV8YoTNbzjMf42LcJc7Hti07RhQXBvb6lGm4wGzGmIgYRIREwEraV8ZcfIg9G0V/i/0rlXbTQPhQ7vtPeYvEBq0Xtre3m1SHyN8RHBTOuKhEcXEFtNo8/XpHf3WH0BOkV8U+uML+MmV9TV8ZmfrdDMTFJCDpYjIiwqK4fTVS2dC3BT/D6SDng/TIjq07TfbdNNeJ9TvZvhK1OiTCvjIlHySU2yR0yOlTZ/Db27d8Tf3Nmzc8l83UfEz+agpKGBfFxeUoKirD8WOeH41ZGSMiJ1ToEnPz0RMj06bOxMX4RKQmpyM4IHTU5AIKWbd2PecjwDeA2V7bTfKd5C/Q3CefsdKbfUX9K+wr0icDPStS3veE4laUv0Z5J69fv0K0CWvVxecPuLgyLhgbhWUo1JVixvRZ+jmCfIb+rpEr284c9ZmfYsTK5imSk/KRwXwrP2ZvjDWzvzpchWLYxIevty9f6zQVI7K/3V//vD8i66OY6Biet0g5bC9fvsSECQOvD5E/m5SYysZyKXS6EkSEG65fEBuittXYvb5Fu5iyvsYYmTPvGNJSi6DJzEGAfxCPg45GNoQsXmjF+fA+7Y0N9pss7vqJNRorZIfI8S7Ks6HcXsqRpvV0ygU1FR/Llv7MdYauoAQF+cVYbdsZN6f8e6pRUc4XSl/iU0J8maq+xhghHZiRrkFOdj6CAkNHPRtCFs5fzPk47XEa9tLa73AWYcfQ2BO2DNlX8vhsbWnh9SFUP1VRUTEgG0v+zLGj7igoKGZsFCE/r1A/jsjG6833ELkAw/WMWYotZGXlsPspQmhwhMqGQig2QXx4HPXAMivrYXmNYk1EjDPlfEx8yOdSebh7cjaoxpDqbb6dMs0kfGSka/k4ysstxKmTZ/VsKHWHJUl0dALXiQnxSSobvci8uQs4H+5H3DF/7sJhd33ExKdqKGj+FnknVBvw9OkTzgbVqZ8/5zNgPpb+ZM25yMvVITenAD9ZLbd4PjzcT/P1G9If6j6kn4hrrbHnfLgzG+LrryyvpoTYoD2BxP9lZWV4/PhXvibS2NDQLxtLfu8Rt+OMCx2z0QuQmpzRo96yJLG2tuH5McQH+VUqA58Wx91O8PL0wuEDrhaZXyOvF9LeP78+esT3AiKZO2fegPhITcnk/mu2Ng+ezB4VfMj7q1iKUO1vga6E83HwgJs69vso1N+kP/zO+WLT+s0Wd/3yfujkcxAXtF/Wg/v3sW+vc7/5oHp34iJbQ3nRubDp2kd3oOuBQyUREbG8ZiUuLlEd90bK7O/ncD5CAoLNmqtlTsbF4/q6Os7G/Xv3eF2/sTaWeN9ep/2cCw2z0zWZ2Xo/Vnk+nCWIvf0mXitPfMy0wP4dDkI1k8SHz9nzFnftcg4U1dvSfr337tzF3Tt3eI1yX/n4f/bO+y+Kq2vg569Je/M8McaSprFrVOzd2AkiICoCSpGiCAICwsLCAktZWFh6x0KzgNgbYovRdNOflOcPeO+57pnnOtnGMiwzOj+cDzBsuTNzvnPPufcU8TW4J4BcNDW0Qm6OUTqutdq2WAO4u+c850OsIaHLyAR9D5xDSgrNzM7S3t4hydIlyzkXWPP94YOHsMGeBzMSPnCuQC4aG1qgsb4Zdtrj1qjXvFjXXu3XIzwiitd2bGZ2oq7noxOM8UU+ik1Fqs9BFPdHMDZDjAF/9OAh74uAtUgxfnGkfCxm1wG5wJik+tommD3ruZ8v9o4T84Dxu3HPXG3rpdiXB3stIB8rV67VdVwBiY+NB2t5BRwIP6C6sWG8Eu6jU51gUZARel1tTS3cv3cf7rPXtbe2e+yD0P/3hIZxLuprGqGu5sU+cciAyKV8HCONwRpLST9+gvOBNVB13VZGZkyfxfmoZzo28d3RzyHy2FNHtand5cuJNaVEoVh6uZ2DNYCw99Tw3WG4O3TXo/5s4v9SU9I5FxjvnXL0ed6uo567KDhWHB+O21HvDfHcxLx6iv+XH1dKMOcPe4MiHws/XaLrtoKSlJjE+YiJihn1Z8lzPaiulXjMXb4c2TX4OoqTlesT7hPSnjbWPx5mXNy9MwRDd+5I/HjKR52NsVFdDzVVdbA7eI+0RubNuhWOm2IBRDtMzCNDzpWO0T1wIJbzUVpm1XVaYcEaFchHW3PLqONzHOVCyWtBuct3QBbc2fbyWqRDjI07t+/AnVu34eCBaI/5mDVzLtRU14GtqhZs1hqpzw3y583ehxjLj2wjB/JzlPdIU0IuDFzhfGxVKJdBlxclh90v5CMkaLfX/rMzPuRziFL5QGLNdOw1hTVZb928CZWWSo998882bGZc1EJ1ZQ1UVdikdQp3fW7cXQvK6aB+EWPJx/btO+HGrWHoPNWj6/IYyeqVazkfVZVWr/SB5ghnubRiXUSl+BDjPjIzsuDWjZu8nj7WmnTno9PxkKBQds42xkY1WC1Vkm3lbTyi2A9Y7IE2lnyYCks5H5EHYnRdHkOprbbBmZOnYMG8kcf3ok5QzqCoK+STimuySuXL4fOdnvEhwaG8XvF1JteuXuN9njxZw0o6nMy5wBoeWNvGlW/uidA6F50b+U6UN0j5lkrlQU2Z8iHcHnrA+XjZ6vKoTWJjYjkfSYe901fKjROZIZ9UnhunRL4c6jDF8y5a6AfXGRfXrlzlfScW2f0IR3yIx4pNZqhkPm1FWSXs27Nf4s7bGj7ieYs+FNVlkB8frezYsZPz0djUruvwGMsSv2Wcj8527V1rXNNFLq4wuXzpsrQe4I4P5MJSWgHlJRYpBxljrsQ4ejVLUXE55yNEqM+ly9hJc2MjnOvrhU8XLFL9WHENKz42Wvobe0FcZvbLpYuDEHco3i0fGKdpKWFsmC1QxvQM94K0dr+Ghh9xPnTbyjeSGJ/I+dgftl8T4xXtoJLiEhgcGISL/RehuNDsdu1qwbxFvG5gaXEZr6tHfKANhL4T1SnBn7Rfo6Z4RT+/5ZyPru5zuu76SDas38j5MBcXq3aM5OegDSX2ojFkGxgbAzBwoZ/Ng01O17Do762btnEuSgpLwGwyu/xO8h2IGTXEXkXHxHM+sk7k6rrrI5k0cQrn49LFgXEfC/q54jOcftKem9y3D9sXDv3n+/n6LvaIdMfHFsaH2c5GccHz5wGuXYk2m5qlmPlMyMfu0DBdd30oDXV1nA9cExrvecLda3ANi/IJw/buZ2ych/NnzzHGz7nlIy46jnOB9ViTEv5XQ1Qr+VC9Zwc4H4sXL9f11oeSlZHJ+QgOClH9WMXaowvmL+JcnO09C2d7+qSay872QA5FHYIiYyEU5hVCjH1vDfcFfdnLfDQyfP8x50PXWd/Kvr1hnI/EhETVjxXnDtrrXjB/Ie/R2NfTC73dPTDfvs/pjA/slWTKM0FBbgFER0ZLvGmhlo+f3wrOR3fvBV1nfSwrV6zifFjKy7XFB5svert7oaerh/dpdMSH+Ht2RjYUGPJ5v6SgncHS52nBviI+qmwNus76WHDvA/loqK9T/VjFOHSso9nDuOg+3QVdp87A7uBQl3zk5+SDMdvIe7NuWPu8JzDuC2qh3lVMbALn42hymq6zPhbUM+TjxvVrmvA/xF63XYyNM4yN0ydP85gsV3wgF3knciE3yyDxMdrYEl/zER0dr+vsOIhW+JDLGcYF9r8+1XFSitV3xgdygX1aDczOWr/medyYVmJLdD50PjydP8T9ilMdp+Bk+0nobO+E4F0hLvlANnIYG9nHT8A6ez04JYRimClvUOyPotR3GHJNnI/QPdqIc3jZpKa6mvPht3jJqPUEhXo6U94s7W2I/XXE4yP1Qeh35KKzrQM6WtshKDDYtX/OuMhOz4ITaZmwbtU6fgz3HMUes45E3sdA/h48F8odpB61lCOjVI2guoYWzoefn773MR5SYjYrygf+TnEgtA+OeiX2ZxP7j5HIeyI7ErPQYw25aG9pg7bmNti1M8glH8hFVmoGZB47Dmvt9XBQfx3VhhBFPkbqIUds03nL86Dc9XvX+Xi1+aAYP6pb4ElenTi/OBPxM5CL1qZWaGlqgcAA13xk2tngfNjnDzFPw5k4muPwfIh1X/Kxzt7fShft8EE6IOdDXt/GEz7kOVaORIzDamVctDQ2Q3NDE+Njl0s+MlLSORs4h5D/MZr9QeQe5zKRD9G+onx0Je5PChu37p+Pn/R0d3E+Zs2cPaL3kR4gA3I+iBt81lINHNG+ol5+I/k+MccWpbmhGZrqm6CxrhF22vPdnfGBXKCNhT7I+jXP+RhNfAnl0frCP9fXr7S7fkWMuPLP6Tk6Wv8c9/LE/TzkorG2ARpq6iHAf6dr/5xxkcN8dFzf3WBf30VfXws9DXQ+9PVdb6Shth7qGRt1tjr4fEeASz5wbRfXePOyDLBR2D8X9xvVKnv2RnA+ML9W11ffyqT3pnI+LpxXf14a2kJinR/kora6FmqqasB/+z/5ECUu+hDknTCAMTsXoiKiNHWP9Pir8ROKv9JCfKIoH77/MdQyLmqsNrBVVsPG9Ztc8hEVfhDyc/KgwGCEGHvNRa3MH1OnfMj5GLxyU9dZH8vOgEDOR77RqPqxou9B/vSsmXPAxtioZmxUVVTBzBlzXPIRHRkFptx8KMwrgNiDMZryP1Ao/4PqceviI98vKobzERmhvp4HcsH1WIrfxTrCyIXVYoXK8kpen8QRH1LtxMAQKMozQXF+Ibez8BiyoZX8qLaO03r+4DiIKb+A87Fmtfp7rGC+BuXXrli2CqyMi8qyCqgotfD+na742LxxM2fDXFAMJfb6DMiHs/h22ovBtTg11GfIzjFyPqKi4nS99aFQfYYp9hqd4yWog+7q6aAu037e9q07oIKxYWFslJeU/4MH+d+4Z15iKobSQjOUFZXAhHfe48fFOiXiT9qzUUvfKH//QM6HtUr9eTovi2DOHfLR09U17mNBPRxJ/RKMt0IuysxlUFZc6pYPrHeFXJSz11rYe2Z+8rz+lVZ6cqKPTvXhdN31jYSGhHI+DNk5qh2jvP4VHU+IS2RcPK/1FhfjfN+M+Hif6RdyUcGYqmRzzoqlKyUfXSs1TDD/HPlYa9+/0WVsJTfHwPnYvGmL6scqX2vK4v14n9ezipTFoDviAwX9FCuzydBv2WHvLYP2mrf120U/xRf1qZOOpnE+MjINuv6OsWDvKKxPjXxMnjRV9eOV71WYeS/eYigqKIJNG7c4tK3kx44fS4cqixWqK6yQfCR51GOS926gmDN5fwOl4ngxfhf5wP5Rug6Praxbs57zYSnTXswC2uLFjAus9VZoLIQli5Y65UOUQ9GHwFZZBTXWajDlFUjHjx5O8Goc4tqWs/445Ecpde4Dg9d4/481a9Tfn13Lknk8k/MR4B/g9WeIMYmY70Hxq9Qrhp6xo80ZRAnZtUvyE+bNWcC5oHpW0z+e4ZIPOu6//XOotdqgrroG6m21o76G6BPRugFxMNb9o44kHeN8HM/I1vV4jAR7O2N/NeRj0ntTFOED9YNyUanvsSc5g56K6ENv2rCZc5FvyAdjjtGhLeWID+yjU19dCw22OmisrYc5s+by4+h/eFPnh3pW009P81xGIzNnzuV8YH/OyXqfgzGRPbv3cj5SU46N6nNEPnBeoLmBdEQpXUG/XPQ9sP5hvsHI2MiDeGHtyh0fEydM4rHwGBPfVNcIWzZtldjzJs7EUY4gPhPE/s6OcthHK5ZKG+cjIkIbtbW1JG+8/n9QUWbhfCxd4l2sgqOcQdR78lWpf6dSfODalViHJzM9E/Ky8yD3RC4Efr7Lre8h/g/98+b6RmhpaJZ6wCMbrur8IPfU21w8Ls+XF3t1yvMnlbyH27YFcD76zg7o8VgKy45t/rz/eVlJqVfvd5Yz6Ej3PckZRI5Qz8hfcSS4Bkv21Tvs+5ELQ5YBcjJzpH0Md745SRL7/tbGZmhraoHykjKHfOA54nio/yb5T0rPA6ORzlPdcPnqLQgPP6jrtYJzh9lUxPkYTbyVs5xB6uUq2hTu/HO02+X1F6jeCb0GYwgprgR9CLGW1ccfTveID6lPzuZt0N7cCh0tbdDZ2s64myzNEcgpnZdccJyuGPa1bN3qz/no7jkPb72pzyGKXFNmb1vLK6Aw36SaMaHOoV6Kz2kSXAdDvRSf2zv9A3mt6ROMjaz0LLe+h/z/yBPWBcK6WSfbO5lvvkEah/jdyAmtR6n1frZ3nIHBS9fh0CH1195X/dzx2ltgNORxPlatWK3KMeIzHFlAu4ZqH5Cu0msOxx3mXGSmZUJY6P4R84GCa1dYkxRrkybEJUhzIn4v9TDXwj1duHAJ56N/4ApM12C/UTVJcGAIlBSa+R6yVsaMNhbVP+E6/PYEzkVGagY7j+Owxl7nzRPfQ3xNakoqX9vuOnUaaqpsL6yTaaFe9YtrBBbOh8lUouv5KJ7LuB6KfFAekVZEXHf9dP4iyDjG2Eg5DunJ6bx/4kh8c3GfsJvZbT1nuqC3q1vaX0Q/RyuxiiSTJ70PZ870wbnzg2zuC9L1fYTyOrOr0CZBPkLtPQC0JAcjw6Xfsa9Neko6pB1NY+d0xGPbSv465Kr3TDf0dffA2Z5e2Bu6T3qN1uYPlEB2XZCPDuaPTJs2U9f7Ecj2LTuYL5vF413feP0tTZ9LUnwSpB5NhWNJx2Dbpu0jfr/IUXlpOe9beK73LFQyn8wRj1oSk8kMfX39UFpSwXu66LrvXubOng+pSamcj2kqyYMbieCeOdk7aBemMi5SjqRAyuFkHoM1krlDzgjuDZ7vO8d7Q/efuwCT31N/DLMrwTpNHe2nobv7LCTEH9H1341MfHcyxB6M5Xxs3qj+/A53gvNFyuEUSE5MhqMJRyU7yFs+PmF2SP+58zBw/gJcvNAv1X/H/HYt1PxxJNjTF/k4faoHtm/7XOfAiaDuRIZFwuFDhyFiX4QmzwHjBcU97YSYBM4F2lj+wr33lg8UrG092D8AlwYuQk21zaP349ovrqkpGXOopPjvCOR8dDJfZK0eA/9Pf5yxsX9vOBxh/mvsgVjV+ZuoX7gf6G7fTVxrnTFtFiQlJPFzQubnzprvFRtyRsLDIuDSxUG4PHgJrly6DDPsOenyOr8ouNaM48Y9ErXUbHAm8cy+Qj7aWjvBb/EynQtBdgUEcRs99uAhmDhhsirHiIzQPiD+lO/HoY0jzh1oHxIbibGJXttWcj5wbRS5uHr5Cly7chUSEw6/wKe7capZ4g4lcj6qrbXw0QfTdDbQn90ewNc/kY/33lUnG3LBeQSfyyj0XBZrJuDvxAUK5n54a1s5eh+uY12/eg1uXLsO/cwXoeMU9+JtfAm+n2IAxHwxsba9eFxpwfzpfGMhNDe2QUNdE6xaqf76ZmNmU732FuwJ3sPjLpCP+XM/VeRzncWji3Hroh446kc2kjkF30sxHpJds2Ax5wIZOcLshk/s6/vesiFnZNvWHXDz+nW4deMG3L55k8c3K3Ht8PrQeVC+GP6O14rmIfRjlOwT4oiR42mZnI9aWz2sXK7OuKKxFIyrSmBzKcZ7Ix8L5i1U7LNFPtC+oNhcjIfC+4zHxLhWtNHFmF5vRYzdjdgXyW0r9M2jhHwgpfhAGejvhzu3bsHQ7dvMHqmSjmPMsLf9pSgOmerP4XXC4+L1kefHjJUcjIzmfFRX2iAoMOSVYQNrOuF8gXmm6ceOK76GL+eD4gTF+yrPoRsNH2jzi/r4wdSP+HoVrukeYzbjqhVrFGGDPoM+J+nIUcbGHbg7NATDd+/y2tc0Hm/jTcTaJsgGMT8efKDsDtnL+agst/LnKeY6vMxsLF+6gnOBNTxw3lCyPijeS7J3RHuJeu75io+A7Tu5L4V7OOnJaXxtTik+xM+ZOvkDGB66C/fuDsP9e/fAkGN4YQ6hmr/ezB+ij0XXh+wrmn99pTMrlq3mfJSZyyEv2yjZqi+TvMm4378vnNc6w9qBuO6JNpaS34H3jXIvRD6orzfllcrtbOp9rAQb/3p7Ao8jSWNcYDziaPY8PLGxcrIN8ODefXh4/wE8evCQ1xCicXnDh9w/pxhkX/nnTm0ONiefyMgGs6mE14DBOnmvv6btuCOS2bPmQkGeidf1Rz522nOvx0Lwfjryt6lnuKf+uadrovJa6hg3hrYjxrJnpWdKtqNSbMgZWeK3jHHxAL54+BAeP/oCjHn/q4si1o13tbagpvxClz4re8aGBu/hfOTnGJlvlwSzZ87V7pzxxts8XqixroH3E8PagRjrrYWx43qUu17guIYrzh2Y55GBvZjTMnmeYERYpOJzh6PPa6irh8dffAFPHj+Gp19+yZ61z5lAH8QZH2LdL/yppT0SjOtHvw7zlU+kZUFYaJiUr6wFeevNtyEkaDfU1dRBS1ML5yMy/IBmfCuyt2hucbb3LJ871q5ez2MqeU/NLIMUW6k0G3JGsJ7LE8bF0ydP4KunT8FUYHI6RvTR5Ln1aqrf4KmgbbV+zQbOB/aHz8k4AQfDD0o5Merk4l88J6G1uZXngHa0doAx1whzZs3T3PWnvFXR5kZbhJ6z8mcz3i/0OQxZOcyHzIWDQi/NseYDpbmpGb7+6iv45uuv4dtvvmFj++gFP8Td+WhVcM7+nPl4yIcxO4/32oqPiYPlS9TTXwvjHeJi4+H0yVNwtrcPus90M1/DCutegjgzR89btE3kfASyY7nYZxZ7aebmu60dqjQjy5au4Fx89+238P1330FxUfE/1i3czYea5oRxHhQQxPnAXkLYDwL7CmFu3XjEqWB9r+3b/MFSZuGxQIMDF+HCuQtQX1sPG9d/9tKtv6GOibVKkBl69mJtK6z7hrmOWD86Nip2zOcOR5/f1tYGP3z/HTz74Qf48dkzmDd3gcQ41YtQc10TJeSdf0+ELZ9thZzMbKi2WKGuqgaa2PMAexHFsXkFnyNjlYc1m9lJ+/buhxpbDd+Tun3zFo//QT4M2QZYqdL6Iko+o9AmoTVkOh62JwwKGBeFRhOvz/7J9Jk+YUPOyNw58+HZM8bGj8/gp59+hFNsPhfX77xZ79X03L9gMRxgfm+VpZLX1TvZ1sFrW/R19zKfuJGvjUeER8LihUvAb/FSjz/3ww8+5roezHzsI4eToLW1Db5itu2XzAd89PAR34tCPpobmyAkeDe3r16Va45rVmLN3unTZnAuigoKwVxYDPGx7uvqjuUcUmIugZ9//gl++eVn+PXXX2Drlv/l82It+VeJD1GWMP2PCIuAkiIz5wPzL9HmwRjom9dv8DiEB0yvHz96BEN3hqCN6XxnRyecZjx1d3XDtWtX4e+//4I///gDfv/9N/j1l1/4M+iHH75ndsW3nI87t29DWWk57GXPy6lTfFuDm/bGxTUmqqUsvo6Oyfv+KSVYM12M3UhKTAIzs3PxupeZS6X+mb5iQ87IB+9/DE+fPoHffvuV38fh4WG+Z0mvw7FrsZaD0oL7DLsCg3i/u4ryCuhhDBAfXz15yv04tFGRgz/++A9nQ+QDuTnZeZLPH5s+2yL1IR4vEfciaG9PjBXC42jziH2RlM6Vk8c0rV29jtceQtvWUlIm5bqOJx8oKcnH4D+//87v659//gFGY770P6wF5EnNd+p58Cqyg7q+fNlKWLF8FbejVq1cA6tXqTvOXuSD+sTS/yh2St73xpMYupGs/Yv2Ce7l5Ofm81rRGBNQbCqS9nd8zYYjRu6xZ+Ff7BlBz70F8xe+wLkrRnDuxTWukczBVPtdfmw8Y1JeJXG0l025QHgv5Xx4GmNK67eu9gEc9YqNiowCC7M1scZOVUUley6vknR0PPmg78bnHXLx3//+zeXa1avS69BPd8YH1aUf6b4Ivl7sZYjiy5yRV1WoV57IB15z1Gs8TnES3vJBn4e2mTN7AnVJ7BWLtmtlmQWslkqorqyC5KTkcbOrXM0h+fkF0vzx119/QuqxtBfOSZ6rLvbS8vZeidd8vGLiXyWhvS3qbUTXmv6m+uX0vMK/KS6b5pWR3F95nw95HOzzXgvFvJeszVoNtdU18O6ESapgQ84I+uUPHjzgbKCthb7I/HmfSudFsWP4nBFzPbwV+Ryi8+E7RsQ+R/Sso7xAeT6oPLdnJEL9ZcgukMfA8l6y1irGhQ3qbLX/3955dUd1XXF8f5O8pSdeywaMwdgOxTbNBWNsilBFEi1gYmSbJgn1XlAvo95GEuoddQkhisEkxNhxbPLgxM5yQj5Czv8MezhzdWfmXjEDkuY+7CUYjWbuzD2/s+vZmyIjopaM7tCzs3bv3iO5QNwF/ro2nqX9vL7Q96q9+6zOjFjiP3G3nx7YFyT7prc2t1C7vZXSFXtlqbChdz2FhUX0v4cP6eHD/8rYZHv7ZRf/yxdMaGegWP55YPg+/G/kTOGPt7W00uVWnIlukPN0n7VPbtTOuiZ0KthAXuQ/P/1Ex4497vmt1zfLksASM/YDYlWqP/6rX/6G8gUrOGfRgRmZlztk7mOp6g49Owt+x4MH38mcOnJeyK9zfdZi7N3lWBNvib7AHkbe0Cgj2njupzGfCS7aZT1Nd2cnnTtzbsmzoXd90BngAvUn//7xR7pz+47QLY/jvEbqT/h8JiRQ84crzZfg2m4jjGCNqP44Zo13Cnu9u6OTerq6qbS4RJ6LXA5s6DFis1XJuqEff/hB1k9MTU65PNfTLCqVDbOxQUvMrVmu7+M6BlV4DcN31KuxMit4HW+M6OUAN296nbrARWcX9XWjn1+ruO5XlrTPYYSR6akp+pdgA3Xw//z+eyove3xWBHuDXm8gf7Ch9szGT74vWBvcg0Z9PJD8XrWHDJ+nUOfV43vhucv805+MaH2O9etekb3Re7u7qb+3lwb7+mnvh/uWjV3lyRf5rdARX3/1FX0v2MBZKtTiafM+qr/uL72BGCH3muF/43HcH8Tv8TjPrA9UPrBO8b1rY3/afLmv+hvqMYK1oNZbwH6qqaqm/p5eGujro6GBATquxHuWGxt6jOCsyP0vv5S12Th3iHO50Up9JesQf9pU6j1W84eBnlfU9m8DG9g7VD3hy/5t3hhR+QAb8DEGegUX/QM0PDhI8bHxy54Nves/HH1UcvEPyIMHsrdDdNRhl7XpT3+Dz2RyHTbHxAKVD3x+7uvKfLCtyc/hM6D+4kPLiPrdg42yklIa7O+XXGBWbLXN5jyPudx8DiOMQGeAi+8g334r+6CgH4oa+1sMG0Z8RrUHMu+RgcwHr0swoGdfcV0Vnsd2KR7jfcYTd4u5Fn4vfiz2fKy0pUaGhmh0ZETYWFUrjg09RmIvxEsu/v4N5Bu6c/u27OnnzjfzJurs98X4H9zrkusd1bMMgcAIPrP6/al1U8wNM6KtsdIT/E7rX3oS2FPas9hxF+Lk2eQrw8M0duWK9MlXvbBmRbKhx0hRYbHsMfe3r7+WZ6g/v3XLyQjH9mCDejtbxfOqrPjV0hLcE2+1RLjPEG2MH/4FczE+Oip9cpwrXyk+hxF/HVJYUCjjWl/dvy989/vyzEhEeKTLvuKpDoXPCVjrcWkK7o2nvUZrJ6DP48W4eGlLgYvJ8THpe6j9wVcqG+4YuZRfIPtdowfHX+/do3t/uScYcZ0pi+9QT4/g+3+afbXYN9HWa/uijvtJbSQ9Haru4dyvT2s3+VNwb9z5ktrZx/Ar4HuPj16hibExmprAfOEBZ2+eQGDDHSPoe4OZCZidgD41f757l8LDIlz2Gehf1UZlX/FpXre7WT7cww+PYz08bZ3mLqagxpy43p/PMMEvXyzHZvYk/q483UuwAd/bwcU4TU9OCp98MCDZcMdInvgO0efm7hd36e6dL2Svs+ysnAV6RO87N+rD+2LP5PoKtd+A2fgXn0fVe131cbVnjic7xQgf2hyHt17o7q4b/KvnmI2Iupdp+/HAr2iz24UtBS4maHZ6SvoegcyGO0b+ePwEfXHnjqxjvP35bdknqrioRPbO1N4js/sdx9efpA6YdQOfyVosH9rn6PXB4dirOqdPb01yvZT6evw8X/MBwbXg85qN8en5IujhAd97SnAxMzVFV2emqbmxkVavejHg2XDHSFhouOQCfTIxL/emkFZ764KegNoz+t7WtTb3tFj7yhf5d+1z9PrgaNezXq9Wzk9oe1FwjNoffKg5XCP2GcduwYbKR+ShKOljzExN0qzgYm52llqam8Re+DuLjZ95jv1u37ZTfHeTctY6+g2in+z46JjsC6XGBjkG7KmPqdn76c1OUGv0eL2pfdGwz3uL/Xvig39ndD1zPY5Wf/A+r/Ks1UdPEpfytt9w3Bb3SLWn4GskJSZJHwO21NzsDF2bu0rpaWlONlZqfsOXjLz26kayt9hpfm5enkW8dnVO9ufEzDytHsEexfdDb8/3Zb0K13gb8R/0/hbs+JIPfl3t+7Ld5a4H6JPkePA6vOe4yxOiF4c2Ng9fo76ujmYEF1fBxdVZsffNUVxsnFt7whL3jGA/QfwXXFydmRX7zazQxzNUXlpOqzQziPVyJby3mvEn8Tf+ihnzvq724ITo9cEBR2q8CfrKn7Fsbd2VEV3K8zfUx6ErtLFbSFRktKyhgo8xJ7iYF1xMjI9RSHCoxcYT+iTQGbPTM4KNaaGXp6TtNdA3IPtxav8W/Ux3bNvh7P2jN+vRm+3gz8/GOU3Vv9XLnzyLfIUZn5tn0PL3Cxs3OChowfNgT+Xl5Ir7Ny1tqfk59Oi+JmNWsBEsNnzDyNY3t9Ng/yBNjk/SxNgETYyOy77omelZuvM13O1v3vyCQD7nDk7NfH6tftaeA0UvYeQx2Me4Pj8nfMp5Ki4qcolJWlz4hhFwUFJUIn31McHG6MionB3W3dEl59Bo7x3bLXrnE590/+SayKVeq8V5QaO9joz6aezrsX5TbT+pM3LzhC312Me4IbhAHDc0JMzSGX7m5FB4JPV0dtOVoREaGRym4YEhOX8yPzdfsLDaxQZwPD/c5Z66s7/N1Dmyf7rU58bhM5nJV4B7I58JthT2He3+gPM8I8NDDh/jkS1168Z1am9rozWr11psPCVGXnh+DRXkFdCQYAN2F/yR/t5+6uvpoyPRR509LVT5NMYR+9LrB8F9l43aIXzezajd5g9byB/XivXuiSXsNXrxdNi/jQ0NTh/juuDi5o15+vzWDfok5hO3MRhL/BffgmAmZbuwCfoFF33dvdTb1SN0Sw+1NLbQHqVnmCqnTpxYwIkZ28rsnmzmedq+tp7iR2Z1nVFbUK+fPrjQs1NXv/AipSSnOOK14OKaw8e4dfMG1dXWWjpjSeiS1ZScmCK56O7opi7hj3Re7qTO9g6qLKukHdvf8sgJbHQzvUg592b0b4yuZc7VGNE3uGaj+U5+XaO+txqnQP8pPS7gY5w/e17Ga689itfeuC5sqZvXZU4cdRCe7pklT5cRyOZNb1BVRZXkAn0nMROz3d5ObS1tlJqcRtu37vS4fmE3eJsFp+bGjOzHWMNG16UZPsz0oeJYnhHfm1lw91xwceqjPy3wMW4KHwO2VEL8xQWxKYuLpcXJwQMhVF9TL7lobW4le5Od7MLeamloljO49PImEJ4Fh9yvp3k+Zmq5zKxjM3yAU6NnWLnGxlOsm3Orerk9CPKxyUnJ8iz4Ah/jkS31h9c2WVwsE07gn0eGR1GNrUb2wG8WbDTVN1FjXSM11DZQQW4BhQaHO2fUqQI+sI/iJ88sYeFaR6M2E55n1O43w4cZuw3CuVLVJsMegFyqp1rPrW9sk1zMampCHD7GdcnFju07LVtqGTHiwolY/xFhh8hWbpNcQK/UVddRbVUt1Qp2aiqr6eTxjwQHG3VtDa7v4vXDOWOjtr+ZNWyWDzMxBa4phM7B5wEXsCW1/LMNFbT/IF1ua3fWnbv4GMKWqqupsbhYQTYX9ERYSDiVF5c94qKGqiuqqaq8imxlNqosraTMtCza894H9Nzvn3cbC+K+aVhbsMd8uYb9oT+41xq44J5f7mo5d737HiUmJC6oO1d9jFqLixXPyTtv7aKczBwnFxUlFYKbciorKqPSwlIqKSih+PPxtPvd9+k5N7aRykfsuTPSt8f/2Xfh9edPPtiH5vXO9hJfE/QfrslT/T/mSicIdtA/x3GGz7XunGtCMjMyxGtbXASK3QV5Y8tWOn0qRuqUsqJSwUaJYKOYii8VUVF+ERXmFUo/5fyZCxQSFEovr3vF4/uw36LaY7zHc5wUv2OG2CdmzlQ++Jw2n59Qn89zIfi1wQT8atWPcFdTg7zqvr37ZZ8Q9Hp29AlxnG2VdedKTQiYiTkd45LDsLgIPE5gT72/aw+lJqW6cHEp5xLlZ+dTXlYe5WbmUk5GDqUkpNDR6GP09s53af1LGwy/t9qXgOddMxccM1L54Hwc1j7bSMwH/zSS70duCP0pYz6OocryCmcvQrVPCPsYXHeenpZOe3Z/YEgfWxI4thdkzaq1FHowjBLjEl24yE7Ppizhn2SmZlJGSgalJ6dTWlIapSam0scnP6a9e/aLtfwWvfTieq85FH/J+nUbaOeOt+lw9BE5A7yuptbZ7xxccM81Z58Q+BiP6s4L8i9RyMEQl/OtnvYUSwJbp0BQO/Hh+3vps9NnKCtVsJEi2EgWbCQJNhIFGwmplHIxhZLjkykpLokSYxMp4UICXTx/kc7GnKXDh45QRMgh2vXObtop2Fm39mWpc7Rnu4wI/CbkFza+tpm2b90hazQjIyIpLSWNCvIuyZlKXY9mKvX19Mh+586+zk4uRp0+xvDQIOXn5VGwDhOWrrDELCu/+Pmv6c3Xt1FYcDid/eSsWy7iz8VLwb/xeFJ8krTJwFOG0DnQP9BFuZk5lC/0E2y4wrwC6fPA/ykTvlBFaTnZyiqpuqKKamzVVFddSw219dRU10DNDU1kb2qhtha7nNva0e6YT8kzleTsGHAxgH7nQy69CNEL/dTJU7KW0Oznt8QSM2sF/sCrGzZK/XIk8qgLF2AF3IAh2F+wxaB7soV9BlstT3KRL7mAv4OYAOIDFSXlVFlWQVUVNpmXqauqofqaOmqUXDQKLjDr207t9jY5n7JLzqfscsxU6nHMVGJbCrOWsjIypY5BH53Ffk5LLDHDiqd1hDlZ8D/eE/ZUaFAYnTh6ki6cuSD9lpyMbMFFrvT34fsX5RdKLkoFF4ifVZYKLsptVF1ZJed6Sy6gM+obZf6/tblFcNEqc3Y8n7JX2FK52Tny/OqxI8dp34f75dxgX3wWSyzxNy9a+2zD+lelwI8/sC9I5qgPHgim4AMhMn4celBIcBghjxkeGiHz/uxnRB2Kos0bt8gZlVs2ve7Xa7XEEn8z87TX4rN+f0ss8dW69aVY37ElllhiiSWWLC35P1BLAQIXCxQAAgAIANqIPlu/ZLS3jj8AAABxAgAEAAkAAAAAAAAAAAAAgAAAAABkYXRhVVQFAAclDtxoUEsFBgAAAAABAAEAOwAAAME/AAAAAA==</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #3</Name>
|
|
<Index>3</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPls2eF5aB0AAAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J33X1TH3sc/f8lz731yb2LXWGLsmhg7scQCir0/agBFLKAiYkFUQHpv0usCC0vvVcGCYEksscWWGJP7e575Dsw6ewBlYYFdOD98XsBhyzkz855vmfbPf3yGf6oaMP3jf/6321LLS9VQaPeW8PmqVPVVO1XvSZXKQ/fa3eLFS7mcDjnDyckZAYGhiIqOZ4qDNrcA9Vevo77hOurqm1Bb18hVU3sN1TVXUV3dgKrqelRWMVXWITg4gikcQUHhOHrkOOzsDmDduo2YP38xJk6YbNS9q3Wpqi+Y6Oo1c+Z8hy1bdsDt1DnEXklCJWvbTTda0Hj9Nq41NTPdwtVGpms30XDtBuPixgcu6hVc1BAXDXouKiprUV7BVF6DsrJqlJZVobS0EiUllSgurkBRUTlTGQoLSxEeHg0Pj4vYu8ce875biOHDRqu8qOpXHkaOGIM11rZwd/fAlfgU3Lh1h+v6zVY03WzRc9HIuWiWuGASXDQ06W0GcVFTe5WzQVxUERdVxAWT4KK8mrFBXFTpuSguFlyUoaCgFAX5JcjXFUOnK4IurxB5uYXI1RYgNiYeZ057YPPGbZg+dZbKiqpecdHZ/6ysluPI0ePQZOXh5u17uNl8FzeaP3DB2RBcCJtBXDQacpGdk4+IyFiER5BicODAIa79+0lOXA4OpINwsD8Ie3tHLndmlwKZbxYQwOQfwm0GcVFIXBQwLvKL29jIK9JzkavNhzZHh5zsPGSz+87W5CIrU4tExvQptzNYvdIG47+cpLKiqke2wtp6Pbx9AlDL2vWtlnu4pefibgcumiQuomMS4HnBGwedjmLVKhssWvQ9tzl9cf8zps9mftQibGW+3d49dvDx9mf2IoFxkc+4YGwILjRaaDJzoMnIRmZ6FjLSspCeqkFaSiYus/est92EL8dNVFlR9VFbIZioY0w0t9xnXNxv4+L23TY2iAvhSzEu0lh7O+l2Fps3b8fs2XPN5vmGDxuF7+YuwO5de5ntOcttRmZ6dhsXaRrGRiZjIwOpyelISUpDSmIakhNS4XXRB+vWbujAisrJ0LUVk7+aitNnPFHM/Pvm1p8UXNzTc0FKZ/4JxeBLFi+zuOcnX2rVSmucPOGO2Oh4pCalt3GRmIqkhBTGUDIS45KQcCUR8bEJcD5yDCuWrTTKD1U1eLiwtlmPMBYD3L7zcxsXTB24YAoOieS5qb7ykQZKU6fMwL699gjyD27nIolxkYg45p/FsZj+SnQcYqOuIITFPZs3bMG4sRNUToYAF9u27UZJWTXn4nY7FwY2g5gIJSZ2DjomuhL5U1uZj+jHfEvBRUxkLGJY/xEdHoOosGhEhkbBjvFE9lblZHBxMXLkWDg7u6L+2s0uuchkseyWrUOHia40ZfI0ONgdQHBACKLCGRdhUYyNSESERCA8OBxhQWFwYb7XrBlzVE4sPO7mXLhIXAhfqp2L2vomeHn78/E9tfwMNeyLkVj2/QqcYfG94CIsMAyhAaEI8Q9BMPPLjjodxczps1VOLDAfRX5Ug8SFbDOKSir5eMZQtxXdFdmKgw5OCAlo4yLILwhBvoEIvByAAB9/HHY8jLGjv1Q5sQAurKxWoKS8Bi1dcLGV+VBq2fVMY8eMx55de/Vc+Hv7wd/LD36XfOF76TJ2srL94vMRKiNmyAbFjYnJ6SoX/cEJsxW7d/wf/LzauLh80Qc+F7zh4+kFD+aPLbNartoSM7IZFGO03H1gGGO0sviioYlxsUsttz7SGMYJ2Qziwvv8JXh5XMSlcxdw8awnjjCfa/rUmSojA8iG8KWUMQbNCVHji/4TcXDgx/2cDS6PC/BivHh7XsIm202qz9VPbIjfKS915uyFTn2p0LBofKXI0avqHy2ctwjnmH9FtsTnghfzu7yZ/+WDMyfdMWPaLJWRfrAZ33wzD9nagnabYRhjWCn8XreTp7gPoJZj38nxgBOmS22fbAXZDF8Wk/ix2MTf25fF8n4spveHrc36Lvs8Vb1nw87eURFjtM0JcT99voMvlZ9fgL///hvh4ZFqWfZh/PH+/XteztZr1hr8j+zFWbczCPTxR5BvAIL9AhHiHwR311MYN2a8aktM7E+JuVLKvJTVEkObsXf3bv6T6ovqjST3b6pMp5SUNF6+tbV1/G+bNWswYfxEA1uybdM2hPgFIdQ/GGGBIQgPCuX2ZMG8hSojJvKn+HwpxZwQGveWbcbG9es7fBbVm1x/qkynRQuX6PsfYTtGs37s8/8Mx7y58/jv4rU0vniRxe3hQWGICAlHZGgEosMisXvHbpWRXrCxbdsuvlZbOSfE2tpW/xrRX035umNMTnZDWYeqTCPR95ANUf5P8CHXCc1XOeR4CFHtbMRERCE2MganmL9F/1NjEuPYoDUZynnnNIdQmZtasmjJRz/X28uH1+PTp8/UcjZhTE5lSrHHx3zXzmy6zeq1iI2IxhXGRlx0LOJjriCAxe5Tv56uMtINNkaOGMvX8Cnn13p5+xn4UxRndGYzPhZDEitqefc+Jqe+xpjy3G9nZ/A3zREODw5DQkwcEmPjkRSXgOjwKHwrzRNVGemcDU2OrsMavn0/7u9gE3ra36ll3jvJ9tjY3Lns45JP5eV5CclxiUiJT0JqYjLSklKw6ofVakzSWY6K2QZNts6Ai5q6RqxZ8yHWEPaCYkNj87bkJ9P71DbeO+3YvouzQT+NeR/VF/FB8SLF8HRteHtMkpqYwthIRXpyGjJS07F6pfWQZ8QgR8XsKuVq5bWt1bXXOqzLoPyhbBNIapsdGB/LWKZorFbUoZwDJtnvs0dGSjoyUzOgSctEVoYGLkdchiwj8rMSA5STEmtbSRkarUGsIXOh7JN6YhNE7kX4CYN9fEQeC5LzefTcIpaQ8+DChxI+qbG2QhZ9R2c5LjFOJUQ2Iys9E9mMjZzMLGg12TjufHzIMdIZG/I+IRmZH9gQ+fSP9WNU9sb0Z8RTS0ur/m8aZx/scbvIcyvLifp04aeKuJu4ISbEa+k1PR0/os+g8u2sfshXprqVbcmaVTaci9ysHORla6HLyYXrMdchw4j8fMQGxRfyXoTpmYZ2g8pQHmfqqr0bE4tQ/cv1TWwMhbwWlRG1e3p28bzKZ6f/CVvTVXkZ+50fs+/EhtI3sF69lnORr81DQa4OhXn5OHni5KDPaxnmqcagsLjCYC/C9MwcPRudlVt3/VuVj877cZE7Ej4Vtdu+5MOY+JDGE0l6f9p6HQoYF4W6AhTlF6K4oAh2LEYZrIwo2cjQ5BrsRZie8YENqsuezLnt7nuovmX/ivyz7rI1WPwren4qB2JD9q/oupg3Il5LbZx8JGPrwpg+h3wEkhwHrrOx5VyUFBajtKgEZcWlWL9uw6BjpCMbWoP9ztMUbFAdkfpyXvpQi8+Fr6OMw/sjPjfG3tD3yTbHdu16xkUJykvKUFFajsqyCmyw3TioGJGf4ZKXr8G+zmnp2QbxBvVdYqy7rxlRZT4SbHQ2n4tsRmVZOarKK1BdUYlCZstmzfxmUDAi3zvtW6vf7/zGbVRU1RuwcdrNVWVEZYNf2751q0Fea9eO3aiprEJtVTXqqmtQUlSMSRO/tuiclnzPm7fsaOei7YwMOvtF7HdO5aAcL1IZUe2GMvd77qwH6mpqUc98wIa6eqQkpej7V0vjwyCPyzig88bazo5pO1OJzuQTr6UcbmfzDFVGhi4bot9U5jCjIiJxtb4B1xquovHqNQQFBFmknyXH47r8EoMzlfbs+ZCn+1QOV2ZEXeM0dNiQJa+1GjliNNKSU9F0rRHXG5two+k69u21syhG5HsMDAozOJ/S09O7Qx/xqc8jRkS+Xr5O+Ul5PiiVucjnq2uhLIOPT7Eh2og8h2LO7G9RzWKRm9ev49aNG2i+eQtWS5ZaRCwi39uevfYG51Mmp2Tq/cUflq/o1tqNj0ke26L8I/lgIp+vrjk3fxnTh5H9kOdrrVltw7i4idu3bqGluRkN9fVmH4vI7FLsLZ9PWVpWjUmTpvD/mSqOkPnoahxYbYd9I3neiBhfJ9E4orhOfVZn102l0+5n0HL7NlpbWnCntRWR0hwjc2REjjlSUjUfzm29ep2fU6mPOWx24vs1zzBqfIDKh4VKLl8xn0uMx4uxdrFGhK6TH2XsGHxXdS77BdrsHNxtvYN7d+/i/r172O9wwCwZke/F1fU0Y+MG31eBzjT2OH/JwE5+MWIrvprzjuvLKUX417/G9YgLlQ/z4EOOBYXNoGummuMofA5iTFmntCd5U2Mjfrp3Hz//9BNusnjk68lTzYoP2a+is4zFWd91DU3IztF1Oudw2Ch7TJr1hDNCPz8fttqosqJYg/JaggmK9+T4Q56frcp0EmUq8yFsA5U9/W5qPsgvo88XdoP246D4VfyfbMYDxsbDnx/g0YOHyMzINCsbIt9DjraAn41cV9+E2rpG9mxW/Hpn89T//Z+FGD+tXm9LRoxxMaqelHkqNX/VP3aD+h+lfyV+lzkwBR/y+hSl5PxObEwsHj18iMePHuHJ48c46OhkFozI3+3oeETPBenYcTf9/5T7hQmRbzVmYqyekbFfZRjtb6nqX/tBdlreT4z6I4o1qP3TT2HT6W96Lf0ke27MHGnhT3U1L5Lakrx30Cj2N8XqT375BU+fPMHdO3f4NXPhg+bC1LazUVN7DZqsXIwY/iGX+6nPIdshGCGbQrZFbY/mywixIfuv5APRta7GqIzJXYn1uN15z+yZs/VjIwcdD+HZ06d4/uwZXjx/jqTEpAG1IfJ3hkfEcC5qaq+iuuYqFrb7Vd3lQ/hbckxCMcpgbWNLWJxGY1ouR11w3OU4XE+cbPMlwsKRr8uHv58/znt4wsPjPM6d88C+fXb4YcUq5lNMH1JxzqdEfok8dpiTk4NfX7zAy19/xauXL7FixcoB4UOOyVeutOZsEBfV1Q3w8fHX28DusiH7W5TTEraktzlgc9D87xbytW/eF72Rlanh84dobgSN+95tbcXP9+/j8cNHvO+jen375g3++OMd/vrrT673f/yB33//jV9/9eolXrx4jqysbFzwvIidO3Z3OI98qEmev/fd3AWci9evXuHN69eoqa4eEBsif5dGk8vYaEAVYyO/oAQT2+cdK+dfGiPiQva3LCkmGT5sJFb/sAan3dz5HgOFzB7Q+jda21NbXcP5yM/TIT4uHr4+lw3sxyGnw9i0cTOfqyrbj8KCQm5XBB9PGUuPWRz64MED3L93H2WlZXy8jOZeDEU+5HZ22ccXb968xtu3b/Dbb2+57VX26f1lO3bt2su5qKqqR2VVHRwcDupf11m+2hjROElPc8ADoeVLV+DYERe+F2AGe3bap4b4SLgSj1Os7e9kseaiBUtM0B6mYb3tRs5Uelo654PGj283N+Pm9RvQ5ebB9fhJFhNOHjK+GOUExLrD0aPGsb7jEbe57979zvqSJ/xaf9kQ8R0jho9m9qKUc0HrOXS6Yn5N5OXE/Ew5d22sPvtshkEOeOQ4D7OqGzrfYv3aDfxsJNpzmfaTJT78vH2xacNm9twz+/weRo0cw/czoDZSXVXN57bS+giyVSFBoVixfOWgZYOYEOuD5TEvZxbXkY/6/v0f+PPP99wW94cNkT/fwcEJlYyLiopalFfUwNZ2U4f8nLyGmeqvJ2N25pgDHsP6o53bdvIzwOncl8iQcFy+5IOtm7bhy3ETB/TeVq+yhr+vP+ejsrwSZSWlSGLMEkODhQsxniLvIaDMBd+5c4fHb//971/49dcX/WJDZNtB9qKc2CivQWqqRv8aWhspxjooR6d8jp7uCUr5LMHIhBmtA5IDJnthvdKGn9FKZ08SHy6HnLHUapnZtSHyr1yOHoM2R4uigiLk5+oQHBiMud/Ot1guRO5X2e/KbU/8bmfnwNkgEScUy/VlrG5gO+wPci7KyqpRWlYF23Uf9pTobBxQ7GksnqunZwISE8TGQOSAKSd74awnvM97cT4OOjganMlqrqK+7Me9dnzfZ22WFhoWF7mdcBtwO2esyGcXa+XE2hGlP6JcM3Hv3l3OBvlYz58/61MbItuO3NzCNjZKq5CSnKF/jfKcB6WIdXrG3sx1VuaAyffqy3qhsySdD7uwGCMAvpcuw+3YSXzTvnbekjR82Cgccz7O+UhnbSuaxUu0x5Sl3L/Yc+hTc09pXF3ks+x+tOdsUBxColxgX8Uh4vNs123iXJSUVqKkpALr1n6wHR/bK1eOTUxxPxSryzlgiuVNXScL5i2Cv08AQgJCOB9rV681OOveEjVt6gz4evsiOSEZ8bHx3JbI55v1VdsWfhDVv+xz0+90jXwM2T4o95ej13THN1eOKdy508pjddKTJ0/6xMeSPyslJYNxUYni4gokJX1YH3nYybFHny3muwkJ36s762v6Mge8394RUeHRCA+OwClXd3zVvr5rsGj71h2cDzoDMNA3kJ+h2R98KPevFHs5Uh2LGFvs4djT75PPUPhxnx3evXvHc72U8xXr1fuCj+XLV3EuiovLUVRUxr7bwSjb0ZmoXMRYiTxXp7vra0ydA6YzWy6yGONKdBznY8e2XYOKCwN/ffI0XGY+Y2RoJEIDQ2El7SvTV3yIPRtFfYv9K5V+U2/4UO77T/MWiQ0aL2xubjapDZE/I8A/hHFRjsLCMmg0Wv14R09th7ATZFfFPrjC/zJ2frScA+7JuivS1CkzEB0Zi4QriQgNDuf+1WBlQ58X5Gc4HeZ8kB3ZtX23yT6b+joxfif7V2KtDkn4V6bkg0Rzm4QNOXvmHH57+5aPqb9584bPZTM1HxMnTEYR46KwsBQFBSVwPeH+0ZyVMRJzQoUt6QkfvK6ldVfG5oCnTZ2JKzHxSE5MRYBv0JCZCyi0ft1Gzoevly/zvXaa5DMpXqC+Tz5jpSv/iupX+FdkT3p7VqS87wnlrWj+Gs07ef36FSJMuFZdvP+QkzPjgrGRX4J8XTFmTJ+t7yMoZujpGLmy7Hq7vkbOAZO6kwMmNhLikpDGYitv5m8M7+N41VxFOWziw8vTi491mooROd7uaXzeE8n2KDIiks9bpDlsL1++xKhRvV8fIr83IT6ZteVi6HRFCA0xHL8gNsTaVmP3+hblYsr1NeRb0Ti7nAPuyt+ie09OTENmejZ8ffx5HnQosiG0eKEV58PzrCc2bdhicfdPrFFbIT9EznfRPBua20tzpGk8neaCmoqPZUt/4DZDl1eEvNxC2Fi35c1p/j2tUVH2F8pY4lOiNmqq9TWyPpUDJhuYlpqJ7Kxc+PsFDXk2hBbOX8z5OHvqLDZIY7/mLOHHUNsTvgz5V3L7vN7UxNeH0PqpsrKyXvlY8ntOHHdDXl4hY6MAudp8fTsiH6+r2EPMBRjoM2Yp5yvngCknTNcpt5CRkc2epwBBAaEqGwpRboL4OHX8FJZZrTDLexRjIqKdKftj4kM+l+qUmztng9YY0nqbrydPMwkfaaka3o60Ofk4c/q8ng2l7TBXKXPAtL4kIiKW28TYmASVjS40b+4CzofbMTfMn2t+a56JiU+toaD+W8w7obUBz5495WzQOvWLFy71mo+l36/gXGhzdMjJzsP3Vsstjg8hse7K0+s2H78h+6HuQ/qJvNbaDZwPN+ZDTJpgeWtKiA3aE0j8XVJSgidPfuFjIvV1dT3yseTXHnNxZVzomI+ex+PYzuyWJcl6rQefH0N8UFylMvBp2e91gIe7B44ecrbI+TXyeCHt/fPL48d8LyDS3G/n9YqP5KR0Hr9mabRwZ/6o4EPeX8VSRGt/83RFnI/Dh1zUtt/dGI7VN9kP7wte2LJxq8Xdv7wfOsUcxAXtl/XwwQMc2O/YYz5ovTtxkZVJ86JzsLp9H93ejgcOlEJDo/ialejoeLXdG6k5s/6fvfPuiyLZ+vh5NZuevXf3uoZNumZdFXN2zawiICoCSpCgCAICwsDAAEMYcs4YCCYQc0LMq5vdfDfcF/DUr6Rmy95JDMPQrf3H+QDNhOru8+06p+qEGZyPHINxVGO1RpNx8Xv/hQucjS8eP+Z5/cO1scTrgveEci6amJ3e1NBi9WOV/eG0IBs2bOG58uBjigbvrxoEOZPgIy05VXNjl2OgkG+Ler2PHz6iRw8f8hxlV/mQX4M9AXDRWN9CWZl/19rRWm1b1ADu6j7H+ZBrSOgyPIHvgTmkMM/M7Czt7R0KWbRwCecCNd8f3H9Aa4fyYIbDB+YKcNFQ30wNdU20fShuTfSal+vaq/16hISG89qOTcxO1PV8ZIIYX/BRYMpXfQ6ivD+C2Aw5Bvzh/Qe8LwJqkSJ+cbh8LGDXAVwgJqmuppFmTH/u58u94+Q8YHw39szVtl6KvjzotQA+li1bpeu4ByQmKobKS0ppX8g+1Y0N8UrYRxd1gmUBI+J1NdU1dO/uPbrHXtfW0uayDyL+vysomHNRV91AtdUv9okDAzKXynEMNwZrNCXl6DHOB2qg6rrtGZk6ZTrno47p2Lj/jHwOUcae2qpN7SxfTq4pJYuIpVfaOagBhN5Tg3cG6c7AHZf6s8n/S0pM4Vwg3jvx8POcI1s9dyEYK8aHcdvqvSGfm5xXL+L/lcc9Jcj5Q29Q8DHv04W6bntQ4uPiOR+R4ZEj/ixlroeoayUfc5YvJ+wavE7EySr1CfuEYk8b9Y8HGRd3bg/QwO3bVn5c5aO2irFRWUfVFbW0M2CXdY3MnXUrjFvEAsh2mJxHBs6HE6PriuzbF8X5KCou13Xaw4IaFeCjtal5xPE5tnKhlLWgnOU7gAVntr2yFukAY+P2rdt0++Yt2r8vwmU+pk+bRdWVtVRVUUNV5dXWPjfgz529DzmWH2yDA+U5KnukeULO913mfGzyUC6DLi9KJrtf4CPQf6fb/rM9PpRziKf6Uck109FrCjVZb964QWWWMpd988/WbmBc1FBlWTVVlFZZ1yns9blx9VqInA7RL2I0+diyZTtdvzlIHSe6dV0eJVmxbBXno6Ks3C19EHOEvVxauS6ip/iQ4z7SUtPp5vUbvJ4+ak0689HF8UD/IHbOVYyNSiq3VFhtK3fjEeV+wHIPtNHkw5RXxPkI2xep6/IoSk1lFZ06foLmzh5+fC90QuQMyroifFJ5TXYk+XKy4PkunvGBAUG8XvE1JlevXOV9nlxZw4o/mMC5QA0P1LZx5Ju7ImKdS5yb8J1E3qDIt/RUj+yJEz+kWwP3OR8vW10etUlUZBTnI/6ge/oqcuNkZoRPqsyNG2m+HAQ6LOJ558/zoWuMi6uXr/C+E/OH/AhbfMjHCkxmKmM+bWlxGe3ZtdfKnbs1fOTzln0oUZdBeXyksnXrds5HQ2ObrsOjLAt9FnM+Otq0d62xpgsuLjO5dPGSdT3AGR/gwlJUSiWFFmsOMmKu5Dh6NUt+QQnnI1Cqz6XL6ElTQwOdPd1Dn86dr/qxYg0rJirC+jd6QVxi9svFC/0UfSDGKR+I07QUMjbMFipmeoa9IK3dr4HBh5wP3bbyjsTFxHE+9gbv1cR4ZTuosKCQ+vv66ULvBSrIMztdu5o7ez6vG1hUUMzr6gk+YAPBdxJ1SvBT7NeoKV7Rx2cJ56Oz66yuu16StWvWcT7MBQWqHaPwc2BDyb1oDBkGxkYf9Z3vZfNgo901LPH3pvWbOReFeYVkNpkdfqfwHQQzaoi9ioiM4XykH8vSdddLMn7cRM7HxQt9Yz4W+LnyM1z8FHtuSt8+eE8I9Z7r5eu76BHpjI+NjA/zEBsFuc+fB1i7km02NUsB85nAx86gYF13vSj1tbWcD6wJjfU84ew1WMMS+YTBu/cyNs7RuTNnGeNnnfIRHRHNuUA91vjYv2uIaiUfqudMH+djwYIlut56UdJT0zgfAf6Bqh+rXHt07pz5nIszPWfoTPdpa81le3sgB8IPUL4xj/Ky8yhyaG8N+4LD7WU+VjJ47zHnQ9dZ78qe3cGcj7jYONWPFXOH2OueO2ce79F4uruHerq6ac7QPqc9PtAryZRtotysXIoIi7DypoVaPj4+SzkfXT3ndZ31sixbupzzYSkp0RYfbL7o6eqh7s5u3qfRFh/y7xmpGZRryOH9kvy3B1g/Twv2leCjoqpe11kvC/Y+wEd9Xa3qxyrHoaOOZjfjoutkJ3WeOEU7A4Ic8pGTmUPGDCPvzbp21fOewNgX1EK9q8ioWM7H4YRkXWe9LNAz8HH92lVN+B9yr9tOxsYpxsbJ4yd5TJYjPsBF9rEsyko3WPkYaWyJt/mIiIjRdXYMRCt8KOUU4wL9r0+0H7fG6tvjA1ygT6uB2VlrVj6PG9NKbInOh86Hq/OHvF9xov0EHW87Th1tHRSwI9AhH2Ajk7GRcfQYrR6qB+cJETHMIm9Q7o/iqe8wZJk4H0G7tBHn8LJJdWUl58NnwcIR6wlE9HQWebNib0PuryMfH64PIn4HFx2t7dTe0kb+fgGO/XPGRUZKOh1LTqPVy1fzY9hzlHvM2hJlHwPle3AuIndQ9KgVOTKeqhFUW9/M+fDx0fc+xkIKzWaP8oHfRRyI2AeHXsn92eT+Y0KUPZFtiVnqsQYu2ppbqbWplXZs93fIB7hIT0qltCNHadVQPRzor63aELIoxyh6yAm2xXkr86Cc9XvX+Xi1+RAxfqJugSt5dfL8Yk/kzwAXLY0t1NzYTH7bHPORNsQG52No/pDzNOyJrTkO5yNY9yYfq4f6W+miHT6EDij5UNa3cYUPZY6VLZHjsFoYF80NTdRU38j42OGQj9TEFM4G5hDhf4xkfxDcYy6T+ZDtK5GP7on7k8jGrfvnYyfdXZ2cj+nTZgzrfUIPwICSD8ENnrWiBo5sX4lefsP5PjnHFtJU30SNdY3UUNtA24fy3e3xAS5gY8EHWbPyOR8jiS8RebTe8M/19Svtrl8JRhz55+I5OlL/HHt58n4euGioqaf66jra5rvdsX/OuMhkPjrWd9cOre/C19dCTwOdD3191x2pr6mjOsZGbVUtfb51m0M+sLaLNd7sdAOtk/bP5f1Gtcqu3aGcD+TX6vrqXRn/3iTOx/lz6s9Lgy0k1/kBFzWVNVRdUU2+W/7JhyzREQco+5iBjBlZFB4arql7pMdfjZ2I+CstxCfK8uH7H1MN46K6vIqqyipp3Zr1DvkID9lPOZnZlGswUuRQzUWtzB+TJn7I+ei/fEPXWS/L9m1+nI8co1H1Y4XvIfzp6dNmUhVjo5KxUVFaQdOmznTIR0RYOJmycigvO5ei9kdqyv+AiPwPUY9bFy/5fuGRnI+wUPX1PFAK1mNF/C7qCIOLcks5lZWU8foktviw1k70C6T8bBMV5ORxOwvHwIZW8qNa20/q+YNjIKacXM7HyhXq77GCfA2RX7t08XIqZ1yUFZdSaZGF9+90xMeGdRs4G+bcAiocqs8APuzFt4u9GKzFqaE+Q0amkfMRHh6t660XRdRnmDhUo3OsBDrorJ4OdFns523ZtJVKGRsWxkZJYck/eFD+jT3zQlMBFeWZqTi/kN595z1+XK5TIv8UezZq6Rvl6+vH+SivUH+ezssiyLkDH92dnWM+FujhcOqXIN4KXBSbi6m4oMgpH6h3BS5K2Gst7D3TPnle/0orPTnho4v6cLruekeCAoM4H4aMTNWOUVn/ShyPjY5jXDyv9RYdaX/fTPDxPtMvcFHKmCpjc87SRcusPrpWapgg/xx8rBrav9FldCUr08D52LB+o+rHqlxrSuf9eJ/XswpTxKDb4gMCP6Wc2WTwW7YO9ZaBveZu/XbZT/FGfer4w8mcj9Q0g66/oyzoHYX61OBjwvhJqh+vcq/CzHvxFlB+bj6tX7fRpm2lPHb0SApVWMqpsrScEg4ljHhMyt4NIuZM2d/AU3G8iN8FH+gfpevw6MrqlWs4H5Zi7cUswBYvYFyg1lueMY8Wzl9klw9ZDkQcoKqyCqouryRTdq71+OGDsW6NQ17bstcfR/hRnjr3vv6rvP/HypXq78+uZUk7msb52Oa7ze3PkGMSke8h4ldFrxjxjB1pziAkcMcOq58we+ZczoWoZzXl46kO+RDHfbd8TjXlVVRbWU11VTUjvobwicS6geBgtPtHHYo/wvk4mpqh6/EoCXo7o78a+Bj/3kSP8AH9ELmoou+xKzmDrorsQ69fu4FzkWPIIWOm0aYtZYsP9NGpq6yh+qpaaqipo5nTZ/Hj8D/cqfMjelaLn67muYxEpk2bxflAf84Jep+DUZFdO3dzPpISj4zoc2Q+MC+IuUHoiKd0BX657Hug/mGOwcjYyKYYae3KGR/j3h3PY+ERE99Y20Ab12+ysudOnImtHEE8E+T+zrZy2EcqlrIqzkdoqDZqa2tJ3nj9/6i02ML5WLTQvVgFWzmD0Hvhq4r+nZ7iA2tXch2etJQ0ys7IpqxjWeT3+Q6nvof8P/jnTXUN1FzfZO0BDzYc1fkB96K3uXxcmS8v9+pU5k968h5u3ryN83H6TJ8ej+Vh2brZl/c/Ly4scuv99nIGbem+KzmD4Ah6JvwVW4I1WGFfvcO+H1wY0g2UmZZp3cdw5psLiWff39LQRK2NzVRSWGyTD5wjxiP6bwr/ydPzwEik40QXXbpyk0JC9ut67cG5w2zK53yMJN7KXs6g6OUq2xTO/HPY7cr6C6LeiXgNYghFXAl8CLmW1ccfTnGJD2ufnA2bqa2phdqbW6mjpY1xN8E6R4BTcV5KwTgdMext2bTJl/PR1X2O3npTn0M8ck2ZvV1eUkp5OSbVjAk6B72Un9NCsA4GvZSf29t9/Xit6WOMjfSUdKe+h/L/4Al1gVA363hbB/PN11rHIX83OBHrUWq9n23tp6j/4jU6cED9tfdVP3e89hYZDdmcj+VLV6hyjHiGgwXYNaL2gdBV8ZqD0Qc5F2nJaRQctHfYfECwdoWapKhNGhsda50T8b2ih7kW7um8eQs5H719l2mKBvuNqkkC/AKpMM/M95C1MmbYWKL+Cdfht9/lXKQmpbLzOEorh+q8ueJ7yK9JSkzia9udJ05SdUXVC+tkWqhX/eIagYXzYTIV6no+gucy1kPBh8gj0orI666fzplPqUcYG4lHKSUhhfdPHI5vLu8TdjG7rftUJ/V0dln3F+HnaCVWUciE8e/TqVOn6ey5fjb3+ev6Pkx5ndlVsEnAR9BQDwAtyf6wEOvv6GuTkphCyYeT2Tkdctm2Ur4OXPWc6qLTXd10pruHdgftsb5Ga/MHxI9dF/DRzvyRyZOn6Xo/DNmycSvzZdN5vOsbr7+l6XOJj4mnpMNJdCT+CG1ev2XY75c5Kikq4X0Lz/acoTLmk9niUUtiMpnp9OleKios5T1ddN13LrNmzKGk+CTOx2SV5MENR7BnLuwd2IVJjIvEQ4mUeDCBx2ANZ+5QMoK9wXOnz/Le0L1nz9OE99Qfw+xIUKepve0kdXWdodiYQ7r+O5Fx/5lAUfujOB8b1qk/v8OZYL5IPJhICXEJdDj2sNUOcpePT5gd0nv2HPWdO08Xzvda678jv10LNX9sCXr6go+TJ7ppy+bPdQ7sCHQnLDiMDh44SKF7QjV5DogXlPe0YyNjORewsXyle+8uHxDUtu7v7aOLfReourLKpfdj7Rdrap6MOfSk+G7143x0MF9klR4D/09/nLGxd3cIHWL+a9S+KNX5m9Av7Ac623eT11qnTp5O8bHx/JzA/Kzpc9xiQ8lISHAoXbzQT5f6L9Lli5do6lBOurLOLwRrzRg39kjUUrPBnsQw+wp8tLZ0kM+CxToXkuzY5s9t9Kj9B2jcuxNUOUYwIvYB8VO5HwcbR547YB8KNuKi4ty2rZR8YG0UXFy5dJmuXr5CcbEHX+DT2TjVLNEH4jgfleU19NEHk3U24M9u2cbXP8HHe/9RJxtKwTyC5zJEPJflmgn4XXABQe6Hu7aVrfdhHevalat0/eo16mW+iDgu4l7cjS/B+0UMgJwvJte2l497WpA/nWPMo6aGVqqvbaTly9Rf32zUbKrX3qJdAbt43AX4mDPrU498rr14dDluXdYDW/3IhjOn4L0ixsNq18xdwLkAI4eY3fDJ0Pq+u2woGdm8aSvduHaNbl6/Trdu3ODxzZ64drg+4jxEvhh+x7US8xD8GE/2CbHFyNHkNM5HTVUdLVuizrii0RTEVcWyuRTx3uBj7ux5HvtsmQ/YFyI2F/FQuM84Jse1wkaXY3rdFTl2N3RPGLet4JuHS/lAnuID0tfbS7dv3qSBW7eYPVJhPY6YYXf7S4k4ZFF/DtcJx+Xro8yPGS3ZHxbB+agsqyJ/v8BXhg3UdMJ8gTzTlCNHPb6Gr+RDxAnK91WZQzcSPmDzy/r4waSP+HoV1nSPMJtx+dKVHmFDfIb4nPhDhxkbt+nOwAAN3rnDa1+L8bgbbyLXNgEbgvmx4AOyM3A356OspJw/T5Hr8DKzsWTRUs4Fanhg3vBkfVDcS2HvyPaS6LnnLT62bdnOfSns4aQkJPO1OU/xIX/OpAkf0ODAHbp7Z5Du3b1LhkzDC3OIqPnrzvwh+1ji+gj7Ssy/3tKZpYtXcD6KzSWUnWG02qovk7zJuN+7J4TXOkPtQKx7wsby5HfgvoncC5kP0ddb5JUq7WzR+9gTbPzr7Xd5HEky4wLxiCPZ83DFxsrMMND9u/fowb379PD+A15DSIzLHT6U/rmIQfaWf27X5mBz8rHUDDKbCnkNGNTJe/01bccdCZkxfRblZpt4XX/wsX0o93o0BPfTlr8teoa76p+7uiaqrKWOuDHYjohlT09Js9qOnmJDychCn8WMi/v06MEDevzwERmz/66LIteNd7S2oKb8Qoc+K3vGBgXs4nzkZBqZbxdPM6bN0u6c8cbbPF6oobae9xND7UDEemth7FiPctYLHGu48tyBPI9U9GJOTuN5gqHBYR6fO2x9Xn1tHT1+9IiePH5MT7/4gj1rnzMBH8QeH3LdL/zU0h4J4vrh1yFf+VhyOgUHBVvzlbUgb735NgX676Ta6lpqbmzmfISF7NOMbyXsLTG32Nt7Vs4dq1as4TGVvKdmusEaW+lpNpSMoJ7LE8bF0ydP6MunT8mUa7I7Rvhoytx6NdVvcFVgW61ZuZbzgf7wmanHaH/IfmtOjDq5+BfPSWhpauE5oO0t7WTMMtLM6bM1d/1F3qpsc8MWEc9Z5bMZ9ws+hyE9k/mQWbRf6qU52nxAmhqb6Ksvv6Svv/qKvvn6aza2j17wQ5ydj1YFc/bnzMcDH8aMbN5rKyYympYsVE9/LcQ7REfF0MnjJ+hMz2nqOtXFfI1yWv0SxJnZet7CNlHy4ceOZaHPLHppZuU4rR3qaUYWL1rKufj2m2/ou2+/pYL8gn+sWzibDzXNCePcf5s/5wO9hNAPAn2FkFs3FnEqqO+1ZbMvWYotPBaov+8CnT97nupq6mjdms9euvU36JhcqwTMiGcvaluh7htyHVE/Oio8atTnDluf39raSt9/9y09+/57+uHZM5o9a66VcVEvQs11TTwh7/x7HG38bBNlpmVQpaWcaiuqqZE9D9CLKJrNK3iOjFYe1gxmJ+3ZvZeqq6r5ntStGzd5/A/4MGQYaJlK64t48hkFm0SsIYvjwbuCKZdxkWc08frsn0yZ5hU2lIzMmjmHnj1jbPzwjH788Qc6weZzef3OnfVeTc/9cxfQPub3VljKeF29463tvLbF6a4e5hM38LXx0JAwWjBvIfksWOTy5374wcdc1wOYj33oYDy1tLTSl8y2/YL5gA8fPOR7UeCjqaGRAgN2cvvqVbnmWLOSa/ZOmTyVc5Gfm0fmvAKKiXJeV3c055BCcyH99NOP9PPPP9Evv/xMmzb+nc+LWvKvEh+yLGT6HxocSoX5Zs4H8i9h8yAG+sa16zwO4T7T68cPH9LA7QFqZTrf0d5BJxlPXZ1ddPXqFfrrrz/pj99/p99++5V++fln/gz6/vvvmF3xDefj9q1bVFxUQrvZ83LSRO/W4BZ74/Iak6ilLL9OHFP2/fOUoGa6HLsRHxdPZmbn4roXm4us/TO9xYaSkQ/e/5iePn1Cv/76C7+Pg4ODfM9SvA5j12ItB08L9hl2+PnzfnelJaXUzRgQfHz55Cn342CjgoPff/8vZ0PmA9wc7zjO54/1n2209iEeK5H3IsTenhwrhOOweeS+SJ7OlVPGNK1asZrXHoJtaykstua6jiUfkMSEI/Tf337j9/WPP34nozHH+j/UAnKl5rvoefAqsgNdX7J4GS1dspzbUcuXraQVy9UdZy/zIfrEiv+J2Cll3xtXYuiGs/Yv2yfYy8nJyuG1ohETUGDKt+7veJsNW4zcZc/CP9kzQjz35s6Z9wLnjhjB3Is1ruHMwaL2u/LYWMakvEpiay9b5ALhXir5cDXGVKzfOtoHsNUrNjwsnCzM1kSNnYrSMvZcXm7V0bHkQ3w3nnfg4n//+4vL1StXrK+Dn26PD1GXfrj7Ini93MsQ4s2ckVdVRK88mQ9cc+g1jos4CXf5EJ8H28yePQFdknvFwnYtK7ZQuaWMKssqKCE+YczsKkdzSE5OrnX++PPPPyjpSPIL56TMVZd7abl7r+RrPlYx8a+SiL0t0dtIXGvxt6hfLp5X/9/eebZHcV1x/HyTvEtPnNiAbTC2AxhMc8EYmyJUkUQLmNiyTZOEei+o915WEuoddQkhisEkxLLj2OSFEzuPE/IRcv93Ocvd0ezujNgVknZenAdYVquZnfu7p95z8G+uy2a9Yub5aud8aOtg7bMWyuQs2ab6RrI1NtPvf7dmWbChZQR++fz8vGQDthZ8kW1btzvui2vHsM+oZz0WK1odYvGxdIyoc454r+NzgdrzoNqzPWaE58uwXaCtgZWzZOsbBBdN1NJko/CwiGWjO/TsrL1790kuEHeBv66NZ2nv1xv6XrV3n9aZEUt8J67200MHAmTf9JamZmqztVCqYq8sFzb0ric/v4D+9/AhPXz4XxmbbGu74uR/eYMJ7QwUyz/3D9+H/46cKfzx1uYWutKCM9H1cp7u0/bJjdpZ14VOBRvIi/znxx/pxInHPb/1+mZZ4l9ixn5ArEr1x3/x819RrmAF5yzaMSPzSrvMfSxX3aFnZ8HvePDgW5lTR84L+XWuz1qMvbsSa+It0RfYw8gbGmVEG8/9JOpTwUWbrKfp6uig82fPL3s29K4POgNcoP7k3z/8QHfv3BW65XGc10j9CZ/PhPhr/nC1+RJc222EEawR1R/HrPEOYa93tXdQd2cXFRcWyXORK4ENPUYqKipl3dAP338v6ycmJyad3utuFpXKhtnYoCXm1izX93Edgyq8huE76tVYmRV8jidG9HKAWzZvpU5w0dFJvV3o59cirvvlZe1zGGFkanKS/iXYQB38P7/7jkpLHp8Vwd6g1xvIF2yoPbPxJz8XrA3uQaO+7k9+r9pDhs9TqPPq8b3w3GX+05eMaH2ODetflr3Re7q6qK+nhwZ6+2j/+wdWjF3lzhf5tdARX335JX0n2MBZKtTiafM+qr/uK72BGCH3muG/43U8H8Tv8TrPrPdXPrBO8b1rY3/afLm3+hvqMYK1oNZbwH6qrqyivu4e6u/tpcH+fjqpxHtWGht6jOCsyPwXX8jabJw7xLncSKW+knWIL20q9Rmr+UN/zytq+7eBDewdqp7wZv82T4yofIAN+Bj9PYKLvn4aGhig2OjYFc+G3vUfjTwuufgH5MED2dshMuKo09r0pb/BZzK5DptjYv7KB+6f+7oyH2xr8nv4DKiv+NAyon73YKOkqJgG+vokF5gVW1VR4TiPudJ8DiOMQGeAi28h33wj+6CgH4oa+1sMG0Z8RrUHMu+R/swHr0swoGdfcV0V3sd2KV7jfcYdd4u5Fv5d/Fr0hWhpSw0PDtLI8LCwsSpXHRt6jERfjJVc/P1ryNd0984d2dPPlW/mSdTZ74vxP7jXJdc7qmcZ/IER3LP6/al1U8wNM6KtsdIT/J/Wv3QnsKe0Z7FjLsbIs8lXh4Zo9OpV6ZOveW7dqmRDj5GC/ELZY+5vX30lz1B/dvu2gxGO7cEG9XS2iudVWfGr5SV4Jp5qifCcIdoYP/wL5mJsZET65DhXvlp8DiP+OiQ/L1/Gtb6cnxe++7w8MxIWGu60r7irQ+FzAtZ6XJ6CZ+Nur9HaCejzeCkmVtpS4GJibFT6Hmp/8NXKhitGLufmyX7X6MHx1/v36f5f7gtGnGfK4jvU0yP4/peyrxb7Jtp6bW/UcT+pjaSnQ9U9nPv1ae0mXwqejStfUjv7GH4FfO+xkas0PjpKk+OYL9zv6M3jD2y4YgR9bzAzAbMT0Kfmz/fuUWhImNM+A/2r2qjsKy7ldbua5cM9/PA61sNS6zRXMQU15sT1/nyGCX75Yjk2syfxd+XuWYIN+N52LsZoamJC+OQDfsmGK0ZyxHeIPjf3Pr9H9+5+LnudZWZkLdAjet+5UR/eG3sm11eo/QbMxr/4PKre56qvqz1z3NkpRvjQ5jg89UJ3dd3gXz3HbETUvUzbjwd+RavNJmwpcDFOM1OT0vfwZzZcMfLHk6fo87t3ZR3jnc/uyD5RhQVFsnem9hmZ3e84vv4kdcCsG/hM1mL50L5Hrw8Ox17VOX16a5LrpdTP4/d5mw8IrgX3azbGp+eLoIcHfO9JwcX05CRdm56ipoYGWrvmeb9nwxUjIcGhkgv0ycS83FtCWmwtC3oCas/oe1rX2tzTYu0rb+Tfte/R64OjXc96vVo5P6HtRcExal/woeZwjdhnHLsFGyof4UcipI8xPTlBM4KL2ZkZam5qFHvhbyw2fuI+9rtzx27x3U3IWevoN4h+smMjo7IvlBob5Biwuz6mZp+nJztBrdHj9ab2RcM+7yn2744P/j+j65nrcbT6g/d5lWetPnqSuJSn/YbjtnhGqj0FXyMhPkH6GLClZmem6frsNUpNSXGwsVrzG95k5NVXNpGt2UZzs3PyLOL1a7OyPydm5mn1CPYofh56e74361W4xtuI/6D3s2DHm3zw52p/L9tdrnqAPkmOB5/De46rPCF6cWhj8/A16mpraVpwcQ1cXJsRe98sxUTHuLQnLHHNCPYTxH/BxbXpGbHfzAh9PE2lxaW0RjODWC9XwnurGX8SP+OrmDHv62oPToheHxxwpMaboK98GcvW1l0Z0aU8f0N9HbpCG7uFRIRHyhoq+Bizgos5wcX42CgFBQZbbDyhTwKdMTM1LdiYEnp5Utpe/b39sh+n9mfRz3TXjl2O3j96sx492Q6+vDfOaar+rV7+5GnkK8z43DyDlr9f2LiBAQEL3gd7KicrWzy/KWlLzc2iR/d1GbOCjWCx4R1Gtr++kwb6BmhibILGR8dpfGRM9kVPT83Qna/han/z5Bf48zl3cGrm/rX6WXsOFL2EkcdgH+PG3KzwKeeosKDAKSZpceEdRsBBUUGR9NVHBRsjwyNydlhXe6ecQ6N9dmy36J1PfNL9k2sil3utFucFjfY6Muqnsa/H+k21/aTOyM4RttRjH+Om4AJx3OCgEEtn+JiTI6Hh1N3RRVcHh2l4YIiG+gfl/Mnc7FzBwlonG8D+/lCnZ+rK/jZT58j+6XKfG4d7MpOvAPdG7gm2FPYd7f6A8zzDQ4N2H+ORLXX75g1qa22ldWtfsNhYIkaee3Yd5eXk0aBgA3YX/JG+nj7q7e6lY5HHHT0tVPkkyh770usHwX2XjdohfN7NqN3mC1vIF9eK9e6OJew1evF02L8N9fUOH+OG4OLWzTn67PZN+jjqY5cxGEt8F9+CYCZlm7AJ+gQXvV091NPZLXRLNzU3NNM+pWeYKmdOnVrAiRnbyuyebOZ92r627uJHZnWdUVtQr58+uNCzU9c+9zwlJSbZ47Xg4rrdx7h96ybV1tRYOmNZ6JK1lBifJLnoau+iTuGPdFzpoI62diovKaddO99wywlsdDO9SDn3ZvRnjK5lztUY0Te4ZqP5Tv5co763GqdA/yk9LuBjXDh3QcZrrz+K1968IWypWzdkThx1EO6emSVLywhky+ZtVFlWKblA30nMxGyztVFrcyslJ6bQzu273a5f2A2eZsGpuTEj+zHWsNF1aYYPM32oOJZnxPdmFly9F1yc+eBPC3yMW8LHgC0VF3tpQWzK4mJ5cXL4UBDVVddJLlqaWsjWaCObsLea65vkDC69vAmEZ8Eh9+tuno+ZWi4z69gMH+DU6BlWrrFxF+vm3Kpebg+CfGxiQqI8C77Ax3hkS/3h1c0WFyuEE/jn4aERVF1RLXvgNwk2GusaqaG2gepr6ikvO4+CA0MdM+pUAR/YR/Enzyxh4VpHozYT3mfU7jfDhxm7DcK5UtUmwx6AXKq7Ws/t23ZILmY0NSF2H+OG5GLXzt2WLbWCGHHiRKz/sJAjVFFaIbmAXqmtqqWayhqqEexUl1fR6ZMfCA426doaXN/F64dzxkZtfzNr2CwfZmIKXFMInYP7ARewJbX8sw0VcPAwXWltc9SdO/kYwpaqra62uFhFNhf0REhQKJUWljziopqqyqqosrSSKkoqqLy4nNJTMmjfO+/RM7991mUsiPumYW3BHvPmGvaF/uBea+CCe365quXc8/Y7FB8Xv6DuXPUxaiwuVj0nb72xh7LSsxxclBWVCW5KqaSghIrzi6kor4hiL8TS3rffpWdc2EYqH9Hnz0rfHv9m34XXny/5YB+a1zvbS3xN0H+4Jnf1/5grHSfYQf8c+xk+57pzrglJT0sTn21x4S92F2Tba9vpozNRUqeUFBQLNooEG4VUeLmACnILKD8nX/opF85epKCAYHpp/ctufw/7Lao9xns8x0nxf8wQ+8TMmcoHn9Pm8xPq+3kuBH82mIBfrfoRrmpqkFc9sP+g7BOCXs/2PiH2s62y7lypCQEzUR9FOeUwLC78jxPYU+/u2UfJCclOXFzOuky5mbmUk5FD2enZlJWWRUlxSXQ88gS9uftt2vDiRsO/W+1LwPOumQuOGal8cD4Oa59tJOaD/zSS70duCP0poz6MovLSMkcvQrVPCPsYXHeempJK+/a+Z0gfW+I/thdk3ZoXKPhwCMXHxDtxkZmaSRnCP0lPTqe0pDRKTUyllIQUSo5Ppg9Pf0j79x0Ua/kNevH5DR5zKL6SDes30u5db9LRyGNyBnhtdY2j3zm44J5rjj4h8DEe1Z3n5V6moMNBTudb3e0plvi3ToGgduL9d/fTpx+dpYxkwUaSYCNRsJEg2IgXbMQlU9KlJEqMTaSEmASKj46nuItxdOnCJToXdY6OHjlGYUFHaM9be2m3YGf9Cy9JnaM922VE4Dchv7Dp1S20c/suWaMZHhZOKUkplJdzWc5U6nw0U6m3u1v2O3f0dXZwMeLwMYYGByg3J4cCdZiwdIUlZln52U9/Sa9v3UEhgaF07uNzLrmIPR8rBX/H6wmxCdImA09pQudA/0AXZadnUa7QT7Dh8nPypM8D/6dE+EJlxaVUUVJOVWWVVF1RRbVVNVRfU0eNtfXUVN9ItsZmam22ybmt7W32+ZQ8U0nOjgEX/eh3PujUixC90M+cPiNrCc3evyWWmFkr8Ade2bhJ6pdj4ceduAAr4AYMwf6CLQbdkynsM9hqOZKLXMkF/B3EBBAfKCsqpfKSMqosq5B5mdrKaqqrrqUGyUWD4AKzvm3UZmuV8yk75XzKTvtMpW77TCW2pTBrKSMtXeoY9NFZ7H1aYokZVtytI8zJgv/xjrCnggNC6NTx03Tx7EXpt2SlZQousqW/D9+/IDdfclEsuED8rLxYcFFaQVXllXKut+QCOqOuQeb/W5qaBRctMmfH8yl7hC2VnZklz6+eOHaSDrx/UM4N9sa9WGKJr3nR2mcbN7wiBX78oQMBMkd9+FAgBR4KkvHj4MNCAkMIeczQ4DCZ92c/I+JIBG3Z9JqcUfna5q0+vVZLLPE1M0u9Fp/277fEEm+tW2+K9R1bYoklllhiyfKS/wNQSwECFwsUAAIACADaiD5bNnheWgdAAAAAcQIABAAJAAAAAAAAAAAAAIAAAAAAZGF0YVVUBQAHJQ7caFBLBQYAAAAAAQABADsAAAA6QAAAAAA=</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #4</Name>
|
|
<Index>4</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPltKhIs/C0AAAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J33X9THusc/f8k959zck9g1lpjYYhJjJyqxgGLFgkcNoIgFVAQUEaVI7016XerSe1WKIlgSS2yxJWpy7k/3h3PnGZh1dimysEv9/vC8YNt3vzsz73nqzPz9b5/g74oMm/ztv/6736K0lyLjYdyPhusrooixxqlyT4ooPPRv3K1atYaL/TEH2Ns7ICAwFFHR8UzikJtXiIZrLWhobEF9QzPq6pu41NZdR03tNdTUNKK6pgFV1Uyq6hEcHMEkHEFB4Th54jSsrY9gy5btWLZsFWbPmqvXvSt9qYgxmOjtPd988z127doLZ5cLiL2ahCo2tptb29HUcgvXm9uY3MS1JibXb6DxeivjovUDFw06XNQSF40aLiqr6lBRyaSiFuXlNSgrr0ZZWRVKS6tQUlKJ4uIKJuUoKipDeHg03N0v4+ABGyz9fgUmTpiq8KLIkPIwedI0bDKzgKurO67Gp6D15m0uLTc60HyjXcNFE+eiTeKCieCisVmjM4iL2rprnA3iopq4qCYumAguKmoYG8RFtYaLkhLBRTkKC8tQWFCKAnUJ1OpiqPOLkJ9XhLzcQsTGxOP8OXfs3L4bC+Z9rbCiyKC46Ok1E5N1OHHyNFRZ+bhx6y5utN1Ba9sHLjgbgguhM4iLJm0usnMKEBEZi/AIkhgcOXKMy+HDJPZcbG1JjsLW5ihsbOy4uDK9FMhss4AAJv4hXGcQF0XERSHjoqCkk438Yg0XebkFyM1RIyc7H9nsvrNVecjKzEUiY9rF+Tw2rjfHzM/nKKwoMiBdYWa2Fd4+Aahj4/pm+13c1HBxpxsXzRIX0TEJ8LjkjaP2J7FhgzlWrvyB6xxj3P/CBYuZHbUSlsy2O3jAGj7e/kxfJDAuChgXjA3BhSoXqswcqDKykZmehYy0LKSnqpCWkokr7DNbLXbg8xmzFVYU6VNXCCbqGRNt7fcYF/c6ubh1p5MN4kLYUoyLNDbezjq7YefOPVi8eMmI+X0TJ0zB90uWY7/VQaZ73LjOyEzP7uQiTcXYyGRsZCA1OR0pSWlISUxDckIqvC77YMvmbd1YUTgZv7pi7hfzcO68B0qYfd/W8bMOF3c1XJCkM/uEfPDVq9aOut9PttSG9WY4e8YVsdHxSE1K7+QiMRVJCSmMoWQkxiUh4Woi4mMT4HDiFEzXrtfLDlVk7HBhZr4VYcwHuHX7l04umHTjgklwSCSPTRnLRhoumffVQhw6aIMg/+AuLpIYF4mIY/ZZHPPpr0bHITbqKkKY37Nz2y7MmD5L4WQccLF7936UltdwLm51caGlM4iJUGJi35hjojche8qS2Yh+zLYUXMRExiKGzR/R4TGICotGZGgUrBlPpG8VTsYWF5MnT4eDgxMart/olYtM5svushw/TPQmX82dD1vrIwgOCEFUOOMiLIqxEYmIkAiEB4cjLCgMjsz2+nrhNwono9zv5lw4SlwIW6qLi7qGZnh5+/P8ntJ+2jLhs8lY+4MpzjP/XnARFhiG0IBQhPiHIJjZZSftT2LRgsUKJ6MwHkV2VKPEhawzikureD5jvOuK/grpiqO29ggJ6OQiyC8IQb6BCLwSgAAffxy3O47pUz9XOBkFXJiYmKK0ohbtvXBhyWwope0GJtOnzcQBq4MaLvy9/eDv5Qc/T1/4el7BPta2n306SWFkBLJBfmNicrrCxVBwwnTF/r3/gp9XJxdXLvvA55I3fDy84M7ssbUm6xRdMoJ0BvkY7Xfua/sYHcy/aGxmXFgp7WYkmcY4IZ1BXHhf9ISX+2V4XriEy24eOMFsrgXzFimMDCMbwpbS9TGoJkTxL4ZOiIMjPx3mbHBxvwQvxou3hyd2WOxQbK4hYkP8T3Gp826XerSlQsOi8YVOjF6RoZEVS1fiArOvSJf4XPJidpc3s798cP6sKxbO/1phZAh0xrffLkV2bmGXztD2MUx07F7nsy7cBlDa0Xhid8QeC6SxT7qCdIYv80n8mG/i7+3LfHk/5tP7w8J8a69zniKDZ8Paxk7Hx+isCXE9d7GbLVVQUIj//Oc/CA+PVNrSiP7H+/fveTubbdqs9RrpCzfn8wj08UeQbwCC/QIR4h8EVycXzJg2U9ElBranRK2UblzKZLW2zji4fz//S/1F/UYiz2+KGE5SUtJ4+9bV1fPH5ps2YdbM2Vq6ZPeO3QjxC0KofzDCAkMQHhTK9cnypSsURgxkT/F6KZ2aEMp7yzpj+9at3a5F/Sb3nyKGk5UrVmvmH6E7prJ57NN/TsTSJUv5/+K9lF+8zPz28KAwRISEIzI0AtFhkdi/d7/CyCDY2L3biq/V1q0JMTOz0LxHzFdffdndJye9oduHihhGxNxDOkT3NcGH3CdUr3LM7hiiutiIiYhCbGQMXJi9Ra8pPol+bNCaDN26c6oh1I1NrV65us/renv58H588uSp0s4G9MmpTcn36Mt27Umnm2/cjNiIaFxlbMRFxyI+5ioCmO8+78sFCiP9YGPypOl8DZ9ufa2Xt5+WPUV+Rk86oy8fklhR2nvwPjnNNfq052Fra63HVCMcHhyGhJg4JMbGIykuAdHhUfhOqhNVGOmZDVWOutsavkM/He6mEwY63yltPjiR9bG+sXPZxiWbysvDE8lxiUiJT0JqYjLSklKw4ceNik/SU4yK6QZVtlqLi9r6Jmza9MHXEPqCfEN947ZkJ9PnlDE+ONm7x4qzQX/1+Rz1F/FB/iL58PTcxC6fJDUxhbGRivTkNGSkpmPjerNxz4hWjIrpVYrVymtba+qud1uXQfFDWSeQKGN2eGwsfZmiXK3oQzkGTGJzyAYZKenITM2AKi0TWRkqOJ5wHLeMyL+VGKCYlFjbSpKhytXyNWQudOekgegEEXsRdsJYz4/IuSA5nke/W/gSchxc2FDCJtVXV8hC39FTjEvkqYSQzshKz0Q2YyMnMwu5qmycdjg97hjpiQ15n5CMzA9siHh6X/MYtb0+8xnx1N7eoXlMefax7reLOLduO9GcLuxU4XcTN8SEeC+9Z6D5I7oGtW9P/UO2MvWtrEs2bTDnXORl5SA/OxfqnDw4nXIaN4zIv4/YIP9C3oswPVNbb1Abynmm3sa7Pr4I9b/c38TGeIhrURvRuKffLn6v7m+n14Su6a299P3OvvQ7saFrG5ht3My5KMjNR2GeGkX5BTh75uyYj2tpx6mmoaikUmsvwvTMHA0bPbVbf+1bhY+e53EROxI2FY1bY/Khj39I+UQSjT1ttgWFjIsidSGKC4pQUlgMa+ajjFVGdNnIUOVp7UWYnvGBDerLgdTc9vcz1N+yfUX2WX/ZGiv2Ff1+agdiQ7av6HlRNyLeS2OcbCR9+0KfOYdsBBLZD9xibsG5KC0qQVlxKcpLyrB1y7Yxx0h3NnK19jtP02GD+ojEmHXp480/F7aOrh8+FP65PvqGvk/WORabtzIuSlFRWo7KsgpUlVdim8X2McWI/Bs8vXy19nVOS8/W8jdo7hK5bmMzosjIEcFGT/VcpDOqyitQXVGJmsoqFDFd9vWib8cEI/K90761mv3OW2+hsrpBi41zzk4KIwob/Lk9lpZacS2rvftRW1WNuuoa1NfUorS4BHNmfzmqY1ryPe/ctbeLi84zMujsF7HfObWDbr5IYUTRG7qx3wtu7qivrUMDswEb6xuQkpSimV9HGx9acVzGAZ031nl2TOeZSnQmn3gvxXB7qjNUGBm/bIh5UzeGGRURiWsNjbjeeA1N164jKCBoVNpZsj+uLijVOlPpwIEPcbqPxXBlRpQ1TuOHDVnktVaTJ01FWnIqmq83oaWpGa3NLTh00HpUMSLfY2BQmNb5lB4e3t3miI9djxgR8Xr5eYpPyvWg1OYinq+shRodfHyMDTFG5BqKbxZ/hxrmi9xoacHN1la03bgJk9VrRoUvIt/bgYM2WudTJqdkauzFH9eZ9mvtRl8i57Yo/kg2mIjnK2vOR77oM4eR/pDrtTZtNGdc3MCtmzfR3taGxoaGEe+LyOyS7y2fT1lWXoM5c77irxnKj5D56C0PrIxD44hcNyLy6ySURxTP05zV0/OGknOu59F+6xY62ttxu6MDkVKN0UhkRPY5UlJVH85tvdbCz6mU5w19awoVPkaWyO0r6rlEPl7k2sUaEdHf+ubge+tz2S7Izc7BnY7buHvnDu7dvYvDtkdGJCPyvTg5nWNstPJ9FehMY/eLnlp6UvgUA12vJFhQ+BgZfMi+oNAZ9JyhahyFzUHjRbdPaU/y5qYm/Hz3Hn75+WfcYP7Il3PnjSg+ZLuKzjIWZ33XNzYjO0fda80h/WbS0/qucRI1KBTXEkzQNWT/Q67PVsRwItpU5kPoBmp7+t/QfNAcStcXeoP24yD/VbxOOuM+Y+PBL/fx8P4DZGZkjigdIt9DTm4hPxu5vqEZdfVN7LeZ8Of7qlOnsa3vWllR/6bEr4Zeb1Bf6dpX4n+ZA0PwIa9P0RU5vhMbE4uHDx7g0cOHePzoEY7a2Y8IRuTvtrM7oeGC5NRpZ81ruvuFfWyOUGTk6g/S0/J+YjQfka9B45/+Cp1Oj+m99Jf0uT410sKe6q0uksaSvHfQFPaYfPXHv/6KJ48f487t2/y5kcIH1cLUdbFRW3cdqqw8TJr4IZbb3zZR9k8YHYwQG7L9Sv1Gz/WWo9KnX8V63P58ZvGixZrcyFG7Y3j65AmePX2K58+eISkxaVh1iPyd4RExnIvaumuoqb2GFV12lT58jCdZzfw0ymk5nnTEacfTcDpzttOWCAtHgboA/n7+uOjuAXf3i7hwwR2HDlnjR9MNzKZYMK78nI8J2SVy7jAnJwe/PX+OF7/9hpcvXsDUdP2w8CH75OvXm3E2iIuamkb4+PhrdKDCxidY9v0KvvbN+7I3sjJVvH6IaiMo73unowO/3LuHRw8e8rmP+vXN69d49+4t/vrrTy7v373DH3/8zp9/+fIFnj9/hqysbFzyuIx9e/d3O498vIlcv/f9kuWci1cvX+L1q1eorakZFh0if5dKlcfYaEQ1Y6OgsBSzu+qOdesvx4tMnDAZG3/chHPOrnyPgSKmD2j9G63tqaup5XwU5KsRHxcPX58rWvrjmP1x7Ni+k9eqyvqjqLCI6xXBxxPG0iPmh96/fx/37t5DeVk5z5dR7cV45EMeZ1d8fPH69Su8efMav//+hute3Tl9qHSHldVBzkV1dQOqqutha3tU877IyFRMmx2Lf/xjxrjop3VrTHHqhCPfCzCD2c+0Tw3xkXA1Hi5s7O9jvubK5asNMB7mY6vFds5Uelo654Pyx7fa2nCjpRXqvHw4nT7LfMK548YWo5iAyBNMnTKDzR0Puc59+/YPNpc85s8NlQ4R3zFp4lSmL8o4F7SeQ60u4c+JuNzZC/+LL755izlfP8akaY5jsm/ofIutm7fxs5Foz2XaT5b48PP2xY5tO5mvucjo9zBl8jS+nwGNkZrqGl7bSusjSFeFBIXCdN36McsGMSHWB8s5Lwfm15GN+v79O/z553uui4dCh8jXt7W1RxXjorKyDhWVtbCw2KHF9AnHJFjs+ZMzQjJzfgM+nbBxbMxZbD7at3sfPwOczn2JDAnHFU8fWO7Yjc9nDK9NuXGDGfx9/TkfVRVVKC8tQxJjlhgaK1yIfIq8h4BuLPj27dvcf/v3v//Cb789HxIdIusO0hcVxEZFLVJTVZr30NpIuY7E2q4C35m803Ay/YsMfPLJwlGrL8zWm/MzWunsSeLD8ZgD1pisHXH3SvaV48lTyM3JRXFhMQry1AgODMaS75aNWi5E7FfeO0KuK6KxJ/63trblbJAQJ+TLGdNX19IdNkc5F+XlNSgrr4bFlg97SvSUBzQ334fDx3/WMEI21+QZ7qOqbygme8nNA94XvTgfR23ttM5kHalCc9lPB635vs+5WblQMb/I+YzzsOs5fYVsdrFWTqwd0Y0D666ZuHv3DmeDbKxnz54aVYfIuiMvr6iTjbJqpCRnaN6je86DrvzrgCc2Wz7TcDJrYQc+m2Q5ovuFzpJ0OO7IfIwA+HpegfOps/i2a+386IqrTcEph9Ocj3Q2tqKZv0R7TI2W+xd7Dn2s9pTy6iKeZf2TDWeD/BASigUayw8R17PYsoNzUVpWhdLSSmzZ/EF39LVXruybTJhiw9kQnHz+VfGItLmWL10Jf58AhASEcD42b9ysddb9aJT58xbC19sXyQnJiI+N57pEPt/MWGNb2EHU/7LvQP/Tc+Q/yPpBd385ek9/all1cwq3b3dwX53k8ePHRrGx5GulpGQwLqpQUlKJpKQP6yOP29vpdU2K+5KNJRghsbQqh49PBH/d2OtrPiaHbewQFR6N8OAIuDi54ouu9V1jRfZY7uV80BmAgb6B/AzNoeBDd/9KsZcj9bHwscUejgP9PvkMhZ8OWePt27c81ksxX7Fe3Rh8rFu3gXNRUlKB4uJy9t22eumOniQqWq1lc5FvQvrFGOtr+mWHsLn0MvMxrkbHcT727rYaU1xo2etz5+MKsxkjQyMRGhgKE2lfGWPxIfZsFLVZYv9KXbtpMHzo7vtPdYvEBuUL29raDKpD5GsE+IcwLipQVFQOlSpXk+/QV3fIIvSqKucR1pi/13BiZfsX/uefK7TiecYeL/O+WojoyFgkXE1EaHA4t6/GKhtCOs+VPc75ID1itWe/wa5NekDk72T7SqzVIRH2lSH5IKHaJqFD3M5fwO9v3vCc+uvXr3ktm6H5mD1rLooZF0VFZSgsLIXTGdc+Y1b6iKgJJR1x+cpLrkMEJ5SDp/iXsfmYP28RrsbEIzkxFQG+QeOmFlDI1i3bOR++Xr7M9tpnkGuSv0Bzn3zGSm/2FfWvsK9Inwz2rEh53xOKW1H9GtWdvHr1EhEGXKsuPn/M3oFxwdgoKEWBugQLFyzWzBG0hmWgazd0247aiXx1kX8nofzJKecWo7KREJeENOZbeTN7Y6KR/dWRKhTDJj68PLx4rtNQjMj+9kD984GIrI8iIyJ53SLVsL148QJTpgx+fYj82YT4ZDaWS6BWFyM0RHtNF7Eh1rbqu9e3aJee1tc0tf6f0XPwdO/JiWnITM+Gr48/j4OORzaErFphwvnwcPPAjm27Rt39E2uUKyGfVY53UZ0N1fZSjTTl06kW1FB8rF3zI9cZ6vxi5OcVwdysM25O9fe0RkV3vhBnavS3jp/GaF/ra6h+S7a5DJWDJx2YlpqJ7Kw8+PsFjXs2hKxYtorz4ebihm1S7ncki7BjaOwJW4bsK3l8tjQ38/UhtH6qvLx8UDaW/Jkzp52Rn1/E2ChEXm6BZhyRjdeb7yFqAQx1xizFg6fMDDBYDp5iCxkZ2ez3FCIoIFRhQ0coNkF8uJx2wVqTkbmOR+RExDjTnY+JD/lcKhdnV84GrTGk9TZfzp1vED7SUlV8HOXmFOD8uYsaNnR1x1AIxbQonzjYHHxERCzXibExCQobvcjSJcs5H86nnLFsyYoRd3/ExMf24qD5W9Sd0NqAp0+fcDZonfrlS56D5mPND6aci9wcNXKy8/GDybph5UPIYHLwLs5uPH9D+kPZE+Ijca3N2zgfzsyGmDNr9K0pITZoTyDxuLS0FI8f/8pzIg319QOyseT3nnJ0YlyomY2ez/3YnvTWcElPOXh63NeaLFPTjbw+hvggv0ph4ONic9AW7q7uOHnMYVTW18j5Qtr759dHj/heQCRLvls6KD6Sk9K5/5qlyoUrs0cFH/L+KsMtpDdkm0vk4HXfR2t/89XFnI/jx8bmmi1jCPU36Q/vS17Ytd1y1N2/vB86+RzEBe2X9eD+fRw5/P/snXdfFMnWx8+r2fTsvZsMm8xxzRHTmllFQFQElAyKoiAgDAxxyDlnA8kAYk6IeXWzm+/u3fsCnvqVU7Nl7wwzTKJb+4/zAZoJ1d3n23VO1QkhTvOBfHdw0dqMuOh28jHX0XV1P9Bj9/ENn3/YXGIPHpKfX8xzVkpKKnW9H6VMmzKD85FtMHo0VsuTjIvfBy9c4Gx8+fgxz+sfrY0lXhe8J5Rz0czs9ObGVosfq+wPpzaBjaXcg9+0aRfPlQcfkzV4f9UgyJkEH6lJKZobuxwDhXxb1Ot9/PARPXr4kOcoO8qH/BrsCYCLpoZWyswwWo5robYtbC5wAT6mzPuNevtucD7kGhK6jE7ge2AOKcwzMTtLe3uHQhYvWsq5QM33B/cf0FpzHsxo+MBcAS4aG1qosb6Ztpvj1kSvebmuvarnVWZzRccP8NqOzcxO1PXcNUGML/goyM1XfQ6ivD+C2Aw5Bvzh/Qe8LwJqkSJ+cbR8LGDXAVwgJqm+tolmTH/u58u94+Q8YHw39szVtl6KvjzotQA+li9fpeu4GyQ2KpYqSspoX8g+1Y0N8UrYRxd1gmUBI3+vO9XSvbv36B57XXtru8M+iPj/rqBgzkV9TSPV1bzYJw4MyFwqxzHaGCxPSvKx45wP1EDVdds9MnXydM5HPdOx999zfQ5RxmZbq01tL18Oz2alHorex9bsHNQAQu+p4TvDdGfojkP92eT/HU1M5lwg3jvx0PM4Dms9dyEYK8aHcVvrvSGfm5xXL+L/lcfdJcj5Q29Q8DHvs0W6brtREuITOB+R4ZEuf5Yy10PUtZKP2cuXE3YNXifiZJX6hH1CsaeN+sfDjIs7t4do6PZtCz+O8lFXzdioqqeayjraGbDLskbmzLoVxi1iAWQ7TM4jA+ejqYHviOzbF8X5KCqu0HXazYIaFeCjrbnF5fgca7lQ0A05ds9ePxGwYM+2V9YiHWJs3L51m27fvEX790U4zMf0abOopqqOqitrqbqixtLnBvw5s/chx/KDbXCgPEdljzR3yPmBy5yPTW7KZdDlRclg9wt8BPrvdNp/tsWHcg5xVz8quWY6ek2hJuvNGzeovLTcYd/887UbGBe1VFVeQ5Vl1ZZ1Cnt9buxdC9EzRfSL8CQfW7Zsp+s3h6nzZI+uyx6SlctXcT4qyyuc0gcxR9jKpZXrIrqLDznuIzUljW5ev8Hr6aPWpD0fXRwP9A9i51zN2KiiitJKi23lbDyi3A9Y7oHmST5y84o4H2H7InVd9qDUVlXT6RMnae7s0cf3QidEzqCsK8InlddkXelHJQue7+IZHxgQxOsVX2Ny9cpV3ufJkTWshAOHOReo4YHaNiP55o6IWOcS5yZ8J5E3KPIt3VXDZ8KEj+nW0H3Ox8tWl0dtEhUZxflIOOCcvorcOJkZ4ZMqc+ac6UelFOiwiOedP28hXWNcXL18hfedmG/2I6zxIR8ryDVROfNpy4rLac+uvRbunK3hI5+37EOJugzK467K1q3bOR+NTe26DntYFi1cwvnobNfetcaaLri4zOTSxUuW9QB7fICL0qIyKiksteQgI+ZKjqNXs+QXlHA+AqX6XLp4TpobG+lsXy99Nne+6seKNazYqAjL3+gFcYnZLxcvDFJMdKxdPhCnWVrI2DCVUjHTM+wFae1+DQ0/5HzotpV3JD42nvOxN3ivJsYr20GFBYU0ODBIF/ovUEGeye7a1dzZ83ndwKKCYl5XT/ABGwi+k6hTgp9iv0ZN8YoLFy7lfHR1n9V110uyds06zoepoEC1YxR+Dmwo6K7QWUO6gbExQAPn+9k82GRzDUv8vWn9Zs5FYV4hmXJNI36n8B0EM2qIvYqIjOV8pB3P1HXXSzLu/Qmcj4sXBsZ8LPBz5We4+Cn23JS+ffCeEOo/18/Xd9Ej0h4fGxkfJjMbBTnPnwdYu5JtNjVLAfOZwMfOoGBdd70oDXV1nA+sCY31PGHvNVjDEvmEwbv3MjbO0bkzZxnjZ+3yERMRw7lAPdaEuL9riGqlF23vmQHOx4IFS3W99aKkpaRyPgL8A1U/Vrn26Nw58zkXZ3rP0JmePkvNZVt7INHh0ZRvzKO8rDyKNO+tYV9QK73Mh+895nzoOutd2bM7mPMRHxev+rFi7hB73XPnzOM9Gvt6eqm3u4fmmPc5bfGBXkm5WbmUk5lDEWERFt7GspaP4775Ms5Hd+95XWe9LMuXreB8lJaUaIsPNl/0dvdST1cP79NojQ/59/SUdMoxZPN+Sf7bAyyfpwX7SvBRWd2g66yXBXsf4KOhvk71Y5Xj0FFHs4dx0X2qi7pOnqadAUEj8pGdkU3GdCPvzbp21fOewNgXVEO9K3sSGRXH+Th0OEnXWS8L9Ax8XL92VRP+h9zrtouxcZqxcerEKR6TNRIf4CLreCZlphksfLgaW+JtPiIiYnWdHQPRCh9KOc24QP/rkx0nLLH6tvgAF+jTamB21hqf53FjWokt0fnQ+XB0/pD3K052nKQT7Seos72TAnYEjsgH2MhgbKQfO06rzfXg3CEihlnkDcr9Udz1HYbMXM5H0C5txDm8bFJTVcX5WLhgkct6AhE9nUXerNjbkPvryMdH64OI38FFZ1sHdbS2k79fwMj+OeMiPTmNjiel0uoVq/kx7DmKOHRbouxjoHwPzkXkDprM/a1Ejoy7agTVNbRwPhYu1Pc+xkIKTSa38oHfRRyI2AeHXsn92eT+Y0LkHBJbYpJ6rIGL9pY2amtuox3b/UfkA1ykHU2h1CPHaJW5Hg7011ptCFmUYxQ95ATb4ryVeVD2+r3rfLzafIgYP1G3wJG8Onl+sSXyZ4CL1qZWamlqIb9tI/ORamaD82GeP+Q8DVtibY7D+QjWvcnHanN/K120w4fQASUfyvo2jvChzLGyJnIcVivjoqWxmZobmhgfO0bkIyUxmbOBOUT4H67sD4J7zGUyH7J9JfLR3XF/Etm4df987KSnu4vzMX3ajFG9T+gBGFDyIbjBs1bUwJHtK9HLbzTfJ+fYQpobmqmpvoka6xppuznf3RYf4AI2FnyQNT7P+XAlvkTk0XrDP9fXr7S7fiUYGck/F89RV/1z7OXJ+3ngorG2gRpq6mmb7/aR/XPGRQbz0bG+u9a8vgtfX609DXQ+9PVdV6Whtp7qGRt11XX0xdZtI/KBtV2s8WalGWidtH8u7zeqVXbtDuV8IL9W11fvyrgPJnI+zp9Tf14abCG5zg+4qK2qpZrKGvLd8k8+ZImJiKas4wYypmdSeGi4pu6RHn81diLir7QQnyjLxx9+SrWMi5qKaqour6J1a9aPyEd4yH7KzsiiHIORIs01F7Uyf0yc8DHnY/DyDV1nvSzbt/lxPrKNRtWPFb6H8KenT5tJ1YyNKsZGZVklTZs6c0Q+IsLCKTczm/Kycihqf6Sm/A+IyP8Q9bh18ZLvFx7J+QgLVV/PA6VgPVbE76KOMLioKK2g8pJyXp/EGh+W2ol+gZSflUsF2XnczsIxsKGV/Ki2jlN6/uAYSG52DufDZ6X6e6wgX0Pk1y5bsoIqGBflxWVUVlTK+3eOxMeGdRs4G6acAio012cAH7bi28VeDNbi1FCfIT3DyPkID4/R9daLIuozTDDX6BwrgQ7aq6cDXRb7eVs2baUyxkYpY6OksOQfPCj/xp55YW4BFeWZqDi/kN595wN+XK5TIv8UezZq6Rvl6+vH+aioVH+ezssiyLkDHz1dXWM+FujhaOqXIN4KXBSbiqm4oMguH6h3BS5K2GtL2XumTXle/0oLPTmFjy7qw+m66x0JCgzifBjSM1Q7RmX9K3E8LiaecfG81ltMpO19M8HHh0y/wEUZY6qczTnLFi+3+OhaqWGC/HPwscq8f6OLZyUzw8D52LB+o+rHqlxrSuP9eJ/XswpTxKBb4wMCP6WC2WTwW7aae8vAXnO2frvsp3ijPnXCoSTOR0qqQddfDwt6R6E+NfgYP26i6ser3Ksw8V68BZSfk0/r1220alspjx07kkyVpRVUVVZBhw8ednlMyt4NIuZM2d/AXXG8iN8FH+gfpeuwZ2W1zxrOR2mx9mIWYIsXMC5Q6y3PmEeL5i+2yYcs0RHRVF1eSTUVVZSblWM5fuhAnFPjkNe2bPXHEX6Uu859YPAq7//h46Pu/uxal9RjqZyPbb7bnP4MOSYR+R4iflX0ihHPWFdzBiGBO3ZY/ITZM+dyLkQ9q8mfTh2RD3Hcd8sXVFtRTXVVNVRfXevyNYRPJNYNBAee7h91MOEI5+NYSrquxx4S9HZGfzXwMe6DCW7hA/ohclFF32NHcgYdFdmHXr92A+ci25BNxgyjVVvKGh/oo1NfVUsN1XXUWFtPM6fP4sfhfzhT50f0rBY/Hc1zcUWmTZvF+UB/zvF6nwOPyK6duzkfRxOPuPQ5Mh+YF8TcIHTEXboCv1z2PVD/MNtgZGxkUay0dmWPj/ffHcdj4RET31TXSBvXb7Kw50ycibUcQTwT5P7O1nLYXZXS8mrOR2ioNmpra0neeP3/qKy4lPOxeJFzsQrWcgah98JXFf073cUH1q7kOjypyamUlZ5Fmcczye+LHXZ9D/l/8M+b6xuppaHZ0gMebIxU5wfci97m8nFlvrzcq1OZP+nOe7h58zbOR9+ZAT0ey82ydbMv739eXFjk1Ptt5Qxa031HcgbBEfRM+CvWBGuwwr56h30/uDCkGSgjNcOyj2HPNxeSwL6/tbGZ2ppaqKSw2CofOEeMR/TfFP6Tu+cBV6TzZDddunKTQkL263rtxrnDlJvP+XAl3spWzqDo5SrbFPb8c9jtyvoLot6JeA1iCEVcCXwIuZbVpx9PdogPS5+cDZupvbmVOlraqLO1nXE33jJHgFNxXkrBOEdi2NuyaZMv56O75xy99aY+h7jlmjJ7u6KkjPKyc1UzJugc9FJ+TgvBOhj0Un5ub/f147WmjzM20pLT7Poeyv+DJ9QFQt2sE+2dzDdfaxmH/N3gRKxHqfV+tnecpsGL1yg6Wv2191U/d7z2FhkNWZyPFctWqnKMeIaDBdg1ovaB0FXxmgMxBzgXqUmpFBy0d9R8QLB2hZqkqE0aFxNnmRPxvaKHuRbu6bx5izgf/QOXabIG+42qSQL8Aqkwz8T3kLUyZthYov4J1+G33+VcpBxNYedxjHzMdd4c8T3k1xxNPMrXtrtOnqKayuoX1sm0UK/6xTWCUs5Hbm6hrucuPJexHgo+RB6RVkRed/1sznxKOcLYSDxGyYeTef/E0fjm8j5hN7Pbek53UW9Xt2V/EX6OVmIVhYwf9yGdPt1HZ88NsrnPX9f3UcrrzK6CTQI+gsw9ALQk+8NCLL+jr01yYjIlHUpi53TQYdtK+Tpw1Xu6m/q6e+hMTy/tDtpjeY3W5g+IH7su4KOD+SOTJk3T9X4UsmXjVubLpvF41zdef0vT55IQm0BHDx2lIwlHaPP6LaN+v8xRSVEJ71t4tvcMlTOfzBqPWpLcXBP19fVTUWEZ7+mi6759mTVjDh1NOMr5mKSSPLjRCPbMhb0Du/Ao4yLxYCIlHjjMY7BGM3coGcHe4Lm+s7w3dP/Z8zT+A/XHMI8kqNPU0X6KurvPUFzsQV3/7cj7742nqP1RnI8N69Sf32FPMF8kHkikw/GH6VDcIYsd5CwfU5gd0n/2HA2cO08Xzvdb6r8jv10LNX+sCXr6go9TJ3toy+YvdA5sCHQnLDiMDkQfoNA9oZo8B8QLynvacZFxnAvYWL7SvXeWDwhqWw/2D9DFgQtUU1Xt0Pux9os1NXfGHLpTfLf6cT46mS+ySo+B/6c/ztjYuzuEDjL/NWpflOr8TegX9gPt7bvJa61TJ02nhLgEfk5gftb0OU6xoWQkJDiULl4YpEuDF+nyxUs01ZyTrqzzC8FaM8aNPRK11GywJbHMvgIfba2dtHDBEp0LSXZs8+c2etT+aHr/3fGqHCMYEfuA+Kncj4ONI88dsA8FG/FR8U7bVko+sDYKLq5cukxXL1+h+LgDL/Bpb5xqlpjoeM5HVUUtffLRJJ0N+LNbtvH1T/DxwXvqZEMpmEfwXIaI57JcMwG/Cy4gyP1w1ray9j6sY127cpWuX71G/cwXEcdF3Iuz8SV4v4gBkPPF5Nr28nF3C/Kns4151NzYRg11TbRiufrrm3nMpnrtLdoVsIvHXYCPObM+c8vn2opHl+PWZT2w1o9sNHMK3itiPCx2zdwFnAswcpDZDVPM6/vOsqFkZPOmrXTj2jW6ef063bpxg8c3u+Pa4fqI8xD5Yvgd10rMQ/Bj3NknxBojx5JSOR+11fW0fKk644o8KYirimNzKeK9wcfc2fPc9tkyH7AvRGwu4qFwn3FMjmuFjS7H9Dorcuxu6J4wblvBNw+X8oHcxQdkoL+fbt+8SUO3bjF7pNJyHDHDzvaXEnHIov4crhOOy9dHmR/jKdkfFsH5qCqvJn+/wFeGDdR0wnyBPNPkI8fcvoav5EPECcr3VZlD5wofsPllffxo4id8vQprukeYzbhimY9b2BCfIT4n4eAhxsZtujM0RMN37vDa12I8zsabyLVNwIZgfiz4gOwM3M35KC+p4M9T5Dq8zGwsXbyMc4EaHpg33FkfFPdS2DuyvSR67nmLj21btnNfCns4yYeT+Nqcu/iQP2fi+I9oeOgO3b0zTPfu3iVDhuGFOUTU/HVm/pB9LHF9hH0l5l9v6cyyJSs5H8WmEspKN1ps1ZdJ3mTc790TwmudoXYg1j1hY7nzO3DfRO6FzIfo6y3ySpV2tuh97A42/vX2uzyOJIlxgXhEV/Y8HLGxMtINdP/uPXpw7z49vP+A1xAS43KGD6V/LmKQveWf27Q52Jx8PCWdTLmFvAYM6uS9/pq2446EzJg+i3Kycnldf/Cx3Zx77QnB/bTmb4ue4Y76546uiSprqSNuDLYjYtnTklMttqO72FAysmjhEsbFfXr04AE9fviIjFl/10WR68aPtLagpvzCEX1W9owNCtjF+cjOMDLfLoFmTJul3Tnjjbd5vFBjXQPvJ4bagYj11sLYsR5lrxc41nDluQN5HinoxZyUyvMEQ4PD3D53WPu8hrp6evzoET15/Jiefvkle9Y+ZwI+iC0+5Lpf+KmlPRLE9cOvQ77y8aQ0Cg4KtuQra0HeevNtCvTfSXU1ddTS1ML5CAvZpxnfSthbYm6xtfesnDtWrVzDYyp5T800gyW20t1sKBlBPZcnjIunT57QV0+fUm5Ors0xwkdT5tarqX6DowLbao3PWs4H+sNnpByn/SH7LTkx6uTiXzwnobW5leeAdrR2kDHTSDOnz9bc9Rd5q7LNDVtEPGeVz2bcL/gchrQM5kNm0n6pl6an+YA0NzXT1199Rd98/TV9+803bGyfvOCH2DsfrQrm7C+Yjwc+jOlZvNdWbGQMLV2knv5aiHeIiYqlUydO0pnePuo+3c18jQpa/RLEmVl73sI2UfLhx45los8semlmZtutHepuRpYsXsa5+O7bb+n7776jgvyCf6xb2JsPNc0J49x/mz/nA72E0A8CfYWQWzcWcSqo77Vlsy+VFpfyWKDBgQt0/ux5qq+tp3VrPn/p1t+gY3KtEjAjnr2obYW6b8h1RP3oqPAoj88d1j6/ra2Nfvj+O3r2ww/047NnNHvWXAvjol6EmuuauEPe+ff7tPHzTZSRmk5VpRVUV1lDTex5gF5EMWxewXPEU3lYM5idtGf3XqqpruF7Urdu3OTxP+DDkG6g5SqtL+LOZxRsErGGLI4H7wqmHMZFnjGX12efMnmaV9hQMjJr5hx69oyx8eMz+umnH+kkm8/l9Ttn1ns1PffPXUD7mN9bWVrO6+qdaOvgtS36unuZT9zI18ZDQ8JowbxFtHDBYoc/9+OPPuW6HsB87IMHEqi1tY2+Yrbtl8wHfPjgId+LAh/NjU0UGLCT21evyjXHmpVcs3fypKmci/ycPDLlFVBslP26up6cQwpNhfTzzz/RL7/8TL/++gtt2vh3Pi9qyb9KfMiyiOl/aHAoFeabOB/Iv4TNgxjoG9eu8ziE+0yvHz98SEO3h6iN6XxnRyedYjx1d3XT1atX6K+//kt//vEH/f77b/TrL7/wZ9APP3zP7IpvOR+3b92i4qIS2s2elxMneLcGt9gbl9eYRC1l+XXimLLvn7sENdPl2I2E+AQyMTsX173YVGTpn+ktNpSMfPThp/T06RP67bdf+X0cHh7me5bidRi7Fms5uFuwz7DDz5/3uysrKaMexoDg46snT7kfBxsVHPzxx384GzIf4OZE5wk+f6z/fKOlD/FYibwXIfb25FghHIfNI/dFcneunDKmadXK1bz2EGzb0sJiS67rWPIBSTx8hP7z++/8vv755x9kNGZb/odaQI7UfBc9D15FdqDrS5csp2VLV3A7asVyH1q5Qt1x9jIfok+s+J+InVL2vXEkhm40a/+yfYK9nOzMbF4rGjEBBbn5lv0db7NhjZG77Fn4X/aMEM+9uXPmvcD5SIxg7sUa12jmYFH7XXlsLGNSXiWxtpctcoFwL5V8OBpjKtZvR9oHsNYrNjwsnEqZrYkaO5Vl5ey5vMKio2PJh/huPO/Axf/+9xeXq1euWF4HP90WH6Iu/Wj3RfB6uZchxJs5I6+qiF55Mh+45tBrHBdxEs7yIT4PtpktewK6JPeKhe1aXvz/7Z3pf1TlFcfPf9J33Wxrq4AKohYQZHNBRFlCVpKwFaQalS0J2feF7Pu+TBKy72RPCGERpKWitUpf2Go/trT+BX1+z3CGZ27uzNwbZkKSuS/OBxgmk7n3Pt/nrM85NVRfU0eNdQ2UGJ/4xOwqdzqksLDIoT9+/PF/lJKc6nRN2rPq6iythT4r9Z4/qZp4fxLObfFsI77X/G/uX877Ff7NddmsV8w8X+2cD20drH3WQpmcJdtU30i2xmb63W9XLQk2tIzAL793755kA7YWfJEtm7c6rotrx7DPqGc9FipaHWLxsXiMqHOOeK/jc4Ha86Dasz1mhOfLsF2grYGVs2TrGwQXTdTSZKPwsIglozv07Kzdu/dILhB3gb+ujWdpr9cb+l61d5/UmRFLfCeu9tMD+wJk3/SWpmZqs7VQqmKvLBU29L5Pfn4B/ffBA3rw4D8yNtnWdsnJ//IGE9oZKJZ/7h++D/8dOVP4463NLXSpBWei6+U83Sftkxu1s64KnQo2kBf59w8/0LFjj3p+6/XNssS/xIz9gFiV6o//4udPUa5gBecs2jEj81K7zH0sVd2hZ2fB77h//xuZU0fOC/l1rs9aiL27HGviLdEX2MPIGxplRBvP/TjqE8FFm6yn6erooLOnzy55NvS+H3QGuED9yb++/55u37otdMujOK+R+hM+nwnx1/zhSvMluLbbCCNYI6o/jlnjHcJe72rvoO7OLiouLJLnIpcDG3qMVFRUyrqh77/7TtZPTE5MOr3X3SwqlQ2zsUFLzK1Zru/jOgZVeA3Dd9SrsTIr+BxPjOjlADdt3Eyd4KKjk3q70M+vRXzvl5a0z2GEkanJSfqnYAN18P/49lsqLXl0VgR7g15vIF+wofbMxp/8XLA2uAeN+ro/+b1qDxk+T6HOq8d94bnL/KcvGdH6HOvWviR7o/d0dVFfTw8N9PbR3vf2LRu7yp0v8iuhI7784gv6VrCBs1SoxdPmfVR/3Vd6AzFC7jXDf8freD6I3+N1nlnvr3xgneK+a2N/2ny5t/ob6jGCtaDWW8B+qq6sor7uHurv7aXB/n46rsR7lhsbeozgrMi9zz+Xtdk4d4hzuZFKfSXrEF/aVOozVvOH/p5X1PZvAxvYO1Q94c3+bZ4YUfkAG/Ax+nsEF339NDQwQLHRscueDb3vfzjyqOTi75D792Vvh8iIw05r05f+Bp/J5Dpsjon5Kx+4fu7rynywrcnv4TOgvuJDy4h678FGSVExDfT1SS4wK7aqosJxHnO5+RxGGIHOABffQL7+WvZBQT8UNfa3EDaM+IxqD2TeI/2ZD16XYEDPvuK6KryP7VK8xvuMO+4W8l34d/Fr0eeipS01PDhII8PDwsaqXHFs6DESfT5WcvG3ryBf0e1bt2RPP1e+mSdRZ78vxP/gXpdc76ieZfAHRnDN6v1T66aYG2ZEW2OlJ/g/rX/pTmBPac9ix5yPkWeTLw8N0ejly9InX/XsmhXJhh4jBfmFssfcX7/8Up6h/vTmTQcjHNuDDerpbBXPq7LiV0tL8Ew81RLhOUO0MX74F8zF2MiI9Mlxrnyl+BxG/HVIfl6+jGt9ce+e8N3vyTMjYaHhTvuKuzoUPidgrcelKXg27vYarZ2APo8XYmKlLQUuJsZGpe+h9gdfqWy4YuRibp7sd40eHH+5e5fu/vmuYMR5pizuoZ4ewf1fzL5a7Jto67W9Ucf9uDaSng5V93Du16e1m3wpeDaufEnt7GP4FfC9x0Yu0/joKE2OY75wv6M3jz+w4YoR9L3BzATMTkCfmj/duUOhIWFO+wz0r2qjsq+4mN/b1Swf7uGH17EeFlunuYopqDEnrvfnM0zwyxfKsZk9ie+Vu2cJNuB727kYo6mJCeGTD/glG64YyRH3EH1u7nx2h+7c/kz2OsvMyJqnR/TuuVEf3ht7JtdXqP0GzMa/+Dyq3ueqr6s9c9zZKUb40OY4PPVCd/W9wb96jtmIqHuZth8P/IpWm03YUuBinGamJqXv4c9suGLkD8dP0Ge3b8s6xluf3pJ9ogoLimTvTO0zMrvfcXz9ceqAWTfwmayF8qF9j14fHI69qnP69NYk10upn8fv8zYfEHwXXK/ZGJ+eL4IeHvC9JwUX05OTdGV6ipoaGmj1quf8ng1XjIQEh0ou0CcT83JvCGmxtczrCag9o+9pXWtzTwu1r7yRf9e+R68PjnY96/Vq5fyEthcFx6h9wYeawzVin3HsFmyofIQfipA+xvTkBM0ILmZnZqi5qVHshb+22PiJ+9jv9m07xb2bkLPW0W8Q/WTHRkZlXyg1NsgxYHd9TM0+T092glqjx+tN7YuGfd5T7N8dH/x/Rtcz1+No9Qfv8yrPWn30OHEpT/sNx23xjFR7Cr5GQnyC9DFgS83OTNPV2SuUmpLiYGOl5je8ycgrL28gW7ON5mbn5FnEq1dmZX9OzMzT6hHsUfw89PZ8b9arcI23Ef9B72fBjjf54M/V/l62u1z1AH2cHA8+h/ccV3lC9OLQxubha9TV1tK04OIKuLgyI/a+WYqJjnFpT1jimhHsJ4j/gosr0zNiv5kR+niaSotLaZVmBrFeroT3VjP+JH7GVzFj3tfVHpwQvT444EiNN0Ff+TKWra27MqJLef6G+jp0hTZ2C4kIj5Q1VPAxZgUXc4KL8bFRCgoMtth4TJ8EOmNmalqwMSX08qS0vfp7+2U/Tu3Pop/pjm07HL1/9GY9erIdfHltnNNU/Vu9/MmTyFeY8bl5Bi3fX9i4gQEB894HeyonK1s8vylpS83Nokf3VRmzgo1gseEdRra+tp0G+gZoYmyCxkfHaXxkTPZFT0/N0J2v4Wp/8+QX+PM5d3Bq5vq1+ll7DhS9hJHHYB/j2tys8CnnqLCgwCkmaXHhHUbAQVFBkfTVRwUbI8MjcnZYV3unnEOjfXZst+idT3zc/ZNrIpd6rRbnBY32OjLqp7Gvx/pNtf2kzsjOEbbUIx/juuACcdzgoBBLZ/iYk0Oh4dTd0UWXB4dpeGCIhvoH5fzJ3OxcwcJqJxvA/v5Qp2fqyv42U+fI/ulSnxuHazKTrwD3Rq4JthT2He3+gPM8w0ODdh/joS118/o1amttpTWrn7fYWCRGnn1mDeXl5NGgYAN2F/yRvp4+6u3upSORRx09LVT5OMoe+9LrB8F9l43aIXzezajd5gtbyBffFevdHUvYa/Ti6bB/G+rrHT7GNcHFjetz9OnN6/RR1EcuYzCW+C6+BcFMyjZhE/QJLnq7eqins1volm5qbmimPUrPMFVOnTgxjxMztpXZPdnM+7R9bd3Fj8zqOqO2oF4/fXChZ6eufvY5SkpMssdrwcVVu49x88Z1qq2psXTGktAlqykxPkly0dXeRZ3CH+m41EEdbe1UXlJOO7a/7pYT2OhmepFy7s3ozxhdy5yrMaJv8J2N5jv5c4363mqcAv2n9LiAj3HuzDkZr736MF57/ZqwpW5ckzlx1EG4e2aWLC4jkE0bt1BlWaXkAn0nMROzzdZGrc2tlJyYQtu37nS7fmE3eJoFp+bGjOzHWMNG16UZPsz0oeJYnhHfm1lw9V5wcer9P87zMW4IHwO2VFzshXmxKYuLpcXJwQNBVFddJ7loaWohW6ONbMLeaq5vkjO49PImEJ4Fh9yvu3k+Zmq5zKxjM3yAU6NnWLnGxl2sm3Orerk9CPKxiQmJ8iz4PB/joS31+1c2WlwsE07gn4eHRlB1RbXsgd8k2Gisa6SG2gaqr6mnvOw8Cg4MdcyoUwV8YB/FnzyzhIVrHY3aTHifUbvfDB9m7DYI50pVmwx7AHKp7mo9t27ZJrmY0dSE2H2Ma5KLHdt3WrbUMmLEiROx/sNCDlFFaYXkAnqltqqWaiprqEawU11eRSePvy842KBra3B9F68fzhkbtf3NrGGzfJiJKXBNIXQOrgdcwJbU8s82VMD+g3Sptc1Rd+7kYwhbqra62uJiBdlc0BMhQaFUWljykItqqiqrosrSSqooqaDy4nJKT8mgPW+/S0//5hmXsSDum4a1BXvMm2vYF/qDe62BC+755aqWc9dbb1N8XPy8unPVx6ixuFjxnLz5+i7KSs9ycFFWVCa4KaWSghIqzi+morwiij0XS7vfeoeedmEbqXxEnz0tfXv8m30XXn++5IN9aF7vbC/xd4L+w3dyV/+PudJxgh30z7Gf4XOuO+eakPS0NPHZFhf+YndBtry6lT48FSV1SklBsWCjSLBRSIUXC6ggt4Dyc/Kln3Lu9HkKCgimF9e+5Pb3sN+i2mO8x3OcFP/HDLFPzJypfPA5bT4/ob6f50LwZ4MJ+NWqH+GqpgZ51X1798s+Iej1bO8TYj/bKuvOlZoQMBP1YZRTDsPiwv84gT31zq49lJyQ7MTFxayLlJuZSzkZOZSdnk1ZaVmUFJdERyOP0Rs736J1L6w3/LvVvgQ875q54JiRygfn47D22UZiPvhPI/l+5IbQnzLqgygqLy1z9CJU+4Swj8F156kpqbRn97uG9LEl/mN7Qdasep6CD4ZQfEy8ExeZqZmUIfyT9OR0SktKo9TEVEpJSKHk+GT64OQHtHfPfrGWX6cXnlvnMYfiK1m3dj3t3PEGHY48ImeA11bXOPqdgwvuueboEwIf42HdeV7uRQo6GOR0vtXdnmKJf+sUCGon3ntnL33y4WnKSBZsJAk2EgUbCYKNeMFGXDIlXUiixNhESohJoPjoeIo7H0cXzl2gM1Fn6PChIxQWdIh2vbmbdgp21j7/otQ52rNdRgR+E/ILG17ZRNu37pA1muFh4ZSSlEJ5ORflTKXOhzOVeru7Zb9zR19nBxcjDh9jaHCAcnNyKFCHCUtXWGKWlZ/99Jf02uZtFBIYSmc+OuOSi9izsVLwd7yeEJsgbTLwlCZ0DvQPdFF2ehblCv0EGy4/J0/6PPB/SoQvVFZcShUl5VRVVknVFVVUW1VD9TV11FhbT031jWRrbKbWZpuc29reZp9PyTOV5OwYcNGPfueDTr0I0Qv91MlTspbQ7PVbYomZtQJ/4OX1G6R+ORJ+1IkLsAJuwBDsL9hi0D2Zwj6DrZYjuciVXMDfQUwA8YGyolIqLymjyrIKmZepraymuupaapBcNAguMOvbRm22VjmfslPOp+y0z1Tqts9UYlsKs5Yy0tKljkEfnYVepyWWmGHF3TrCnCz4H28Leyo4IIROHD1J50+fl35LVlqm4CJb+vvw/Qty8yUXxYILxM/KiwUXpRVUVV4p53pLLqAz6hpk/r+lqVlw0SJzdjyfskfYUtmZWfL86rEjx2nfe/vl3GBvXIsllviaF619tn7dy1Lgxx/YFyBz1AcPBFLggSAZPw4+KCQwhJDHDA0Ok3l/9jMiDkXQpg2vyhmVr27c7NPvaoklvmZmsdfik/79lljirXXrTbHusSWWWGKJJZYsLfk/UEsBAhcLFAACAAgA2og+W0qEiz8LQAAAAHECAAQACQAAAAAAAAAAAACAAAAAAGRhdGFVVAUAByUO3GhQSwUGAAAAAAEAAQA7AAAAPkAAAAAA</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #5</Name>
|
|
<Index>5</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPlt7PCPb8z8AAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J33X9TH1sc/f8lz731yb2KPiRpj18TYiUoUURFrLI8aQBELqAgoIiogvTfpdalL71XBgmCJLbbYEmNyf88zZ2CW2WURFnaRhe8PnxfL1u93Zt5zzpk5M/PPf3yCfyr6aPrH//xvv6WUl6LR0O7N4fsVKTJVO1WuSZHCQ//a3fLlK7mcDjvDyckZQcHhiIlNZEpAfkExmq5cQ1PzNTQ2taKhsYWrvuEq6uqvoK6uGbV1TaipZappRGhoFFMkQkIicezoCdjZHcTGjZuxePFyTJ0y3aBrV+pSkSmY6O09CxZ8h23bdsLN/SziL6eghrXt1uvtaLl2C1db25hu4koL09UbaL56nXFxvZuLJh0u6omLZg0X1TUNqKpmqqpHZWUdKiprUVFRg/LyGpSVVaO0tIqpEiUlFYiMjIWX1wXs22uPRd8txdgxExVeFA0pD+PHTcI6axt4eHjhcmIart+8zXXtRgdab7RruGjhXLRJXDAJLppbNTaDuKhvuMLZIC5qiYta4oJJcFFVx9ggLmo1XJSVCS4qUVxcgeKichSpy6BWl0JdWILCghIU5BcjPi4RZ057YevmHZg9c57CiqJBcaHvNQuL1Th67ARUOYW4cesubrTdwfW2bi44G4ILYTOIixZtLnLzihAVHY/IKFIcDh48zHXgAMmJy8GBdAgO9odgb+/I5cHsUjDzzYKCmALDuM0gLkqIi2LGRVFZJxuFpRouCvKLkJ+nRl5uIXLZdeeqCpCTnY9kxrS72xlYrVmPL7+YprCiaEC2wtp6E3z9gtDA2vXN9ru4qeHiTg8uWiUuYuOS4H3eF4ecjmHt2vVYtux7bnNMcf1zZs9nftQybGe+3b69dvDzDWT2IolxUcS4YGwILlT5UGXnQZWVi+zMHGRl5CAzXYWMtGxcYp/ZZLMFX0yeqrCi6IO2QjDRyJhoa7/HuLjXycWtO51sEBfCl2JcZLD2dsrNE1u3/oj58xcOm/sbO2YCvlu4BHt272O2x5PbjOzM3E4uMlSMjWzGRhbSUzORlpKBtOQMpCalw+eCHzZusO3BisLJ6LUV07+aidNnvFHG/Pu2jp91uLir4YKUyfwTisFXLF9ldvdPvtTaNdY4ddID8bGJSE/J7OQiOR0pSWmMoVQkJ6Qg6XIyEuOT4Hz0OCxXrTHID1U0criwXr8JESwGuHX7ficXTD24YAoNi+ZjU6bykT6WZs6Yg/377BESGNrFRQrjIhkJzD9LYDH95dgExMdcRhiLe7babsPkz6conIwCLnbs2IPyyjrOxa0uLrRsBjERTkzsGnFM9Cbyp7YzHzGA+ZaCi7joeMSx/iM2Mg4xEbGIDo+BHeOJ7K3CycjiYvz4z+Hs7Iqmqzd65SKbxbLbto8eJnrTjOmz4GB3EKFBYYiJZFxExDA2ohEVFoXI0EhEhETAhfle8+YsUDgx87ibc+EicSF8qS4uGppa4eMbyOf3lPLT1pjPxmPV95Y4w+J7wUVEcATCg8IRFhiGUOaXHXM6hrmz5yucmOF4FPlRzRIXss0oLa/h8xmj3Vb0V2QrDjk4ISyok4uQgBCE+Acj+FIQgvwCccTxCD6f+IXCiRlwYWFhifKqerT3wsV25kMpZTcwfT7pS+zdvU/DRaBvAAJ9AhBw0R/+Fy9hFyvbzz4dpzAyDNmguDE5NVPhYig4YbZiz87/Q4BPJxeXLvjB77wv/Lx94MX8sVUWqxVbMoxsBsUY7XceaMcYHSy+aG5lXOxWys1EmsQ4IZtBXPieuwgfrwu4ePY8Lnh64yjzuWbPnKsw8hHZEL6UboxBOSFKfDF0Ig4O/nSAs8HldR4+jBdf74vYYrNF8bmGiA3xmMalznie1+tLhUfE4iudMXpFQ6Oli5bhLPOvyJb4nfdhfpcv87/8cOaUB+bMmqcwMgQ245tvFiE3v7jLZmjHGBY6fq/bKXfuAyjlaDo5HnTCbKntk60gm+HPYpIAFpsE+vqzWD6AxfSBsFm/qdc+T9Hg2bCzd9SJMTpzQjxOn+vhSxUVFePvv/9GZGS0UpYmjD/ev3/Py9l63Qat18heeLqdQbBfIEL8gxAaEIywwBB4uLpj8qQvFVtiZH9K5ErpjktZrNC2Gfv27OF/qb6o3khy/6bIeEpLy+Dl29DQyP9fv24dpnw5VcuW7NiyA2EBIQgPDEVEcBgiQ8K5PVmyaKnCiJH8KZ4vpZMTQvPess3YvGlTj++iepPrT5HxtGzpCk3/I2zHRNaPffqfsVi0cBF/LN5L84sXWNweGRKBqLBIRIdHITYiGnt27lEYGQQbO3bs5mu1dXNCrK1tNO8R/dWMr3vG5GQ3dOtQkXEk+h6yIbqvCT7kOqF8lcOOhxHTxUZcVAzio+Pgzvwtek2JSQxjg9Zk6OadUw6h7tjUimUrPvi9vj5+vB6fPn2mlLMRY3IqU4o9PuS76rPp6602ID4qFpcZGwmx8UiMu4wgFrvP/Hq2wkg/2Bg/7nO+hk83v9bHN0DLn6I4Q5/N+FAMSawo5T34mJz6GkPK84Cdndb/lCMcGRqBpLgEJMcnIiUhCbGRMfhWyhNVGNHPhipP3WMN3/6fDvSwCQPt75QyH5xke2zo2Lns45JP5eN9EakJyUhLTEF6cioyUtKw9gcrJSbRN0bFbIMqV63FRX1jC9at6441hL2g2NDQcVvyk+lzShsfnHb+uJuzQX8N+RzVF/FB8SLF8PTc2K6YJD05jbGRjszUDGSlZ8JqjfWoZ0RrjIrZVRqrlde21jVc7bEug8YPZZtAUtrsx/GxDGWK5mpFHcpjwCT7/fbISstEdnoWVBnZyMlSweWoy6hlRL5XYoDGpMTaVlKWKl8r1pC50O2TBmITxNiL8BNG+vyIPBckj+fRfYtYQh4HFz6U8EkNtRWy6Df0jXGJeSohshk5mdnIZWzkZecgX5WLE84nRh0j+tiQ9wnJyu5mQ4ynf6gfo7I3pD8jntrbOzT/0zz7SI/bxTi3bjlRny78VBF3EzfEhHgvvWeg80f0HVS++uqHfGWqW9mWrFu7nnNRkJOHwtx8qPMK4HrcddQwIt8fsUHxhbwXYWa2tt2gMpTnmXpr74bEIlT/cn0TG6NhXIvKiNo93bu4X917p9eEremtvAz9zQ/Zd2JD1zewttrAuSjKL0RxgRolhUU4dfLUiB/X0h6nmoSSsmqtvQgzs/M0bOgrt/76twof+vtxMXYkfCpqt6bkw5D4kOYTSRp/2nojihkXJepilBaVoKy4FHYsRhmpjOiykaUq0NqLMDOrmw2qy4Hk3Pb3M1Tfsn9F/ll/2Rop/hXdP5UDsSH7V/S8yBsR76U2Tj6SoXVhSJ9DPgJJjgM3rrfhXJSXlKGitByVZRXYtNF2xDHSk418rf3OM3TYoDoimTIvfbTF58LX0Y3DhyI+N8Te0O/JNsdmwybGRTmqyitRXVGFmspq2NpsHlGMyPdw0cdfa1/njMxcrXiD+i4x121qRhQNHwk29OVzkc2oqaxCbVU16qprUMJs2by534wIRuRrp31rNfudX7+F6tomLTZOu7kqjChs8Od+3L5da1xr9849qK+pRUNtHRrr6lFeWoZpU7826zEt+Zq3btvZxUXnGRl09ovY75zKQXe+SGFEsRu6Y79nPb3QWN+AJuYDNjc2IS0lTdO/mhsfWuO4jAM6b6zz7JjOM5XoTD7xXhrD1ZdnqDAyetkQ/abuGGZMVDSuNDXjavMVtFy5ipCgELP0s+R4XF1UrnWm0t693eN0fY3hyowoa5xGDxuy5LVW48dNREZqOlqvtuBaSyuut17D/n12ZsWIfI3BIRFa51N6e/v26CP6+j5iRIzXy8/T+KScD0plLsbzlbVQ5sFHX2yINiLnUCyY/y3qWCxy49o13Lx+HW03bsJixUqziEXka9u7z17rfMrUtGyNv/jDast+rd34kOS5LRp/JB9MjOcra86Hvwzpw8h+yPla66zWMy5u4NbNm2hva0NzU9Owj0Vkdin2ls+nrKisw7RpM/hrxoojZD56mwdW2qFpJOeNiPl1Es0jiuepz9L3vLF02uMM2m/dQkd7O253dCBayjEajozIMUdauqr73NYr1/g5lXK/YWhOocLH8JJcviKfS8zHi7l2sUZE1Lehc/C91bnsF+Tn5uFOx23cvXMH9+7exQGHg8OSEflaXF1PMzau830V6Exjr3MXteykiCkGul5JsKDwMTz4kGNBYTPoOWPlOAqfg9qLbp3SnuStLS34+e493P/5Z9xg8cjX02cOKz5kv4rOMhZnfTc2tyI3T91rziHdM9lpQ9c4iRwUGtcSTNB3yPGHnJ+tyHgSZSrzIWwDlT09NjYf1IfS9wu7QftxUPwqXieb8YCx8fD+Azx68BDZWdnDyobI15CXX8zPRm5sakVDYwu7Nwv+/Ify1KltG7pWVuS/KeNXQ283qK50/SvxWObAGHzI61N0JY/vxMfF49HDh3j86BGePH6MQ45Ow4IR+bcdHY9quCAdP+GmeU13v7C++ghFw9d+kJ2W9xOj/ohiDWr/9FfYdPqf3kt/yZ4bkiMt/Kne8iKpLcl7B01g/1Os/uSXX/D0yRPcuX2bPzdc+KBcmIYuNuobrkKVU4BxY7vHcvtbJsr+CebBCLEh+69Ub/Rcb3NUhtSrWI/bn8/MnztfMzdyyPEwnj19iufPnuHF8+dISU75qDZE/s3IqDjORX3DFdTVX8HSLr/KED5Gk1awOI3mtFyOueCEywm4njzV6UtERKJIXYTAgECc8/KGl9c5nD3rhf377fCD5VrmU8weVXFOXyK/RJ47zMvLw68vXuDlr7/i1cuXsLRc81H4kGPyNWusORvERV1dM/z8AjU2UGHjEyz+bilf++Z7wRc52SqeP0S5ETTve6ejA/fv3cPjh49430f1+vbNG/zxxzv89defXO//+AO///4bf/7Vq5d48eI5cnJycd77Anbt3NPjPPLRJjl/77uFSzgXr1+9wpvXr1FfV/dRbIj8WypVAWOjGbWMjaLickztyjvWzb8cLRo7ZjysfliH024efI+BEmYPaP0bre1pqKvnfBQVqpGYkAh/v0ta9uOw0xFs2byV56rK9qOkuITbFcHHU8bSYxaHPnjwAPfu3kNlRSWfL6Pci9HIh9zOLvn5482b13j79g1+++0tt726ffpQ2Y7du/dxLmprm1BT2wgHh0Oa9+kbrx7JWr3SEsePuvC9ALPYvdM+NcRH0uVEuLO2v4vFmsuWrDBCe5iFTTabOVOZGZmcD5o/vtXWhhvXrkNdUAjXE6dYTDh91PhiNCYg5gkmTpjM+o5H3Oa+e/c760ue8OeGyoaI3xg3diKzFxWcC1rPoVaX8efEuJzIzxzJ41J0vsWmDbb8bCTac5n2kyU+Anz9scV2K7vvuSa/hgnjJ/H9DKiN1NXW8dxWWh9BtiosJByWq9eMWDaICbE+WJ7zcmZxHfmo79//gT//fM9t8VDYEPn7HRycUMO4qK5uQFV1PWxstvQYn5PXMFP9jZQ5u0msP9q1Yxc/A5zOfYkOi8Sli37YvmUHvpj8cX1Kq7XWCPQP5HzUVNWgsrwCKYxZYmikcCHmU+Q9BHTHgm/fvs3jt//+9y/8+uuLIbEhsu0ge1FFbFTVIz1dpXkPrY2U80h078Oc9wQle2G9Zj0/o5XOniQ+XA47Y6XFqmF3reRfuRw7jvy8fJQWl6KoQI3Q4FAs/Hax2Za/GPvV7Xfltice29k5cDZIxAnFcqaM1bVsh/0hzkVlZR0qKmths7F7Twl984BiT2NxX+Z4JiCNyZ739IbvOR/OxyEHR60zWYerqC/7aZ8d3/c5PycfKhYXuZ10++h2zlCRzy7Wyom1I7r+iO6aibt373A2yMd6/vyZSW2IbDsKCko62aioRVpqluY9uuc86IpYp3s0p3lAOkvS+YgLizGC4H/xEtyOn8I3XWvnzWtcbQKOO5/gfGSythXL4iXaY8pcrl/sOdRX7inNq4vxLLuf7DkbFIeQaCzQVHGI+D6bjVs4F+UVNSgvr8bGDd2240N75cqxibnUyZJFyxDoF4SwoDDOxwarDVpn3ZujZs2cA39ff6QmpSIxPpHbEvl8M1O1beEHUf3LPjc9pufIx5Dtg+7+cvSe/vjmunMKt2938Fid9OTJE5P4WPJ3paVlMS5qUFZWjZSU7vWRR5wcB/TdIt9NSPhepl5f05cO2DsiJjIWkaFRcHf1wFdd67tGin7cvpPzQWcABvsH8zM0h4IP3f0rxV6OVMcixhZ7OA709+QzFH7ab4d3797xsV4a8xXr1U3Bx+rVazkXZWVVKC2tZL/tYJDt0CcqFzFXIufqmGJ9Tb/8ENaXXmAxxuXYBM7Hzh27RxQXWv769Fm4xHzG6PBohAeHw0LaV8ZUfIg9G0V9i/0rdf2mwfChu+8/5S0SGzRf2NbWZlQbIn9HUGAY46IKJSWVUKnyNfMdA7Udwk6QXRX74Ar/y5jra/qrmTPmIDY6HkmXkxEeGsn9q5HKhlDnubJHOB9kR3b/uMdo3019nZi/k/0rsVaHJPwrY/JBotwmYUM8z5zFb2/f8jn1N2/e8Fw2Y/Mxdcp0lDIuSkoqUFxcDteTHt2+4aRZ+OSTOQP+DZETKmzJx+Bj1sy5uByXiNTkdAT5h4yaXEChTRs3cz78ffyZ77XLKN9J8QL1ffIZK735V1S/wr8iezLYsyLlfU9o3Iry1yjv5PXrV4gy4lp18fnDTs6MC8ZGUTmK1GWYM3u+po+wtr2Krxa8wxczSvHZuO0G+1dy2ZlifWZ/2EhKSEEGi618mb8x1sTx6nAVjWETHz7ePnyu01iMyPH2QOPzgUi2R9FR0TxvkXLYXr58iQkTBr8+RP5sUmIqa8tlUKtLER6mPX8xaWo850NoypwOjJvkgn/9a3K//Stjrq8xRNRXpSZnIDszF/5+gXwcdDSyIbR8qQXnw9vTG1tst5nd9RNr1FbID5HHuyjPhnJ7KUea5tMpF9RYfKxa+QO3GerCUhQWlGC9dee4OeXf0xoVekz+1fjJXpg274mGE3pM7PTle1EbNdb6GkNENjAjPRu5OQUIDAgZ9WwILV28nPPh6e4JW2nudzhLnCNGXIh8P/KvRPskXWtt5etDaP1UZWXloHws+TMnT7ihsLCEsVGMgvwiTTsiH0/ffPmYCfb4claTlk0h34ueHy7lSWMLWVm57H6KERIUrrChIxqbID7cT7hjlcXwXMcj5kSErdCdWyM+5HOp3N08OBu0xpDW23w9fZZR+MhIV/F2lJ9XhDOnz2nYkNnUp0/HWOn1vcjO9Mf3MqWiouK5TYyPS1LY6EWLFi7hfLgdd8PihUuH3fURE32toaD+W+Sd0NqAZ8+ecjZonfqF8xcHzcfK7y05F/l5auTlFuJ7i9X95kNIn+9FInb+/Z+hL3d3N08+f0P2Q9kToo9xrQ22nA835kNMm2J+a0qIDdoTSPxfXl6OJ09+4XMiTY2NA/Kx5Pced3FlXKiZj17I41h9dssQkY9FvtbH8r0sLa14fgzxQXGVwkDfst/nAC8PLxw77GyW+TXyfCHt/fPL48d8LyDSwm8XDYqP1JRMHr/mqPLhwfxRwYe8v8pARHajN99rMHMpHxKt/S1Ul3I+jhx2Udp+P0X1TfbD97wPtm3ebnbXL++HTjEHcUH7ZT188AAHDzgOmA9a705c5GRTXnQerLr20e3rTHJDRHEIMUFs6PpeFL8Ys5zCw2P4mpXY2ESl3RuoBfO+5XwE+weZNFfLlIyLxw319ZyNB/fv83X9hvpY4n0HHA5xLrKZn56dmaOJY3XPhzOW9PleNA5mDN/L1nYbXytPfPw/e+fdF0Wy9fHzajY9e+/udQ2bdM265hzXzCoCoiKgBAmKICAgDAwMMAhDzhkDwQRiToh5dbOb74b7Ap76ldRs2TuJoWfo0f7jfIBmQnX3+XadU3XCJB+8v1oQ5EyCj/SUNJ8buxwDhXxb1Ot9/PARPXr4kOcou8qH/BrsCYCLxvoWys4yWo97OkZd2F7KvRR3bS/UAO7qPsf5kGtI6DI8ge+BOaQo38zsLN/bOxSycMFizgVqvj+4/4DWDOXBDIcPzBXgoqG+mRrqmmjbUNya6DUv17X31HnA9sI+/Ehtr9CwCF7bsYnZibqej0wQ4ws+Ck0Fms9BlPdHEJshx4A/vP+A90VALVLELw6Xj3nsOoALxCTV1TTStKnP/Xy5d5ycB4zvxr6+p9ZLEdeltL3ADWwvR3sp6MuDXgvgY+nSlbqOqyCx0bFUXlJKe0P3am5siFfCPrqoEywLGPl73amG7t29R/fY69pa2lz2QcT/dwaHcC7qqhuotvrFPnFgQOZSOQ57dYXVENhXtmyvt8cYbdpeqUeOcj5QA1XXbXVk8qSpnI86pmNj/jPyOUQZe2qrNrWzfDm5ppQsIpZeaeegBhB6Tw3eGaQ7A3dc6s8m/y85KZVzgXjvpEPP83Zt9dyFYKwYH8Ztq/eGfG5yXr2I/1ceH4nt9c74RqvthZw/9AYFH3M+XaDrtoqSEJ/A+YiKiBrxZylzPURdK/mYs3w5YdfgdZg/8FqlPmGfUOxpo/7xIOPizu0BGrh928qPq3zUVjE2KuuouqKWdgTutK6RubNuhXGLWADZDpPzyMC5uzG64AFcKG2vqBgL5+NYcbmu0yoLalSAj9am5hHH59jKhVLWgnKW7wAWnNn2ylqkA4yN27du0+2bt2jf3kiX+Zg6ZQZVV9ZSVUUNVZVXW/vcgD939j7kWH6wDQ6U56jskeau7QU7S9hevf33OB8bVcpl0OVFyWL3C3wEBexw23+2x4dyDlErH0iumY5eU6jJevPGDSqzlLnsm3+2Zj3jooYqy6qporTKuk7hrM+Ns2shcjpEvwi1+ZBtL//AfLp+c5A6TnTruuwhWb50JeejoqzcLX0Qc4S9XFq5LqJafMhxH+lpGXTz+g1eTx+1Jp356OJ4UEAwO+cqxkYllVsqrLaVq/GISpH7Acs90DzFB8SUf4zzEb43StdlD0pNZRWdOn6CZs8cfpwpdELkDMq6InxSeU1WrXw5PN/FMz4oMJjXK77G5OqVq7zPkytrWAkHEjkXqOGB2jaOfHNXRKxziXMTvpPIGxT5lmrlQY0f/yHdGrjP+XjZ6vJoTaKjojkfCQfc01eRGyczI3xSZW6cGvly0GERzzt3zny6xri4evkK7zsxd8iPsMWHfKzQZKYy5tOWFpfR7p17rNy5W8NHPm/ZhxJ1GZTHRypbtmzjfDQ0tuk67GFZMH8R56OjzfeuNdZ0wcVlJpcuXrKuBzjjA1xYjpVSSZHFmoOMmCs5jl7LUlBYwvkIkupz6eI5aWpooLOne+jT2XM1P1asYcVGR1r/Ri+IS8x+uXihn2L2xzrlA3GaliLGhtlCxUzPsBfka/drYPAh50O3rbwj8bHxnI89IXt8YryyHVRUWET9ff10ofcCFeabna5dzZ45l9cNPFZYzOvqCT5gA8F3gg8tfor9Gi3V1J0/fzHno7PrrK67XpI1q9dyPsyFhZodo/BzYEPJvWgMmQbGRh/1ne9l82Cj3TUs8ffGdZs4F0X5RWQ2mR1+p/AdBDNayFWNjIrlfGQczdZ110sydsx4zsfFC32jPhb4ufIzXPwUe25K3z5kdyj1nuvl67voEemMjw2MD/MQG4V5z58HWLuSbTYtSyHzmcDHjuAQXXe9KPW1tZwPrAmN9jzh7DVYwxL5hCG79jA2ztG5M2cZ42ed8hETGcO5QD3WhLi/a4j6Si/anjN9nI958xbreutFyUhL53wEBgRpfqxy7dHZs+ZyLs70nKEz3aetNZft7YHsj9hPBcZ8ys/Jp6ihvTXsC/pKL/PBe485H7rOeld27wrhfMTHxWt+rJg7xF737FlzeI/G09091NPVTbOG9jnt8YFeSaYcE+Vl51FkeKSVN3f3zr3rmy/hfHT1nNd11suydMkyzoelpMS3+GDzRU9XD3V3dvM+jbb4kH/PTMukPEMu75cUsC3Q+nm+YF8JPiqq6nWd9bJg7wN81NfVan6schw66mh2My66TnZS54lTtCMw2CEfuVm5ZMw08t6sa1Y+7wmMfUF36115U6Ki4zgfhxJTdJ31skDPwMf1a1d9wv+Qe912MjZOMTZOHj/JY7Ic8QEuco5mU3aGwcrHSGNLvM1HZGSsrrOjIL7Ch1JOMS7Q//pE+3FrrL49PsAF+rQamJ21esXzuDFfiS3R+dD5cHX+kPcrTrSfoONtx6mjrYMCtwc55ANsZDE2Mo8cpVVD9eDUEBHDLPIG5f4oan2HIdvE+Qje6RtxDi+bVFdWcj7mz1swYj2BiJ7OIm9W7G3I/XXk48P1QcTv4KKjtZ3aW9oowD/QsX/OuMhMzaCjKem0atkqfgx7jnKPWVui7L2rfA/OReQOih61IkdGrRpBtfXNnI/58/W9j9GQIrNZVT7wu4gDEfvg0Cu5P5vcf0yIsieyLTFLPdbARVtzK7U2tdL2bQEO+QAXGclplH74CK0cqocD/bVVG0IW5RhFDznBtjhvZR6Us37vOh+vNh8ixk/ULXAlr06eX+yJ/BngoqWxhZobm8l/q2M+0ofY4HwMzR9ynoY9sTXH4XwE697kY9VQfytdfIcPoQNKPpT1bVzhQ5ljZUvkOKwWxkVzQxM11TcyPrY75CMtKZWzgTlE+B8j2R8E95jLZD5k+0rko6txf5LYuHX/fPSku6uT8zF1yrRhvU/oARhQ8iG4wbNW1MCR7SvRF3w43yfn2EKa6puosa6RGmobaNtQvrs9PsAFbCz4IKtXPOdjJPElIo/WG/65vn7lu+tXghFH/rl4jo7UP8denryfBy4aauqpvrqOtvptc+yfMy6ymI+O9d01Q+u78PXV7GngKdH50Nd33ZH6mjqqY2zUVtXS51u2OuQDa7tY483JMNBaaf9c3m/UquzcFcb5QH6trq/elbHvTeB8nD+n/bw02EJynR9wUVNZQ9UV1eS3+Z98yBITuZ9yjhrImJlNEWERPnWP9Pir0RMRf+UL8YmyfPj+x1TDuKgur6Kqskpau3qdQz4iQvdRblYO5RmMFDVUc9FX5o8J4z/kfPRfvqHrrJdl21Z/zkeu0aj5scL3EP701CnTqYqxUcnYqCitoCmTpzvkIzI8gkzZuZSfk0fR+6J8yv+AiPwPUY9bFy/5fhFRnI/wMO31PFAK1mNF/C7qCIOLcks5lZWU8foktviw1k70D6KCHBMV5uZzOwvHwIav5Ee1tp/U8wdHQUy5eZyPFcu132MF+Roiv3bJomVUzrgoKy6l0mMW3r/TER/r167nbJjzCqloqD4D+LAX3y72YrAWp4X6DJlZRs5HRESMrrdeFFGfYfxQjc7REuigs3o60GWxn7d54xYqZWxYGBslRSX/4EH5N/bMi0yFdCzfTMUFRfTuO+/x43KdEvmn2LPRAhsQPz9/zkd5hfbzdF4WQc4d+Oju7Bz1sUAPh1O/BPFW4KLYXEzFhcec8oF6V+CihL3Wwt4z5ZPn9a+0VOPKmY8u6sPpuusdCQ4K5nwYMrM0O0Zl/StxPC4mnnHxvNZbTJT9fTPBx/tMv8BFKWOqjM05SxYutfrovlLDBPnn4GPl0P6NLp6V7CwD52P9ug2aH6tyrSmD9+N9Xs8qXBGDbosPCPyUcmaTwW/ZMtRbBvaau/XbZT/FG/WpEw6lcD7S0g26/npY0DsK9anBx7ixEzQ/XuVehZn34i2kgrwCWrd2g03bSnnsyOFUqrCUU2VpOSUeTBzxmJS9G0TMmbK/gVpxvIjfBR/n+y7rOuxhWbViNefDUux7MQuwxQsZF6j1lm/MpwVzF9rlQ5b9kfupqqyCqssryZSTZz1+6ECcW+OQ17bs9ccRfpRa597Xf5X3/1ixYo2uxx6U9CPpnI+tflvd/gw5JhH5HiJ+VfSKEc/YkeYMQoK2b7f6CTOnz+ZciHpWkz6e7JAPcdxv8+dUU15FtZXVVFdVM+JrCJ9IrBsIDjzdP+pgwmHOx5G0TF2PPSTo7Yz+auBj7HvjVeED+iFyUUXfY1dyBl0V2Ydet2Y95yLXkEvGLKNNW8oWH+ijU1dZQ/VVtdRQU0fTp87gx+F/uFPnR/SsFj9dzXMZiUyZMoPzgf6c4/Q+Bx6RnTt2cT6Skw6P6HNkPjAviLlB6IhaugK/XPY9UP8w12BkbORQrLR25YyPMe+O5bHwiIlvrG2gDes2WtlzJ87EVo4gnglyf2dbOewjFUtZFecjLMw3amv7krzx+v9RabGF87FwgXuxCrZyBqH3wlcV/TvV4gNrV3IdnvTUdMrJzKHso9nk//l2p76H/D/45011DdRc32TtAQ82HNX5Afeit7l8XJkvL/fqVOZPqnkPN23ayvk4faZPj8dSWbZs8uP9z4uLjrn1fns5g7Z035WcQXAEPRP+ii3BGqywr95h3w8uDBkGykrPsu5jOPPNhSSw729paKLWxmYqKSq2yQfOEeMR/TeF/6T2PDAS6TjRRZeu3KTQ0H26Xqs4d5hNBZyPkcRb2csZFL1cZZvCmX8Ou11Zf0HUOxGvQQyhiCuBDyHXsvr4w0ku8WHtk7N+E7U1tVB7cyt1tLQx7sZZ5whwKs5LKRinI4a9LRs3+nE+urrP0Vtv6nOIKteU2dvlJaWUn2vSzJigc9BL+TktBOtg0Ev5ub3Nz5/Xmj7K2MhIzXDqeyj/D55QFwh1s463dTDffI11HPJ3gxOxHqXV+9nWfor6L16j/fu1X3tf83PHa2+R0ZDD+Vi2ZLkmx4hnOFiAXSNqHwhdFa85EHOAc5Gekk4hwXuGzQcEa1eoSYrapHExcdY5Ed8repj7wj2dM2cB56O37zJN8sF+o1qSQP8gKso38z1kXxkzbCxR/4Tr8Nvvci7SktPYeRyhFUN13lzxPeTXJCcl87XtzhMnqbqi6oV1Ml+oV/3iGoGF82EyFel6PoLnMtZDwYfII/IVkdddP501l9IOMzaSjlBqYirvnzgc31zeJ+xidlv3qU7q6eyy7i/Cz/GVWEUh48a+T6dOnaaz5/rZ3Beg6/sw5XVmV8EmAR/BQz0AfEn2hYdaf0dfm9SkVEo5lMLO6aDLtpXydeCq51QXne7qpjPdPbQreLf1Nb42f0D82XUBH+3MH5k4cYqu98OQzRu2MF82g8e7vvH6Wz59LgmxCZR8KJkOJxymTes2D/v9Mkclx0p438KzPWeojPlktnj0JTGZzHT6dC8dKyrlPV103XcuM6bNouSEZM7HRI3kwQ1HsGcu7B3YhcmMi6SDSZR0IJHHYA1n7lAygr3Bc6fP8t7QvWfP07j3tB/D7EhQp6m97SR1dZ2huNiDuv47kTH/GUfR+6I5H+vXaj+/w5lgvkg6kESJ8Yl0KO6Q1Q5yl49PmB3Se/Yc9Z07TxfO91rrvyO/3Rdq/tgS9PQFHydPdNPmTZ/rHNgR6E54SDgd2H+AwnaH+eQ5IF5Q3tOOi4rjXMDG8pPuvbt8QFDbur+3jy72XaDqyiqX3o+1X6ypqRlzqKb4bfHnfHQwX2SlHgP/T3+csbFnVygdZP5r9N5ozfmb0C/sBzrbd5PXWidPnEoJcQn8nMD8jKmz3GJDyUhoSBhdvNBPl/ov0uWLl2jyUE66ss4vBGvNGDf2SLRSs8GexDL7Cny0tnTQ/HmLdC4k2b41gNvo0fv205h3x2lyjGBE7APip3I/DjaOPHfAPhRsxEfHu21bKfnA2ii4uHLpMl29fIXi4w68wKezcWpZYvbHcz4qy2voow8m6mzAn928la9/go/3/qNNNpSCeQTPZYh4Lss1E/C74AKC3A93bStb78M61rUrV+n61WvUy3wRcVzEvbgbX4L3ixgAOV9Mrm0vH1dbkD+da8ynpoZWqq9tpGVLtV/fzGM21Wtv0c7AnTzuAnzMmvGpKp9rLx5djluX9cBWP7LhzCl4r4jxsNo1s+dxLsDIQWY3fDK0vu8uG0pGNm3cQjeuXaOb16/TrRs3eHyzGtcO10ech8gXw++4VmIegh+jZp8QW4wcSUnnfNRU1dHSxdqMK/KkIK4qjs2liPcGH7NnzlHts2U+YF+I2FzEQ+E+45gc1wobXY7pdVfk2N2w3eHctoJvHiHlA6nFB6Svt5du37xJA7duMXukwnocMcPu9pcSccii/hyuE47L10eZH+Mp2RceyfmoLKuiAP+gV4YN1HTCfIE809TDR1Rfw1fyIeIE5fuqzKEbCR+w+WV9/GDCR3y9Cmu6h5nNuGzJClXYEJ8hPifh4CHGxm26MzBAg3fu8NrXYjzuxpvItU3AhmB+NPiA7AjaxfkoKynnz1PkOrzMbCxeuIRzgRoemDfUrA+KeynsHdleEj33vMXH1s3buC+FPZzUxBS+NqcWH/LnTBj3AQ0O3KG7dwbp3t27ZMgyvDCHiJq/7swfso8lro+wr8T86y2dWbJoOeej2FxCOZlGq636MsmbjPs9u0N5rTPUDsS6J2wsNb8D903kXsh8iL7eIq9UaWeL3sdqsPGvt9/lcSQpjAvEI45kz8MVGysr00D3796jB/fu08P7D3gNITEud/hQ+uciBtlb/rldm4PNyUfTMslsKuI1YFAn7/XXfDvuSMi0qTMoL8fE6/qDj21DudeeENxPW/626Bnuqn/u6pqospY64sZgOyKWPSM13Wo7qsWGkpEF8xcxLu7TowcP6PHDR2TM+bsuilw33tHagpbyCx36rOwZGxy4k/ORm2Vkvl0CTZsyw3fnjDfe5vFCDbX1vJ8Yagci1tsXxo71KGe9wLGGK88dyPNIQy/mlHSeJxgWEq763GHr8+pr6+jxo0f05PFjevrFF+xZ+5wJ+CD2+JDrfuGnL+2RIK4ffh3ylY+mZFBIcIg1X9kX5K0336aggB1UW11LzY3NnI/w0L0+41sJe0vMLfb2npVzx8rlq3lMJe+pmWGwxlaqzYaSEdRzecK4ePrkCX359CmZ8kx2xwgfTZlbr6X6Da4KbKvVK9ZwPtAfPivtKO0L3WfNidEmF//iOQktTS08B7S9pZ2M2UaaPnWmz11/kbcq29ywRcRzVvlsxv2Cz2HIyGI+ZDbtk3ppepoPSFNjE3315Zf09Vdf0Tdff83G9tELfoiz8/FVwZz9OfPxwIcxM4f32oqNiqHFC7TTXwvxDjHRsXTy+Ak603Oauk51MV+jnFa9BHFmtp63sE2UfPizY9noM4temtm5TmuHqs3IooVLOBfffvMNffftt1RYUPiPdQtn86FPc8I4D9gawPlALyH0g0BfIeTWjUacCup7bd7kR5ZiC48F6u+7QOfPnqe6mjpau/qzl279DTom1yoBM+LZi9pWqPuGXEfUj46OiPb43GHr81tbW+n7776lZ99/Tz88e0YzZ8y2Mi7qRWi5roka8s6/x9CGzzZSVnomVVrKqbaimhrZ8wC9iGLYvILniKfysKYxO2n3rj1UXVXN96Ru3bjJ43/AhyHTQEs1Wl9EzWcUbBKxhiyOh+wMoTzGRb7RxOuzfzJpilfYUDIyY/osevaMsfHDM/rxxx/oBJvP5fU7d9Z7fXrunz2P9jK/t8JSxuvqHW9t57UtTnf1MJ+4ga+Nh4WG07w5C2j+vIUuf+6HH3zMdT2Q+dgHDyRQS0srfcls2y+YD/jwwUO+FwU+mhoaKShwB7evXpVrjjUruWbvpImTORcFeflkzi+k2GjndXU9OYcUmYvop59+pJ9//ol++eVn2rjh73xe1JJ/lfiQZQHT/7CQMCoqMHM+kH8Jmwcx0DeuXedxCPeZXj9++JAGbg9QK9P5jvYOOsl46ursoqtXr9Bff/1Jf/z+O/3226/0y88/82fQ999/x+yKbzgft2/douJjJbSLPS8njPduDW6xNy6vMYlayvLrxDFl3z+1BDXT5diNhPgEMjM7F9e92HzM2j/TW2woGfng/Y/p6dMn9Ouvv/D7ODg4yPcsxeswdl+s5aC2YJ9hu38A73dXWlJK3YwBwceXT55yPw42Kjj4/ff/cjZkPsDN8Y7jfP5Y99kGax/i0RJ5L0Ls7cmxQjgOm0fui6R2rpwypmnl8lW89hBsW0tRsTXXdTT5gCQlHqb//vYbv69//PE7GY251v+hFpArNd9Fz4NXkR3o+uJFS2nJ4mXcjlq2dAUtX6btOHuZD9EnVvxPxE4p+964EkM3nLV/2T7BXk5udi6vFY2YgEJTgXV/x9ts2GLkLnsW/smeEeK5N3vWnBc4d8QI5l6scQ1nDha135XHRjMm5VUSW3vZIhcI91LJh6sxpmL91tE+gK1esRHhEWRhtiZq7FSUlrHn8jKrjo4mH+K78bwDF//7319crl65Yn0d/HR7fIi69MPdF8Hr5V6GEG/mjLyqInrlyXzgmkOvcVzESbjLh/g82Gb27AnoktwrFrZrWbGFyi1lVFlWQYkJiaNmVzmaQ3Jz86zzx59//kHJh1NeOCdlrrrcS8vdeyVf89GKiX+VROxtid5G4lqLv0X9cvG8wt8iLlvMK8O5v8o+H//f3nm2R3Fdcfx8k7xLT5zYgG0wtgMYTHPBGJsiVJFEC5jYsk2ThHovqPdeVhLqHXUJIYrBJMSy49jkhRM7jxPyEXL/dznL3dHs7ozYFZJ2XpwHWFarmZ37u6fec7R1sPZZC2VylmxTfSPZGpvp979bsyzY0DICv3x+fl6yAVsLvsi2rdsd98W1Y9hn1LMeixWtDrH4WDpG1DlHvNfxuUDteVDt2R4zwvNl2C7Q1sDKWbL1DYKLJmppslF4WMSy0R16dtbevfskF4i7wF/XxrO09+sNfa/au0/rzIglvhNX++mhAwGyb3pLUzO12VooVbFXlgsbeteTn19A/3v4kB4+/K+MTba1XXHyv7zBhHYGiuWf+4fvw39HzhT+eGtzC11pwZnoejlP92n75EbtrOtCp4IN5EX+8+OPdOLE457fen2zLPEvMWM/IFal+uO/+PmvKFewgnMW7ZiReaVd5j6Wq+7Qs7Pgdzx48K3MqSPnhfw612ctxt5diTXxlugL7GHkDY0yoo3nfhL1qeCiTdbTdHV00Pmz55c9G3rXB50BLlB/8u8ffqC7d+4K3fI4zmuk/oTPZ0L8NX+42nwJru02wgjWiOqPY9Z4h7DXu9o7qLuzi4oLi+S5yJXAhh4jFRWVsm7oh++/l/UTkxOTTu91N4tKZcNsbNASc2uW6/u4jkEVXsPwHfVqrMwKPscTI3o5wC2bt1InuOjopN4u9PNrEdf98rL2OYwwMjU5Sf8SbKAO/p/ffUelJY/PimBv0OsN5As21J7Z+JOfC9YG96BRX/cnv1ftIcPnKdR59fheeO4y/+lLRrQ+x4b1L8ve6D1dXdTX00MDvX20//0DK8aucueL/FroiK++/JK+E2zgLBVq8bR5H9Vf95XeQIyQe83w3/E6ng/i93idZ9b7Kx9Yp/jetbE/bb7cW/0N9RjBWlDrLWA/VVdWUV93D/X39tJgfz+dVOI9K40NPUZwVmT+iy9kbTbOHeJcbqRSX8k6xJc2lfqM1fyhv+cVtf3bwAb2DlVPeLN/mydGVD7ABnyM/h7BRV8/DQ0MUGx07IpnQ+/6j0Yel1z8A/LggeztEBlx1Glt+tLf4DOZXIfNMTF/5QP3z31dmQ+2Nfk9fAbUV3xoGVG/e7BRUlRMA319kgvMiq2qqHCcx1xpPocRRqAzwMW3kG++kX1Q0A9Fjf0thg0jPqPaA5n3SH/mg9clGNCzr7iuCu9juxSv8T7jjrvFXAv/Ln4t+kK0tKWGBwdpZHhY2FiVq44NPUaiL8ZKLv7+NeRrunvnjuzp58o38yTq7PfF+B/c65LrHdWzDP7ACO5Z/f7UuinmhhnR1ljpCf5P61+6E9hT2rPYMRdj5Nnkq0NDNHr1qvTJ1zy3blWyocdIQX6h7DH3t6++kmeoP7t928EIx/Zgg3o6W8Xzqqz41fISPBNPtUR4zhBtjB/+BXMxNjIifXKcK18tPocRfx2Sn5cv41pfzs8L331enhkJCw132lfc1aHwOQFrPS5PwbNxt9do7QT0ebwUEyttKXAxMTYqfQ+1P/hqZcMVI5dz82S/a/Tg+Ov9+3T/L/cFI84zZfEd6ukRfP9L2VeLfRNtvbY36rif1EbS06HqHs79+rR2ky8Fz8aVL6mdfQy/Ar732MhVGh8dpclxzBfud/Tm8Qc2XDGCvjeYmYDZCehT8+d79yg0JMxpn4H+VW1U9hWX8rpdzfLhHn54HethqXWaq5iCGnPien8+wwS/fLEcm9mT+Lty9yzBBnxvOxdjNDUxIXzyAb9kwxUjOeI7RJ+be5/fo3t3P5e9zjIzshboEb3v3KgP7409k+sr1H4DZuNffB5V73PV19WeOe7sFCN8aHMcnnqhu7pu8K+eYzYi6l6m7ccDv6LVZhO2FLgYp5mpSel7+DMbrhj548lT9Pndu7KO8c5nd2SfqMKCItk7U/uMzO53HF9/kjpg1g18JmuxfGjfo9cHh2Ov6pw+vTXJ9VLq5/H7vM0HBNeC+zUb49PzRdDDA773pOBienKSrk1PUVNDA61d87zfs+GKkZDgUMkF+mRiXu4tIS22lgU9AbVn9D2ta23uabH2lTfy79r36PXB0a5nvV6tnJ/Q9qLgGLUv+FBzuEbsM47dgg2Vj/AjEdLHmJ6coBnBxezMDDU3NYq98DcWGz9xH/vduWO3+O4m5Kx19BtEP9mxkVHZF0qNDXIM2F0fU7PP05OdoNbo8XpT+6Jhn/cU+3fHB/+f0fXM9Tha/cH7vMqzVh89SVzK037DcVs8I9Wegq+REJ8gfQzYUrMz03R99hqlpqQ42Fit+Q1vMvLqK5vI1myjudk5eRbx+rVZ2Z8TM/O0egR7FD8PvT3fm/UqXONtxH/Q+1mw400++HO1v5ftLlc9QJ8kx4PP4T3HVZ4QvTi0sXn4GnW1tTQtuLgGLq7NiL1vlmKiY1zaE5a4ZgT7CeK/4OLa9IzYb2aEPp6m0uJSWqOZQayXK+G91Yw/iZ/xVcyY93W1BydErw8OOFLjTdBXvoxla+uujOhSnr+hvg5doY3dQiLCI2UNFXyMWcHFnOBifGyUggKDLTae0CeBzpiZmhZsTAm9PCltr/7eftmPU/uz6Ge6a8cuR+8fvVmPnmwHX94b5zRV/1Yvf/I08hVmfG6eQcvfL2zcwICABe+DPZWTlS2e35S0peZm0aP7uoxZwUaw2PAOI9tf30kDfQM0MTZB46PjND4yJvuip6dm6M7XcLW/efIL/PmcOzg1c/9a/aw9B4pewshjsI9xY25W+JRzVFhQ4BSTtLjwDiPgoKigSPrqo4KNkeEROTusq71TzqHRPju2W/TOJz7p/sk1kcu9VovzgkZ7HRn109jXY/2m2n5SZ2TnCFvqsY9xU3CBOG5wUIilM3zMyZHQcOru6KKrg8M0PDBEQ/2Dcv5kbnauYGGtkw1gf3+o0zN1ZX+bqXNk/3S5z43DPZnJV4B7I/cEWwr7jnZ/wHme4aFBu4/xyJa6ffMGtbW20rq1L1hsLBEjzz27jvJy8mhQsAG7C/5IX08f9Xb30rHI446eFqp8EmWPfen1g+C+y0btED7vZtRu84Ut5ItrxXp3xxL2Gr14Ouzfhvp6h49xQ3Bx6+YcfXb7Jn0c9bHLGIwlvotvQTCTsk3YBH2Ci96uHurp7Ba6pZuaG5ppn9IzTJUzp04t4MSMbWV2TzbzPm1fW3fxI7O6zqgtqNdPH1zo2alrn3uekhKT7PFacHHd7mPcvnWTamtqLJ2xLHTJWkqMT5JcdLV3UafwRzqudFBHWzuVl5TTrp1vuOUENrqZXqScezP6M0bXMudqjOgbXLPRfCd/rlHfW41ToP+UHhfwMS6cuyDjtdcfxWtv3hC21K0bMieOOgh3z8ySpWUEsmXzNqosq5RcoO8kZmK22dqotbmVkhNTaOf23W7XL+wGT7Pg1NyYkf0Ya9joujTDh5k+VBzLM+J7Mwuu3gsuznzwpwU+xi3hY8CWiou9tCA2ZXGxvDg5fCiI6qrrJBctTS1ka7SRTdhbzfVNcgaXXt4EwrPgkPt1N8/HTC2XmXVshg9wavQMK9fYuIt1c25VL7cHQT42MSFRngVf4GM8sqX+8Opmi4sVwgn88/DQCKquqJY98JsEG411jdRQ20D1NfWUl51HwYGhjhl1qoAP7KP4k2eWsHCto1GbCe8zaveb4cOM3QbhXKlqk2EPQC7VXa3n9m07JBczmpoQu49xQ3Kxa+duy5ZaQYw4cSLWf1jIEaoorZBcQK/UVtVSTWUN1Qh2qsur6PTJDwQHm3RtDa7v4vXDOWOjtr+ZNWyWDzMxBa4phM7B/YAL2JJa/tmGCjh4mK60tjnqzp18DGFL1VZXW1ysIpsLeiIkKJRKC0secVFNVWVVVFlaSRUlFVReXE7pKRm075336JnfPusyFsR907C2YI95cw37Qn9wrzVwwT2/XNVy7nn7HYqPi19Qd676GDUWF6uek7fe2ENZ6VkOLsqKygQ3pVRSUELF+cVUlFdEsRdiae/b79IzLmwjlY/o82elb49/s+/C68+XfLAPzeud7SW+Jug/XJO7+n/MlY4T7KB/jv0Mn3PdOdeEpKelic+2uPAXuwuy7bXt9NGZKKlTSgqKBRtFgo1CKrxcQAW5BZSfky/9lAtnL1JQQDC9tP5lt7+H/RbVHuM9nuOk+D9miH1i5kzlg89p8/kJ9f08F4I/G0zAr1b9CFc1NcirHth/UPYJQa9ne58Q+9lWWXeu1ISAmaiPopxyGBYX/scJ7Kl39+yj5IRkJy4uZ12m3MxcysnIoez0bMpKy6KkuCQ6HnmC3tz9Nm14caPh3632JeB518wFx4xUPjgfh7XPNhLzwX8ayfcjN4T+lFEfRlF5aZmjF6HaJ4R9DK47T01JpX173zOkjy3xH9sLsm7NCxR8OITiY+KduMhMzaQM4Z+kJ6dTWlIapSamUkpCCiXHJ9OHpz+k/fsOirX8Br34/AaPORRfyYb1G2n3rjfpaOQxOQO8trrG0e8cXHDPNUefEPgYj+rO83IvU9DhIKfzre72FEv8W6dAUDvx/rv76dOPzlJGsmAjSbCRKNhIEGzECzbikinpUhIlxiZSQkwCxUfHU9zFOLp04RKdizpHR48co7CgI7Tnrb20W7Cz/oWXpM7Rnu0yIvCbkF/Y9OoW2rl9l6zRDA8Lp5SkFMrLuSxnKnU+mqnU290t+507+jo7uBhx+BhDgwOUm5NDgTpMWLrCErOs/Oynv6TXt+6gkMBQOvfxOZdcxJ6PlYK/4/WE2ARpk4GnNKFzoH+gi7LTsyhX6CfYcPk5edLngf9TInyhsuJSqigpp6qySqquqKLaqhqqr6mjxtp6aqpvJFtjM7U22+Tc1vY2+3xKnqkkZ8eAi370Ox906kWIXuhnTp+RtYRm798SS8ysFfgDr2zcJPXLsfDjTlyAFXADhmB/wRaD7skU9hlstRzJRa7kAv4OYgKID5QVlVJ5SRlVllXIvExtZTXVVddSg+SiQXCBWd82arO1yvmUnXI+Zad9plK3faYS21KYtZSRli51DProLPY+LbHEDCvu1hHmZMH/eEfYU8EBIXTq+Gm6ePai9Fuy0jIFF9nS34fvX5CbL7koFlwgflZeLLgoraCq8ko511tyAZ1R1yDz/y1NzYKLFpmz4/mUPcKWys7MkudXTxw7SQfePyjnBnvjXiyxxNe8aO2zjRtekQI//tCBAJmjPnwokAIPBcn4cfBhIYEhhDxmaHCYzPuznxFxJIK2bHpNzqh8bfNWn16rJZb4mpmlXotP+/dbYom31q03xfqOLbHEEksssWR5yf8BUEsBAhcLFAACAAgA2og+W3s8I9vzPwAAAHECAAQACQAAAAAAAAAAAACAAAAAAGRhdGFVVAUAByUO3GhQSwUGAAAAAAEAAQA7AAAAJkAAAAAA</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #6</Name>
|
|
<Index>6</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPltKhmuz/D8AAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J3nX5TH2sd/f8k55/Ocz3NOrGkaE3sSYycqsaBiN5ZHDaCIBVQEFBGlSO9NOiy71KX3qmBBVOyxxZYYk/PivMsz18CsszegLOwiC/eL68Oy9b5n5jtXmeua+cff/4l/qPLB5O9/+59+i9peqoyGcW8N36+KKpYap+o1qaLy0L9xt2jREi4uB1zh4uKK0LAoxCekMElGQWEJmi9cQnPLJTQ1t6GxqZVLQ+NF1DdcQH19C+rqm1Fbx6S2CRERsUxiEB4eg8OHjsLBYR/Wrt2AefMWYdLnU0y6drUvVbEEE3295+uvv8Pmzdvg4XkKSefTUcvGdtvlDrReuoaLbe1MruJCK5OLV9By8TLj4vJbLpoVXDQQFy0GLmpqG1Fdw6S6AVVV9aisqkNlZS0qKmpRXl6DsrJqJlUoLa1ETEwCfHzOYvcuR8z9bgHGfDRB5UWVIeVh3NiJWGVnDy8vH5xPycTlqze4XLpyHW1XOgxctHIu2iUumAguWtoMOoO4aGi8wNkgLuqIizrigongorqesUFc1Bm4KC8XXFShpKQSJcUVKNaXQ68vg76oFEWFpSgsKEFSYgpOnvDBpg1bMX3qLJUVVQbFRW+v2dgsw6HDR6HLLcKVa5240n4Tl9vfcsHZEFwInUFctBpzkZdfjNi4JMTEkiRi374DXPbuJXHh4uREsh9Ojvvh6OjMxYvppTBmm4WGMgmJ5DqDuCglLkoYF8XlXWwUlRm4KCwoRkG+Hvl5Rchj152nK0SutgBpjGlPj5NYuXw1Pvt0ssqKKgPSFXZ26xAQGIpGNq6vdnTiqoGLmz24aJO4SEhMhe+ZAOx3OYwVK1Zj4cLvuc6xxPXPmD6b2VELsYXZdrt3OSAwIITpi1TGRTHjgrEhuNAVQKfNhy4nD1pNLnKyc6HJ0iE7U4tz7DPr7Dfi008mqayo8k5dIZhoYky0d9xiXNzq4uLazS42iAthSzEustl4O+7hjU2bfsTs2XOGzf2N+Wg8vpszHzt37Ga6x5vrDK0mr4uLbB1jQ8vYyEFWhgaZ6dnITMtGRmoW/M8GYu2a9T1YUTkZvbpiyhdTceKkL8qZfd9+/baCi04DFyQaZp+QD7540VKru3+ypVYst8PxY15ISkhBVrqmi4u0LKSnZjKGMpCWnI7U82lISUqF66EjsF263CQ7VJWRw4Xd6nWIZj7AtRt3urhg0oMLJhGRcTw2ZSkb6UPJ1K9mYM9uR4SHRHRzkc64SEMys8+SmU9/PiEZSfHnEcn8nk3rN+OTjz9XORkFXGzduhMVVfWci2vdXBjpDGIiipjYPuKY6EvIntrCbMRgZlsKLhLjkpDI5o+EmETERycgLioeDown0rcqJyOLi3HjPoarqzuaL17pkwst82U3bxk9TPQlX02ZBieHfYgIjUR8DOMiOp6xEYfYyFjERMQgOjwabsz2mjXja5UTK/e7ORduEhfClurmorG5Df4BIXx9T20/Y/no3+Ow9HtbnGT+veAiOiwaUaFRiAyJRASzyw67HMbM6bNVTqwwHkV2VIvEhawzyipq+XrGaNcV/RXSFfudXBAZ2sVFeHA4woPCEHYuFKGBITjofBAfT/hU5cQKuLCxsUVFdQM6+uBiC7Oh1LYbmHw88TPs2rHbwEVIQDBC/IMR7BeEIL9z2M7a9t//GqsyMgzZIL8xLUOjcjEUnDBdsXPb/yHYv4uLc2cDEXgmAIG+/vBh9thSm2WqLhlGOoN8jI6bd419jOvMv2hpY1zsUNvNQjKRcUI6g7gIOO0Hf5+z8Dt1Bme9fXGI2VzTp85UGfmAbAhbSuljUE6I6l8MnRAH+37ay9ng4nMG/oyXAF8/bLTfqNpcQ8SGeExxqZPeZ3q1paKiE/CFIkavytDIgrkLcYrZV6RLAs/4M7srgNlfgTh53Aszps1SGRkCnfHNN3ORV1DSrTOMfQwbhd3rcdyT2wBqO1pOnPe5YLo09klXkM4IYj5JMPNNQgKCmC8fzHz6ENivXtfnnKfK4NlwcHRW+BhdOSFeJ073sKWKi0vw119/ISYmTm1LC/ofb9684e1st2qN0WukL7w9TiIsMAThQaGICA5DZEg4vNw98cnEz1RdYmZ7SuRKKeNSNouNdcbunTv5X+ov6jcSeX5TxXySmZnN27exsYn/v3rVKnz+2SQjXbJ141ZEBocjKiQC0WGRiAmP4vpk/twFKiNmsqd4vpQiJ4TWvWWdsWHduh7fRf0m958q5pOFCxYb5h+hOyaweexf/zsGc+fM5Y/Fe2l98Szz22PCoxEbGYO4qFgkRMdh57adKiODYGPr1h28VluZE2JnZ294j5ivvvqyp09OekPZh6qYR8TcQzpE+ZrgQ+4Tylc54HwA8d1sJMbGIykuEZ7M3qLXVJ/ENDaoJkOZd045hMrY1OKFi9/5vQH+gbwfHz16rLazGX1yalPyPd5lu/am01evXIOk2AScZ2wkJyQhJfE8QpnvPvXL6Soj/WBj3NiPeQ2fMr/WPyDYyJ4iP6M3nfEuH5JYUdt78D45zTWmtOdeBwej/ylHOCYiGqmJyUhLSkF6cioSYuLxrZQnqjLSOxu6fH2PGr49P+3toRMGOt+pbT44kfWxqbFz2cYlm8rf1w8ZyWnITElHVloGstMzseKHlapP0luMiukGXZ7eiIuGplasWvXW1xD6gnxDU+O2ZCfT59QxPjjZ9uMOzgb9NeVz1F/EB/mL5MPTc2O6fZKstEzGRhY0GdnIydJg5XK7Uc+IUYyK6VWK1cq1rfWNF3vUZVD8UNYJJOqY/TA2lqlM0Vqt6EM5BkziuMcROZkaaLNyoMvWIjdHB7dDbqOWEfleiQGKSYnaVpIcXYGRryFzoZyTBqITROxF2AkjfX1EXguS43l038KXkOPgwoYSNqmpukIW+o3eYlxinUoI6YxcjRZ5jI18bS4KdHk46np01DHSGxvyPiE52rdsiHj6u+YxantT5jPiqaPjuuF/Wmcf6X67iHMr24nmdGGnCr+buCEmxHvpPQNdP6LvoPbtrX/IVqa+lXXJqhWrOReFufkoyiuAPr8Q7kfcRw0j8v0RG+RfyHsRarTGeoPaUF5n6mu8m+KLUP/L/U1sjIa4FrURjXu6d3G/ynun14Su6au9TP3Nd+l3YkNpG9itXMO5KC4oQkmhHqVFxTh+7PiIj2sZx6kmorS8xmgvQo0238BGb+3WX/tW5aP3eVzEjoRNRePWknyY4h/SeiKJwZ62W4sSxkWpvgRlxaUoLymDA/NRRiojSjZydIVGexFqct6yQX05kJzb/n6G+lu2r8g+6y9bI8W+ovundiA2ZPuKnhd5I+K9NMbJRjK1L0yZc8hGIJH9wLWr7TkXFaXlqCyrQFV5JdatXT/iGOnJRoHRfufZCjaoj0gsmZc+2vxzYeso/fCh8M9N0Tf0e7LOsV+zjnFRgeqKKtRUVqO2qgbr7TeMKEbke/DzDzLa1zlbk2fkb9DcJda6Lc2IKsNHBBu95XORzqitqkZddQ3qa2pRynTZrJnfjAhG5GunfWsN+51fvoaaumYjNk54uKuMqGzw537cssUorrVj20401Nahsa4eTfUNqCgrx+RJX1p1TEu+5k2bt3Vz0XVGBp39IvY7p3ZQrhepjKh6Qxn7PeXtg6aGRjQzG7ClqRmZ6ZmG+dXa+DCK4zIO6LyxrrNjus5UojP5xHsphttbnqHKyOhlQ8ybyhhmfGwcLjS34GLLBbReuIjw0HCrtLNkf1xfXGF0ptKuXW/jdO+L4cqMqDVOo4cNWeRaq3FjJyA7IwttF1txqbUNl9suYc9uB6tiRL7GsPBoo/MpfX0DeswR7/s+YkTE6+XnKT4p54NSm4t4vloLZR18vI8NMUbkHIqvZ3+LeuaLXLl0CVcvX0b7lauwWbzEKnwR+dp27XY0Op8yI1NrsBd/WGbbr9qNd4m8tkXxR7LBRDxfrTkf/mLKHEb6Q87XWrVyNePiCq5dvYqO9na0NDcPe19EZpd8b/l8ysqqekye/BV/zVx+hMxHX+vA6ji0jMh5I2J9nYTWEcXzNGf19ry55ITXSXRcu4brHR24cf064qQco+HIiOxzZGbp3p7beuESP6dSnjdMzSlU+RheIrevyOcS6/FirV3UiIj+NnUNvq8+l+2Cgrx83Lx+A503b+JWZyf2Ou0blozI1+LufoKxcZnvq0BnGvuc9jPSk8KnGGi9kmBB5WN48CH7gkJn0HPmynEUNgeNF2Wf0p7kba2tuN15C3du38YV5o98OWXqsOJDtqvoLGNx1ndTSxvy8vV95hzSPZOeNrXGSeSgUFxLMEHfIfsfcn62KuYT0aYyH0I3UNvTY3PzQXMofb/QG7QfB/mv4nXSGXcZG/fu3MX9u/egzdEOKx0iX0N+QQk/G7mpuQ2NTa3s3mz48+/KU6exbWqtrMh/U+NXQ683qK+U9pV4LHNgDj7k+hSlyPGdpMQk3L93Dw/u38fDBw+w39llWDAi/7az8yEDFyRHjnoYXlPuF/a+OUKV4as/SE/L+4nRfES+Bo1/+it0Ov1P76W/pM9NyZEW9lRfeZE0luS9g8az/8lXf/jzz3j08CFu3rjBnxsufFAuTGM3Gw2NF6HLLcTYMW9juf1tE3X/BOtghNiQ7VfqN3qurzUqU/pV1OP25zOzZ842rI3sdz6Ax48e4cnjx3j65AnS09I/qA6RfzMmNpFz0dB4AfUNF7Cg264yhY/RJIuZn0ZrWm6H3XDU7Sjcjx3vsiWiY1CsL0ZIcAhO+/jCx+c0Tp3ywZ49DvjBdgWzKaaPKj/nfUJ2ibx2mJ+fj1+ePsWzX37B82fPYGu7/IPwIfvky5fbcTaIi/r6FgQGhhh0oMrGPzHvuwW89i3gbABytTqeP0S5EbTue/P6ddy5dQsP7t3ncx/166uXL/H776/x559/cHnz++/47bdf+fPPnz/D06dPkJubhzO+Z7F9284e55GPNpHz976bM59z8eL5c7x88QIN9fUfRIfIv6XTFTI2WlDH2CguqcCk7rxjZf7laJExH43Dyh9W4YSHF99joJTpA6p/o9qexvoGzkdxkR4pySkICjxnpD8OuBzExg2beK6qrD9KS0q5XhF8PGIsPWB+6N27d3Gr8xaqKqv4ehnlXoxGPuRxdi4wCC9fvsCrVy/x66+vuO5VzulDpTt27NjNuaira0ZtXROcnPYb3tdbvHoky7IltjhyyI3vBZjD7p32qSE+Us+nwJON/e3M11w4f7EZxsM0rLPfwJnSZGs4H7R+fK29HVcuXYa+sAjuR48zn3DKqLHFKCYg1gkmjP+EzR33uc59/fo3Npc85M8NlQ4RvzF2zASmLyo5F1TPodeX8+dEXE7kZ47kuBSdb7FuzXp+NhLtuUz7yRIfwQFB2Lh+E7vvmRa/hvHjJvL9DGiM1NfV89xWqo8gXRUZHgXbZctHLBvEhKgPlte8XJlfRzbqmze/448/3nBdPBQ6RP5+JycX1DIuamoaUV3TAHv7jT3ic3INM/XfSFmzm8jmo+1bt/MzwOncl7jIGJzzC8SWjVvx6Scf1qZcucIOIUEhnI/a6lpUVVQinTFLDI0ULsR6iryHgDIWfOPGDe6//ec/f+KXX54OiQ6RdQfpi2pio7oBWVk6w3uoNlLOI1HehzXvCUr6wm75an5GK509SXy4HXDFEpulw+5ayb5yO3wEBfkFKCspQ3GhHhFhEZjz7TyrbX8R+1XOu/LYE48dHJw4GyTECflylvTVjXSH437ORVVVPSqr6mC/9u2eEr2tA4o9jcV9WeOZgBSTPePti4DT/pyP/U7ORmeyDlehueyn3Q583+eC3ALomF/kcczjg+s5U4VsdlErJ2pHlPaIsmais/MmZ4NsrCdPHltUh8i6o7CwtIuNyjpkZuQY3qM850EpxDrdozWtA9JZkq4H3ZiPEYogv3PwOHIc33TXzltXXG08jrge5Xxo2NhKYP4S7TFlLdcv9hx6X+4prauLeJbDT46cDfJDSCgWaCk/RHyf/dqNnIuKylpUVNRg7Zq3uuNde+XKvom19Mn8uQsREhiKyNBIzsealWuMzrq3Rpk2dQaCAoKQkZqBlKQUrkvk880sNbaFHUT9L9vc9JieIxtD1g/K/eXoPf2xzZVrCjduXOe+OsnDhw8tYmPJ35WZmcO4qEV5eQ3S09/WRx50cR7Qd4t8NyHC9rJ0fc37ZK+jM+JjEhATEQtPdy980V3fNVLkxy3bOB90BmBYUBg/Q3Mo+FDuXyn2cqQ+Fj622MNxoL8nn6Hw0x4HvH79msd6KeYr6tUtwceyZSs4F+Xl1Sgrq2K/7WSS7uhNqF3EWomcq2OJ+pp+2SFsLj3LfIzzCcmcj21bd4woLozs9SnTcI7ZjHFRcYgKi4KNtK+MpfgQezaK/hb7VyrtpsHwodz3n/IWiQ1aL2xvbzerDpG/IzQkknFRjdLSKuh0BYb1joHqDqEnSK+KfXCF/WXO+pr+ytSvZiAhLgmp59MQFRHD7auRyoaQrnNlD3I+SI/s+HGn2b6b5jqxfifbV6JWh0TYV+bkg4Rym4QO8T55Cr++esXX1F++fMlz2czNx6TPp6CMcVFaWomSkgq4H/N6Z8zKFBE5oUKXfAg+pk2difOJKchIy0JoUPioyQUUsm7tBs5HkH8Qs722m+U7yV+guU8+Y6Uv+4r6V9hXpE8Ge1akvO8Jxa0of43yTl68eI5YM9aqi88fcHFlXDA2iitQrC/HjOmzDXME+QwDXSNXtp0l6jP7w0ZqcjqymW8VwOyNMRb2V4erUAyb+PD39edrneZiRPa3B+qfD0RkfRQXG8fzFimH7dmzZxg/fvD1IfJnU1My2Fguh15fhqhI4/ULYkPUtpq617doF3PW15gidO0ZadnQavIQFBjC46CjkQ0hixbYcD58vX2xcf1mq7t+Yo3GCtkhcryL8mwot5dypGk9nXJBzcXH0iU/cJ2hLypDUWEpVtt1xc0p/55qVJTzhdKX6M8YNVd9jSlCOjA7S4u83EKEBIePejaELJi3iPPh7emN9dLa73AWYcfQ2BO2DNlX8vi81NbG60OofqqqqmpQNpb8mWNHPVBUVMrYKEFhQbFhHJGN15fvIXIBhms+CcUWcnLy2P2UIDw0SmVDIRSbID48j3piqc3wrOMRayJinCnnY+JDPpfK08OLs0E1hlRv8+WUaWbhIztLx8dRQX4xTp44bWBDqTusSWJjk7hOTEpMVdnoQ+bOmc/58DjigXlzFgy76yMm3ldDQfO3yDuh2oDHjx9xNqhO/ewZv0HzseR7W85FQb4e+XlF+N5mmdXz4enhzddvSH+oe0K8J661Zj3nw4PZEJM/t76aEmKD9gQS/1dUVODhw5/5mkhzU9OAbCz5vUfc3BkXemajF3E/tje9ZU1ia7uS58cQH+RXqQy8Xxx3O8HHyweHD7haZX6NvF5Ie//8/OAB3wuIZM63cwfFR0a6hvuvuboCeDF7VPAh769iLUK1v0X6Ms7HwQNu6tjvp1B/k/4IOOOPzRu2WN31y/uhk89BXNB+Wffu3sW+vc4D5oPq3YmLXC3lRedjZfc+uoNdD/xQEhUVz2tWEhJS1HFvonw961vOR1hQqEVztSzJuHjc2NDA2bh75w6v6zfVxhLv2+u0n3OhZXa6VpNr8GOV58NZg6xfv5nXyhMfM62wf4eDUM0k8eF3+qzVXbucA0X1trRf751bt3H71i1eo9xfPuT30JoAcZGTnYvgc6GG562tTpb2AC4rr+F8yHtIqGKakO9BOiQ2MobZWda3dihkyffLOBe053vnzU6s6a6DMYUP0hXEhSZbB02WFtu789Yo3pOa9V9MnvUQEyf9P3vn/VbFtfXx9a/c5943xeu9MdaYqBErsWDvsRNFQFQEpElRFBEB6b333rHQLGDviC1G002Puckf8O7vlj3ZjqdxGA5zdH5YDzCcMnPO+sxea+1Viumd0bvpn/+cquvPw88/iPd2bGB2oqHnQxPk+IKPnMxs3dcgyvsjyM2Qc8AfPXjI5yKgFynyFwfLxwL2OYAL5CTVVNXTzBkv/Hy8n3/oXzTR5feXZOxHl2n02DR6e5S+/DfM5cGsBfCxbNkqQ8c1kPDQcCotLKZ9fvt0d27IV8I+uugTLAsYEY+rqqyi+/fu0332uJamFpt9EPH/XT6+nIuayjqqrnx5ThzWELdFe2nuglJasOLBK6xA3p/cQaP+G0r/+r+R3VeKPXac84EeqIZuayPTp83gfNQwHRv7/tDXEHXuqane1Nbq5eSeUrKIXHr1PiJ6AGH2VP/dfrrbd9em+Wzy/2KiYzkXyPeOPvSibtfUzF3I1KnzaeacMHJ1aySX+d+8wsq4qfdo3uIuCo04R/n5NYr/IvL/IVrMlFILav4wGxR8zPvEzdBtDSUqMorzERIUMuTXUtd6iL5W8jFr9XIiTxiPE3myan3CPqHY00b/437Gxd07fdR3547Cj618VFcwNsprqLKsmnZ67VJiZLbEreCPwC95b2I991PM2WLd535VchDBudY5uvv2hXI+8gtKDZ3WWNCjAnw0NzQOOT/HVC2UuheUtXoHsGAtF0Ldi7SPsXHn9h26c+s2Be4LtpmPGS6zqbK8mirKqqiitFKZcwP+7Nn78PSKp3+PieFcmLLFwNEuv7MUGJSj6Xd4vvcK52OTRrUMhrwsSWz9Bx/enjvt9p/N8aFeQ7SqB5J7pmPWFHqy3rp5k0qKSmz2zT9du4FxUUXlJZVUVlyhxCmszbmx9lngmi5f7ue22JQZDbRozR8mbTHExeDn/+MfY+z+7rZs2U43bvVT28lOQ5eHSVYsW8X5KCsptUsfxBphrpZW7ouoFR9y3kd8XALdunGT99NHr0lrPro47u3pw665grFRTqVFZYptZW8+ojwPWJ6BhmuELQY/fv7SqzRz4XOTthjWnrfeWTmo98zMyud8BOwLMXR5GKWqvIJOnzhJrnMGH4eBToiaQVlXhE8qx2S1qpfD/V3c4729fHi/4utMrl29xuc82RLDijpwmHOBHh7obWPJN7dFRPxZXJvwnUTdoKi3xOcFDszZYvBlYIuBJ0t7LhMnfki3+x5wPl63vjx6k9CQUM5H1AH79FXUxsnMCJ9UXRunRb0cdFjk886ft5CuMy6uXbnK507MH/AjTPEhH8vJzKUS5tMWF5TQnl17Fe7s7eEjX7fsQ4m+DOrjQmBfwc+HvQW7y1ZbbOvW7ZyPuvoWQ4eHWdwWLuZ8tLU432eNmC64uMLk8qXLSjzAGh/goii/mArzipQaZORcyXn0IyHYS8HagTXE3J4L1p6cvFrOh7fUn8uQ4ZOGujo6291Fn7jO1/25IoYVHhqs/I1ZEJeZ/XLpwkUK2x9ulQ/kaRblMTZyi6ggp5DvBen1WmGLIU6stsX6+h9xPgzbyjESGR7J+djru9cpzle2g/Jy8uhi70W60HOBcrJyrcauXOfM530D83MKeF89wQdsIPhOok8Jfor9Gj3kKwpbbNWnVZyP9o6zhu46SNauWcf5yM3J0e05Cj8HNpQ8iyY5MZmx0Uu953vYOlhvNoYl/t60fjPnIi8rj3Izcy2+p/AdBDN6qFUNDgnnfCQcTzF010EyfuxEzselC70jfi7wc+V7uPiJeJcp3953jx/1nOvh8V3MiLTGx0bGR+4AGzkZOUrsSrbZ9Cw5zGcCHzt9fA3ddaDUVldzPhATGul1wtpjEMMS9YS+u/cyNs7RuTNnGeNnrfIRFhzGuUA/1qiIv3uIOks9VNeZXs7HggVLDL11oCTExXM+vDy9dX+ucu9R17nzORdnus7Qmc5upeeyuT2Q/UH7KTsti7JSsyhkYG8N+4LOMsu8//5jzoehs46VPbt9OR+REZG6P1esHWKv23XuPD6jsbuzi7o6OmnuwD6nOT4wKykzNZMyUjIoOCBY4c0ZevksXLiU89HRdd7QWQfLsqXLOR9FhYXOxQdbL7o6uqizvZPPaTTFh/x7YlwiZSSn83lJntu9lNdzBvtK8FFWUWvorIMFex/go7amWvfnKueho49mJ+Oi41Q7tZ88TTu9fCzykZ6UTmmJaXw269pVL2YCY1/QGfpdhYRGcD4OHT5q6KyDBXoGPm5cv+YU/oc867adsXGasXHqxCmek2WJD3CRejyFUhKSFT6GmlviaD6Cg8MNnR0BcRY+1HKacYH51ydbTyi5+ub4ABeY05rM7Kw1K1/kjekht8Tgw+BDy/VD3q842XqSTrScoLaWNvLa4W2RD7CRxNhIPHacVg/0g9NCRA6zmD8nz0fR6j2SUzI5Hz67nCPP4XWTyvJyzsfCBW5D1hOImOks6mbF3oY8X0c+PlgfRPwOLtqaW6m1qYU8Pbws++eMi8TYBDp+NJ5WL1/Nj2HPUZ4xa0rUcwzUz8G1YC8T+5hiRq2okbHWg9tWqa5t5HwsXGjsfYyE5OXmasoHfhd5IGIfHHolz2eT548JUc9ENiW50ow1cNHS2EzNDc20Y7unRT7ARUJMHMUfOUarBvrhQH9N9YaQRX2OYoacYFtctzyrUdwLDD4MPszxIXL8wIHIEZFtDrU+qdcXcyK/Brhoqm+ixvpG8thmmY/4ATY4HwPrh1ynYU5MrXG4HsG6I/lYPTDfyhDn4UPogJoPdX8bW/hQ11iZEjkPq4lx0VjXQA219YyPHRb5iIuO5WxgDRH+x1D2B8E91jKZD9m+Aj9azU+LZudt+OcjJ50d7ZyPGS4zB/U8oQdgQM2H4Ab3WjEPR7avxCy/wbyfXGMLaahtoPqaeqqrrqPtA/Xu5vgAF7Cx4IOsWfmCj6Hkl4g6Wkf450b8ynnjV4IRS/65uI8O1T/HXp68nwcu6qpqqbayhra5b7fsnzMukpiPjvju2oH4Lnx9Z5hpYPBhxHftkdqqGqphbFRXVNNnW7dZ5AOxXcR4UxOSaZ20fy7vN+pVdu3253xk5+g/B+h1k/HjJnE+zp/Tf10abCG5zw+4qCqvosqySnLf8iofsoQF76fU48mUlphCQf5BTvUdGflXIyci/8oZ8hNl+fCDKVTFuKgsraCKknJat2a9RT6C/AIpPSmVMpLTKGSg56KzrB+TJn7I+bh45aahsw6W7ds8OB/paWm6P1f4HsKfnuEyiyoYG+WMjbLiMnKZPssiH8EBQZSZkk5ZqRkUGhjiVP4HRNR/iH7chjjI9wsK4XwE+Otv5oFaEI8V+bvoIwwuSotKqaSwhPcnMcWH0jvRw5uyUzMpJz2L21k4BjacpT6qufWUUT84ApKZnsH5WLlC/zNWUK8h6muXLl5OpYyLkoJiKs4v4vM7LfGxYd0GzkZuRg7lDfRnAB/m8tvFXgxicXroz5CYlMb5CAoKM/TWgSL6M0wc6NE5UgIdtNZPB7os9vO2bNpKxYyNIsZGYV7hKzyo/8aeeV5mDuVn5VJBdh6NeW8cPy73KZF/ij0bPbABcXf34HyUlum/Tud1EdTcgY/O9vYRPxfo4WD6lyDfClwU5BZQQU6+VT7Q7wpcFLLHFrHnuHz8ov+Vs8zkhI8u+sMZuusY8fH24XwkJybp9hzV/a/E8YiwSMbFi15vYSHm980EHx8w/QIXxYypErbmLF20TPHRnaWHCerPwceqgf0bQ4ZXUpKSOR8b1m/U/bmqY00JfB7vi35WAaocdFN8QOCnlDKbDH7L1oHZMrDX7O3fLvspg+lPba9EHTrK+YiLTzb0d5gFs6PQnxp8TBg/Sffnq96ryOWzeHMoOyOb1q/baNK2Uh87diSWyopKqby4lA4fPDzkc1LPbhA5Z+r5Blrl8SJ/F3xgfpShw8Mrq1eu4XwUFThfzgJs8RzGBXq9ZaVlkdv8RWb5kGV/8H6qKCmjytJyykzNUI4fOhBh13nIsS31fByF4wE/Sqtr7714jc//WLlyraHHwyjxx+I5H9vct9n9GnJOIuo9RP6qmBUj7rFDrRmEeO/YofgJc2a5ci5EP6tpU6Zb5EMcd9/yGVWVVlB1eSXVVFQN+TOETyTiBoIDW/L4hyIHo45wPo7FJRp6PEyC2c6YrwY+xo+bqAkf0A9RiypmOttSM2iryD70+rUbOBfpyemUlpRm0pYyxQfm6NSUV1FtRTXVVdXQrBmz+XH4H/b0+REzq8VPW+tchiIuLrM5H5jPOcGYczAssmvnbs5HTPSRIb2OzAfWBbE2CB3RSlfgl8u+B/ofpienMTZSKVyKXVnjY+yY8TwXHjnx9dV1tHH9JoU9e/JMTNUI4p4gas/F9ftZiB/YI0UlFZwPf3/n6K3tTPLO2/+m4oIizsciN/tyFUzVDELvha8q5ndqxQdiV3IfnvjYeEpNTKWU4ynk8dkOq76H/D/45w01ddRY26DMgAcblvr8gHvsw6htQ3W9vDyrU10/qeV3uHnzNs5H95leIx9LY9m62Z3PPy/Iy7fr+eZqBk3pvi01g+AIeib8FVOCGKywr95j7w8ukhOSKSk+SdnHsOabC4li799U10DN9Y1UmFdgkg9cI85HzN8U/pPW68BQpO1kB12+eov8/AINvdZw7cjNzOZ8DCXfylzNoJjlKtsU1vxz2O3q/gui34l4DHIIRV4JfAi5l9WUD6fZxIcyJ2fDZmppaKLWxmZqa2ph3E1Q1ghwKq5LLThPSww7WjZtcud8dHSeo1HvGmuIJp8ps7dLC4spKz1TN+cEnYNeyvdpIYiDQS/l+/Z2dw/ea/o4YyMhNsGq76H+P3hCXyD0zTrR0sZ887XKecjvDU5EPEqv32dL62m6eOk67d+v/977ul873hpFacmpnI/lS1fo8hxxDwcLsGtE7wOhq+IxB8IOcC7ij8aTr8/eQfMBQewKPUnRmzQiLEJZE/G+Yoa5M3yn8+a5cT56eq/QNB3PG3UG8fLwprysXL6H7CznDBtL9D/hOjx6DOciLiaOXccxWjnQ580W30N+TEx0DI9tt588RZVlFS/FyZyhX/XLMYIizkdmZp6h50O4LyMeCj5EHZGziBx3/WTufIo7wtiIPkaxh2P5/MTB+ObyPmEHs9s6T7dTV3uHsr8IP8dZchWFTBj/AZ0+3U1nz11ka5+noe+DlLeZXQWbBHz4DMwAcCYJDPBTfsdcm9joWDp66Ci7poM221bqx4GrrtMd1N3RSWc6u2i3zx7lMc62fkA82OcCPlqZPzJ1qouh94OQLRu3Ml82gee7vvP2KKe+lqjwKIo5FENHoo7Q5vVbBv18maPC/EI+t/Bs1xkqYT6ZKR6dSTIzc6m7u4fy84r5TBdD963L7JlzKSYqhvMxVSd1cIMR7JkLewd2YQzjIvpgNEUfOMxzsAazdqgZwd7gue6zfDZ0z9nzNGGc/nOYLQn6NLW2nKKOjjMUEX7Q0H8rMvb9CRQaGMr52LBO//Ud1gTrRfSBaDoceZgORRxS7CB7+fiY2SE9Z89R77nzdOF8j9L/HfXtztDzx5Rgpi/4OHWyk7Zs/szgwIxAdwJ8A+jA/gPkv8ffKa8B+YLynnZESATnAjaWu/Td28sHBL2tL/b00qXeC1RZXmHT8xH7RUxNy5xDLcV9qwfno435IquMHPhX/XHGxt7dfnSQ+a+h+0J1529Cv7AfaG3fTY61Tp86g6Iiovg1gfnZM+baxYaaET9ff7p04SJdvniJrly6TNMHatLVfX4hiDXjvLFHopeeDeYknNlX4KO5qY0WLlhscCHJjm2e3EYPDdxPY8dM0OU5ghGxD4if6v042Djy2gH7ULARGRppt22l5gOxUXBx9fIVunblKkVGHHiJT2vnqWcJ2x/J+SgvraKPJk812IA/u2Ubj3+Cj3Hv65MNtWAdwX0ZIu7Lcs8E/C64gKD2w17bytTzEMe6fvUa3bh2nXqYLyKOi7wXe/NL8HyRAyDXi8m97eXjWgvqp9PTsqihrplqq+tp+TL99zcbNpvqrVG0y2sXz7sAH3Nnf6LJ65rLR5fz1mU9MDWPbDBrCp4rcjwUu8Z1AecCjBxkdsPHA/F9e9lQM7J501a6ef063bpxg27fvMnzm7X47PD5iOsQ9WL4HZ+VWIfgx2g5J8QUI8eOxnM+qipqaNkSfeYVDacgryqCraXI9wYfrnPmafbaMh+wL0RuLvKh8D3jmJzXChtdzum1V+TcXf89Ady2gm8eJNUDacUHpLenh+7cukV9t28ze6RMOY6cYXvnS4k8ZNF/Dp8Tjsufj7o+ZrgkMCCY81FeUkGeHt5vDBvo6YT1AnWmsUeOaR7DV/Mh8gTl71VdQzcUPmDzy/o4edJHPF6FmO4RZjMuX7pSEzbEa4jXiTp4iLFxh+729VH/3bu897U4H3vzTeTeJmBDMD8SfEB2eu/mfJQUlvL7KWodXmc2lixayrlADw+sG1r2B8V3Kewd2V4SM/ccxce2Ldu5L4U9nNjDR3lsTis+5NeZNGEy9ffdpXt3++n+vXuUnJT80hoiev7as37IPpb4fIR9JdZfR+nM0sUrOB8FuYWUmpim2Kqvk7zLuN+7x4/3OkPvQMQ9YWNp+R743kTthcyHmOst6krVdraYfawFG/8ZPYbnkRxlXCAfcSh7HrbYWEmJyfTg3n16eP8BPXrwkPcQEudlDx9q/1zkIDvKPzdrc7A1+XhcIuVm5vEeMOiT9/Zbzp13JGTmjNmUkZrJ+/qDj+0DtdfDIfg+TfnbYma4rf65rTFRdS915I3BdkQue0JsvGI7asWGmhG3hYsZFw/o84cP6fGjzykt9e++KHLfeEuxBT3VF1r0Wdk91sdrF+cjPSmN+XZRNNNltvOuGe+M5vlCddW1fJ4Yegci19sZzh3xKGuzwBHDldcO1HnEYRbz0XheJ+jvG6D52mHq9Wqra+jx55/Tk8eP6ekXX7B77Qsm4IOY40Pu+4WfzrRHgrx++HWoVz5+NIF8fXyVemVnkFHvjiZvz51UXVlNjfWNnI8Av31O41sJe0usLeb2ntVrx6oVa3hOJZ+pmZCs5FZqzYaaEfRzecK4ePrkCX359CllZmSaPUf4aOraej31b7BVYFutWbmW84H58ElxxynQL1CpidEnF//hNQlNDU28BrS1qZXSUtJo1ow5Tvf5i7pV2eaGLSLus+p7M74v+BzJCUnMh0yhQGmW5nDzAWmob6CvvvySvv7qK/rm66/ZuX30kh9i7XqcVbBmf8Z8PPCRlpjKZ22Fh4TREjf9zNdCvkNYaDidOnGSznR1U8fpDuZrlNLq1yDPzNT9FraJmg8PdiwFc2YxSzMl3WrvUK0ZWbxoKefi22++oe++/ZZysnNeiVtYWw+dmhPGuec2T84HZglhHgTmCqG2biTyVNDfa8tmdyoqKOK5QBd7L9D5s+eppqqG1q359LWLv0HH5F4lYEbce9HbCn3fUOuI/tGhQaHDvnaYev3m5mb6/rtv6dn339MPz57RnNmuCuOiX4Se+5poIe/9dyxt/HQTJcUnUnlRKVWXVVI9ux9gFlEYW1dwHxmuOqyZzE7as3svVVZU8j2p2zdv8fwf8JGcmEzLdNpfRMt7FGwSEUMWx313+VIG4yIrLZP3Z/94motD2FAzMnvWXHr2jLHxwzP68ccf6CRbz+X4nT3xXqde+10X0D7m95YVlfC+eieaW3lvi+6OLuYT1/HYuL9fAC2Y50YLFyyy+XU/nDyF67oX87EPHoiipqZm+pLZtl8wH/DRw0d8Lwp8NNTVk7fXTm5fvSmfOWJWcs/eaVOncy6yM7IoNyuHwkOt99UdzjUkLzePfvrpR/r555/ol19+pk0b/67nRS/5N4kPWdyY/vv7+lNedi7nA/WXsHmQA33z+g2eh/CA6fXjR4+o704fNTOdb2tto1OMp472Drp27Sr9+ef/6I/nz+m3336lX37+md+Dvv/+O2ZXfMP5uHP7NhXkF9Judr+cNNGxPbjF3rgcYxK9lOXHiWPquX9aCXqmy7kbUZFRlMvsXHzuBbn5yvxMR7GhZmTyB1Po6dMn9Ouvv/Dvsb+/n+9Zisfh3J2xl4PWgn2GHR6efN5dcWExdTIGBB9fPnnK/TjYqODg+fPfORsyH+DmRNsJvn6s/3SjMod4pETeixB7e3KuEI7D5pHnImldK6fOaVq1YjXvPQTbtiivQKl1HUk+INGHj9Dvv/3Gv9c//nhOaWnpyv/QC8iWnu9i5sGbyA50fcniZbR0yXJuRy1ftpJWLNd3nr3Mh5gTK/4ncqfUc29syaEbTOxftk+wl5Oeks57RSMnICczW9nfcTQbphi5x+6F/2P3CHHfc5077yXOLTGCtRcxrsGswaL3u/rYSOakvEliai9b1ALhu1TzYWuOqYjfWtoHMDUrNiggiIqYrYkeO2XFJey+vFzR0ZHkQ7w37nfg4q+//uRy7epV5XHw083xIfrSD3ZfBI+XZxlCHFkz8qaKmJUn84HPHHqN4yJPwl4+xOvBNjNnT0CX5Fmx/9/emf5HVV5x/PwnfdfNtrYKqCBqAUE2F0SUJWQlCVtBqlHZkpB9X8i+78skIftO9oQQFkFaKlqr9IWt9mNL61/Q5/cMZ3jm5s7MvWEmJJn74nyAYTKZe+/zfc76nAPbta6qhupr6qixroES4xOfmF3lTocUFhY59MePP/6PUpJTna5Je1ZdnaW10Gel3vMnVRPvT8K5LZ5txPea/839y3m/wr+5Lpv1ipnnq53zoa2Dtc9aKJOzZJvqG8nW2Ey/++2qJcGGlhH45ffu3ZNswNaCL7Jl81bHdXHtGPYZ9azHQkWrQyw+Fo8Rdc4R73V8LlB7HlR7tseM8HwZtgu0NbBylmx9g+CiiVqabBQeFrFkdIeenbV79x7JBeIu8Ne18Szt9XpD36v27pM6M2KJ78TVfnpgX4Dsm97S1ExtthZKVeyVpcKG3vfJzy+g/z54QA8e/EfGJtvaLjn5X95gQjsDxfLP/cP34b8jZwp/vLW5hS614Ex0vZyn+6R9cqN21lWhU8EG8iL//uEHOnbsUc9vvb5ZlviXmLEfEKtS/fFf/PwpyhWs4JxFO2ZkXmqXuY+lqjv07Cz4HffvfyNz6sh5Ib/O9VkLsXeXY028JfoCexh5Q6OMaOO5H0d9Irhok/U0XR0ddPb02SXPht73g84AF6g/+df339PtW7eFbnkU5zVSf8LnMyH+mj9cab4E13YbYQRrRPXHMWu8Q9jrXe0d1N3ZRcWFRfJc5HJgQ4+RiopKWTf0/XffyfqJyYlJp/e6m0WlsmE2NmiJuTXL9X1cx6AKr2H4jno1VmYFn+OJEb0c4KaNm6kTXHR0Um8X+vm1iO/90pL2OYwwMjU5Sf8UbKAO/h/ffkulJY/OimBv0OsN5As21J7Z+JOfC9YG96BRX/cnv1ftIcPnKdR59bgvPHeZ//QlI1qfY93al2Rv9J6uLurr6aGB3j7a+96+ZWNXufNFfiV0xJdffEHfCjZwlgq1eNq8j+qv+0pvIEbIvWb473gdzwfxe7zOM+v9lQ+sU9x3bexPmy/3Vn9DPUawFtR6C9hP1ZVV1NfdQ/29vTTY30/HlXjPcmNDjxGcFbn3+eeyNhvnDnEuN1Kpr2Qd4kubSn3Gav7Q3/OK2v5tYAN7h6onvNm/zRMjKh9gAz5Gf4/goq+fhgYGKDY6dtmzoff9D0celVz8HXL/vuztEBlx2Glt+tLf4DOZXIfNMTF/5QPXz31dmQ+2Nfk9fAbUV3xoGVHvPdgoKSqmgb4+yQVmxVZVVDjOYy43n8MII9AZ4OIbyNdfyz4o6Ieixv4WwoYRn1Htgcx7pD/zwesSDOjZV1xXhfexXYrXeJ9xx91Cvgv/Ln4t+ly0tKWGBwdpZHhY2FiVK44NPUaiz8dKLv72FeQrun3rluzp58o38yTq7PeF+B/c65LrHdWzDP7ACK5ZvX9q3RRzw4xoa6z0BP+n9S/dCewp7VnsmPMx8mzy5aEhGr18Wfrkq55dsyLZ0GOkIL9Q9pj765dfyjPUn9686WCEY3uwQT2dreJ5VVb8amkJnomnWiI8Z4g2xg//grkYGxmRPjnOla8Un8OIvw7Jz8uXca0v7t0Tvvs9eWYkLDTcaV9xV4fC5wSs9bg0Bc/G3V6jtRPQ5/FCTKy0pcDFxNio9D3U/uArlQ1XjFzMzZP9rtGD4y9379LdP98VjDjPlMU91NMjuP+L2VeLfRNtvbY36rgf10bS06HqHs79+rR2ky8Fz8aVL6mdfQy/Ar732MhlGh8dpclxzBfud/Tm8Qc2XDGCvjeYmYDZCehT86c7dyg0JMxpn4H+VW1U9hUX83u7muXDPfzwOtbDYus0VzEFNebE9f58hgl++UI5NrMn8b1y9yzBBnxvOxdjNDUxIXzyAb9kwxUjOeIeos/Nnc/u0J3bn8leZ5kZWfP0iN49N+rDe2PP5PoKtd+A2fgXn0fV+1z1dbVnjjs7xQgf2hyHp17orr43+FfPMRsRdS/T9uOBX9FqswlbClyM08zUpPQ9/JkNV4z84fgJ+uz2bVnHeOvTW7JPVGFBkeydqX1GZvc7jq8/Th0w6wY+k7VQPrTv0euDw7FXdU6f3prkein18/h93uYDgu+C6zUb49PzRdDDA773pOBienKSrkxPUVNDA61e9Zzfs+GKkZDgUMkF+mRiXu4NIS22lnk9AbVn9D2ta23uaaH2lTfy79r36PXB0a5nvV6tnJ/Q9qLgGLUv+FBzuEbsM47dgg2Vj/BDEdLHmJ6coBnBxezMDDU3NYq98NcWGz9xH/vdvm2nuHcTctY6+g2in+zYyKjsC6XGBjkG7K6Pqdnn6clOUGv0eL2pfdGwz3uK/bvjg//P6Hrmehyt/uB9XuVZq48eJy7lab/huC2ekWpPwddIiE+QPgZsqdmZabo6e4VSU1IcbKzU/IY3GXnl5Q1ka7bR3OycPIt49cqs7M+JmXlaPYI9ip+H3p7vzXoVrvE24j/o/SzY8SYf/Lna38t2l6seoI+T48Hn8J7jKk+IXhza2Dx8jbraWpoWXFwBF1dmxN43SzHRMS7tCUtcM4L9BPFfcHFlekbsNzNCH09TaXEprdLMINbLlfDeasafxM/4KmbM+7ragxOi1wcHHKnxJugrX8aytXVXRnQpz99QX4eu0MZuIRHhkbKGCj7GrOBiTnAxPjZKQYHBFhuP6ZNAZ8xMTQs2poRenpS2V39vv+zHqf1Z9DPdsW2Ho/eP3qxHT7aDL6+Nc5qqf6uXP3kS+QozPjfPoOX7Cxs3MCBg3vtgT+VkZYvnNyVtqblZ9Oi+KmNWsBEsNrzDyNbXttNA3wBNjE3Q+Og4jY+Myb7o6akZuvM1XO1vnvwCfz7nDk7NXL9WP2vPgaKXMPIY7GNcm5sVPuUcFRYUOMUkLS68wwg4KCookr76qGBjZHhEzg7rau+Uc2i0z47tFr3ziY+7f3JN5FKv1eK8oNFeR0b9NPb1WL+ptp/UGdk5wpZ65GNcF1wgjhscFGLpDB9zcig0nLo7uujy4DANDwzRUP+gnD+Zm50rWFjtZAPY3x/q9Exd2d9m6hzZP13qc+NwTWbyFeDeyDXBlsK+o90fcJ5neGjQ7mM8tKVuXr9Gba2ttGb18xYbi8TIs8+sobycPBoUbMDugj/S19NHvd29dCTyqKOnhSofR9ljX3r9ILjvslE7hM+7GbXbfGEL+eK7Yr27Ywl7jV48HfZvQ329w8e4Jri4cX2OPr15nT6K+shlDMYS38W3IJhJ2SZsgj7BRW9XD/V0dgvd0k3NDc20R+kZpsqpEyfmcWLGtjK7J5t5n7avrbv4kVldZ9QW1OunDy707NTVzz5HSYlJ9ngtuLhq9zFu3rhOtTU1ls5YErpkNSXGJ0kuutq7qFP4Ix2XOqijrZ3KS8ppx/bX3XICG91ML1LOvRn9GaNrmXM1RvQNvrPRfCd/rlHfW41ToP+UHhfwMc6dOSfjtVcfxmuvXxO21I1rMieOOgh3z8ySxWUEsmnjFqosq5RcoO8kZmK22dqotbmVkhNTaPvWnW7XL+wGT7Pg1NyYkf0Ya9joujTDh5k+VBzLM+J7Mwuu3gsuTr3/x3k+xg3hY8CWiou9MC82ZXGxtDg5eCCI6qrrJBctTS1ka7SRTdhbzfVNcgaXXt4EwrPgkPt1N8/HTC2XmXVshg9wavQMK9fYuIt1c25VL7cHQT42MSFRngWf52M8tKV+/8pGi4tlwgn88/DQCKquqJY98JsEG411jdRQ20D1NfWUl51HwYGhjhl1qoAP7KP4k2eWsHCto1GbCe8zaveb4cOM3QbhXKlqk2EPQC7VXa3n1i3bJBczmpoQu49xTXKxY/tOy5ZaRow4cSLWf1jIIaoorZBcQK/UVtVSTWUN1Qh2qsur6OTx9wUHG3RtDa7v4vXDOWOjtr+ZNWyWDzMxBa4phM7B9YAL2JJa/tmGCth/kC61tjnqzp18DGFL1VZXW1ysIJsLeiIkKJRKC0seclFNVWVVVFlaSRUlFVReXE7pKRm05+136enfPOMyFsR907C2YI95cw37Qn9wrzVwwT2/XNVy7nrrbYqPi59Xd676GDUWFyuekzdf30VZ6VkOLsqKygQ3pVRSUELF+cVUlFdEsediafdb79DTLmwjlY/os6elb49/s+/C68+XfLAPzeud7SX+TtB/+E7u6v8xVzpOsIP+OfYzfM5151wTkp6WJj7b4sJf7C7Ille30oenoqROKSkoFmwUCTYKqfBiARXkFlB+Tr70U86dPk9BAcH04tqX3P4e9ltUe4z3eI6T4v+YIfaJmTOVDz6nzecn1PfzXAj+bDABv1r1I1zV1CCvum/vftknBL2e7X1C7GdbZd25UhMCZqI+jHLKYVhc+B8nsKfe2bWHkhOSnbi4mHWRcjNzKScjh7LTsykrLYuS4pLoaOQxemPnW7TuhfWGf7fal4DnXTMXHDNS+eB8HNY+20jMB/9pJN+P3BD6U0Z9EEXlpWWOXoRqnxD2MbjuPDUllfbsfteQPrbEf2wvyJpVz1PwwRCKj4l34iIzNZMyhH+SnpxOaUlplJqYSikJKZQcn0wfnPyA9u7ZL9by6/TCc+s85lB8JevWrqedO96gw5FH5Azw2uoaR79zcME91xx9QuBjPKw7z8u9SEEHg5zOt7rbUyzxb50CQe3Ee+/spU8+PE0ZyYKNJMFGomAjQbARL9iIS6akC0mUGJtICTEJFB8dT3Hn4+jCuQt0JuoMHT50hMKCDtGuN3fTTsHO2udflDpHe7bLiMBvQn5hwyubaPvWHbJGMzwsnFKSUigv56KcqdT5cKZSb3e37Hfu6Ovs4GLE4WMMDQ5Qbk4OBeowYekKS8yy8rOf/pJe27yNQgJD6cxHZ1xyEXs2Vgr+jtcTYhOkTQae0oTOgf6BLspOz6JcoZ9gw+Xn5EmfB/5PifCFyopLqaKknKrKKqm6oopqq2qovqaOGmvrqam+kWyNzdTabJNzW9vb7PMpeaaSnB0DLvrR73zQqRcheqGfOnlK1hKavX5LLDGzVuAPvLx+g9QvR8KPOnEBVsANGIL9BVsMuidT2Gew1XIkF7mSC/g7iAkgPlBWVErlJWVUWVYh8zK1ldVUV11LDZKLBsEFZn3bqM3WKudTdsr5lJ32mUrd9plKbEth1lJGWrrUMeijs9DrtMQSM6y4W0eYkwX/421hTwUHhNCJoyfp/Onz0m/JSssUXGRLfx++f0FuvuSiWHCB+Fl5seCitIKqyivlXG/JBXRGXYPM/7c0NQsuWmTOjudT9ghbKjszS55fPXbkOO17b7+cG+yNa7HEEl/zorXP1q97WQr8+AP7AmSO+uCBQAo8ECTjx8EHhQSGEPKYocFhMu/PfkbEoQjatOFVOaPy1Y2bffpdLbHE18ws9lp80r/fEku8tW69KdY9tsQSSyyxxJKlJf8HUEsBAhcLFAACAAgA2og+W0qGa7P8PwAAAHECAAQACQAAAAAAAAAAAACAAAAAAGRhdGFVVAUAByUO3GhQSwUGAAAAAAEAAQA7AAAAL0AAAAAA</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #7</Name>
|
|
<Index>7</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPlsM0I4Y1T8AAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J33W5TH2se/f8l7zvWe6z0nlphmYmKLSYydqMSCit1YjhpAEQuoCCgiSpHem3RYdqlL71XBgqjYY4stMSbn9/POPTDr7AMoC7u4C88P98Wy9Xlm5jN3mfue+fvf/oG/q/Le5G//87+DFrW9VBkL494Wvl8VVSw1TtVrUkXlYXDjbuHCxVzc9rvDzc0d4RExSExKY5KKouIytJ6/iNa2i2hp7UBzSzuXpuYLaGw6j8bGNjQ0tqK+gUl9C6Ki4pnEITIyDocOHoGT016sWbMec+cuxOTPpph07WpfqmIJJgZ6zzfffI9Nm7bCy/skUs5lop6N7Y5LXWi/eBUXOjqZXMH5diYXLqPtwiXGxaU3XLQquGgiLtoMXNTVN6O2jkltE2pqGlFd04Dq6npUVdWjsrIOFRW1TGpQXl6NuLgk+Pmdwa6dzpjz/XyM++BDlRdVRpSHCeMnYaWDI3x8/HAuLRuXrlzncvHyNXRc7jJw0c656JS4YCK4aOsw6Azioqn5PGeDuGggLhqICyaCi9pGxgZx0WDgorJScFGDsrJqlJVWoVRfCb2+AvqScpQUl6O4qAwpyWk4cdwPG9dvwfSpX6usqDIsLvp7zc5uKQ4eOgJdfgkuX+3G5c4buNT5hgvOhuBC6Aziot2Yi4LCUsQnpCAuniQZe/fu57JnD4kbFxcXkn1wcd4HZ2dXLj5ML0Uw2yw8nElYNNcZxEU5cVHGuCit7GGjpMLARXFRKYoK9SgsKEEBu+4CXTHytUXIYEx7e53AimWr8Oknn6usqDIkXeHgsBZBweFoZuP6Slc3rhi4uNGHiw6Ji6TkdPifDsI+t0NYvnwVFiz4gescS1z/jOmzmB21AJuZbbdrpxOCg8KYvkhnXJQyLhgbggtdEXTaQujyCqDV5CMvNx+aHB1ys7U4yz6z1nEDPvl4ssqKKm/VFYKJFsZEZ9dNxsXNHi6u3uhhg7gQthTjIpeNt2Nevti48SfMmjXbau5v3AcT8f3sedixfRfTPb5cZ2g1BT1c5OoYG1rGRh5ysjTIzsxFdkYustJzEHgmGGtWr+vDisrJ2NUVU76YiuMn/FHJ7PvOa7cUXHQbuCDRMPuEfPBFC5fY3P2TLbV8mQOOHfVBSlIacjI1PVxk5CAzPZsxlIWM1Eykn8tAWko63A8ehv2SZSbZoaqMHi4cVq1FLPMBrl6/3cMFkz5cMImKTuCxKUvZSO9Lpn41A7t3OSMyLKqXi0zGRQZSmX2Wynz6c0mpSEk8h2jm92xctwkff/SZyskY4GLLlh2oqmnkXFzt5cJIZxATMcTEtlHHxEBC9tRmZiOGMttScJGckIJkNn8kxSUjMTYJCTGJcGI8kb5VORldXEyY8BHc3T3ReuHygFxomS+7afPYYWIg+WrKNLg47UVUeDQS4xgXsYmMjQTER8cjLioOsZGx8GC219czvlE5sXG/m3PhIXEhbKleLppbOxAYFMbX99T2M5YP/jUBS36wxwnm3wsuYiNiERMeg+iwaEQxu+yQ2yHMnD5L5cQG41FkR7VJXMg6o6Kqnq9njHVdMVghXbHPxQ3R4T1cRIZGIjIkAhFnwxEeHIYDrgfw0YefqJzYABd2dvaoqm1C1wBcbGY2lNp2Q5OPJn2Kndt3GbgICwpFWGAoQgNCEBJwFttY2/7rn+NVRqyQDfIbM7I0KhcjwQnTFTu2/huhgT1cnD0TjODTQQj2D4Qfs8eW2C1VdYkV6QzyMbpu3DH2Ma4x/6Ktg3GxXW03C8kkxgnpDOIi6FQAAv3OIODkaZzx9cdBZnNNnzpTZeQ9siFsKaWPQTkhqn8xckIc7P15D2eDi99pBDJegvwDsMFxg2pzjRAb4jHFpU74nu7XloqJTcIXihi9KiMj8+cswElmX5EuCT4dyOyuIGZ/BePEMR/MmPa1ysgI6Ixvv52DgqKyXp1h7GPYKexer2Pe3AZQ29Fy4rrXDdOlsU+6gnRGCPNJQplvEhYUwnz5UObTh8Fx1doB5zxVhs+Gk7OrwsfoyQnxOX6qjy1VWlqG//73v4iLS1Db0oL+x+vXr3k7O6xcbfQa6QtfrxOICA5DZEg4okIjEB0WCR9Pb3w86VNVl5jZnhK5Usq4lN0iY52xa8cO/pf6i/qNRJ7fVDGfZGfn8vZtbm7h/69auRKffTrZSJds2bAF0aGRiAmLQmxENOIiY7g+mTdnvsqImewpni+lyAmhdW9ZZ6xfu7bPd1G/yf2nivlkwfxFhvlH6I4P2Tz2z/8bhzmz5/DH4r20vniG+e1xkbGIj45DQkw8kmITsGPrDpWRYbCxZct2XqutzAlxcHA0vEfMV1992dcnJ72h7ENVzCNi7iEdonxN8CH3CeWr7Hfdj8ReNpLjE5GSkAxvZm/Ra6pPYhobVJOhzDunHEJlbGrRgkVv/d6gwGDejw8fPlLb2Yw+ObUp+R5vs1370+mrVqxGSnwSzjE2UpNSkJZ8DuHMd5/65XSVkUGwMWH8R7yGT5lfGxgUamRPkZ/Rn854mw9JrKjtPXyfnOYaU9pzj5OT0f+UIxwXFYv05FRkpKQhMzUdSXGJ+E7KE1UZ6Z8NXaG+Tw3f7p/39NEJQ53v1DYfnsj62NTYuWzjkk0V6B+ArNQMZKdlIicjC7mZ2Vj+4wrVJ+kvRsV0g65Ab8RFU0s7Vq5842sIfUG+oalxW7KT6XPqGB+ebP1pO2eD/pryOeov4oP8RfLh6blxvT5JTkY2YyMHmqxc5OVosGKZw5hnxChGxfQqxWrl2tbG5gt96jIofijrBBJ1zL4fG8tUpmitVvShHAMmcd7tjLxsDbQ5edDlapGfp4PHQY8xy4h8r8QAxaREbStJnq7IyNeQuVDOSUPRCSL2IuyE0b4+Iq8FyfE8um/hS8hxcGFDCZvUVF0hC/1GfzEusU4lhHRGvkaLAsZGoTYfRboCHHE/MuYY6Y8NeZ+QPO0bNkQ8/W3zGLW9KfMZ8dTVdc3wP62zj3a/XcS5le1Ec7qwU4XfTdwQE+K99J6hrh/Rd1D79tc/ZCtT38q6ZOXyVZyL4vxClBQUQV9YDM/DnmOGEfn+iA3yL+S9CDVaY71BbSivMw003k3xRaj/5f4mNsZCXIvaiMY93bu4X+W902tC1wzUXqb+5tv0O7GhtA0cVqzmXJQWlaCsWI/yklIcO3ps1Me1jONUk1BeWWe0F6FGW2hgo792G6x9q/LR/zwuYkfCpqJxa0k+TPEPaT2RxGBPO6xBGeOiXF+GitJyVJZVwIn5KKOVESUbebpio70INXlv2KC+HErO7WA/Q/0t21dknw2WrdFiX9H9UzsQG7J9Rc+LvBHxXhrjZCOZ2hemzDlkI5DIfuCaVY6ci6rySlRXVKGmshpr16wbdYz0ZaPIaL/zXAUb1EcklsxLH2v+ubB1lH74SPjnpugb+j1Z5ziuXsu4qEJtVQ3qqmtRX1OHdY7rRxUj8j0EBIYY7eucqykw8jdo7hJr3ZZmRBXrEcFGf/lcpDPqa2rRUFuHxrp6lDNd9vXMb0cFI/K10761hv3OL11FXUOrERvHvTxVRlQ2+HM/bd5sFNfavnUHmuob0NzQiJbGJlRVVOLzyV/adExLvuaNm7b2ctFzRgad/SL2O6d2UK4XqYyoekMZ+z3p64eWpma0MhuwraUV2ZnZhvnV1vgwiuMyDui8sZ6zY3rOVKIz+cR7KYbbX56hysjYZUPMm8oYZmJ8As63tuFC23m0n7+AyPBIm7SzZH9cX1pldKbSzp1v4nTviuHKjKg1TmOHDVnkWqsJ4z9EblYOOi6042J7By51XMTuXU42xYh8jRGRsUbnU/r7B/WZI971fcSIiNfLz1N8Us4HpTYX8Xy1Fso2+HgXG2KMyDkU38z6Do3MF7l88SKuXLqEzstXYLdosU34IvK17dzlbHQ+ZVa21mAv/rjUflC1G28TeW2L4o9kg4l4vlpzbv1iyhxG+kPO11q5YhXj4jKuXrmCrs5OtLW2Wr0vIrNLvrd8PmV1TSM+//wr/pq5/AiZj4HWgdVxaBmR80bE+joJrSOK52nO6u95c8lxnxPounoV17q6cP3aNSRIOUbWyIjsc2Tn6N6c23r+Ij+nUp43TM0pVPmwLpHbV+RzifV4sdYuakREf5u6Bj9Qn8t2QVFBIW5cu47uGzdws7sbe1z2WiUj8rV4eh5nbFzi+yrQmcZ+pwKM9KTwKYZaryRYUPmwDj5kX1DoDHrOXDmOwuag8aLsU9qTvKO9Hbe6b+L2rVu4zPyRL6dMtSo+ZLuKzjIWZ323tHWgoFA/YM4h3TPpaVNrnEQOCsW1BBP0HbL/Iednq2I+EW0q8yF0A7U9PTY3HzSH0vcLvUH7cZD/Kl4nnXGHsXH39h3cu3MX2jytVekQ+RoKi8r42cgtrR1obmln92bHn39bnjqNbVNrZUX+mxq/Gnm9QX2ltK/EY5kDc/Ah16coRY7vpCSn4N7du7h/7x4e3L+Pfa5uVsGI/NuurgcNXJAcPuJleE25X9i75ghVrFd/kJ6W9xOj+Yh8DRr/9FfodPqf3kt/SZ+bkiMt7KmB8iJpLMl7B01k/5Ov/uCXX/DwwQPcuH6dP2ctfFAuTHMvG03NF6DLL8b4cW9iuYNtE3X/BNtghNiQ7VfqN3puoDUqU/pV1OMO5jOzZs4yrI3sc92PRw8f4vGjR3jy+DEyMzLfqw6RfzMuPplz0dR8Ho1N5zG/164yhY+xJIuYn0ZrWh6HPHDE4wg8jx7rsSVi41CqL0VYaBhO+fnDz+8UTp70w+7dTvjRfjmzKaaPKT/nXUJ2ibx2WFhYiF+fPMHTX3/Fs6dPYW+/7L3wIfvky5Y5cDaIi8bGNgQHhxl0oMrGPzD3+/m89i3oTBDytTqeP0S5EbTue+PaNdy+eRP3797jcx/168sXL/DHH6/w119/cnn9xx/4/fff+PPPnj3FkyePkZ9fgNP+Z7Bt644+55GPNZHz976fPY9z8fzZM7x4/hxNjY3vRYfIv6XTFTM22tDA2Cgtq8Lk3rxjZf7lWJFxH0zAih9X4riXD99joJzpA6p/o9qe5sYmzkdpiR5pqWkICT5rpD/2ux3AhvUbea6qrD/Ky8q5XhF8PGQs3Wd+6J07d3Cz+yZqqmv4ehnlXoxFPuRxdjY4BC9ePMfLly/w228vue5VzukjpTu2b9/FuWhoaEV9QwtcXPYZ3tdfvHo0y9LF9jh80IPvBZjH7p32qSE+0s+lwZuN/W3M11wwb5EZxsM0rHVcz5nS5Go4H7R+fLWzE5cvXoK+uASeR44xn3DKmLHFKCYg1gk+nPgxmzvucZ376tXvbC55wJ8bKR0ifmP8uA+ZvqjmXFA9h15fyZ8TcTmRnzma41J0vsXa1ev42Ui05zLtJ0t8hAaFYMO6jey+Z1r8GiZOmMT3M6Ax0tjQyHNbqT6CdFV0ZAzsly4btWwQE6I+WF7zcmd+Hdmor1//gT//fM118UjoEPn7XVzcUM+4qKtrRm1dExwdN/SJz8k1zNR/o2XNbhKbj7Zt2cbPAKdzXxKi43A2IBibN2zBJx+/X5tyxXIHhIWEcT7qa+tRU1WNTMYsMTRauBDrKfIeAspY8PXr17n/9p///IVff30yIjpE1h2kL2qJjdom5OToDO+h2kg5j0R5H7a8JyjpC4dlq/gZrXT2JPHhsd8di+2WWN21kn3lcegwigqLUFFWgdJiPaIiojD7u7k22/4i9qucd+WxJx47OblwNkiIE/LlLOmrG+kO532ci5qaRlTXNMBxzZs9JfpbBxR7Gov7ssUzASkme9rXH0GnAjkf+1xcjc5ktVahueznXU583+ei/CLomF/kddTrves5U4VsdlErJ2pHlPaIsmaiu/sGZ4NsrMePH1lUh8i6o7i4vIeN6gZkZ+UZ3qM850EpxDrdoy2tA9JZku4HPJiPEY6QgLPwOnwM3/bWzttWXG0iDrsf4Xxo2NhKYv4S7TFlK9cv9hx6V+4prauLeJbTz86cDfJDSCgWaCk/RHyf45oNnIuq6npUVdVhzeo3uuNte+XKvomt9Mm8OQsQFhyO6PBozsfqFauNzrq3RZk2dQZCgkKQlZ6FtJQ0rkvk880sNbaFHUT9L9vc9JieIxtD1g/K/eXoPYOxzZVrCtevX+O+OsmDBw8sYmPJ35Wdnce4qEdlZR0yM9/URx5wcx3Sd4t8NyHC9rJ0fc27ZI+zKxLjkhAXFQ9vTx980VvfNVrkp81bOR90BmBESAQ/Q3Mk+FDuXyn2cqQ+Fj622MNxqL8nn6Hw824nvHr1isd6KeYr6tUtwcfSpcs5F5WVtaioqGG/7WKS7uhPqF3EWomcq2OJ+ppB2SFsLj3DfIxzSamcj61bto8qLozs9SnTcJbZjAkxCYiJiIGdtK+MpfgQezaK/hb7VyrtpuHwodz3n/IWiQ1aL+zs7DSrDpG/IzwsmnFRi/LyGuh0RYb1jqHqDqEnSK+KfXCF/WXO+prBytSvZiApIQXp5zIQExXH7avRyoaQnnNlD3A+SI9s/2mH2b6b5jqxfifbV6JWh0TYV+bkg4Rym4QO8T1xEr+9fMnX1F+8eMFz2czNx+TPpqCCcVFeXo2ysip4HvV5a8zKFBE5oUKXvA8+pk2diXPJacjKyEF4SOSYyQUUsnbNes5HSGAIs722meU7yV+guU8+Y2Ug+4r6V9hXpE+Ge1akvO8Jxa0of43yTp4/f4Z4M9aqi8/vd3NnXDA2SqtQqq/EjOmzDHME+QxDXSNXtp0l6jMHw0Z6aiZymW8VxOyNcRb2V61VKIZNfAT6B/K1TnMxIvvbQ/XPhyKyPkqIT+B5i5TD9vTpU0ycOPz6EPmz6WlZbCxXQq+vQEy08foFsSFqW03d61u0iznra0wRuvasjFxoNQUICQ7jcdCxyIaQhfPtOB/+vv7YsG6TzV0/sUZjhewQOd5FeTaU20s50rSeTrmg5uJjyeIfuc7Ql1SgpLgcqxx64uaUf081Ksr5QulLDGaMmqu+xhQhHZibo0VBfjHCQiPHPBtC5s9dyPnw9fbFOmnt15pF2DE09oQtQ/aVPD4vdnTw+hCqn6qpqRmWjSV/5ugRL5SUlDM2ylBcVGoYR2TjDeR7iFwAa80nodhCXl4Bu58yRIbHqGwohGITxIf3EW8ssbPOOh6xJiLGmXI+Jj7kc6m8vXw4G1RjSPU2X06ZZhY+cnN0fBwVFZbixPFTBjaUusOWJD4+hevElOR0lY0BZM7seZwPr8NemDt7vtVdHzHxrhoKmr9F3gnVBjx69JCzQXXqZ04HDJuPxT/Ycy6KCvUoLCjBD3ZLbZ4Pby9fvn5D+kPdE+Idca3V6zgfXsyG+Pwz26spITZoTyDxf1VVFR48+IWvibS2tAzJxpLfe9jDk3GhZzZ6Cfdj+9NbtiT29it4fgzxQX6VysC7xXmXC/x8/HBov7tN5tfI64W0988v9+/zvYBIZn83Z1h8ZGVquP+aryuCD7NHBR/y/iq2IlT7W6Kv4Hwc2O+hjv1BCvU36Y+g04HYtH6zzV2/vB86+RzEBe2XdffOHezd4zpkPqjenbjI11JedCFW9O6jO9z1wPclMTGJvGYlKSlNHfcmyjdff8f5iAgJt2iuliUZF4+bm5o4G3du3+Z1/abaWOJ9e1z2cS60zE7XavINfqzyfDhbkHXrNvFaeeJjpg32rzUI1UwSHwGnztjctcs5UFRvS/v13r55C7du3uQ1yoPlQ34PrQkQF3m5+Qg9G2543tbqZGkP4IrKOs6HvIeEKqYJ+R6kQ+Kj45idZXtrh0IW/7CUc0F7vnff6Mbq3joYU/ggXUFcaHJ10ORosa03b02cNS/va2/t7eG67yDf21HL7ER1nA9P/p+9836L6tr6+PpX7nPvm+L13hhrTGJi16jYu7ETRUBUBJQiRREEBISBgaEz9I40C8UG9o7YYjTdJKaY5P4B7/5u2SfbkxlmGM4MM3p+WA9wODOzz5n1OXutvVdBjC/4yDPlun0Oorw/gtgMOQb84f0HvC8CapEifnGwfMxj9wFcICaptrqBpk194efLvePkPGB8NvbM3W29FH150GsBfCxZskLXcQ0kKiKKyopLaE/QHrcbG+KVsI8u6gTLAkbEedVV1XTv7j26x85raWqx2wcR/98REMi5qK2qp5qql/vEgQGZS/U4BhuD5UxJOnyE84EaqLpuayOTP5rK+ahlOjb63aHPIerYU0u1qW3ly8k1pWQRsfRqOwc1gNB7qu9OH93pvWNXfzb5fwnxSZwLxHvHH3yRt2up5y4EY8X4MG5LvTfka5Pz6kX8v/q4VoKcP/QGBR9zPpmv67aGEhsTy/kIDw0f8nupcz1EXSv5mK18OWHX4DwRJ6vWJ+wTij1t1D/uY1zcud1LvbdvK/zYy0dNJWOjopaqymtou98OZY3MkXUrjFvEAsh2mJxHBs61jtHdsyeC81FYVKbrtMaCGhXgo7nx6JDjcyzlQqlrQdnKdwALtmx7dS3SXsbG7Vu36fbNW7R3T5jdfEydMoOqKmqosryaKsuqlD434M+RvQ85lh9sgwP1Nap7pGkh53oucz42aJTLoMvLks6+L/Dh77vdYf/ZGh/qOUSrfCC5Zjp6TaEm680bN6jUXGq3b/7p6nWMi2qqKK2i8pJKZZ3CVp8bW/dC5HSIfhHO5GPTpq10/WYftR3v1HXZSbJsyQrOR3lpmUP6IOYIa7m0cl1ErfiQ4z5SklPp5vUbvJ4+ak3a8tHFcX/fAHbNlYyNCiozlyu2laPxiHI/YLkHmjP5MOUUcj5C9oTruuxEqa6opJPHjtPsmYOP74VOiJxBWVeETyqvyWqVL4fnu3jG+/sF8HrF15hcvXKV93myZw0rdn8c5wI1PFDbZiDf3B4R61zi2oTvJPIGRb6lVnlQ48e/T7d673M+XrW6PO4mEeERnI/Y/Y7pq8iNk5kRPqk6N06LfDnosIjnnTvHi64xLq5evsL7Tszt9yMs8SEfyzPlUynzaUuKSmnXjt0Kd47W8JGvW/ahRF0G9fGhyubNWzkf9Q0tug47WeZ7LeR8tLV43r3Gmi64uMzk0sVLynqALT7AhbmwhIoLzEoOMmKu5Dh6d5bcvGLOh79Un0sX50ljfT2dOdVFn8ye6/ZjxRpWVESY8jd6QVxi9svF8xcocl+UTT4Qp2kuYGzkm6mI6Rn2gsQ5I/4bQf8elUBvjdxJb7y1nP7xj1FueQ96+x5yPnTbyjUSExXD+dgduNsjxivbQQV5BXSh5wKd7z5PeTn5NteuZs+cy+sGFuYV8bp6gg/YQNO8ntP4Kb/9Td6d2EHvjG/g7IAhsPPPf04almv38lrE+WjvOKPrrotk9ao1nI/8vDy3HaPwc2BDyb1oDGkGxkYP9ZzrZvNgg9U1LPH3hrUbORcFOQWUb3qZJzF/gIfRH1yyyIpacB7Ox+sgYOdf/+e8XOaw8CjOR+qRDF13XSRjR4/nfFw83zPsY4GfK2pNyT/Fnpvatw/cFUTdZ7v5+i56RNriYz3jI7+fjbzsPGXtSrbZZIGNBZ2HzQX9xzwCHuxhZ8yku/zckaONCjuQodyfPOYzgY/tAYG67rpQ6mpqOB9YExruecKeNSyRTxi4czdj4yydPX2GMX7GJh+RYZGcC9RjjY3+q4aoo/lQ0Pc3R2zm+v/fsSWch3Eff22THZyDc/EavBbvYY/P03W6h/Mxb94iXW9dKKnJKZwPP19/tx+rXHt09qy5nIvTXafpdOcppeaytT2QfaH7KNeYQzmZORTev7eGfUFn9DKHnQWdh/5jDgEPmFPsmXtkn0esF8Dn6bv3iPOh66xrZdfOQM5HTHSMR6xhib3u2bPm8B6Npzq7qKujk2b173Na4wO9kkyZJsrOyKawkDCFN1fX8hHsDMbnWbf1Geejo+ucrrMuliWLl3I+zMXFnsUHmy+6Orqos72T92m0xIf8e1pyGmUbsni/JN+tfsr7uVO+OeYJSz6P4KO8sk7XWRcL9j7AR11tjduPVY5DRx3NTsZFx4l2aj9+krb7BQzIR1Z6FhnTjLw36+oVL3oCY1/QE+pdhUdEcz4OxiXqOutigZ6Bj+vXrnqE/yH3um1nbJxkbJw4doLHZA3EB7jIPJJBGakGhY+hxpa4mo+wsChdZ4dBPIUPtZxkXKD/9fHWY0qsvjU+wAX6tBqYnbVq+Yu4MU+JLdH50Pmwd/6Q9yuOtx6nYy3HqK2ljfy2+Q/IB9hIZ2ykHT5CK/vrwWkhIoZZ5A3K/VG0+gxDhonzEbDDM+IcXjWpqqjgfHjNmz9kPYGIns4ib1bsbcj9deTjg/VBxO/goq25lVqbWsjXx29g/5xxkZaUSkcSU2jl0pX8GPYc5R6zlkTdx0D9GlyLyB0UPWpFjoxWNYJq6o5yPry89L2P4ZCC/HxN+cDvIg5E7INDr+T+bHL/MSHqnsiWJF/qsQYuWo42U3NjM23b6jsgH+AiNSGZUg4dphX99XCgv5ZqQ8iiHqPoISfYFtetzoOy1e9d5+P15kPUZBB1C+zJq5PnF2sivwe4aGpooqMNR8lny8B8pPSzwfnonz/kPA1rYmmOw/UI1l3Jx8r+/la6eA4fQgfUfKjr29jDhzrHypLIcVhNjIuj9Y3UWNfA+Ng2IB/J8UmcDcwhwv8Yyv4guMdcJvMh21ciH12L7yeejVv3z4dPOjvaOR9Tp0wb1OuEHoABNR+CGzxrRQ0c2b4SvfwG83lyji2ksa6RGmobqL6mnrb257tb4wNcwMaCD7Jq+Qs+hhJfIvJoXeGf6+tXnrt+JRgZyD8Xz9Gh+ufYy5P388BFfXUd1VXV0hbvrQP754yLdOajY313df/6Lnx9T+hpoPOhr+86InXVtVTL2KiprKHPNm8ZkA+s7WKNNzPVQGuk/XN5v9FdZcfOYM4H8mt1fXWtjB0zgfNx7qz756XBFpLr/ICL6opqqiqvIu9Nf+dDlsiwfZR5xEDGtAwKDQ71qO/Iy2uxHn81TCLirzwhPlGW99/7kKoZF1VllVRZWkFrVq0dkI/QoL2UlZ5J2QYjhffXXPSU+WPC+Pc5Hxcu39B11sWydYsP5yPLaHT7scL3EP701CnTqZKxUcHYKC8ppymTpw/IR1hIKJkysignM5si9oZ7lP8BEfkfoh63Li7y/ULDOR8hwe7X80AtWI8V8buoIwwuysxlVFpcyuuTWOJDqZ3o40+5mSbKy8rhdhaOgQ1n5Ec5Q5pbT+j5g8MgpqxszsfyZe7fYwX5GiK/dvHCpVTGuCgtKqGSQjPv3zkQH+vWrONs5GfnUUF/fQbwYS2+XezFYC3OHXrjpKUbOR+hoZG63rpQRH2G8f01OodLoIO2+mRAl8V+3qYNm6mEsWFmbBQXFP+NB/Xf2DMvMOVRYU4+FeUW0Kh3xvDjggF1XQixZ+MufaO8vX04H2Xl7p+n86oIcu7AR2d7+7CPBXo4mPoliLcCF0X5RVSUV2iTD9S7AhfF7Fwze82Uj1/Uv/KUnpzw0UV9OF13XSMB/gGcD0NautuOUV3/ShyPjoxhXLyo9RYZbn3fTPDxHtMvcFHCmCplc87iBUsUH91Tejoj/xx8rOjfv9HFuZKRbuB8rFu73u3Hql5rSuX9eF/UswpRxaBb4gMCP6WM2WTwWzb395aBveZo/XbZT3FFferYg4mcj+QUg66/Thb0jkJ9avAxbuwEtx+veq8in/fizaPc7Fxau2a9RdtKfezwoSQqN5dRRUkZxR2IG/KY1L0bRMyZur+BVnG8iN8FH+gfpeuwc2Xl8lWcD3OR58UswBbPY1yg1luOMYfmz11glQ9Z9oXto8rScqoqqyBTZrZy/OD+aIfGIa9tWeuPI/wora6958JV3v9j+XL378/uyZJyOIXzscV7i8PvIcckIt9DxK+KXjHiGTvUnEGI/7Ztip8wc/pszoWoZ/XRh5MH5EMc9970GVWXVVJNRRXVVlYP+R7CJxLrBoIDZ/ePOhB7iPNxODlN12MnCXo7o78a+Bg7ZrwmfEA/RC6q6HtsT86gvSL70GtXr+NcZBmyyJhutGhLWeIDfXRqK6qprrKG6qtrafrUGfw4/A9H6vyIntXip715LkORKVNmcD7Qn3Oc3ufAKbJj+07OR0L8oSG9j8wH5gUxNwgd0UpX4JfLvgfqH2YZjIyNTIqS1q5s8TF61FgeC4+Y+Iaaelq/doPCniNxJpZyBPFMkPs7W8phH6qYSys5H8HBYbo+ayxvvflvKikycz4WzHcsVsFSziD0Xviqon+nVnxg7Uquw5OSlEKZaZmUcSSDfD7bZtP3kP8H/7yxtp6O1jUqPeDBxkB1fsC96G0uH1fny8u9OtX5k1p+hxs3buF8nDrdo8djaSybN3rz/udFBYUOvd5azqAl3bcnZxAcQc+Ev2JJsAYr7Kt32OeDC0OqgdJT0pV9DFu+uZBY9vlN9Y3U3HCUiguKLPKBa8R4RP9N4T9pPQ8MRdqOd9ClKzcpKGivrtcazh35plzOx1DirazlDIperrJNYcs/h92urr8g6p2IcxBDKOJK4EPItaw+fP8ju/hQ+uSs20gtjU3UerSZ2ppaGHfjlDkCnIrrUgvGORDDrpYNG7w5Hx2dZ2nE2/ocosk9ZfZ2WXEJ5WSZ3GZM0DnopfycFoJ1MOil/Nze6u3Da00fYWykJqXa9D3U/wdPqAuEulnHWtqYb75aGYf82eBErEe56/fZ0nqSLly8Rvv2uX/tfbefO94YQUZDJudj6eJlbjlGPMPBAuwaUftA6Ko4Z3/kfs5FSmIKBQbsHjQfEKxdoSYpapNGR0YrcyI+V/Qw94TvdM6c+ZyP7p7L9JHUb1SXwYufjz8V5OTzPWRPGTNsLFH/hOvwyFGci+SEZHYdh2l5f503e3wP+ZyE+AS+tt1+/ARVlVe+tE7mCfWqX14jMHM+TKYCXc+H8FzGeij4EHlEniLyuusns+ZS8iHGRvxhSopL4v0TB+Oby/uEHcxu6zzZTl3tHcr+IvwcT4lVFDJu7Ht08uQpOnP2Apv7fHV9H6S8yewq2CTgI6C/B4Anyd6QIOV39LVJik+ixIOJ7JoO2G1bqc8DV10nO+hURyed7uyinQG7lHM8bf6A+LD7Aj5amT8yadIUXe8HIZvWb2a+bCqPd33rzREefS2xUbGUcDCBDsUeoo1rNw369TJHxYXFvG/hma7TVMp8Mks8epKYTPl06lQ3FRaU8J4uuu7blhnTZlFCbALnY5Kb5MENRrBnLuwd2IUJjIv4A/EUvz+Ox2ANZu5QM4K9wbOnzvDe0N1nztG4Me4fwzyQoE5Ta8sJ6ug4TdFRB3T9tyGj3x1HEXsjOB/r1rh/foctwXwRvz+e4mLi6GD0QcUOcpSPj5kd0n3mLPWcPUfnz3Ur9d+R3+4JNX8sCXr6go8Txztp08bPdA6sCHQnJDCE9u/bT8G7gj3yGhAvKO9pR4dHcy5gY3lL372jfEBQ2/pCdw9d7DlPVRWVdr0ea79YU9My5lBL8d7sw/loY77ICj0G/u/+OGNj984gOsD814g9EW7nb0K/sB9oa99NXmudPGkqxUbH8msC8zOmznKIDTUjQYHBdPH8Bbp04SJdvniJJvfnpKvr/EKw1oxxY4/EXWo2WJMoZl+Bj+amNvKat1DnQpJtW3y5jR6xdx+NHjXOLccIRsQ+IH6q9+Ng48hzB+xDwUZMRIzDtpWaD6yNgosrly7T1ctXKCZ6/0t82hqnO0vkvhjOR0VZNX0wcZLOBvzZTVv4+if4GPOue7KhFswjeC5DxHNZrpmA3wUXEOR+OGpbWXod1rGuXblK169eo27mi4jjIu7F0fgSvF7EAMj5YnJte/m41oL86SxjDjXWN1NdTQMtXeL+9c2cZlO9MYJ2+O3gcRfgY9aMTzR5X2vx6HLcuqwHlvqRDWZOwWtFjIdi18yex7kAIweY3fBx//q+o2yoGdm4YTPduHaNbl6/Trdu3ODxzVrcO9wfcR0iXwy/416JeQh+jJZ9QiwxcjgxhfNRXVlLSxa5Z1yRMwVxVdFsLkW8N/iYPXOOZu8t8wH7QsTmIh4K3zOOyXGtsNHlmF5HRY7dDd4Vwm0r+OahUj6QVnxAerq76fbNm9R76xazR8qV44gZdrS/lIhDFvXncJ9wXL4/6vwYZ8nekDDOR0VpJfn6+L82bKCmE+YL5JkmHTqs+Rq+mg8RJyh/r+ocuqHwAZtf1seJEz7g61VY0z3EbMali5drwoZ4D/E+sQcOMjZu053eXuq7c4fXvhbjcTTeRK5tAjYE88PBB2S7/07OR2lxGX+eItfhVWZj0YLFnAvU8MC8oWV9UHyXwt6R7SXRc89VfGzZtJX7UtjDSYpL5GtzWvEhv8+EcROpr/cO3b3TR/fu3iVDuuGlOUTU/HVk/pB9LHF/hH0l5l9X6czihcs4H0X5xZSZZlRs1VdJ3mbc794VxGudoXYg1j1hY2n5GfjeRO6FzIfo6y3yStV2tuh9rAUb/xk5iseRJDIuEI84lD0Pe2ys9DQD3b97jx7cu08P7z/gNYTEuBzhQ+2fixhkV/nnVm0ONicfSU6jfFMBrwGDOnlvvuHZcUdCpk2dQdmZJl7XH3xs7c+9dobg+7Tkb4ue4fb65/auiaprqSNuDLYjYtlTk1IU21ErNtSMzPdayLi4T58/eECPHn5Oxsy/6qLIdeMHWltwp/zCAX1W9owN8NvB+chKNzLfLpamTZnhuXPGWyN5vFB9TR3vJ4bagYj19oSxYz3KVi9wrOHKcwfyPJLRizkxhecJBgeGaD53WHq/uppaevT55/T40SN68sUX7Fn7ggn4INb4kOt+4acn7ZEgrh9+HfKVjySmUmBAoJKv7Aky4u2R5O+7nWqqauhow1HOR0jQHo/xrYS9JeYWa3vP6rljxbJVPKaS99RMNSixlVqzoWYE9VweMy6ePH5MXz55QqZsk9UxwkdT59a7U/0GewW21arlqzkf6A+fnnyE9gbtVXJi3JOL//CchKbGJp4D2trUSsYMI02fOtPj7r/IW5Vtbtgi4jmrfjbj+4LPYUhNZz5kBu2Vemk6mw9IY0MjffXll/T1V1/RN19/zcb2wUt+iK3r8VTBnP0Z8/HAhzEtk/faigqPpEXz3ae/FuIdIiOi6MSx43S66xR1nOxgvkYZrXwF4swsPW9hm6j58GHHMtBnFr00M7Js1g7VmpGFCxZzLr795hv67ttvKS8372/rFrbmQ4/mhHHuu8WX84FeQugHgb5CyK0bjjgV1PfatNGbzEVmHgt0oec8nTtzjmqra2nNqk9fufU36JhcqwTMiGcvaluh7htyHVE/OiI0wulzh6X3b25upu+/+5aefv89/fD0Kc2cMVthXNSLcOe6JlrIO/8dTes/3UDpKWlUYS6jmvIqamDPA/QiimTzCp4jzsrDmsbspF07d1NVZRXfk7p14yaP/wEfhjQDLXHT+iJaPqNgk4g1ZHE8cEcgZTMucowmXp/944+muIQNNSMzps+ip08ZGz88pR9//IGOs/lcXr9zZL3Xo+f+2fNoD/N7y82lvK7eseZWXtviVEcX84nr+dp4cFAIzZszn7zmLbD7fd+f+CHXdT/mYx/YH0tNTc30JbNtv2A+4MMHD/leFPhorG8gf7/t3L56Xe451qzkmr0fTZrMucjNzqH8nDyKirBdV9eZc0hBfgH99NOP9OzZT/Tzz89ow/q/8nlRS/514kOW+Uz/gwODqSA3n/OB/EvYPIiBvnHtOo9DuM/0+tHDh9R7u5eamc63tbbRCcZTR3sHXb16hf788w/6/flz+vXXX+jnZ8/4M+j7779jdsU3nI/bt25RUWEx7WTPywnjXVuDW+yNy2tMopayfJ44pu77p5WgZrocuxEbE0v5zM7FfS/KL1T6Z7qKDTUjE9/7kJ48eUy//PIz/x77+vr4nqU4D2P3xFoOWgv2Gbb5+PJ+dyXFJdTJGBB8fPn4CffjYKOCg+fPf+NsyHyAm2Ntx/j8sfbT9Uof4uESeS9C7O3JsUI4DptH7oukda6cOqZpxbKVvPYQbFtzQZGS6zqcfEDi4w7Rb7/+yr/X339/TkZjlvI/1AKyp+a76HnwOrIDXV+0cAktXrSU21FLlyynZUvdO85e5kP0iRX/E7FT6r439sTQDWbtX7ZPsJeTlZHFa0UjJiDPlKvs77iaDUuM3GXPwj/YM0I892bPmvMS5wMxgrkXa1yDmYNF7Xf1seGMSXmdxNJetsgFwnep5sPeGFOxfjvQPoClXrGhIaFkZrYmauyUl5Sy5/JSRUeHkw/x2XjegYv//e9PLlevXFHOg59ujQ9Rl36w+yI4X+5lCHFlzsjrKqJXnswH7jn0GsdFnISjfIj3g21mzZ6ALsm9YmG7lhaZqcxcShWl5RQXGzdsdtVAc0hWVrYyf/zxx++UcCjxpWtS56rLvbQc/a7kez5cMfGvk4i9LdHbSNxr8beoXy6eV/hbxGWLeWUw36+6z4c6DvZFr4U83ku2sqyCqiuq6N1RY/+/vfNsj+K64vj5JnmXnvh5bMA2GNuhmuaCMTZFqCKJFjCxZZsmCfVeUO+9rCTUO+oSQhSDSYhlx7HJCyd2HifkI+T+73KWu6PZ3RmxKyTtvDgPsKxWMzv3d0+95ywLNrSMwC+fn5+XbMDWgi+yfdsOx31x7Rj2GfWsx2JFq0MsPpaOEXXOEe91fC5Qex5Ue7bHjPB8GbYLtDWwcpZsfYPgoolammwUHhaxbHSHnp21b99+yQXiLvDXtfEs7f16Q9+r9u6zOjNiie/E1X56+GCA7Jve0tRMbbYWSlXsleXCht715OcX0P8ePaJHj/4rY5NtbVed/C9vMKGdgWL55/7h+/DfkTOFP97a3EJXW3Amul7O033WPrlRO+uG0KlgA3mR//z0E508+aTnt17fLEv8S8zYD4hVqf74r375G8oVrOCcRTtmZF5tl7mP5ao79Ows+B0PH34nc+rIeSG/zvVZi7F3V2JNvCX6AnsYeUOjjGjjuZ9GfSa4aJP1NF0dHXTh3IVlz4be9UFngAvUn/z7xx/p3t17Qrc8ifMaqT/h85kQf80frjZfgmu7jTCCNaL645g13iHs9a72Duru7KLiwiJ5LnIlsKHHSEVFpawb+vGHH2T9xOTEpNN73c2iUtkwGxu0xNya5fo+rmNQhdcwfEe9Giuzgs/xxIheDnDL5m3UCS46Oqm3C/38WsR1v7qsfQ4jjExNTtK/BBuog//n999TacmTsyLYG/R6A/mCDbVnNv7k54K1wT1o1Nf9ye9Ve8jweQp1Xj2+F567zH/6khGtz7Fh/auyN3pPVxf19fTQQG8fHfjg4Iqxq9z5Ir8VOuLrr76i7wUbOEuFWjxt3kf1132lNxAj5F4z/He8jueD+D1e55n1/soH1im+d23sT5sv91Z/Qz1GsBbUegvYT9WVVdTX3UP9vb002N9Pp5R4z0pjQ48RnBWZ//JLWZuNc4c4lxup1FeyDvGlTaU+YzV/6O95RW3/NrCBvUPVE97s3+aJEZUPsAEfo79HcNHXT0MDAxQbHbvi2dC7/mORJyQX/4A8fCh7O0RGHHNam770N/hMJtdhc0zMX/nA/XNfV+aDbU1+D58B9RUfWkbU7x5slBQV00Bfn+QCs2KrKioc5zFXms9hhBHoDHDxHeTbb2UfFPRDUWN/i2HDiM+o9kDmPdKf+eB1CQb07Cuuq8L72C7Fa7zPuONuMdfCv4tfi74YLW2p4cFBGhkeFjZW5apjQ4+R6Euxkou/fwP5hu7dvSt7+rnyzTyJOvt9Mf4H97rkekf1LIM/MIJ7Vr8/tW6KuWFGtDVWeoL/0/qX7gT2lPYsdsylGHk2+drQEI1euyZ98jUvrFuVbOgxUpBfKHvM/e3rr+UZ6s/v3HEwwrE92KCezlbxvCorfrW8BM/EUy0RnjNEG+OHf8FcjI2MSJ8c58pXi89hxF+H5Ofly7jWV/Pzwnefl2dGwkLDnfYVd3UofE7AWo/LU/Bs3O01WjsBfR4vx8RKWwpcTIyNSt9D7Q++WtlwxciV3DzZ7xo9OP764AE9+MsDwYjzTFl8h3p6BN//UvbVYt9EW6/tjTrup7WR9HSouodzvz6t3eRLwbNx5UtqZx/Dr4DvPTZyjcZHR2lyHPOF+x29efyBDVeMoO8NZiZgdgL61Pz5/n0KDQlz2megf1UblX3FpbxuV7N8uIcfXsd6WGqd5iqmoMacuN6fzzDBL18sx2b2JP6u3D1LsAHf287FGE1NTAiffMAv2XDFSI74DtHn5v4X9+n+vS9kr7PMjKwFekTvOzfqw3tjz+T6CrXfgNn4F59H1ftc9XW1Z447O8UIH9och6de6K6uG/yr55iNiLqXafvxwK9otdmELQUuxmlmalL6Hv7MhitG/njqNH1x756sY7z7+V3ZJ6qwoEj2ztQ+I7P7HcfXn6YOmHUDn8laLB/a9+j1weHYqzqnT29Ncr2U+nn8Pm/zAcG14H7Nxvj0fBH08IDvPSm4mJ6cpOvTU9TU0EBr17zo92y4YiQkOFRygT6ZmJd7W0iLrWVBT0DtGX1P61qbe1qsfeWN/Lv2PXp9cLTrWa9XK+cntL0oOEbtCz7UHK4R+4xjt2BD5SP8aIT0MaYnJ2hGcDE7M0PNTY1iL/ydxcbP3Md+d+3cI767CTlrHf0G0U92bGRU9oVSY4McA3bXx9Ts8/RkJ6g1erze1L5o2Oc9xf7d8cH/Z3Q9cz2OVn/wPq/yrNVHTxOX8rTfcNwWz0i1p+BrJMQnSB8DttTszDTdmL1OqSkpDjZWa37Dm4y8/tomsjXbaG52Tp5FvHF9VvbnxMw8rR7BHsXPQ2/P92a9Ctd4G/Ef9H4W7HiTD/5c7e9lu8tVD9CnyfHgc3jPcZUnRC8ObWwevkZdbS1NCy6ug4vrM2Lvm6WY6BiX9oQlrhnBfoL4L7i4Pj0j9psZoY+nqbS4lNZoZhDr5Up4bzXjT+JnfBUz5n1d7cEJ0euDA47UeBP0lS9j2dq6KyO6lOdvqK9DV2hjt5CI8EhZQwUfY1ZwMSe4GB8bpaDAYIuNp/RJoDNmpqYFG1NCL09K26u/t1/249T+LPqZ7t6529H7R2/WoyfbwZf3xjlN1b/Vy588i3yFGZ+bZ9Dy9wsbNzAgYMH7YE/lZGWL5zclbam5WfToviFjVrARLDa8w8iON3bRQN8ATYxN0PjoOI2PjMm+6OmpGbrzNVztb578An8+5w5Ozdy/Vj9rz4GilzDyGOxj3JybFT7lHBUWFDjFJC0uvMMIOCgqKJK++qhgY2R4RM4O62rvlHNotM+O7Ra984lPu39yTeRyr9XivKDRXkdG/TT29Vi/qbaf1BnZOcKWeuJj3BJcII4bHBRi6Qwfc3I0NJy6O7ro2uAwDQ8M0VD/oJw/mZudK1hY62QD2N8f6vRMXdnfZuoc2T9d7nPjcE9m8hXg3sg9wZbCvqPdH3CeZ3ho0O5jPLal7ty6SW2trbRu7UsWG0vEyAvPr6O8nDwaFGzA7oI/0tfTR73dvXQ88oSjp4Uqn0bZY196/SC477JRO4TPuxm123xhC/niWrHe3bGEvUYvng77t6G+3uFj3BRc3L41R5/fuUWfRH3iMgZjie/iWxDMpGwTNkGf4KK3q4d6OruFbumm5oZm2q/0DFPl7OnTCzgxY1uZ3ZPNvE/b19Zd/MisrjNqC+r10wcXenbq2hdepKTEJHu8FlzcsPsYd27fotqaGktnLAtdspYS45MkF13tXdQp/JGOqx3U0dZO5SXltHvXm245gY1uphcp596M/ozRtcy5GiP6BtdsNN/Jn2vU91bjFOg/pccFfIyL5y/KeO2Nx/HaWzeFLXX7psyJow7C3TOzZGkZgWzZvJ0qyyolF+g7iZmYbbY2am1upeTEFNq1Y4/b9Qu7wdMsODU3ZmQ/xho2ui7N8GGmDxXH8oz43syCq/eCi7Mf/mmBj3Fb+BiwpeJiLy+ITVlcLC9OjhwOorrqOslFS1ML2RptZBP2VnN9k5zBpZc3gfAsOOR+3c3zMVPLZWYdm+EDnBo9w8o1Nu5i3Zxb1cvtQZCPTUxIlGfBF/gYj22pP7y+2eJihXAC/zw8NIKqK6plD/wmwUZjXSM11DZQfU095WXnUXBgqGNGnSrgA/so/uSZJSxc62jUZsL7jNr9ZvgwY7dBOFeq2mTYA5BLdVfruWP7TsnFjKYmxO5j3JRc7N61x7KlVhAjTpyI9R8WcpQqSiskF9ArtVW1VFNZQzWCneryKjpz6kPBwSZdW4Pru3j9cM7YqO1vZg2b5cNMTIFrCqFzcD/gArakln+2oQIOHaGrrW2OunMnH0PYUrXV1RYXq8jmgp4ICQql0sKSx1xUU1VZFVWWVlJFSQWVF5dTekoG7X/3fXru98+7jAVx3zSsLdhj3lzDvtAf3GsNXHDPL1e1nHvfeZfi4+IX1J2rPkaNxcWq5+TtN/dSVnqWg4uyojLBTSmVFJRQcX4xFeUVUezFWNr3znv0nAvbSOUj+sI56dvj3+y78PrzJR/sQ/N6Z3uJrwn6D9fkrv4fc6XjBDvon2M/w+dcd841IelpaeKzLS78xe6CbN+6gz4+GyV1SklBsWCjSLBRSIVXCqggt4Dyc/Kln3Lx3CUKCgimV9a/6vb3sN+i2mO8x3OcFP/HDLFPzJypfPA5bT4/ob6f50LwZ4MJ+NWqH+GqpgZ51YMHDsk+Iej1bO8TYj/bKuvOlZoQMBP1cZRTDsPiwv84gT313t79lJyQ7MTFlawrlJuZSzkZOZSdnk1ZaVmUFJdEJyJP0lt73qENL280/LvVvgQ875q54JiRygfn47D22UZiPvhPI/l+5IbQnzLqoygqLy1z9CJU+4Swj8F156kpqbR/3/uG9LEl/mN7QdateYmCj4RQfEy8ExeZqZmUIfyT9OR0SktKo9TEVEpJSKHk+GT66MxHdGD/IbGW36SXX9zgMYfiK9mwfiPt2f0WHYs8LmeA11bXOPqdgwvuueboEwIf43HdeV7uFQo6EuR0vtXdnmKJf+sUCGonPnjvAH328TnKSBZsJAk2EgUbCYKNeMFGXDIlXU6ixNhESohJoPjoeIq7FEeXL16m81Hn6djR4xQWdJT2vr2P9gh21r/0itQ52rNdRgR+E/ILm17fQrt27JY1muFh4ZSSlEJ5OVfkTKXOxzOVeru7Zb9zR19nBxcjDh9jaHCAcnNyKFCHCUtXWGKWlV/8/Nf0xradFBIYSuc/Oe+Si9gLsVLwd7yeEJsgbTLwlCZ0DvQPdFF2ehblCv0EGy4/J0/6PPB/SoQvVFZcShUl5VRVVknVFVVUW1VD9TV11FhbT031jWRrbKbWZpuc29reZp9PyTOV5OwYcNGPfueDTr0I0Qv97JmzspbQ7P1bYomZtQJ/4LWNm6R+OR5+wokLsAJuwBDsL9hi0D2Zwj6DrZYjuciVXMDfQUwA8YGyolIqLymjyrIKmZepraymuupaapBcNAguMOvbRm22VjmfslPOp+y0z1Tqts9UYlsKs5Yy0tKljkEfncXepyWWmGHF3TrCnCz4H+8Keyo4IIROnzhDl85dkn5LVlqm4CJb+vvw/Qty8yUXxYILxM/KiwUXpRVUVV4p53pLLqAz6hpk/r+lqVlw0SJzdjyfskfYUtmZWfL86snjp+jgB4fk3GBv3IsllviaF619tnHDa1Lgxx8+GCBz1EcOB1Lg4SAZPw4+IiQwhJDHDA0Ok3l/9jMijkbQlk1b5YzKrZu3+fRaLbHE18ws9Vp81r/fEku8tW69KdZ3bIklllhiiSXLS/4PUEsBAhcLFAACAAgA2og+WwzQjhjVPwAAAHECAAQACQAAAAAAAAAAAACAAAAAAGRhdGFVVAUAByUO3GhQSwUGAAAAAAEAAQA7AAAACEAAAAAA</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #8</Name>
|
|
<Index>8</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPlvStQMKaj8AAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J33W5TH2se/f8l7zvWe6z0nlphmYmKLSYydqMSCit1YjhpAEQuoCCgiSpHem3RYdqlL71XBgqjYY4stMSbn9/POPTDr7AMoC7u4C88P98Wy9Xlm5jN3mfue+fvf/oG/q/Le5G//87+DFrW9VBkL494Wvl8VVSw1TtVrUkXlYXDjbuHCxVzc9rvDzc0d4RExSExKY5KKouIytJ6/iNa2i2hp7UBzSzuXpuYLaGw6j8bGNjQ0tqK+gUl9C6Ki4pnEITIyDocOHoGT016sWbMec+cuxOTPpph07WpfqmIJJgZ6zzfffI9Nm7bCy/skUs5lop6N7Y5LXWi/eBUXOjqZXMH5diYXLqPtwiXGxaU3XLQquGgiLtoMXNTVN6O2jkltE2pqGlFd04Dq6npUVdWjsrIOFRW1TGpQXl6NuLgk+Pmdwa6dzpjz/XyM++BDlRdVRpSHCeMnYaWDI3x8/HAuLRuXrlzncvHyNXRc7jJw0c656JS4YCK4aOsw6Azioqn5PGeDuGggLhqICyaCi9pGxgZx0WDgorJScFGDsrJqlJVWoVRfCb2+AvqScpQUl6O4qAwpyWk4cdwPG9dvwfSpX6usqDIsLvp7zc5uKQ4eOgJdfgkuX+3G5c4buNT5hgvOhuBC6Aziot2Yi4LCUsQnpCAuniQZe/fu57JnD4kbFxcXkn1wcd4HZ2dXLj5ML0Uw2yw8nElYNNcZxEU5cVHGuCit7GGjpMLARXFRKYoK9SgsKEEBu+4CXTHytUXIYEx7e53AimWr8Oknn6usqDIkXeHgsBZBweFoZuP6Slc3rhi4uNGHiw6Ji6TkdPifDsI+t0NYvnwVFiz4gescS1z/jOmzmB21AJuZbbdrpxOCg8KYvkhnXJQyLhgbggtdEXTaQujyCqDV5CMvNx+aHB1ys7U4yz6z1nEDPvl4ssqKKm/VFYKJFsZEZ9dNxsXNHi6u3uhhg7gQthTjIpeNt2Nevti48SfMmjXbau5v3AcT8f3sedixfRfTPb5cZ2g1BT1c5OoYG1rGRh5ysjTIzsxFdkYustJzEHgmGGtWr+vDisrJ2NUVU76YiuMn/FHJ7PvOa7cUXHQbuCDRMPuEfPBFC5fY3P2TLbV8mQOOHfVBSlIacjI1PVxk5CAzPZsxlIWM1Eykn8tAWko63A8ehv2SZSbZoaqMHi4cVq1FLPMBrl6/3cMFkz5cMImKTuCxKUvZSO9Lpn41A7t3OSMyLKqXi0zGRQZSmX2Wynz6c0mpSEk8h2jm92xctwkff/SZyskY4GLLlh2oqmnkXFzt5cJIZxATMcTEtlHHxEBC9tRmZiOGMttScJGckIJkNn8kxSUjMTYJCTGJcGI8kb5VORldXEyY8BHc3T3ReuHygFxomS+7afPYYWIg+WrKNLg47UVUeDQS4xgXsYmMjQTER8cjLioOsZGx8GC219czvlE5sXG/m3PhIXEhbKleLppbOxAYFMbX99T2M5YP/jUBS36wxwnm3wsuYiNiERMeg+iwaEQxu+yQ2yHMnD5L5cQG41FkR7VJXMg6o6Kqnq9njHVdMVghXbHPxQ3R4T1cRIZGIjIkAhFnwxEeHIYDrgfw0YefqJzYABd2dvaoqm1C1wBcbGY2lNp2Q5OPJn2Kndt3GbgICwpFWGAoQgNCEBJwFttY2/7rn+NVRqyQDfIbM7I0KhcjwQnTFTu2/huhgT1cnD0TjODTQQj2D4Qfs8eW2C1VdYkV6QzyMbpu3DH2Ma4x/6Ktg3GxXW03C8kkxgnpDOIi6FQAAv3OIODkaZzx9cdBZnNNnzpTZeQ9siFsKaWPQTkhqn8xckIc7P15D2eDi99pBDJegvwDsMFxg2pzjRAb4jHFpU74nu7XloqJTcIXihi9KiMj8+cswElmX5EuCT4dyOyuIGZ/BePEMR/MmPa1ysgI6Ixvv52DgqKyXp1h7GPYKexer2Pe3AZQ29Fy4rrXDdOlsU+6gnRGCPNJQplvEhYUwnz5UObTh8Fx1doB5zxVhs+Gk7OrwsfoyQnxOX6qjy1VWlqG//73v4iLS1Db0oL+x+vXr3k7O6xcbfQa6QtfrxOICA5DZEg4okIjEB0WCR9Pb3w86VNVl5jZnhK5Usq4lN0iY52xa8cO/pf6i/qNRJ7fVDGfZGfn8vZtbm7h/69auRKffTrZSJds2bAF0aGRiAmLQmxENOIiY7g+mTdnvsqImewpni+lyAmhdW9ZZ6xfu7bPd1G/yf2nivlkwfxFhvlH6I4P2Tz2z/8bhzmz5/DH4r20vniG+e1xkbGIj45DQkw8kmITsGPrDpWRYbCxZct2XqutzAlxcHA0vEfMV1992dcnJ72h7ENVzCNi7iEdonxN8CH3CeWr7Hfdj8ReNpLjE5GSkAxvZm/Ra6pPYhobVJOhzDunHEJlbGrRgkVv/d6gwGDejw8fPlLb2Yw+ObUp+R5vs1370+mrVqxGSnwSzjE2UpNSkJZ8DuHMd5/65XSVkUGwMWH8R7yGT5lfGxgUamRPkZ/Rn854mw9JrKjtPXyfnOYaU9pzj5OT0f+UIxwXFYv05FRkpKQhMzUdSXGJ+E7KE1UZ6Z8NXaG+Tw3f7p/39NEJQ53v1DYfnsj62NTYuWzjkk0V6B+ArNQMZKdlIicjC7mZ2Vj+4wrVJ+kvRsV0g65Ab8RFU0s7Vq5842sIfUG+oalxW7KT6XPqGB+ebP1pO2eD/pryOeov4oP8RfLh6blxvT5JTkY2YyMHmqxc5OVosGKZw5hnxChGxfQqxWrl2tbG5gt96jIofijrBBJ1zL4fG8tUpmitVvShHAMmcd7tjLxsDbQ5edDlapGfp4PHQY8xy4h8r8QAxaREbStJnq7IyNeQuVDOSUPRCSL2IuyE0b4+Iq8FyfE8um/hS8hxcGFDCZvUVF0hC/1GfzEusU4lhHRGvkaLAsZGoTYfRboCHHE/MuYY6Y8NeZ+QPO0bNkQ8/W3zGLW9KfMZ8dTVdc3wP62zj3a/XcS5le1Ec7qwU4XfTdwQE+K99J6hrh/Rd1D79tc/ZCtT38q6ZOXyVZyL4vxClBQUQV9YDM/DnmOGEfn+iA3yL+S9CDVaY71BbSivMw003k3xRaj/5f4mNsZCXIvaiMY93bu4X+W902tC1wzUXqb+5tv0O7GhtA0cVqzmXJQWlaCsWI/yklIcO3ps1Me1jONUk1BeWWe0F6FGW2hgo792G6x9q/LR/zwuYkfCpqJxa0k+TPEPaT2RxGBPO6xBGeOiXF+GitJyVJZVwIn5KKOVESUbebpio70INXlv2KC+HErO7WA/Q/0t21dknw2WrdFiX9H9UzsQG7J9Rc+LvBHxXhrjZCOZ2hemzDlkI5DIfuCaVY6ci6rySlRXVKGmshpr16wbdYz0ZaPIaL/zXAUb1EcklsxLH2v+ubB1lH74SPjnpugb+j1Z5ziuXsu4qEJtVQ3qqmtRX1OHdY7rRxUj8j0EBIYY7eucqykw8jdo7hJr3ZZmRBXrEcFGf/lcpDPqa2rRUFuHxrp6lDNd9vXMb0cFI/K10761hv3OL11FXUOrERvHvTxVRlQ2+HM/bd5sFNfavnUHmuob0NzQiJbGJlRVVOLzyV/adExLvuaNm7b2ctFzRgad/SL2O6d2UK4XqYyoekMZ+z3p64eWpma0MhuwraUV2ZnZhvnV1vgwiuMyDui8sZ6zY3rOVKIz+cR7KYbbX56hysjYZUPMm8oYZmJ8As63tuFC23m0n7+AyPBIm7SzZH9cX1pldKbSzp1v4nTviuHKjKg1TmOHDVnkWqsJ4z9EblYOOi6042J7By51XMTuXU42xYh8jRGRsUbnU/r7B/WZI971fcSIiNfLz1N8Us4HpTYX8Xy1Fso2+HgXG2KMyDkU38z6Do3MF7l88SKuXLqEzstXYLdosU34IvK17dzlbHQ+ZVa21mAv/rjUflC1G28TeW2L4o9kg4l4vlpzbv1iyhxG+kPO11q5YhXj4jKuXrmCrs5OtLW2Wr0vIrNLvrd8PmV1TSM+//wr/pq5/AiZj4HWgdVxaBmR80bE+joJrSOK52nO6u95c8lxnxPounoV17q6cP3aNSRIOUbWyIjsc2Tn6N6c23r+Ij+nUp43TM0pVPmwLpHbV+RzifV4sdYuakREf5u6Bj9Qn8t2QVFBIW5cu47uGzdws7sbe1z2WiUj8rV4eh5nbFzi+yrQmcZ+pwKM9KTwKYZaryRYUPmwDj5kX1DoDHrOXDmOwuag8aLsU9qTvKO9Hbe6b+L2rVu4zPyRL6dMtSo+ZLuKzjIWZ323tHWgoFA/YM4h3TPpaVNrnEQOCsW1BBP0HbL/Iednq2I+EW0q8yF0A7U9PTY3HzSH0vcLvUH7cZD/Kl4nnXGHsXH39h3cu3MX2jytVekQ+RoKi8r42cgtrR1obmln92bHn39bnjqNbVNrZUX+mxq/Gnm9QX2ltK/EY5kDc/Ah16coRY7vpCSn4N7du7h/7x4e3L+Pfa5uVsGI/NuurgcNXJAcPuJleE25X9i75ghVrFd/kJ6W9xOj+Yh8DRr/9FfodPqf3kt/SZ+bkiMt7KmB8iJpLMl7B01k/5Ov/uCXX/DwwQPcuH6dP2ctfFAuTHMvG03NF6DLL8b4cW9iuYNtE3X/BNtghNiQ7VfqN3puoDUqU/pV1OMO5jOzZs4yrI3sc92PRw8f4vGjR3jy+DEyMzLfqw6RfzMuPplz0dR8Ho1N5zG/164yhY+xJIuYn0ZrWh6HPHDE4wg8jx7rsSVi41CqL0VYaBhO+fnDz+8UTp70w+7dTvjRfjmzKaaPKT/nXUJ2ibx2WFhYiF+fPMHTX3/Fs6dPYW+/7L3wIfvky5Y5cDaIi8bGNgQHhxl0oMrGPzD3+/m89i3oTBDytTqeP0S5EbTue+PaNdy+eRP3797jcx/168sXL/DHH6/w119/cnn9xx/4/fff+PPPnj3FkyePkZ9fgNP+Z7Bt644+55GPNZHz976fPY9z8fzZM7x4/hxNjY3vRYfIv6XTFTM22tDA2Cgtq8Lk3rxjZf7lWJFxH0zAih9X4riXD99joJzpA6p/o9qe5sYmzkdpiR5pqWkICT5rpD/2ux3AhvUbea6qrD/Ky8q5XhF8PGQs3Wd+6J07d3Cz+yZqqmv4ehnlXoxFPuRxdjY4BC9ePMfLly/w228vue5VzukjpTu2b9/FuWhoaEV9QwtcXPYZ3tdfvHo0y9LF9jh80IPvBZjH7p32qSE+0s+lwZuN/W3M11wwb5EZxsM0rHVcz5nS5Go4H7R+fLWzE5cvXoK+uASeR44xn3DKmLHFKCYg1gk+nPgxmzvucZ376tXvbC55wJ8bKR0ifmP8uA+ZvqjmXFA9h15fyZ8TcTmRnzma41J0vsXa1ev42Ui05zLtJ0t8hAaFYMO6jey+Z1r8GiZOmMT3M6Ax0tjQyHNbqT6CdFV0ZAzsly4btWwQE6I+WF7zcmd+Hdmor1//gT//fM118UjoEPn7XVzcUM+4qKtrRm1dExwdN/SJz8k1zNR/o2XNbhKbj7Zt2cbPAKdzXxKi43A2IBibN2zBJx+/X5tyxXIHhIWEcT7qa+tRU1WNTMYsMTRauBDrKfIeAspY8PXr17n/9p///IVff30yIjpE1h2kL2qJjdom5OToDO+h2kg5j0R5H7a8JyjpC4dlq/gZrXT2JPHhsd8di+2WWN21kn3lcegwigqLUFFWgdJiPaIiojD7u7k22/4i9qucd+WxJx47OblwNkiIE/LlLOmrG+kO532ci5qaRlTXNMBxzZs9JfpbBxR7Gov7ssUzASkme9rXH0GnAjkf+1xcjc5ktVahueznXU583+ei/CLomF/kddTrves5U4VsdlErJ2pHlPaIsmaiu/sGZ4NsrMePH1lUh8i6o7i4vIeN6gZkZ+UZ3qM850EpxDrdoy2tA9JZku4HPJiPEY6QgLPwOnwM3/bWzttWXG0iDrsf4Xxo2NhKYv4S7TFlK9cv9hx6V+4prauLeJbTz86cDfJDSCgWaCk/RHyf45oNnIuq6npUVdVhzeo3uuNte+XKvomt9Mm8OQsQFhyO6PBozsfqFauNzrq3RZk2dQZCgkKQlZ6FtJQ0rkvk880sNbaFHUT9L9vc9JieIxtD1g/K/eXoPYOxzZVrCtevX+O+OsmDBw8sYmPJ35Wdnce4qEdlZR0yM9/URx5wcx3Sd4t8NyHC9rJ0fc27ZI+zKxLjkhAXFQ9vTx980VvfNVrkp81bOR90BmBESAQ/Q3Mk+FDuXyn2cqQ+Fj622MNxqL8nn6Hw824nvHr1isd6KeYr6tUtwcfSpcs5F5WVtaioqGG/7WKS7uhPqF3EWomcq2OJ+ppB2SFsLj3DfIxzSamcj61bto8qLozs9SnTcJbZjAkxCYiJiIGdtK+MpfgQezaK/hb7VyrtpuHwodz3n/IWiQ1aL+zs7DSrDpG/IzwsmnFRi/LyGuh0RYb1jqHqDqEnSK+KfXCF/WXO+prBytSvZiApIQXp5zIQExXH7avRyoaQnnNlD3A+SI9s/2mH2b6b5jqxfifbV6JWh0TYV+bkg4Rym4QO8T1xEr+9fMnX1F+8eMFz2czNx+TPpqCCcVFeXo2ysip4HvV5a8zKFBE5oUKXvA8+pk2diXPJacjKyEF4SOSYyQUUsnbNes5HSGAIs722meU7yV+guU8+Y2Ug+4r6V9hXpE+Ge1akvO8Jxa0of43yTp4/f4Z4M9aqi8/vd3NnXDA2SqtQqq/EjOmzDHME+QxDXSNXtp0l6jMHw0Z6aiZymW8VxOyNcRb2V61VKIZNfAT6B/K1TnMxIvvbQ/XPhyKyPkqIT+B5i5TD9vTpU0ycOPz6EPmz6WlZbCxXQq+vQEy08foFsSFqW03d61u0iznra0wRuvasjFxoNQUICQ7jcdCxyIaQhfPtOB/+vv7YsG6TzV0/sUZjhewQOd5FeTaU20s50rSeTrmg5uJjyeIfuc7Ql1SgpLgcqxx64uaUf081Ksr5QulLDGaMmqu+xhQhHZibo0VBfjHCQiPHPBtC5s9dyPnw9fbFOmnt15pF2DE09oQtQ/aVPD4vdnTw+hCqn6qpqRmWjSV/5ugRL5SUlDM2ylBcVGoYR2TjDeR7iFwAa80nodhCXl4Bu58yRIbHqGwohGITxIf3EW8ssbPOOh6xJiLGmXI+Jj7kc6m8vXw4G1RjSPU2X06ZZhY+cnN0fBwVFZbixPFTBjaUusOWJD4+hevElOR0lY0BZM7seZwPr8NemDt7vtVdHzHxrhoKmr9F3gnVBjx69JCzQXXqZ04HDJuPxT/Ycy6KCvUoLCjBD3ZLbZ4Pby9fvn5D+kPdE+Idca3V6zgfXsyG+Pwz26spITZoTyDxf1VVFR48+IWvibS2tAzJxpLfe9jDk3GhZzZ6Cfdj+9NbtiT29it4fgzxQX6VysC7xXmXC/x8/HBov7tN5tfI64W0988v9+/zvYBIZn83Z1h8ZGVquP+aryuCD7NHBR/y/iq2IlT7W6Kv4Hwc2O+hjv1BCvU36Y+g04HYtH6zzV2/vB86+RzEBe2XdffOHezd4zpkPqjenbjI11JedCFW9O6jO9z1wPclMTGJvGYlKSlNHfcmyjdff8f5iAgJt2iuliUZF4+bm5o4G3du3+Z1/abaWOJ9e1z2cS60zE7XavINfqzyfDhbkHXrNvFaeeJjpg32rzUI1UwSHwGnztjctcs5UFRvS/v13r55C7du3uQ1yoPlQ34PrQkQF3m5+Qg9G2543tbqZGkP4IrKOs6HvIeEKqYJ+R6kQ+Kj45idZXtrh0IW/7CUc0F7vnff6Mbq3joYU/ggXUFcaHJ10ORosa03b02cNS/va2/t7eG67yDf21HL7ER1nA9P/p+98/yL4voa+Plr0p78nhhrTKKxa1SsiC12RARERUApUhRBQEBYWFhgKQsLS0eahWYBe0dsMZpuev29e94891w5k+tkG8uwzOi8OB9g2HJn5nznnnPvKRjji3wUm4pUn4Mo7o9gbIYYA/744SPeFwFrkWL84nD5WMyuA3KBMUn1tU0we9YLP1/sHSfmAeN345652tZLsS8P9lpAPlauXK3ruAISHxsP1vIK2B++X3Vjw3gl3EenOsGiICP0utqaWnhw/wE8YK9ra2lz2weh/+8ODeNc1Nc0Ql3Ny33ikAGRS/k4hhuDNZqSfuw45wNroOq6rYzMmD6L81HPdGz8+yOfQ+Sxp/ZqU7vKlxNrSolCsfRyOwdrAGHvqcF7g3Bv4J5b/dnE/6WmpHMuMN475ciLvF17PXdRcKw4Phy3vd4b4rmJefUU/y8/rpRgzh/2BkU+Fn66RNdtBSUpMYnzERMVM+LPkud6UF0r8ZirfDmya/B1FCcr1yfcJ6Q9bax/PMi4uHd3AAbu3pX4cZePOhtjo7oeaqrqYFfwbmmNzJN1Kxw3xQKIdpiYR4acKx2ju39/LOejtMyq67TCgjUqkI/W5hMjjs+xlwslrwXlKt8BWXBl28trkQ4wNu7euQt3b9+BA/uj3eZj1sy5UFNdB7aqWrBZa6Q+N8ifJ3sfYiw/so0cyM9R3iNNCbnQf5XzsVmhXAZdXpYcdr+Qj5CgXR77z474kM8hSuUDiTXTsdcU1mS9fesWVFoq3fbNP1u3kXFRC9WVNVBVYZPWKVz1uXF1LSing/pFjCYfW7fugJu3B6HjVLeuy6Mkq1au5nxUVVo90geaIxzl0op1EZXiQ4z7yMzIgts3b/F6+lhr0pWPTsdDgkLZOdsYG9VgtVRJtpWn8YhiP2CxB9po8mEqLOV8RO6P0XV5FKW22gZnTp6CBfOGH9+LOkE5g6KukE8qrskqlS+Hz3d6xocEh/J6xTeYXL92nfd5cmcNK+lQMucCa3hgbRtnvrk7QutcdG7kO1HeIOVbKpUHNXnyh3Bn4CHn41Wry6M2iY2J5XwkHfJMXyk3TmSGfFJ5bpwS+XKowxTPu2ihD9xgXFy/eo33nVg05EfY40M8VmwyQyXzaSvKKmHv7n0Sd57W8BHPW/ShqC6D/PhIZdu2HZyPxqY2XYdHWZb4LON8dLRp71rjmi5ycZXJlctXpPUAV3wgF5bSCigvsUg5yBhzJcbRq1mKiss5HyFCfS5dRk+aGxvhXG8PfLpgkerHimtY8bHR0t/YC+IKs18uX7wEcQfjXfKBcZqWEsaG2QJlTM9wL0hr92tg8DHnQ7etvCOJ8Ymcj31h+zQxXtEOKikugUv9l+Bi30UoLjS7XLtaMG8RrxtYWlzG6+oRH2gDoe9EdUrwJ+3XqCle0cdnOeejs+ucrrteknVr13M+zMXFqh0j+TloQ4m9aAzZBsZGP/Rf6GPzYJPDNSz6e/OGLZyLksISMJvMTr+TfAdiRg2xV9Ex8ZyPrOO5uu56SSaOn8z5uHyxf8zHgn6u+Aynn7TnJvftw/aGQ9/5Pr6+iz0iXfGxifFhHmKjuODF8wDXrkSbTc1SzHwm5GNXaJiuu16Uhro6zgeuCY31POHqNbiGRfmEYXv2MTbOw/mz5xjj51zyERcdx7nAeqxJCf/UENVKPlTP2X7Ox+LFy3W99aJkZWRyPoKDQlQ/VrH26IL5izgXZ3vOwtnuXqnmsqM9kINRB6HIWAiFeYUQM7S3hvuCWullPvjgCedD11nvyt49YZyPxIRE1Y8V5w7a614wfyHv0djb3QM9Xd0wf2if0xEf2CvJlGeCgtwCiI6MlnjTQi0fH58VnI+ungu6znpZVq7w5XxYysu1xQebL3q6eqC7s5v3abTHh/h7dkY2FBjyeb+koB3B0udpwb4iPqpsDbrOellw7wP5aKivU/1YxTh0rKPZzbjoOt0JnafOwK7gUKd85OfkgzHbyHuzrlv9oicw7gtqod5VTGwC5+NIcpqus14W1DPk4+aN65rwP8Ret52MjTOMjdMnT/OYLGd8IBd5x3MhN8sg8THS2BJv8xEdHa/r7BiIVviQyxnGBfa/PtV+UorVd8QHcoF9Wg3Mzlrr9yJuTCuxJTofOh/uzh/ifsWp9lNwsu0kdLR1QPDOEKd8IBs5jI3sY8dhzVA9OCWEYpgpb1Dsj6LUdxhyTZyP0N3aiHN41aSmuprz4bN4yYj1BIV6OlPeLO1tiP11xOPD9UHod+Sio7Ud2lvaICgw2Ll/zrjITs+C42mZsMZ3DT+Ge45+n/XC+1O7PJbAvX/zn9PnX4V1276Tfsfj+HMkn03S1PqA8+Hjo+99jIWUmM2K8oG/UxwI7YOjLor92cT+YyTynsj2xCz0WEMu2k60QmtzK+zcEeSUD+QiKzUDMo8eg9VD9XBwXx71ePLM31Utze3f6ny8YnxQjB/VLXAnr06cXxyJ+BnIRUtTC5xoOgGBAc75yBxig/MxNH8gw+MnrIY33vIblmzYnAG953/lv9+4/X/8Z1RsDRd6TUXVXVi6In7Yn21P6pt6OB9rhvpb6aIdPihHSs6HvL6NO3zIc6zsiRiH1cK4ONHYDM0NTYyPnU75yEhJ52zgHEL+x0j2B5F7nMvovClmjLijfHQl7k8KG7fun4+ddHd1cj5mzZw9rPeRHiADcj6IG5w7qAaOaF9RL7/hfJ+YY4vS3NAMTfVN0FjXCDuG8t0d8YFcoI2FPshavxd8jCS+hPJoveGf6+tX2l2/Ikac+ef0HB2pf457eeJ+HnLRWNsADTX1EOC/w7l/zrjIYT46ru+uG1rfRV9fCz0NdD709V1PpKG2HuoZG3W2Oti+LcApH7i2i2u8eVkGWC/sn4v7jWqV3XsiOB+YX6vrq3dl4oQpnI8L59Wfl4a2kFjnB7mora6Fmqoa8N/6bz5EiYs+CHnHDWDMzoWoiChN3SM9/mrshOKvtBCfKMqHH3wMtYyLGqsNbJXVsH7tBqd8RIUfgPycPCgwGCFmqOaiVuaPKZM/5HxcunpL11kvy46AQM5HvtGo+rGi70H+9KyZc8DG2KhmbFRVVMHMGXOc8hEdGQWm3HwozCuA2AMxmvI/UCj/g+px6+Il3y8qhvMRGaG+ngdywfVYit/FOsLIhdVihcrySl6fxB4fUu3EwBAoyjNBcX4ht7PwGLKhlfyo1vbTev7gGIgpv4Dz4bdK/T1WMF+D8mtXLPMFK+OisqwCKkotvH+nMz42rt/I2TAXFEPJUH0G5MNRfDvtxeBanBrqM2TnGDkfUVFxut56Uag+w+ShGp1jJaiDrurpoC7Tft7WzduggrFhYWyUl5T/iwf537hnXmIqhtJCM5QVlcC49ybw42KdEvEn7dmopW+Uv38g58Napf48nVdFMOcO+eju7BzzsaAeDqd+CcZbIRdl5jIoKy51yQfWu0IuytlrLew9Mz95Uf9KKz050Uen+nC67npHQkNCOR+G7BzVjlFe/4qOJ8QlMi5e1HqLi3G8b0Z8fMD0C7moYExVsjlnxdKVko+ulRommH+OfKwe2r/RZXQlN8fA+di4YZPqxypfa8ri/Xhf1LOKFPrxOOIDBf0UK7PJ0G/ZNtRbBu01T+u3i36KN+pTJx1J43xkZBp0/R1lwd5RWJ8a+Zg0cYrqxyvfqzDzXrzFUFRQBBvWb7JrW8mPHTuaDlUWK1RXWCH5cPKIxyTv3UAxZ/L+Bkr1isb4XeQD+0fpOjy6ssZvLefDUqa9mAW0xYsZF1jrrdBYCEsWLXXIhygHow+CrbIKaqzVYMorkI4fOZTg0TjEtS1H/XHIj1Lq3PsvXef9P/z81N+fXcuSeSyT8xHgH+DxZ4gxiZjvQfGr1CuGnrEjzRlECdm5U/IT5s1ZwLmgelbTP57hlA867r91O9RabVBXXQP1ttoRX0P0iWjdgDgY7f5Rh5OOcj6OZWTrejxKgr2dsb8a8jFxwmRF+ED9oD4c1PfYnZxBd0X0oTes28i5yDfkgzHHaNeWsscH9tGpr66FBlsdNNbWw5xZc/lx9D88qfNDPavpp7t5LiORmTPncj6wP+ckvc/BqMjuXXs4H6kpR0f0OSIfOC/Q3EA6opSuoF8u+h5Y/zDfYGRs5EG8sHblio/x4ybyWHiMiW+qa4RNGzZL7HkSZ0LnKPfXxf7O+JpwJ+sHnoil0sb5iIjQRm1tLclbb/4PVJRZOB9Ll3gWq2AvZxD1nnxV6t+pFB+4diXW4clMz4S87DzIPZ4Lgdt3uvQ9xP+hf95c3wgnGpqlHvDIhrM6P8g99TYXj8vz5cVenfL8SSXv4ZYtAZyP3rP9ejyWwrJtiz/vf15WUurR+x3lDNrTfXdyBpEj1DPyV+wJrsGSffUe+37kwpBlgJzMHGkfw5VvTpLEvr+lsRlam05AeUmZXT7wHHE81H+T/Cel54GRSMepLrhy7TaEhx/Q9VrBucNsKuJ8jCTeylHOIPVyFW0KV/452u3y+gtU74RegzGEFFeCPoRYy+rjD6e7xYfUJ2fjFmhrboH2E63Q0dLGuJskzRHIKZ2XXHCczhj2tmze7M/56Oo+D++8rc8hilxTZm9byyugMN+kmjGhzqFeis9pElwHQ70Un9s7/AN5renjjI2s9CyXvof8/8gT1gXCulkn2zqYb75OGof43cgJrUep9X62tZ+BS5dvwMGD6q+9r/q54413wGjI43z4rlilyjHiMxxZQLuGah+QrtJrDsUd4lxkpmVCWOi+YfOBgmtXWJMUa5MmxCVIcyJ+L/Uw18I9XbhwCeejr/8qTNdgv1E1SXBgCJQUmvkeslbGjDYW1T/hOvzuOM5FRmoGO49j4DdU580d30N8TWpKKl/b7jx1GmqqbC+tk2mhXvXLawQWzofJVKLr+Qiey7geinxQHpFWRFx3/XT+Isg4ythIOQbpyem8f+JwfHNxn7CL2W3dZzqhp7NL2l9EP0crsYokkyZ+AGfO9MK585fY3Bek6/sw5U1mV6FNgnyEDvUA0JIciAyXfse+Nukp6ZB2JI2d02G3bSv565CrnjNd0NvVDWe7e2BP6F7pNVqbP1AC2XVBPtqZPzJt2kxd74chWzdtY75sFo93fevNdzR9LknxSZB6JBWOJh2FLRu2Dvv9IkflpeW8b+G5nrNQyXwyezxqSUwmM/T29kFpSQXv6aLrvmuZO3s+pCalcj6mqSQPbjiCe+Zk76BdmMq4SDmcAimHknkM1nDmDjkjuDd4vvcc7w3dd+4CTJqg/hhmZ4J1mtrbTkNX11lIiD+s678LGf/+JIg9EMv52Lhe/fkdrgTni5RDKZCcmAxHEo5IdpCnfHzC7JC+c+eh//wFuHihT6r/jvntWqj5Y0+wpy/ycfpUN2zdsl3nwIGg7kSGRcKhg4cgYm+EJs8B4wXFPe2EmATOBdpY/sK995QPFKxtfamvHy73X4Saaptb78e1X1xTUzLmUEnx3xbI+ehgvshqPQb+3/44Y2PfnnA4zPzX2P2xqvM3Ub9wP9DVvpu41jpj2ixISkji54TMz5013yM25IyEh0XA5YuX4Mqly3D18hWYMZSTLq/zi4JrzThu3CNRS80GRxLP7Cvko7WlA3wWL9O5EGRnQBC30WMPHITx4yapcozICO0D4k/5fhzaOOLcgfYhsZEYm+ixbSXnA9dGkYtrV67C9avXIDHh0Et8uhqnmiXuYCLno9paCx9Nnaazgf7s1gC+/ol8THhfnWzIBecRfC6j0HNZrJmAvxMXKJj74altZe99uI5149p1uHn9BvQxX4SOU9yLp/El+H6KARDzxcTa9uJxpQXzp/ONhdDc2AoNdU3gu1L99c1GzaZ64x3YHbybx10gH/PnfqrI5zqKRxfj1kU9QPHULsdnM76XYjwku2bBYs4FMnKY2Q2fDK3ve8qGnJEtm7fBrRs34PbNm3Dn1i0e36zEtcPrQ+dB+WL4O14rmofQj1GyT4g9Ro6lZXI+am31sHK5OuOKRlMwriqBzaUY7418LJi3ULHPFvlA+4JiczEeCu8zHhPjWtFGF2N6PRUxdjdibyS3rdA3jxLygZTiA6W/rw/u3r4NA3fuMHukSjqOMcOe9peiOGSqP4fXCY+L10eeHzNaciAymvNRXWmDoMCQ14YNrOmE8wXmmaYfPab4Gr6cD4oTFO+rPIduJHygzS/q49QpH/H1KlzTPcpsRt8VfoqwQZ9Bn5N0+Ahj4y7cGxiAwXv3eO1rGo+n8SZibRNkg5gfCz5QdoXs4XxUllv58xRzHV5lNpYvXcG5wBoeOG8oWR8U7yXZO6K9RD33vMVHwNYd3JfCPZz05DS+NqcUH+LnTJk0FQYH7sH9e4Pw4P59MOQYXppDqOavJ/OH6GPR9SH7iuZfb+nMimWrOB9l5nLIyzZKtuqrJG8z7vftDee1zrB2IK57oo2l5HfgfaPcC5EPvK+Yp0F5pXI7G/1rfJ8SbPzn3XE8jiSNcYHxiCPZ83DHxsrJNsDD+w/g0YOH8PjhI15DiMblCR9y/5xikL3lnzu0OdicfDwjG8ymEl4DBuvkvfmGtuOOSGbPmgsFeSZe1x/52DGUez0agvfTnr+Nz0Kx/6Qr/9zdNVF5LXWMG0PbEWPZs9IzJdtRKTbkjCzxWca4eAifP3oETx5/Dsa8f+qiiHXjna0tqCm/0KnPyp6xocG7OR/5OUbm2yXB7JlztTtnvPUujxdqrGvg/cSwdiDGemth7LgeZa/Ohyi4hivOHZjnkYG9mNMyeZ5gRFik4nOHvc9rqKuHJ59/Dk+fPIFnX3zBnrUvmEAfxBEfYt0v/KmlPRKM60e/DvOVj6dlQVhomJSvrAV55+13ISRoF9TV1MGJphOcj8jw/ZrxrcjeornF0d6zfO5YvWotj6nkPTWzDFJspdJsyBnBei5PGRfPnj6FL589A1OByeEY0UeT59arqX6Du4K21Vq/dZwP7A+fk3EcDoQfkHJi1MnFf3hOQktzC88BbW9pB2OuEebMmqe56095q6LNjbYIPWflz2a8X+hzGLJymA+ZCweEXpqjzQdKc1MzfPXll/D1V1/BN19/zcb20Ut+iKvz0argnL2d+XjIhzE7j/faio+Jg+VL1NNfC+Md4mLj4fTJU3C2pxe6znQxX8MKa16BODN7z1u0TeR8BLJjudhnFntp5ua7rB2qNCPLlq7gXHz7zTfw3bffQnFR8b/WLVzNh5rmhHEeFBDE+cBeQtgPAvsKYW7dWMSpYH2vrVv8wVJm4bFAl/ovwoVzF6C+th7Wr/3slVt/Qx0Ta5UgM/TsxdpWWPcNcx2xfnRsVOyozx32Pr+1tRW+/+5beP799/DD8+cwb+4CiXGqF6HmuiZKyHv/Ox42fbYZcjKzodpihbqqGmhizwPsRRTH5hV8joxWHtZsZift3bMPamw1fE/qzq3bPP4H+TBkG2ClSuuLKPmMQpuE1pDpeNjuMChgXBQaTbw++yfTZ3qFDTkjc+fMh+fPGRs/PIcff/wBTrH5XFy/82S9V9Nz/4LFsJ/5vVWWSl5X72RrO69t0dvVw3ziRr42HhEeCYsXLgGfxUvd/twPp37MdT2Y+diHDyVBS0srfMls2y+YD/j40WO+F4V8NDc2QUjwLm5fvS7XHNesxJq906fN4FwUFRSCubAY4mNd19UdzTmkxFwCP/30I/z880/wyy8/w+ZN/+TzYi3514kPUZYw/Y8Ii4CSIjPnA/Mv0ebBGOhbN27yOISHTK+fPH4MA3cHoJXpfEd7B5xmPHV1dsH169fg77//gj//+AN+++1X+OXnn/kz6Pvvv2N2xTecj7t37kBZaTnsYc/LKZO9W4Ob9sbFNSaqpSy+jo7J+/4pJVgzXYzdSEpMAjOzc/G6l5lLpf6Z3mJDzsjUDz6GZ8+ewq+//sLv4+DgIN+zpNfh2LVYy0FpwX2GnYFBvN9dRXkFdDMGiI8vnz7jfhzaqMjBH3/8ztkQ+UBuTnac5PPHhs82SX2Ix0rEvQja2xNjhfA42jxiXySlc+XkMU2rV63htYfQtrWUlEm5rmPJB0pK8lH4/bff+H39888/wGjMl/6HtYDcqflOPQ9eR3ZQ15cvWwkrlvtyO8p3pR+s8lV3nL3IB/WJpf9R7JS87407MXTDWfsX7RPcy8nPzee1ojEmoNhUJO3veJsNe4zcZ8/Cv9gzgp57C+YvfIlzZ4zg3ItrXMOZg6n2u/zYWMakvE5iby+bcoHwXsr5cDfGlNZvne0D2OsVGxUZBRZma2KNnaqKSvZc9pV0dCz5oO/G5x1y8d///s3l+rVr0uvQT3fEB9WlH+6+CL5e7GWI4s2ckddVqFeeyAdec9RrPE5xEp7yQZ+HtpkjewJ1SewVi7ZrZZkFrJZKqK6sguSk5DGzq5zNIfn5BdL88ddff0Lq0bSXzkmeqy720vL0XonXfKxi4l8nob0t6m1E15r+pvrl9LzCvykum+aV4dxfeZ8PeRzsi14LxbyXrM1aDbXVNfD+uImqYEPOCPrlDx8+5GygrYW+yPx5n0rnRbFj+JwRcz08FfkcovPhPUbEPkf0rKO8QHk+qDy3ZzhC/WXILpDHwPJestYqxoUN6my1EOC/QzVzhz07y9f3/9s7r+6oriuO72+St/TEa5liG4whgAvNBTCmCTUQogVMbNmmSUK9F9TLqLeRhHpHXUKIYjAJMXYcmzyQmCwn5CPk/M+whzNXd2buFTMgae7DXoLRaObO3PM7u569d0kuEHeBv66NZ2k/ry/0vWrvvqgzI5b4T9ztp/v3Bsm+6c2NTdRqb6ZUxV5ZKGzoXU9+fgH97/Fjevz4vzI22dp62cX/8gUT2hkoln8eGL4P/xs5U/jjLU3NdLkZZ6Lr5DzdF+2TG7WzrgmdCjaQF/nPTz/R8eNPe37r9c2yJLDEjP2AWJXqj//ql7+hXMEKzlm0YUbm5TaZ+1ioukPPzoLf8eDBDzKnjpwX8utcnzUfe3cx1sRboi+wh5E3NMqINp77edQXgotWWU/T2d5O586cW/Bs6F0fdAa4QP3Jvx89oju37wjd8jTOa6T+hM9nQgI1f7jUfAmu7TbCCNaI6o9j1ni7sNc729qpq6OTiguL5LnIxcCGHiM2W4WsG3r044+yfmJifMLluZ5mUalsmI0NWmJuzXJ9H9cxqMJrGL6jXo2VWcHreGNELwe4ccNb1AEu2juopxP9/JrFdb+xoH0OI4xMTkzQvwQbqIP/58OHVFry9KwI9ga93kD+YEPtmY2ffF+wNrgHjfp4IPm9ag8ZPk+hzqvH98Jzl/mnPxnR+hyrV70he6N3d3ZSb3c39ff00p7dexeNXeXJF/mt0BHffvMNPRRs4CwVavG0eR/VX/eX3kCMkHvN8L/xOO4P4vd4nGfWByofWKf43rWxP22+3Ff9DfUYwVpQ6y1gP1VVVFJvVzf19fTQQF8fnVDiPYuNDT1GcFbk/tdfy9psnDvEudxIpb6SdYg/bSr1Hqv5w0DPK2r7t4EN7B2qnvBl/zZvjKh8gA34GH3dgovePhrs76fY6NhFz4be9R+JPCa5+AfkwQPZ2yHy8BGXtelPf4PPZHIdNsfEApUPfH7u68p8sK3Jz+EzoP7iQ8uI+t2DjZKiYurv7ZVcYFZspc3mPI+52HwOI4xAZ4CLHyDffy/7oKAfihr7mw8bRnxGtQcy75GBzAevSzCgZ19xXRWex3YpHuN9xhN387kWfi9+LPp8tLSlhgYGaHhoSNhYFUuODT1Goi/ESi7+/h3kO7pz+7bs6efON/Mm6uz3+fgf3OuS6x3VswyBwAg+s/r9qXVTzA0zoq2x0hP8TutfehLYU9qz2DEXYuTZ5CuDgzRy5Yr0yZcvW7kk2dBjpCC/UPaY+9u338oz1F/euuVkhGN7sEG9na3ieVVW/GphCe6Jt1oi3GeINsYP/4K5GB0elj45zpUvFZ/DiL8Oyc/Ll3Gtb+7fF777fXlm5GB4hMu+4qkOhc8JWOtxYQrujae9RmsnoM/jxZhYaUuBi/HREel7qP3Blyob7hi5lJsn+12jB8df792je3+5JxhxnSmL71BPj+D7f559tdg30dZr+6KO+1ltJD0dqu7h3K9Pazf5U3Bv3PmS2tnH8Cvge48OX6GxkRGaGMN84T5nb55AYMMdI+h7g5kJmJ2APjV/vnuXwsMOuuwz0L+qjcq+4vO8bnezfLiHHx7HenjeOs1dTEGNOXG9P59hgl8+X47N7En8XXm6l2ADvreDi1GaHB8XPnl/QLLhjpEc8R2iz83dr+7S3TtfyV5nmRlZc/SI3ndu1If3xZ7J9RVqvwGz8S8+j6r3uurjas8cT3aKET60OQ5vvdDdXTf4V88xGxF1L9P244Ff0WK3C1sKXIzR9OSE9D0CmQ13jPzxxEn66s4dWcd4+8vbsk9UYUGR7J2pvUdm9zuOrz9LHTDrBj6TNV8+tM/R64PDsVd1Tp/emuR6KfX1+Hm+5gOCa8HnNRvj0/NF0MMDvveE4GJqYoKuTk1SY309rVj+SsCz4Y6RsNBwyQX6ZGJe7k0hzfbmOT0BtWf0va1rbe5pvvaVL/Lv2ufo9cHRrme9Xq2cn9D2ouAYtT/4UHO4Ruwzjt2CDZWPiEOHpY8xNTFO04KLmelpampsEHvh7yw2fuY59rtl8zbx3Y3LWevoN4h+sqPDI7IvlBob5Biwpz6mZu+nNztBrdHj9ab2RcM+7y3274kP/p3R9cz1OFr9wfu8yrNWHz1LXMrbfsNxW9wj1Z6Cr5EQnyB9DNhSM9NTdG3mKqWmpDjZWKr5DV8ysm7terI32Wl2ZlaeRbx2dUb258TMPK0ewR7F90Nvz/dlvQrXeBvxH/T+Fuz4kg9+Xe37st3lrgfos+R48Dq857jLE6IXhzY2D1+jtqaGpgQXV8HF1Wmx981QTHSMW3vCEveMYD9B/BdcXJ2aFvvNtNDHU1RaXErLNTOI9XIlvLea8SfxN/6KGfO+rvbghOj1wQFHarwJ+sqfsWxt3ZURXcrzN9THoSu0sVvI4YhIWUMFH2NGcDEruBgbHaGQ4FCLjWf0SaAzpienBBuTQi9PSNurr6dP9uPU/i36mW7dvNXZ+0dv1qM328Gfn41zmqp/q5c/eRH5CjM+N8+g5e8XNm5wUNCc58GeysnKFvdvUtpSszPo0X1NxqxgI1hs+IaRTe9sof7efhofHaexkTEaGx6VfdHTUzN052u429+8+QWBfM4dnJr5/Fr9rD0Hil7CyGOwj3F9dkb4lLNUWFDgEpO0uPANI+CgqKBI+uojgo3hoWE5O6yzrUPOodHeO7Zb9M4nPuv+yTWRC71Wi/OCRnsdGfXT2Ndj/abaflJnZOcIW+qpj3FDcIE4bmhImKUz/MzJofAI6mrvpCsDQzTUP0iDfQNy/mRudq5gYYWLDeB4frjLPXVnf5upc2T/dKHPjcNnMpOvAPdGPhNsKew72v0B53mGBgccPsYTW+rWjevU2tJCK1e8arHxnBhZ9vJKysvJowHBBuwu+CO93b3U09VDRyOPOXtaqPJ5lCP2pdcPgvsuG7VD+LybUbvNH7aQP64V690TS9hr9OLpsH/r6+qcPsZ1wcXNG7P05a0b9FnUZ25jMJb4L74FwUzKVmET9Aouejq7qbujS+iWLmqqb6JdSs8wVU6fPDmHEzO2ldk92czztH1tPcWPzOo6o7agXj99cKFnp65Y9golJSY54rXg4prDx7h18wbVVFdbOmNB6JIVlBifJLnobOukDuGPtF9up/bWNiovKaetW971yAlsdDO9SDn3ZvRvjK5lztUY0Te4ZqP5Tn5do763GqdA/yk9LuBjnD97XsZrrz2J1964Lmypm9dlThx1EJ7umSXPlxHIxg1vU0VZheQCfScxE7PV3kotTS2UnJhCWzZt87h+YTd4mwWn5saM7MdYw0bXpRk+zPSh4lieEd+bWXD3XHBx+uM/zfExbgofA7ZUXOzFObEpi4uFxcmB/SFUW1UruWhubCZ7g53swt5qqmuUM7j08iYQngWH3K+neT5marnMrGMzfIBTo2dYucbGU6ybc6t6uT0I8rGJCYnyLPgcH+OJLfWHdRssLhYJJ/DPI8IPU5WtSvbAbxRsNNQ2UH1NPdVV11Fedh6FBoc7Z9SpAj6wj+Inzyxh4VpHozYTnmfU7jfDhxm7DcK5UtUmwx6AXKqnWs9Nb2+WXExrakIcPsZ1ycXWLdssW2oRMeLCiVj/B8MOka3UJrmAXqmprKHqimqqFuxUlVfSqRMfCw7W69oaXN/F64dzxkZtfzNr2CwfZmIKXFMInYPPAy5gS2r5ZxsqaN8ButzS6qw7d/ExhC1VU1VlcbGEbC7oibCQcCotLHnCRRVVllVSRWkF2UpsVF5cTukpGbRrx0f00u9fdhsL4r5pWFuwx3y5hv2hP7jXGrjgnl/uajm3f7CD4uPi59Sdqz5GtcXFkufk/Xe3U1Z6lpOLsqIywU0plRSUUHF+MRXlFVHs+Vja+cGH9JIb20jlI/rcGenb4//su/D68ycf7EPzemd7ia8J+g/X5Kn+H3Ol4wQ76J/jOMPnWnfONSHpaWnitS0uAsXugrz95ib69HSU1CklBcWCjSLBRiEVXiqggtwCys/Jl37K+TMXKCQolF5f9YbH92G/RbXHeI/nOCl+xwyxT8ycqXzwOW0+P6E+n+dC8GuDCfjVqh/hrqYGedW9e/bJPiHo9ezoE+I42yrrzpWaEDAT9WmUSw7D4iLwOIE99eH2XZSckOzCxaWsS5SbmUs5GTmUnZ5NWWlZlBSXRMcij9N72z6g1a+tMfzeal8CnnfNXHDMSOWD83FY+2wjMR/800i+H7kh9KeM+iSKykvLnL0I1T4h7GNw3XlqSirt2vmRIX1sSeDYXpCVy1+l0ANhFB8T78JFZmomZQj/JD05ndKS0ig1MZVSElIoOT6ZPjn1Ce3ZtU+s5XfptVdWe82h+EtWr1pD27a+R0cij8oZ4DVV1c5+5+CCe645+4TAx3hSd56Xe4lCDoS4nG/1tKdYEtg6BYLaid0f7qEvPj1DGcmCjSTBRqJgI0GwES/YiEumpItJlBibSAkxCRQfHU9xF+Lo4vmLdDbqLB05dJQOhhyi7e/vpG2CnVWvvi51jvZslxGB34T8wvp1G2nLpq2yRjPiYASlJKVQXs4lOVOp48lMpZ6uLtnv3NnX2cnFsNPHGBzop9ycHArWYcLSFZaYZeUXP/81vfPWZgoLDqezn511y0XsuVgp+DceT4hNkDYZeEoTOgf6B7ooOz2LcoV+gg2Xn5MnfR74PyXCFyorLiVbSTlVllVQla2Saiqrqa66lhpq6qixroHsDU3U0mSXc1vbWh3zKXmmkpwdAy760O98wKUXIXqhnz51WtYSmv38llhiZq3AH1i7Zr3UL0cjjrlwAVbADRiC/QVbDLonU9hnsNVyJBe5kgv4O4gJID5QVlRK5SVlVFFmk3mZmooqqq2qoXrJRb3gArO+7dRqb5HzKTvkfMoOx0ylLsdMJbalMGspIy1d6hj00Znv57TEEjOseFpHmJMF/2OHsKdCg8Lo5LFTdOHMBem3ZKVlCi6ypb8P378gN19yUSy4QPysvFhwUWqjyvIKOddbcgGdUVsv8//NjU2Ci2aZs+P5lN3ClsrOzJLnV48fPUF7d++Tc4N98VksscTfvGjtszWr10qBH79/b5DMUR/YH0zB+0Nk/Dj0gJDgMEIeMzz0oMz7s59x+NBh2rj+TTmj8s0Nb/n1Wi2xxN/MPO+1+KLf3xJLfLVufSnWd2yJJZZYYoklC0v+D1BLAQIXCxQAAgAIANqIPlvStQMKaj8AAABxAgAEAAkAAAAAAAAAAAAAgAAAAABkYXRhVVQFAAclDtxoUEsFBgAAAAABAAEAOwAAAJ0/AAAAAA==</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #9</Name>
|
|
<Index>9</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPluHrCHI0T8AAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J33W5TH2se/f8l7zvWe6z0nlphmYmKLSYydqMSCit1YjhpAEQuoCCgiSpHem3RYdqlL71XBgqjYY4stMSbn9/POPTDr7AMoC7u4C88P98Wy9Xlm5jN3mfue+fvf/oG/q/Le5G//87+DFrW9VBkL494Wvl8VVSw1TtVrUkXlYXDjbuHCxVzc9rvDzc0d4RExSExKY5KKouIytJ6/iNa2i2hp7UBzSzuXpuYLaGw6j8bGNjQ0tqK+gUl9C6Ki4pnEITIyDocOHoGT016sWbMec+cuxOTPpph07WpfqmIJJgZ6zzfffI9Nm7bCy/skUs5lop6N7Y5LXWi/eBUXOjqZXMH5diYXLqPtwiXGxaU3XLQquGgiLtoMXNTVN6O2jkltE2pqGlFd04Dq6npUVdWjsrIOFRW1TGpQXl6NuLgk+Pmdwa6dzpjz/XyM++BDlRdVRpSHCeMnYaWDI3x8/HAuLRuXrlzncvHyNXRc7jJw0c656JS4YCK4aOsw6Azioqn5PGeDuGggLhqICyaCi9pGxgZx0WDgorJScFGDsrJqlJVWoVRfCb2+AvqScpQUl6O4qAwpyWk4cdwPG9dvwfSpX6usqDIsLvp7zc5uKQ4eOgJdfgkuX+3G5c4buNT5hgvOhuBC6Aziot2Yi4LCUsQnpCAuniQZe/fu57JnD4kbFxcXkn1wcd4HZ2dXLj5ML0Uw2yw8nElYNNcZxEU5cVHGuCit7GGjpMLARXFRKYoK9SgsKEEBu+4CXTHytUXIYEx7e53AimWr8Oknn6usqDIkXeHgsBZBweFoZuP6Slc3rhi4uNGHiw6Ji6TkdPifDsI+t0NYvnwVFiz4gescS1z/jOmzmB21AJuZbbdrpxOCg8KYvkhnXJQyLhgbggtdEXTaQujyCqDV5CMvNx+aHB1ys7U4yz6z1nEDPvl4ssqKKm/VFYKJFsZEZ9dNxsXNHi6u3uhhg7gQthTjIpeNt2Nevti48SfMmjXbau5v3AcT8f3sedixfRfTPb5cZ2g1BT1c5OoYG1rGRh5ysjTIzsxFdkYustJzEHgmGGtWr+vDisrJ2NUVU76YiuMn/FHJ7PvOa7cUXHQbuCDRMPuEfPBFC5fY3P2TLbV8mQOOHfVBSlIacjI1PVxk5CAzPZsxlIWM1Eykn8tAWko63A8ehv2SZSbZoaqMHi4cVq1FLPMBrl6/3cMFkz5cMImKTuCxKUvZSO9Lpn41A7t3OSMyLKqXi0zGRQZSmX2Wynz6c0mpSEk8h2jm92xctwkff/SZyskY4GLLlh2oqmnkXFzt5cJIZxATMcTEtlHHxEBC9tRmZiOGMttScJGckIJkNn8kxSUjMTYJCTGJcGI8kb5VORldXEyY8BHc3T3ReuHygFxomS+7afPYYWIg+WrKNLg47UVUeDQS4xgXsYmMjQTER8cjLioOsZGx8GC219czvlE5sXG/m3PhIXEhbKleLppbOxAYFMbX99T2M5YP/jUBS36wxwnm3wsuYiNiERMeg+iwaEQxu+yQ2yHMnD5L5cQG41FkR7VJXMg6o6Kqnq9njHVdMVghXbHPxQ3R4T1cRIZGIjIkAhFnwxEeHIYDrgfw0YefqJzYABd2dvaoqm1C1wBcbGY2lNp2Q5OPJn2Kndt3GbgICwpFWGAoQgNCEBJwFttY2/7rn+NVRqyQDfIbM7I0KhcjwQnTFTu2/huhgT1cnD0TjODTQQj2D4Qfs8eW2C1VdYkV6QzyMbpu3DH2Ma4x/6Ktg3GxXW03C8kkxgnpDOIi6FQAAv3OIODkaZzx9cdBZnNNnzpTZeQ9siFsKaWPQTkhqn8xckIc7P15D2eDi99pBDJegvwDsMFxg2pzjRAb4jHFpU74nu7XloqJTcIXihi9KiMj8+cswElmX5EuCT4dyOyuIGZ/BePEMR/MmPa1ysgI6Ixvv52DgqKyXp1h7GPYKexer2Pe3AZQ29Fy4rrXDdOlsU+6gnRGCPNJQplvEhYUwnz5UObTh8Fx1doB5zxVhs+Gk7OrwsfoyQnxOX6qjy1VWlqG//73v4iLS1Db0oL+x+vXr3k7O6xcbfQa6QtfrxOICA5DZEg4okIjEB0WCR9Pb3w86VNVl5jZnhK5Usq4lN0iY52xa8cO/pf6i/qNRJ7fVDGfZGfn8vZtbm7h/69auRKffTrZSJds2bAF0aGRiAmLQmxENOIiY7g+mTdnvsqImewpni+lyAmhdW9ZZ6xfu7bPd1G/yf2nivlkwfxFhvlH6I4P2Tz2z/8bhzmz5/DH4r20vniG+e1xkbGIj45DQkw8kmITsGPrDpWRYbCxZct2XqutzAlxcHA0vEfMV1992dcnJ72h7ENVzCNi7iEdonxN8CH3CeWr7Hfdj8ReNpLjE5GSkAxvZm/Ra6pPYhobVJOhzDunHEJlbGrRgkVv/d6gwGDejw8fPlLb2Yw+ObUp+R5vs1370+mrVqxGSnwSzjE2UpNSkJZ8DuHMd5/65XSVkUGwMWH8R7yGT5lfGxgUamRPkZ/Rn854mw9JrKjtPXyfnOYaU9pzj5OT0f+UIxwXFYv05FRkpKQhMzUdSXGJ+E7KE1UZ6Z8NXaG+Tw3f7p/39NEJQ53v1DYfnsj62NTYuWzjkk0V6B+ArNQMZKdlIicjC7mZ2Vj+4wrVJ+kvRsV0g65Ab8RFU0s7Vq5842sIfUG+oalxW7KT6XPqGB+ebP1pO2eD/pryOeov4oP8RfLh6blxvT5JTkY2YyMHmqxc5OVosGKZw5hnxChGxfQqxWrl2tbG5gt96jIofijrBBJ1zL4fG8tUpmitVvShHAMmcd7tjLxsDbQ5edDlapGfp4PHQY8xy4h8r8QAxaREbStJnq7IyNeQuVDOSUPRCSL2IuyE0b4+Iq8FyfE8um/hS8hxcGFDCZvUVF0hC/1GfzEusU4lhHRGvkaLAsZGoTYfRboCHHE/MuYY6Y8NeZ+QPO0bNkQ8/W3zGLW9KfMZ8dTVdc3wP62zj3a/XcS5le1Ec7qwU4XfTdwQE+K99J6hrh/Rd1D79tc/ZCtT38q6ZOXyVZyL4vxClBQUQV9YDM/DnmOGEfn+iA3yL+S9CDVaY71BbSivMw003k3xRaj/5f4mNsZCXIvaiMY93bu4X+W902tC1wzUXqb+5tv0O7GhtA0cVqzmXJQWlaCsWI/yklIcO3ps1Me1jONUk1BeWWe0F6FGW2hgo792G6x9q/LR/zwuYkfCpqJxa0k+TPEPaT2RxGBPO6xBGeOiXF+GitJyVJZVwIn5KKOVESUbebpio70INXlv2KC+HErO7WA/Q/0t21dknw2WrdFiX9H9UzsQG7J9Rc+LvBHxXhrjZCOZ2hemzDlkI5DIfuCaVY6ci6rySlRXVKGmshpr16wbdYz0ZaPIaL/zXAUb1EcklsxLH2v+ubB1lH74SPjnpugb+j1Z5ziuXsu4qEJtVQ3qqmtRX1OHdY7rRxUj8j0EBIYY7eucqykw8jdo7hJr3ZZmRBXrEcFGf/lcpDPqa2rRUFuHxrp6lDNd9vXMb0cFI/K10761hv3OL11FXUOrERvHvTxVRlQ2+HM/bd5sFNfavnUHmuob0NzQiJbGJlRVVOLzyV/adExLvuaNm7b2ctFzRgad/SL2O6d2UK4XqYyoekMZ+z3p64eWpma0MhuwraUV2ZnZhvnV1vgwiuMyDui8sZ6zY3rOVKIz+cR7KYbbX56hysjYZUPMm8oYZmJ8As63tuFC23m0n7+AyPBIm7SzZH9cX1pldKbSzp1v4nTviuHKjKg1TmOHDVnkWqsJ4z9EblYOOi6042J7By51XMTuXU42xYh8jRGRsUbnU/r7B/WZI971fcSIiNfLz1N8Us4HpTYX8Xy1Fso2+HgXG2KMyDkU38z6Do3MF7l88SKuXLqEzstXYLdosU34IvK17dzlbHQ+ZVa21mAv/rjUflC1G28TeW2L4o9kg4l4vlpzbv1iyhxG+kPO11q5YhXj4jKuXrmCrs5OtLW2Wr0vIrNLvrd8PmV1TSM+//wr/pq5/AiZj4HWgdVxaBmR80bE+joJrSOK52nO6u95c8lxnxPounoV17q6cP3aNSRIOUbWyIjsc2Tn6N6c23r+Ij+nUp43TM0pVPmwLpHbV+RzifV4sdYuakREf5u6Bj9Qn8t2QVFBIW5cu47uGzdws7sbe1z2WiUj8rV4eh5nbFzi+yrQmcZ+pwKM9KTwKYZaryRYUPmwDj5kX1DoDHrOXDmOwuag8aLsU9qTvKO9Hbe6b+L2rVu4zPyRL6dMtSo+ZLuKzjIWZ323tHWgoFA/YM4h3TPpaVNrnEQOCsW1BBP0HbL/Iednq2I+EW0q8yF0A7U9PTY3HzSH0vcLvUH7cZD/Kl4nnXGHsXH39h3cu3MX2jytVekQ+RoKi8r42cgtrR1obmln92bHn39bnjqNbVNrZUX+mxq/Gnm9QX2ltK/EY5kDc/Ah16coRY7vpCSn4N7du7h/7x4e3L+Pfa5uVsGI/NuurgcNXJAcPuJleE25X9i75ghVrFd/kJ6W9xOj+Yh8DRr/9FfodPqf3kt/SZ+bkiMt7KmB8iJpLMl7B01k/5Ov/uCXX/DwwQPcuH6dP2ctfFAuTHMvG03NF6DLL8b4cW9iuYNtE3X/BNtghNiQ7VfqN3puoDUqU/pV1OMO5jOzZs4yrI3sc92PRw8f4vGjR3jy+DEyMzLfqw6RfzMuPplz0dR8Ho1N5zG/164yhY+xJIuYn0ZrWh6HPHDE4wg8jx7rsSVi41CqL0VYaBhO+fnDz+8UTp70w+7dTvjRfjmzKaaPKT/nXUJ2ibx2WFhYiF+fPMHTX3/Fs6dPYW+/7L3wIfvky5Y5cDaIi8bGNgQHhxl0oMrGPzD3+/m89i3oTBDytTqeP0S5EbTue+PaNdy+eRP3797jcx/168sXL/DHH6/w119/cnn9xx/4/fff+PPPnj3FkyePkZ9fgNP+Z7Bt644+55GPNZHz976fPY9z8fzZM7x4/hxNjY3vRYfIv6XTFTM22tDA2Cgtq8Lk3rxjZf7lWJFxH0zAih9X4riXD99joJzpA6p/o9qe5sYmzkdpiR5pqWkICT5rpD/2ux3AhvUbea6qrD/Ky8q5XhF8PGQs3Wd+6J07d3Cz+yZqqmv4ehnlXoxFPuRxdjY4BC9ePMfLly/w228vue5VzukjpTu2b9/FuWhoaEV9QwtcXPYZ3tdfvHo0y9LF9jh80IPvBZjH7p32qSE+0s+lwZuN/W3M11wwb5EZxsM0rHVcz5nS5Go4H7R+fLWzE5cvXoK+uASeR44xn3DKmLHFKCYg1gk+nPgxmzvucZ376tXvbC55wJ8bKR0ifmP8uA+ZvqjmXFA9h15fyZ8TcTmRnzma41J0vsXa1ev42Ui05zLtJ0t8hAaFYMO6jey+Z1r8GiZOmMT3M6Ax0tjQyHNbqT6CdFV0ZAzsly4btWwQE6I+WF7zcmd+Hdmor1//gT//fM118UjoEPn7XVzcUM+4qKtrRm1dExwdN/SJz8k1zNR/o2XNbhKbj7Zt2cbPAKdzXxKi43A2IBibN2zBJx+/X5tyxXIHhIWEcT7qa+tRU1WNTMYsMTRauBDrKfIeAspY8PXr17n/9p///IVff30yIjpE1h2kL2qJjdom5OToDO+h2kg5j0R5H7a8JyjpC4dlq/gZrXT2JPHhsd8di+2WWN21kn3lcegwigqLUFFWgdJiPaIiojD7u7k22/4i9qucd+WxJx47OblwNkiIE/LlLOmrG+kO532ci5qaRlTXNMBxzZs9JfpbBxR7Gov7ssUzASkme9rXH0GnAjkf+1xcjc5ktVahueznXU583+ei/CLomF/kddTrves5U4VsdlErJ2pHlPaIsmaiu/sGZ4NsrMePH1lUh8i6o7i4vIeN6gZkZ+UZ3qM850EpxDrdoy2tA9JZku4HPJiPEY6QgLPwOnwM3/bWzttWXG0iDrsf4Xxo2NhKYv4S7TFlK9cv9hx6V+4prauLeJbTz86cDfJDSCgWaCk/RHyf45oNnIuq6npUVdVhzeo3uuNte+XKvomt9Mm8OQsQFhyO6PBozsfqFauNzrq3RZk2dQZCgkKQlZ6FtJQ0rkvk880sNbaFHUT9L9vc9JieIxtD1g/K/eXoPYOxzZVrCtevX+O+OsmDBw8sYmPJ35Wdnce4qEdlZR0yM9/URx5wcx3Sd4t8NyHC9rJ0fc27ZI+zKxLjkhAXFQ9vTx980VvfNVrkp81bOR90BmBESAQ/Q3Mk+FDuXyn2cqQ+Fj622MNxqL8nn6Hw824nvHr1isd6KeYr6tUtwcfSpcs5F5WVtaioqGG/7WKS7uhPqF3EWomcq2OJ+ppB2SFsLj3DfIxzSamcj61bto8qLozs9SnTcJbZjAkxCYiJiIGdtK+MpfgQezaK/hb7VyrtpuHwodz3n/IWiQ1aL+zs7DSrDpG/IzwsmnFRi/LyGuh0RYb1jqHqDqEnSK+KfXCF/WXO+prBytSvZiApIQXp5zIQExXH7avRyoaQnnNlD3A+SI9s/2mH2b6b5jqxfifbV6JWh0TYV+bkg4Rym4QO8T1xEr+9fMnX1F+8eMFz2czNx+TPpqCCcVFeXo2ysip4HvV5a8zKFBE5oUKXvA8+pk2diXPJacjKyEF4SOSYyQUUsnbNes5HSGAIs722meU7yV+guU8+Y2Ug+4r6V9hXpE+Ge1akvO8Jxa0of43yTp4/f4Z4M9aqi8/vd3NnXDA2SqtQqq/EjOmzDHME+QxDXSNXtp0l6jMHw0Z6aiZymW8VxOyNcRb2V61VKIZNfAT6B/K1TnMxIvvbQ/XPhyKyPkqIT+B5i5TD9vTpU0ycOPz6EPmz6WlZbCxXQq+vQEy08foFsSFqW03d61u0iznra0wRuvasjFxoNQUICQ7jcdCxyIaQhfPtOB/+vv7YsG6TzV0/sUZjhewQOd5FeTaU20s50rSeTrmg5uJjyeIfuc7Ql1SgpLgcqxx64uaUf081Ksr5QulLDGaMmqu+xhQhHZibo0VBfjHCQiPHPBtC5s9dyPnw9fbFOmnt15pF2DE09oQtQ/aVPD4vdnTw+hCqn6qpqRmWjSV/5ugRL5SUlDM2ylBcVGoYR2TjDeR7iFwAa80nodhCXl4Bu58yRIbHqGwohGITxIf3EW8ssbPOOh6xJiLGmXI+Jj7kc6m8vXw4G1RjSPU2X06ZZhY+cnN0fBwVFZbixPFTBjaUusOWJD4+hevElOR0lY0BZM7seZwPr8NemDt7vtVdHzHxrhoKmr9F3gnVBjx69JCzQXXqZ04HDJuPxT/Ycy6KCvUoLCjBD3ZLbZ4Pby9fvn5D+kPdE+Idca3V6zgfXsyG+Pwz26spITZoTyDxf1VVFR48+IWvibS2tAzJxpLfe9jDk3GhZzZ6Cfdj+9NbtiT29it4fgzxQX6VysC7xXmXC/x8/HBov7tN5tfI64W0988v9+/zvYBIZn83Z1h8ZGVquP+aryuCD7NHBR/y/iq2IlT7W6Kv4Hwc2O+hjv1BCvU36Y+g04HYtH6zzV2/vB86+RzEBe2XdffOHezd4zpkPqjenbjI11JedCFW9O6jO9z1wPclMTGJvGYlKSlNHfcmyjdff8f5iAgJt2iuliUZF4+bm5o4G3du3+Z1/abaWOJ9e1z2cS60zE7XavINfqzyfDhbkHXrNvFaeeJjpg32rzUI1UwSHwGnztjctcs5UFRvS/v13r55C7du3uQ1yoPlQ34PrQkQF3m5+Qg9G2543tbqZGkP4IrKOs6HvIeEKqYJ+R6kQ+Kj45idZXtrh0IW/7CUc0F7vnff6Mbq3joYU/ggXUFcaHJ10ORosa03b02cNS/va2/t7eG67yDf21HL7ER1nA9P/p+9836L6tr6+PpX7nPvm+L13hhrTDSxa1Ts3diJIiAqAkqRoggCAtIGBhiEoXekWSg2EHtDbDGabhLTc/+Ad3+37JPtyTSGwzCj54f1AIcp+5yzPmevtfcqiPEFH/nGPLfPQZT3RxCbIceAP3rwkPdFQC1SxC8OlI/57DqAC8Qk1VTV0/RpL/x8uXecnAeM78aeubutl6IvD3otgI+lS1fqOq6BREVEUWlRMe0N2ut2Y0O8EvbRRZ1gWcCIeF1VZRXdv3ef7rPXNTc2O+yDiP/vDAjkXNRU1lF15ct94sCAzKV6HAONwRpKSTpylPOBGqi6bmsjUz6cxvmoYTo2+t3BzyHq2FNLtant5cvJNaVkEbH0ajsHNYDQe6rvbh/d7b3rUH82+X8J8UmcC8R7xx96kbdrqecuBGPF+DBuS7035HOT8+pF/L/6uFaCnD/0BgUfcz9eoOu2hhIbE8v5CA8NH/RnqXM9RF0r+Zi9fDlh1+B1Ik5WrU/YJxR72qh/3Me4uHunl3rv3FH4cZSP6grGRnkNVZZV0w6/ncoamTPrVhi3iAWQ7TA5jwycax2ju3dvBOfjWGGprtMaC2pUgI+mhuODjs+xlAulrgVlL98BLNiz7dW1SHsZG3du36E7t27Tvr1hDvMxbepMqiyvpoqyKqoorVT63IA/Z/Y+5Fh+sA0O1Oeo7pGmhVzovsL52KhRLoMuL0s6u1/gw993h9P+szU+1HOIVvlAcs109JpCTdZbN29SibnEYd/8kzXrGRdVVF5SSWXFFco6hb0+N/auhcjpEP0ihpKPzZu30Y1bfdR6skPX5SGS5UtXcj7KSkqd0gcxR1jLpZXrImrFhxz3kZKcSrdu3OT19FFr0p6PLo77+wawc65gbJRTqblMsa2cjUeU+wHLPdCGkg9j7jHOR8jecF2Xh1Cqyivo9ImTNGfWwON7oRMiZ1DWFeGTymuyWuXL4fkunvH+fgG8XvF1JteuXuN9nhxZw4o9EMe5QA0P1Lax5Zs7ImKdS5yb8J1E3qDIt9QqD2r8+Pfpdu8DzserVpfH3SQiPILzEXvAOX0VuXEyM8InVefGaZEvBx0W8bzz5nrRdcbFtStXed+Jef1+hCU+5GP5RhOVMJ+2uLCEdu/co3DnbA0f+bxlH0rUZVAfH6xs2bKN81FX36zr8BDLAq9FnI/WZs+71ljTBRdXmFy+dFlZD7DHB7gwHyumogKzkoOMmCs5jt6dJS+/iPPhL9Xn0mXopKGujs6d6aSP58xz+7FiDSsqIkz5G70gLjP75dLFHorcH2WXD8RpmgsYGyYzFTI9w16Qp92v3r5HnA/dtnKNxETFcD72BO7xiPHKdlBBfgH1dPfQxa6LlJ9rsrt2NWfWPF438Fh+Ia+rJ/iADQTfSdQpwU+xX+NO8YpeXos5H23t53TddZGsWb2W82HKz3fbMQo/BzaU3IsmIy2DsdFN3Re62DxYb3UNS/y9cd0mzkVBbgGZjCab3yl8B8GMO8RehYVHcT5Sj2bquusiGTt6POfj0sXuYR8L/Fz5GS5+ij03tW8fuDuIus538fVd9Ii0x8cGxoepn438nBfPA6xdyTabO0s+85nAx46AQF13XSi11dWcD6wJDfc8Ye81WMMS+YSBu/YwNs7T+bPnGOPn7PIRGRbJuUA91tjov2qIeko+VOfZbs7H/PmLdb11oaQmp3A+/Hz93X6scu3RObPncS7Odp6lsx1nlJrL1vZA9ofupzxDLuVm5VJ4/94a9gU9pZd53/3HnA9dZ10ru3cFcj5iomPcfqyYO8Re95zZc3mPxjMdndTZ3kGz+/c5rfGBXknGLCPlZOZQWEiYwpsn1PLx8lrC+WjvvKDrrItl6ZJlnA9zUZFn8cHmi872Tupo6+B9Gi3xIf+elpxGORnZvF+S7zY/5fM8wb4SfJRV1Oo662LB3gf4qK2pdvuxynHoqKPZwbhoP9VGbSdP0w6/AJt8ZKdnkyHNwHuzrln5oicw9gU9od5VeEQ05+NQXKKusy4W6Bn4uHH9mkf4H3Kv2zbGxmnGxqkTp3hMli0+wEXW0UzKTM1Q+BhsbImr+QgLi9J1dhjEU/hQy2nGBfpfn2w5ocTqW+MDXKBPawazs1aveBE35imxJTofOh+Ozh/yfsXJlpN0ovkEtTa3kt92f5t8gI10xkbakaO0qr8enBYiYphF3qDcH0Wr78jINHI+AnZ6RpzDqyaV5eWcD6/5CwatJxDR01nkzYq9Dbm/jnx8oD6I+B1ctDa1UEtjM/n6+Nn2zxkXaUmpdDQxhVYtW8WPYc9R7jFrSdR9DNTvwbmI3EHRo1bkyGhVI6i69jjnw8tL3/sYDikwmTTlA7+LOBCxDw69kvuzyf3HhKh7IlsSk9RjDVw0H2+ipoYm2r7N1yYf4CI1IZlSDh+hlf31cKC/lmpDyKIeo+ghJ9gW563Og7LX713n4/XmQ8T4iboFjuTVyfOLNZE/A1w01jfS8frj5LPVNh8p/WxwPvrnDzlPw5pYmuNwPoJ1V/Kxqr+/lS6ew4fQATUf6vo2jvChzrGyJHIcViPj4nhdAzXU1jM+ttvkIzk+ibOBOUT4H4PZHwT3mMtkPmT7SuSja3F/4tm4df98+KSjvY3zMW3q9AG9T+gBGFDzIbjBs1bUwJHtK9HLbyDfJ+fYQhpqG6i+pp7qqutoW3++uzU+wAVsLPggq1e84GMw8SUij9YV/rm+fuW561eCEVv+uXiODtY/x16evJ8HLuqqaqm2soa2em+z7Z8zLtKZj4713TX967vw9T2hp4HOh76+64zUVtVQDWOjuqKaPt2y1SYfWNvFGm9WagatlfbP5f1Gd5WgvXmcD+TX6vrqWhk7ZgLn48J5989Lgy0k1/kBF1XlVVRZVknem//OhyyRYfsp62gGGdIyKTQ41K3O6423VnD596gELu9ObOcyfuqvXNZve67HXw2TiPgrT4hPlOX99yZRFeOisrSCKkrKae3qdTb5CA3aR9npWZSTYaDw/pqLrpo//vV/H3P9H/HfCK7/74yv5/o/7qOvFAZsyawFPZyPnis3dZ11sWzb6sP5yDYY3H6s8D2EPz1t6gyqYGyUMzbKisto6pQZNvkICwklY2Y25WblUMS+cE39j3/+czLX/7dG7uL6/9+xxQPS/zGT7/HX4314/5sjtvDP+8c/RinfIfI/RD1uXVzk+4WGcz5Cgt2v54FasB4r4ndRRxhclJpLqaSohNcnscSHUjvRx5/ysoyUn53L7SwcAxuOrF9BT6Gv0FtZ/6HXjug/OJH1Hxzh88CVo+fe1HJKzx8cBjFm53A+Vix3/x4ryNcQ+bVLFi2jUsZFSWExFR8z8/6dtvhYv3Y9Z8OUk08F/fUZwIdYD5N9gJGjDVyfR39w2SH9h+D1sJvwfthR+CzYVVqde1q6gfMRGhqp660LRdRnGN9fo3O4BGu99urpQJfFft7mjVuomLFhZmwUFRRZXLOS/8aeeYExn47lmqgwr4BGvTOGH8e+jKP6DxE+tODJVdfH29uH81Fa5v55Oq+KIOcOfHS0tQ37WMDHQOqXIN4KXBSaCqkw/5hdPlDvClwUsdea2XumfvSi/hWYhP5jroD+Y+6w5gMMp0wY/75SH07XXddIgH8A5yMjLd1tx6iufyWOR0fGMC5e1HqLDLe+byb4eI/pF7goZkyVsDlnycKlio/uKTVMkH8OPlb279/oMrSSmZ7B+Vi/boPbj1W91pTK+/G+qGcVoopBt8QHBH5KKbPJ4Lds6e8tA3vN2frtEFfWp449lMj5SE7J0PV3iAW9o1CfGnyMGzvB7cer3qsw8V68+ZSXk0fr1m6waFupjx05nERl5lIqLy6luINxgx6TuneDiDlT9zfQKo4X8bvgA/2jdB0eWlm1YjXnw1zoeTELsMXzGReo9ZZryKUF8xZa5UOW/WH7qaKkjCpLy8mYlaMcP3Qg2qlxwN4T84O1/jjCj9Lq3Lt7rvH+HytWuH9/dk+WlCMpnI+t3lud/gw5JhH5HiJ+VfSKEc/YweYMQvy3b1f8hFkz5nAuRD2rDydNscmHOO69+VOqKq2g6vJKqqmoGvQ1hE8k1g0EB0PdP+pg7GHOx5HkNF2Ph0jQ2xn91cDH2DHjNeED+iFyUUXfY0dyBh0V2Ydet2Y95yI7I5sM6Qara1fq4+ijU1NeRbUV1VRXVUMzps3kx+F/OFPnR/SsFj8dzXMZjEydOpPzgf6c4/Q+B0MiO3fs4nwkxB8e1OfIfGBeEHOD0BGtdAV+uex7oP5hdoaBsZFFUdLalT0+Ro8ay2PhERNfX11HG9ZtVNhzJs7EUo4gnglyf2dLOeyDFXNJBecjONgzamt7krz15r+puNDM+Vi4wLlYBUs5g9B74auK/p1a8YG1K7kOT0pSCmWlZVHm0Uzy+XS7Xd9D/h/884aaOjpe26D0gAcbtur8gHvR21w+rs6Xl3t1qvMntbyHmzZt5XycOdutx2NpLFs2efP+54UFx5x6v7WcQUu670jOIDiCngl/xZJgDVbYV++w7wcXGakZlJ6Sruxj2PPNhcSy72+sa6Cm+uNUVFBokQ+cI8Yj+m8K/0nreWAw0nqynS5fvUVBQft0vdZw7jAZ8zgfg4m3spYzKHq5yjaFPf8cdru6/oKodyJegxhCEVcCH0KuZTXp/Q8d4kPpk7N+EzU3NFLL8SZqbWxm3I1T5ghwKs5LLRinLYZdLRs3enM+2jvO04i39TlEk2vK7O3SomLKzTa6zZigc9BL+TktBOtg0Ev5ub3N24fXmj7K2EhNSrXre6j/D55QFwh1s040tzLffI0yDvm7wYlYj3LX+9nccpp6Ll2n/fvdv/a+288db4wgQ0YW52PZkuVuOUY8w8EC7BpR+0DoqnjNgcgDnIuUxBQKDNgzYD4gWLtCTVLUJo2OjFbmRHyv6GHuCfd07twFnI+u7iv0oQf2G3Un8fPxp4JcE99D9pQxw8YS9U+4Do8cxblITkhm53GEVvTXeXPE95BfkxCfwNe2206eosqyipfWyTyhXvXLawRmzofRWKDr+SCey1gPBR8ij8hTRF53/Xj2PEo+zNiIP0JJcUm8f+JAfHN5n7Cd2W0dp9uos61d2V+En+MpsYpCxo19j06fPkPnzvewuc9X1/cBypvMroJNAj4C+nsAeJLsCwlSfkdfm6T4JEo8lMjO6aDDtpX6deCq83Q7nWnvoLMdnbQrYLfyGk+bPyA+7LqAjxbmj0yePFXX+wHI5g1bmC+byuNd33pzhEefS2xULCUcSqDDsYdp07rNA36/zFHRsSLet/Bc51kqYT6ZJR49SYxGE50500XHCop5Txdd9+3LzOmzKSE2gfMx2Q16eA9UsGcu7B3YhQmMi/iD8RR/II7HYA1k7lAzgr3B82fO8d7QXecu0Lgx7h/DbEtQp6ml+RS1t5+l6KiDuv7bkdHvjqOIfRGcj/Vr3T+/w55gvog/EE9xMXF0KPqQYgc5y8dHzA7pOneeus9foIsXupT678hv94SacZYEPX3Bx6mTHbR506c6B1YEuhMSGEIH9h+g4N3BHnkOiBeU97Sjw6M5F7CxvKV77ywfENS27unqpkvdF6myvMKh92PtF2tqWsYcaineW3w4H63MF1mpx8D/3R9nbOzZFUQHmf8asTfC7fxN6Bf2A+3tu8lrrVMmT6PY6Fh+TmB+5rTZTrGhZiQoMJguXeyhyz2X6MqlyzSlPyddXecXgrVmjBt7JJPc3FaNYvYV+GhqbCWv+Yt0LiTZvtWX2+gR+/bT6FHj3HKMYETsA+Knej8ONo48d8A+FGzERMQ4bVup+cDaKLi4evkKXbtylWKiD7zEp71xurNE7o/hfJSXVtEHEyfrbMCf3byVr3+CjzHvuicbasE8gucyRDyX5ZoJ+F1wAUHuh7O2laX3YR3r+tVrdOPadepivog4LuJenI0vwftFDICcLybXtpePay3In8425FJDXRPVVtfTsqXuX99syGyqN0bQTr+dPO4CfMyeqU1dMmvx6HLcuqwHlvqRDWROwXtFjIdi18yZz7kAIweZ3fBR//q+s2yoGdm0cQvdvH6dbt24Qbdv3uTxzVpcO1wfcR4iXwy/41qJeQh+jJZ9QiwxciQxhfNRVVFDSxe7Z1zRUAriqqLZXIp4b/AxZ9ZczT5b5gP2hYjNRTwU7jOOyXGtsNHlmF5nRY7dDd4dwm0r+OahUj6QVnxAuru66M6tW9R7+zazR8qU44gZdra/lIhDxrMEP3GdcFy+Pur8mKGSfSFhnI/ykgry9fF/bdhATSfMF8gzTTp8RPM1fDUfIk5Qvq/qHLrB8AGbX9bHiRM+4OtVWNM9zGzGZUtWaMKG+AzxObEHDzE27tDd3l7qu3uX174W43E23kSubQI2BPPDwQdkh/8uzkdJUSl/niLX4VVmY/HCJZwL1PDAvKFlfVDcS2HvyPaS6LnnKj62bt7GfSns4STFJfK1Oa34kD9nwriJ1Nd7l+7d7aP79+5RRnrGS3OIqPnrzPwh+1ji+gj7Ssy/rtKZJYuWcz4KTUWUlWZQbNVXSd5m3O/ZHcRrnaF2INY9YWNp+R24byL3QuZD9PUWeaVqO1v0PtaCjf+MHMXjSBIZF4hHHMyehyM2VnpaBj24d58e3n9Ajx485DWExLic4UPtn4sYZFf551ZtDjYnH01OI5OxgNeAQZ28N9/w7LgjIdOnzaScLCOv6w8+tvXnXg+F4H5a8rdFz3BH/XNH10TlWuoQxI3BdkQse2pSimI7asWGmpEFXosYFw/os4cP6fGjz8iQ9VddFLluvK21BXfKL7Tps7JnbIDfTs5HdrqB+XaxNH3qTM+dM94ayeOF6qpreT8x1A5ErLcnjB3rUfZ6gWMNV547kOeRjF7MiSk8TzA4METzucPS59VW19Djzz6jJ48f09PPP2fP2hdMwAexxodc9ws/PWmPBHH98OuQr3w0MZUCAwKVfGVPkBFvjyR/3x1UXVlNx+uPcz5CgvZ6jG8l7C0xt1jbe1bPHSuXr+YxlbynZmqGElupNRtqRlDP5Qnj4umTJ/TF06dkzDFaHSN8NHVuvTvVb3BUYFutXrGG84H+8OnJR2lf0D4lJ8Y9ufgPz0lobGjkOaAtjS1kyDTQjGmzPO76i7xV2eaGLSKes+pnM+4XfI6M1HTmQ2bSPqmX5lDzAWmob6Avv/iCvvryS/r6q6/Y2D54yQ+xdz6eKpizP2U+HvgwpGXxXltR4ZG0eMEStxkj4h0iI6Lo1ImTdLbzDLWfbme+RimtegXizCw9b2GbqPnwYccy0WcWvTQzs+3WDtWakUULl3Auvvn6a/r2m28oPy//b+sW9uZDj+aEce671ZfzgV5C6AeBvkLIrRuOOBXU99q8yZvMhWYeC9TTfZEunLtANVU1tHb1J6/c+ht0TK5VAmbEsxe1rVD3DbmOqB8dERox5HOHpc9vamqi7779hp599x19/+wZzZo5R2Fc1Itw57omWsg7/x1NGz7ZSOkpaVRuLqXqskqqZ88D9CKKZPMKniNDlYc1ndlJu3ftocqKSr4ndfvmLR7/Az4y0jJoqZvWF9HyGQWbRKwhi+OBOwMph3GRazDy+uwffTjVJWyoGZk5YzY9e8bY+P4Z/fDD93SSzefy+p0z670ePffPmU97md9bZi7hdfVONLXw2hZn2juZT1zH18aDg0Jo/twF5DV/ocOf+/7ESVzX/ZiPffBALDU2NtEXzLb9nPmAjx4+4ntR4KOhrp78/XZw++p1ueZYs5Jr9n44eQrnIi8nl0y5+RQVYb+u7lDOIQWmAvrxxx/o+fMf6aefntPGDX/l86KW/OvEhywLmP4HBwZTQZ6J84H8S9g8iIG+ef0Gj0N4wPT68aNH1Hunl5qYzre2tNIpxlN7Wztdu3aV/vzzD/r9t9/ol19+pp+eP+fPoO+++5bZFV9zPu7cvk2Fx4poF3teThjv2hrcYm9cXmMStZTl14lj6r5/WglqpsuxG7ExsWRidi6ue6HpmNI/01VsqBmZ+N4kevr0Cf3880/8Pvb19fE9S/E6jN0TazloLdhn2O7jy/vdFRcVUwdjQPDxxZOn3I+DjQoOfvvtV86GzAe4OdF6gs8f6z7ZoPQhHi6R9yLE3p4cK4TjsHnkvkha58qpY5pWLl/Faw/BtjUXFCq5rsPJByQ+7jD9+ssv/L7+/vtvZDBkK/9DLSBHar6LngevIzvQ9cWLltKSxcu4HbVs6Qpavsy94+xlPkSfWPE/ETul7nvjSAzdQNb+ZfsEeznZmdm8VjRiAvKNecr+jqvZsMTIPfYs/IM9I8Rzb87suS9xbosRzL1Y4xrIHCxqv6uPDWdMyusklvayRS4Q7qWaD0djTMX6ra19AEu9YkNDQsnMbE3U2CkrLmHP5WWKjg4nH+K78bwDF//7359crl29qrwOfro1PkRd+oHui+D1ci9DiCtzRl5XEb3yZD5wzaHXOC7iJJzlQ3webDNr9gR0Se4VC9u1pNBMpeYSKi8po7jYuGGzq2zNIdnZOcr88ccfv1PC4cSXzkmdqy730nL2XsnXfLhi4l8nEXtboreRuNbib1G/XDyv8LeIyxbzykDur7rPhzoO9kWvhXzeS7aitJyqyivp3VFj3YINNSP/3955tkdxXXH8fJO8S0/8PDZgG4ztUE1zwRibIlSRRAuY2LJNk4R6L6j3XlYS6h11CSGKwSTEsuPY5IUTO48T8hFy/3c5y93R7O6M2BWSdl6cB1hWq5md+7un3nPgl8/Pz0s2YGvBF9m+bYfjvrh2DPuMetZjsaLVIRYfS8eIOueI9zo+F6g9D6o922NGeL4M2wXaGlg5S7a+QXDRRC1NNgoPi1g2ukPPztq3b7/kAnEX+OvaeJb2fr2h71V791mdGbHEd+JqPz18MED2TW9paqY2WwulKvbKcmFD73ry8wvof48e0aNH/5Wxyba2q07+lzeY0M5Asfxz//B9+O/ImcIfb21uoastOBNdL+fpPmuf3KiddUPoVLCBvMh/fvqJTp580vNbr2+WJf4lZuwHxKpUf/xXv/wN5QpWcM6iHTMyr7bL3Mdy1R16dhb8jocPv5M5deS8kF/n+qzF2LsrsSbeEn2BPYy8oVFGtPHcT6M+E1y0yXqaro4OunDuwrJnQ+/6oDPABepP/v3jj3Tv7j2hW57EeY3Un/D5TIi/5g9Xmy/Btd1GGMEaUf1xzBrvEPZ6V3sHdXd2UXFhkTwXuRLY0GOkoqJS1g39+MMPsn5icmLS6b3uZlGpbJiNDVpibs1yfR/XMajCaxi+o16NlVnB53hiRC8HuGXzNuoEFx2d1NuFfn4t4rpfXdY+hxFGpiYn6V+CDdTB//P776m05MlZEewNer2BfMGG2jMbf/JzwdrgHjTq6/7k96o9ZPg8hTqvHt8Lz13mP33JiNbn2LD+Vdkbvaeri/p6emigt48OfHBwxdhV7nyR3wod8fVXX9H3gg2cpUItnjbvo/rrvtIbiBFyrxn+O17H80H8Hq/zzHp/5QPrFN+7NvanzZd7q7+hHiNYC2q9Beyn6soq6uvuof7eXhrs76dTSrxnpbGhxwjOisx/+aWszca5Q5zLjVTqK1mH+NKmUp+xmj/097yitn8b2MDeoeoJb/Zv88SIygfYgI/R3yO46OunoYEBio2OXfFs6F3/scgTkot/QB4+lL0dIiOOOa1NX/obfCaT67A5JuavfOD+ua8r88G2Jr+Hz4D6ig8tI+p3DzZKioppoK9PcoFZsVUVFY7zmCvN5zDCCHQGuPgO8u23sg8K+qGosb/FsGHEZ1R7IPMe6c988LoEA3r2FddV4X1sl+I13mfccbeYa+Hfxa9FX4yWttTw4CCNDA8LG6ty1bGhx0j0pVjJxd+/gXxD9+7elT39XPlmnkSd/b4Y/4N7XXK9o3qWwR8YwT2r359aN8XcMCPaGis9wf9p/Ut3AntKexY75lKMPJt8bWiIRq9dkz75mhfWrUo29BgpyC+UPeb+9vXX8gz153fuOBjh2B5sUE9nq3helRW/Wl6CZ+KplgjPGaKN8cO/YC7GRkakT45z5avF5zDir0Py8/JlXOur+Xnhu8/LMyNhoeFO+4q7OhQ+J2Ctx+UpeDbu9hqtnYA+j5djYqUtBS4mxkal76H2B1+tbLhi5Epunux3jR4cf33wgB785YFgxHmmLL5DPT2C738p+2qxb6Kt1/ZGHffT2kh6OlTdw7lfn9Zu8qXg2bjyJbWzj+FXwPceG7lG46OjNDmO+cL9jt48/sCGK0bQ9wYzEzA7AX1q/nz/PoWGhDntM9C/qo3KvuJSXrerWT7cww+vYz0stU5zFVNQY05c789nmOCXL5ZjM3sSf1funiXYgO9t52KMpiYmhE8+4JdsuGIkR3yH6HNz/4v7dP/eF7LXWWZG1gI9ovedG/XhvbFncn2F2m/AbPyLz6Pqfa76utozx52dYoQPbY7DUy90V9cN/tVzzEZE3cu0/XjgV7TabMKWAhfjNDM1KX0Pf2bDFSN/PHWavrh3T9Yx3v38ruwTVVhQJHtnap+R2f2O4+tPUwfMuoHPZC2WD+179PrgcOxVndOntya5Xkr9PH6ft/mA4Fpwv2ZjfHq+CHp4wPeeFFxMT07S9ekpampooLVrXvR7NlwxEhIcKrlAn0zMy70tpMXWsqAnoPaMvqd1rc09Lda+8kb+XfsevT442vWs16uV8xPaXhQco/YFH2oO14h9xrFbsKHyEX40QvoY05MTNCO4mJ2ZoeamRrEX/s5i42fuY7+7du4R392EnLWOfoPoJzs2Mir7QqmxQY4Bu+tjavZ5erIT1Bo9Xm9qXzTs855i/+744P8zup65HkerP3ifV3nW6qOniUt52m84botnpNpT8DUS4hOkjwFbanZmmm7MXqfUlBQHG6s1v+FNRl5/bRPZmm00NzsnzyLeuD4r+3NiZp5Wj2CP4ueht+d7s16Fa7yN+A96Pwt2vMkHf67297Ld5aoH6NPkePA5vOe4yhOiF4c2Ng9fo662lqYFF9fBxfUZsffNUkx0jEt7whLXjGA/QfwXXFyfnhH7zYzQx9NUWlxKazQziPVyJby3mvEn8TO+ihnzvq724ITo9cEBR2q8CfrKl7Fsbd2VEV3K8zfU16ErtLFbSER4pKyhgo8xK7iYE1yMj41SUGCwxcZT+iTQGTNT04KNKaGXJ6Xt1d/bL/txan8W/Ux379zt6P2jN+vRk+3gy3vjnKbq3+rlT55FvsKMz80zaPn7hY0bGBCw4H2wp3KyssXzm5K21NwsenTfkDEr2AgWG95hZMcbu2igb4AmxiZofHScxkfGZF/09NQM3fkarvY3T36BP59zB6dm7l+rn7XnQNFLGHkM9jFuzs0Kn3KOCgsKnGKSFhfeYQQcFBUUSV99VLAxMjwiZ4d1tXfKOTTaZ8d2i975xKfdP7kmcrnXanFe0GivI6N+Gvt6rN9U20/qjOwcYUs98TFuCS4Qxw0OCrF0ho85ORoaTt0dXXRtcJiGB4ZoqH9Qzp/Mzc4VLKx1sgHs7w91eqau7G8zdY7sny73uXG4JzP5CnBv5J5gS2Hf0e4POM8zPDRo9zEe21J3bt2kttZWWrf2JYuNJWLkhefXUV5OHg0KNmB3wR/p6+mj3u5eOh55wtHTQpVPo+yxL71+ENx32agdwufdjNptvrCFfHGtWO/uWMJeoxdPh/3bUF/v8DFuCi5u35qjz+/cok+iPnEZg7HEd/EtCGZStgmboE9w0dvVQz2d3UK3dFNzQzPtV3qGqXL29OkFnJixrczuyWbep+1r6y5+ZFbXGbUF9frpgws9O3XtCy9SUmKSPV4LLm7YfYw7t29RbU2NpTOWhS5ZS4nxSZKLrvYu6hT+SMfVDupoa6fyknLavetNt5zARjfTi5Rzb0Z/xuha5lyNEX2Dazaa7+TPNep7q3EK9J/S4wI+xsXzF2W89sbjeO2tm8KWun1T5sRRB+HumVmytIxAtmzeTpVllZIL9J3ETMw2Wxu1NrdScmIK7dqxx+36hd3gaRacmhszsh9jDRtdl2b4MNOHimN5RnxvZsHVe8HF2Q//tMDHuC18DNhScbGXF8SmLC6WFydHDgdRXXWd5KKlqYVsjTayCXurub5JzuDSy5tAeBYccr/u5vmYqeUys47N8AFOjZ5h5Robd7Fuzq3q5fYgyMcmJiTKs+ALfIzHttQfXt9scbFCOIF/Hh4aQdUV1bIHfpNgo7GukRpqG6i+pp7ysvMoODDUMaNOFfCBfRR/8swSFq51NGoz4X1G7X4zfJix2yCcK1VtMuwByKW6q/XcsX2n5GJGUxNi9zFuSi5279pj2VIriBEnTsT6Dws5ShWlFZIL6JXaqlqqqayhGsFOdXkVnTn1oeBgk66twfVdvH44Z2zU9jezhs3yYSamwDWF0Dm4H3ABW1LLP9tQAYeO0NXWNkfduZOPIWyp2upqi4tVZHNBT4QEhVJpYcljLqqpqqyKKksrqaKkgsqLyyk9JYP2v/s+Pff7513GgrhvGtYW7DFvrmFf6A/utQYuuOeXq1rOve+8S/Fx8QvqzlUfo8biYtVz8vabeykrPcvBRVlRmeCmlEoKSqg4v5iK8ooo9mIs7XvnPXrOhW2k8hF94Zz07fFv9l14/fmSD/aheb2zvcTXBP2Ha3JX/4+50nGCHfTPsZ/hc64755qQ9LQ08dkWF/5id0G2b91BH5+NkjqlpKBYsFEk2CikwisFVJBbQPk5+dJPuXjuEgUFBNMr6191+3vYb1HtMd7jOU6K/2OG2CdmzlQ++Jw2n59Q389zIfizwQT8atWPcFVTg7zqwQOHZJ8Q9Hq29wmxn22VdedKTQiYifo4yimHYXHhf5zAnnpv735KTkh24uJK1hXKzcylnIwcyk7Ppqy0LEqKS6ITkSfprT3v0IaXNxr+3WpfAp53zVxwzEjlg/NxWPtsIzEf/KeRfD9yQ+hPGfVRFJWXljl6Eap9QtjH4Lrz1JRU2r/vfUP62BL/sb0g69a8RMFHQig+Jt6Ji8zUTMoQ/kl6cjqlJaVRamIqpSSkUHJ8Mn105iM6sP+QWMtv0ssvbvCYQ/GVbFi/kfbsfouORR6XM8Brq2sc/c7BBfdcc/QJgY/xuO48L/cKBR0Jcjrf6m5PscS/dQoEtRMfvHeAPvv4HGUkCzaSBBuJgo0EwUa8YCMumZIuJ1FibCIlxCRQfHQ8xV2Ko8sXL9P5qPN07OhxCgs6Snvf3kd7BDvrX3pF6hzt2S4jAr8J+YVNr2+hXTt2yxrN8LBwSklKobycK3KmUufjmUq93d2y37mjr7ODixGHjzE0OEC5OTkUqMOEpSssMcvKL37+a3pj204KCQyl85+cd8lF7IVYKfg7Xk+ITZA2GXhKEzoH+ge6KDs9i3KFfoINl5+TJ30e+D8lwhcqKy6lipJyqiqrpOqKKqqtqqH6mjpqrK2npvpGsjU2U2uzTc5tbW+zz6fkmUpydgy46Ee/80GnXoTohX72zFlZS2j2/i2xxMxagT/w2sZNUr8cDz/hxAVYATdgCPYXbDHonkxhn8FWy5Fc5Eou4O8gJoD4QFlRKZWXlFFlWYXMy9RWVlNddS01SC4aBBeY9W2jNlurnE/ZKedTdtpnKnXbZyqxLYVZSxlp6VLHoI/OYu/TEkvMsOJuHWFOFvyPd4U9FRwQQqdPnKFL5y5JvyUrLVNwkS39ffj+Bbn5kotiwQXiZ+XFgovSCqoqr5RzvSUX0Bl1DTL/39LULLhokTk7nk/ZI2yp7MwseX715PFTdPCDQ3JusDfuxRJLfM2L1j7buOE1KfDjDx8MkDnqI4cDKfBwkIwfBx8REhhCyGOGBofJvD/7GRFHI2jLpq1yRuXWzdt8eq2WWOJrZpZ6LT7r32+JJd5at94U6zu2xBJLLLHEkuUl/wdQSwECFwsUAAIACADaiD5bh6whyNE/AAAAcQIABAAJAAAAAAAAAAAAAIAAAAAAZGF0YVVUBQAHJQ7caFBLBQYAAAAAAQABADsAAAAEQAAAAAA=</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #10</Name>
|
|
<Index>10</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPlv0ridx/j8AAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J33W5TH2se/f8l7zvWe6z0nlphmYmKLSYydqMSCit1YjhpAEQuoCCgiSpHem3RYdqlL71XBgqjYY4stMSbn9/POPTDr7AMoC7u4C88P98Wy9Xlm5jN3mfue+fvf/oG/q/Le5G//87+DFrW9VBkL494Wvl8VVSw1TtVrUkXlYXDjbuHCxVzc9rvDzc0d4RExSExKY5KKouIytJ6/iNa2i2hp7UBzSzuXpuYLaGw6j8bGNjQ0tqK+gUl9C6Ki4pnEITIyDocOHoGT016sWbMec+cuxOTPpph07WpfqmIJJgZ6zzfffI9Nm7bCy/skUs5lop6N7Y5LXWi/eBUXOjqZXMH5diYXLqPtwiXGxaU3XLQquGgiLtoMXNTVN6O2jkltE2pqGlFd04Dq6npUVdWjsrIOFRW1TGpQXl6NuLgk+Pmdwa6dzpjz/XyM++BDlRdVRpSHCeMnYaWDI3x8/HAuLRuXrlzncvHyNXRc7jJw0c656JS4YCK4aOsw6Azioqn5PGeDuGggLhqICyaCi9pGxgZx0WDgorJScFGDsrJqlJVWoVRfCb2+AvqScpQUl6O4qAwpyWk4cdwPG9dvwfSpX6usqDIsLvp7zc5uKQ4eOgJdfgkuX+3G5c4buNT5hgvOhuBC6Aziot2Yi4LCUsQnpCAuniQZe/fu57JnD4kbFxcXkn1wcd4HZ2dXLj5ML0Uw2yw8nElYNNcZxEU5cVHGuCit7GGjpMLARXFRKYoK9SgsKEEBu+4CXTHytUXIYEx7e53AimWr8Oknn6usqDIkXeHgsBZBweFoZuP6Slc3rhi4uNGHiw6Ji6TkdPifDsI+t0NYvnwVFiz4gescS1z/jOmzmB21AJuZbbdrpxOCg8KYvkhnXJQyLhgbggtdEXTaQujyCqDV5CMvNx+aHB1ys7U4yz6z1nEDPvl4ssqKKm/VFYKJFsZEZ9dNxsXNHi6u3uhhg7gQthTjIpeNt2Nevti48SfMmjXbau5v3AcT8f3sedixfRfTPb5cZ2g1BT1c5OoYG1rGRh5ysjTIzsxFdkYustJzEHgmGGtWr+vDisrJ2NUVU76YiuMn/FHJ7PvOa7cUXHQbuCDRMPuEfPBFC5fY3P2TLbV8mQOOHfVBSlIacjI1PVxk5CAzPZsxlIWM1Eykn8tAWko63A8ehv2SZSbZoaqMHi4cVq1FLPMBrl6/3cMFkz5cMImKTuCxKUvZSO9Lpn41A7t3OSMyLKqXi0zGRQZSmX2Wynz6c0mpSEk8h2jm92xctwkff/SZyskY4GLLlh2oqmnkXFzt5cJIZxATMcTEtlHHxEBC9tRmZiOGMttScJGckIJkNn8kxSUjMTYJCTGJcGI8kb5VORldXEyY8BHc3T3ReuHygFxomS+7afPYYWIg+WrKNLg47UVUeDQS4xgXsYmMjQTER8cjLioOsZGx8GC219czvlE5sXG/m3PhIXEhbKleLppbOxAYFMbX99T2M5YP/jUBS36wxwnm3wsuYiNiERMeg+iwaEQxu+yQ2yHMnD5L5cQG41FkR7VJXMg6o6Kqnq9njHVdMVghXbHPxQ3R4T1cRIZGIjIkAhFnwxEeHIYDrgfw0YefqJzYABd2dvaoqm1C1wBcbGY2lNp2Q5OPJn2Kndt3GbgICwpFWGAoQgNCEBJwFttY2/7rn+NVRqyQDfIbM7I0KhcjwQnTFTu2/huhgT1cnD0TjODTQQj2D4Qfs8eW2C1VdYkV6QzyMbpu3DH2Ma4x/6Ktg3GxXW03C8kkxgnpDOIi6FQAAv3OIODkaZzx9cdBZnNNnzpTZeQ9siFsKaWPQTkhqn8xckIc7P15D2eDi99pBDJegvwDsMFxg2pzjRAb4jHFpU74nu7XloqJTcIXihi9KiMj8+cswElmX5EuCT4dyOyuIGZ/BePEMR/MmPa1ysgI6Ixvv52DgqKyXp1h7GPYKexer2Pe3AZQ29Fy4rrXDdOlsU+6gnRGCPNJQplvEhYUwnz5UObTh8Fx1doB5zxVhs+Gk7OrwsfoyQnxOX6qjy1VWlqG//73v4iLS1Db0oL+x+vXr3k7O6xcbfQa6QtfrxOICA5DZEg4okIjEB0WCR9Pb3w86VNVl5jZnhK5Usq4lN0iY52xa8cO/pf6i/qNRJ7fVDGfZGfn8vZtbm7h/69auRKffTrZSJds2bAF0aGRiAmLQmxENOIiY7g+mTdnvsqImewpni+lyAmhdW9ZZ6xfu7bPd1G/yf2nivlkwfxFhvlH6I4P2Tz2z/8bhzmz5/DH4r20vniG+e1xkbGIj45DQkw8kmITsGPrDpWRYbCxZct2XqutzAlxcHA0vEfMV1992dcnJ72h7ENVzCNi7iEdonxN8CH3CeWr7Hfdj8ReNpLjE5GSkAxvZm/Ra6pPYhobVJOhzDunHEJlbGrRgkVv/d6gwGDejw8fPlLb2Yw+ObUp+R5vs1370+mrVqxGSnwSzjE2UpNSkJZ8DuHMd5/65XSVkUGwMWH8R7yGT5lfGxgUamRPkZ/Rn854mw9JrKjtPXyfnOYaU9pzj5OT0f+UIxwXFYv05FRkpKQhMzUdSXGJ+E7KE1UZ6Z8NXaG+Tw3f7p/39NEJQ53v1DYfnsj62NTYuWzjkk0V6B+ArNQMZKdlIicjC7mZ2Vj+4wrVJ+kvRsV0g65Ab8RFU0s7Vq5842sIfUG+oalxW7KT6XPqGB+ebP1pO2eD/pryOeov4oP8RfLh6blxvT5JTkY2YyMHmqxc5OVosGKZw5hnxChGxfQqxWrl2tbG5gt96jIofijrBBJ1zL4fG8tUpmitVvShHAMmcd7tjLxsDbQ5edDlapGfp4PHQY8xy4h8r8QAxaREbStJnq7IyNeQuVDOSUPRCSL2IuyE0b4+Iq8FyfE8um/hS8hxcGFDCZvUVF0hC/1GfzEusU4lhHRGvkaLAsZGoTYfRboCHHE/MuYY6Y8NeZ+QPO0bNkQ8/W3zGLW9KfMZ8dTVdc3wP62zj3a/XcS5le1Ec7qwU4XfTdwQE+K99J6hrh/Rd1D79tc/ZCtT38q6ZOXyVZyL4vxClBQUQV9YDM/DnmOGEfn+iA3yL+S9CDVaY71BbSivMw003k3xRaj/5f4mNsZCXIvaiMY93bu4X+W902tC1wzUXqb+5tv0O7GhtA0cVqzmXJQWlaCsWI/yklIcO3ps1Me1jONUk1BeWWe0F6FGW2hgo792G6x9q/LR/zwuYkfCpqJxa0k+TPEPaT2RxGBPO6xBGeOiXF+GitJyVJZVwIn5KKOVESUbebpio70INXlv2KC+HErO7WA/Q/0t21dknw2WrdFiX9H9UzsQG7J9Rc+LvBHxXhrjZCOZ2hemzDlkI5DIfuCaVY6ci6rySlRXVKGmshpr16wbdYz0ZaPIaL/zXAUb1EcklsxLH2v+ubB1lH74SPjnpugb+j1Z5ziuXsu4qEJtVQ3qqmtRX1OHdY7rRxUj8j0EBIYY7eucqykw8jdo7hJr3ZZmRBXrEcFGf/lcpDPqa2rRUFuHxrp6lDNd9vXMb0cFI/K10761hv3OL11FXUOrERvHvTxVRlQ2+HM/bd5sFNfavnUHmuob0NzQiJbGJlRVVOLzyV/adExLvuaNm7b2ctFzRgad/SL2O6d2UK4XqYyoekMZ+z3p64eWpma0MhuwraUV2ZnZhvnV1vgwiuMyDui8sZ6zY3rOVKIz+cR7KYbbX56hysjYZUPMm8oYZmJ8As63tuFC23m0n7+AyPBIm7SzZH9cX1pldKbSzp1v4nTviuHKjKg1TmOHDVnkWqsJ4z9EblYOOi6042J7By51XMTuXU42xYh8jRGRsUbnU/r7B/WZI971fcSIiNfLz1N8Us4HpTYX8Xy1Fso2+HgXG2KMyDkU38z6Do3MF7l88SKuXLqEzstXYLdosU34IvK17dzlbHQ+ZVa21mAv/rjUflC1G28TeW2L4o9kg4l4vlpzbv1iyhxG+kPO11q5YhXj4jKuXrmCrs5OtLW2Wr0vIrNLvrd8PmV1TSM+//wr/pq5/AiZj4HWgdVxaBmR80bE+joJrSOK52nO6u95c8lxnxPounoV17q6cP3aNSRIOUbWyIjsc2Tn6N6c23r+Ij+nUp43TM0pVPmwLpHbV+RzifV4sdYuakREf5u6Bj9Qn8t2QVFBIW5cu47uGzdws7sbe1z2WiUj8rV4eh5nbFzi+yrQmcZ+pwKM9KTwKYZaryRYUPmwDj5kX1DoDHrOXDmOwuag8aLsU9qTvKO9Hbe6b+L2rVu4zPyRL6dMtSo+ZLuKzjIWZ323tHWgoFA/YM4h3TPpaVNrnEQOCsW1BBP0HbL/Iednq2I+EW0q8yF0A7U9PTY3HzSH0vcLvUH7cZD/Kl4nnXGHsXH39h3cu3MX2jytVekQ+RoKi8r42cgtrR1obmln92bHn39bnjqNbVNrZUX+mxq/Gnm9QX2ltK/EY5kDc/Ah16coRY7vpCSn4N7du7h/7x4e3L+Pfa5uVsGI/NuurgcNXJAcPuJleE25X9i75ghVrFd/kJ6W9xOj+Yh8DRr/9FfodPqf3kt/SZ+bkiMt7KmB8iJpLMl7B01k/5Ov/uCXX/DwwQPcuH6dP2ctfFAuTHMvG03NF6DLL8b4cW9iuYNtE3X/BNtghNiQ7VfqN3puoDUqU/pV1OMO5jOzZs4yrI3sc92PRw8f4vGjR3jy+DEyMzLfqw6RfzMuPplz0dR8Ho1N5zG/164yhY+xJIuYn0ZrWh6HPHDE4wg8jx7rsSVi41CqL0VYaBhO+fnDz+8UTp70w+7dTvjRfjmzKaaPKT/nXUJ2ibx2WFhYiF+fPMHTX3/Fs6dPYW+/7L3wIfvky5Y5cDaIi8bGNgQHhxl0oMrGPzD3+/m89i3oTBDytTqeP0S5EbTue+PaNdy+eRP3797jcx/168sXL/DHH6/w119/cnn9xx/4/fff+PPPnj3FkyePkZ9fgNP+Z7Bt644+55GPNZHz976fPY9z8fzZM7x4/hxNjY3vRYfIv6XTFTM22tDA2Cgtq8Lk3rxjZf7lWJFxH0zAih9X4riXD99joJzpA6p/o9qe5sYmzkdpiR5pqWkICT5rpD/2ux3AhvUbea6qrD/Ky8q5XhF8PGQs3Wd+6J07d3Cz+yZqqmv4ehnlXoxFPuRxdjY4BC9ePMfLly/w228vue5VzukjpTu2b9/FuWhoaEV9QwtcXPYZ3tdfvHo0y9LF9jh80IPvBZjH7p32qSE+0s+lwZuN/W3M11wwb5EZxsM0rHVcz5nS5Go4H7R+fLWzE5cvXoK+uASeR44xn3DKmLHFKCYg1gk+nPgxmzvucZ376tXvbC55wJ8bKR0ifmP8uA+ZvqjmXFA9h15fyZ8TcTmRnzma41J0vsXa1ev42Ui05zLtJ0t8hAaFYMO6jey+Z1r8GiZOmMT3M6Ax0tjQyHNbqT6CdFV0ZAzsly4btWwQE6I+WF7zcmd+Hdmor1//gT//fM118UjoEPn7XVzcUM+4qKtrRm1dExwdN/SJz8k1zNR/o2XNbhKbj7Zt2cbPAKdzXxKi43A2IBibN2zBJx+/X5tyxXIHhIWEcT7qa+tRU1WNTMYsMTRauBDrKfIeAspY8PXr17n/9p///IVff30yIjpE1h2kL2qJjdom5OToDO+h2kg5j0R5H7a8JyjpC4dlq/gZrXT2JPHhsd8di+2WWN21kn3lcegwigqLUFFWgdJiPaIiojD7u7k22/4i9qucd+WxJx47OblwNkiIE/LlLOmrG+kO532ci5qaRlTXNMBxzZs9JfpbBxR7Gov7ssUzASkme9rXH0GnAjkf+1xcjc5ktVahueznXU583+ei/CLomF/kddTrves5U4VsdlErJ2pHlPaIsmaiu/sGZ4NsrMePH1lUh8i6o7i4vIeN6gZkZ+UZ3qM850EpxDrdoy2tA9JZku4HPJiPEY6QgLPwOnwM3/bWzttWXG0iDrsf4Xxo2NhKYv4S7TFlK9cv9hx6V+4prauLeJbTz86cDfJDSCgWaCk/RHyf45oNnIuq6npUVdVhzeo3uuNte+XKvomt9Mm8OQsQFhyO6PBozsfqFauNzrq3RZk2dQZCgkKQlZ6FtJQ0rkvk880sNbaFHUT9L9vc9JieIxtD1g/K/eXoPYOxzZVrCtevX+O+OsmDBw8sYmPJ35Wdnce4qEdlZR0yM9/URx5wcx3Sd4t8NyHC9rJ0fc27ZI+zKxLjkhAXFQ9vTx980VvfNVrkp81bOR90BmBESAQ/Q3Mk+FDuXyn2cqQ+Fj622MNxqL8nn6Hw824nvHr1isd6KeYr6tUtwcfSpcs5F5WVtaioqGG/7WKS7uhPqF3EWomcq2OJ+ppB2SFsLj3DfIxzSamcj61bto8qLozs9SnTcJbZjAkxCYiJiIGdtK+MpfgQezaK/hb7VyrtpuHwodz3n/IWiQ1aL+zs7DSrDpG/IzwsmnFRi/LyGuh0RYb1jqHqDqEnSK+KfXCF/WXO+prBytSvZiApIQXp5zIQExXH7avRyoaQnnNlD3A+SI9s/2mH2b6b5jqxfifbV6JWh0TYV+bkg4Rym4QO8T1xEr+9fMnX1F+8eMFz2czNx+TPpqCCcVFeXo2ysip4HvV5a8zKFBE5oUKXvA8+pk2diXPJacjKyEF4SOSYyQUUsnbNes5HSGAIs722meU7yV+guU8+Y2Ug+4r6V9hXpE+Ge1akvO8Jxa0of43yTp4/f4Z4M9aqi8/vd3NnXDA2SqtQqq/EjOmzDHME+QxDXSNXtp0l6jMHw0Z6aiZymW8VxOyNcRb2V61VKIZNfAT6B/K1TnMxIvvbQ/XPhyKyPkqIT+B5i5TD9vTpU0ycOPz6EPmz6WlZbCxXQq+vQEy08foFsSFqW03d61u0iznra0wRuvasjFxoNQUICQ7jcdCxyIaQhfPtOB/+vv7YsG6TzV0/sUZjhewQOd5FeTaU20s50rSeTrmg5uJjyeIfuc7Ql1SgpLgcqxx64uaUf081Ksr5QulLDGaMmqu+xhQhHZibo0VBfjHCQiPHPBtC5s9dyPnw9fbFOmnt15pF2DE09oQtQ/aVPD4vdnTw+hCqn6qpqRmWjSV/5ugRL5SUlDM2ylBcVGoYR2TjDeR7iFwAa80nodhCXl4Bu58yRIbHqGwohGITxIf3EW8ssbPOOh6xJiLGmXI+Jj7kc6m8vXw4G1RjSPU2X06ZZhY+cnN0fBwVFZbixPFTBjaUusOWJD4+hevElOR0lY0BZM7seZwPr8NemDt7vtVdHzHxrhoKmr9F3gnVBjx69JCzQXXqZ04HDJuPxT/Ycy6KCvUoLCjBD3ZLbZ4Pby9fvn5D+kPdE+Idca3V6zgfXsyG+Pwz26spITZoTyDxf1VVFR48+IWvibS2tAzJxpLfe9jDk3GhZzZ6Cfdj+9NbtiT29it4fgzxQX6VysC7xXmXC/x8/HBov7tN5tfI64W0988v9+/zvYBIZn83Z1h8ZGVquP+aryuCD7NHBR/y/iq2IlT7W6Kv4Hwc2O+hjv1BCvU36Y+g04HYtH6zzV2/vB86+RzEBe2XdffOHezd4zpkPqjenbjI11JedCFW9O6jO9z1wPclMTGJvGYlKSlNHfcmyjdff8f5iAgJt2iuliUZF4+bm5o4G3du3+Z1/abaWOJ9e1z2cS60zE7XavINfqzyfDhbkHXrNvFaeeJjpg32rzUI1UwSHwGnztjctcs5UFRvS/v13r55C7du3uQ1yoPlQ34PrQkQF3m5+Qg9G2543tbqZGkP4IrKOs6HvIeEKqYJ+R6kQ+Kj45idZXtrh0IW/7CUc0F7vnff6Mbq3joYU/ggXUFcaHJ10ORosa03b02cNS/va2/t7eG67yDf21HL7ER1nA9P/p+98/yL6tr6+PpX7ufeJ8XrTYw1GjViJSr2buyoCIiKgNJBUUQEhIGBAQbpvTdRmgXsHbHFaKqmx9zkefG8e/Zvy55sjzPMMAzDGT0v1gc4TNnnnP09e621V0GML/jINmSpPgdR3h9BbIYcA/7owUPeFwG1SBG/OFA+5rPrAC4Qk1RZXkMzpr+08+XecXIeML4be+Zq85eiLw96LYCPpUtXanPcARIZFklFeQW0L2Cf6saGeCXso4s6wbKAEfG68rJyun/vPt1nr2usb7TZBhH/3+Xnz7moLKumirJX+8SBAZlL5TgGGoM1lBJ/7DjnAzVQtbntGJk2dTrno5LNsdEfDX4NUcaemqtNbS1fTq4pJYuIpVfqOagBhN5TvXd76W7PXZv6s8n/i4uN51wg3jv20Mu8XXM9dyEYK8aHcZvrvSGfm5xXL+L/lccdJcj5Q29Q8DH3swXa3HagxETHcD5Cg0MH/VnKXA9R10o+Zi1fTug1eJ2Ik1XOJ+wTij1t1D/uZVzcvdNDPXfumPixlY+KUsZGSSWVFVfQTp9dJh+ZPX4rjFvEAsh6mJxHBs4dHaO7b18Y5+NEbpE2px0sqFEBPhpq6wYdn2MuF0pZC8pavgNYsKbbK2uR9jA27ty+Q3du3ab9+0Js5mO62ywqK6mg0uJyKi0qM/W5AX/27H3IsfxgGxwoz1HZI80Rcr77Cudjo4NyGTR5VVLY/QIfvt477bafLfGhXEMclQ8k10xHrynUZL118yYV5hfabJt/vmY946KcSgrLqLig1OSnsNbnxtq1EDkdol/EUPKxefN2unGrl5pb2rW5PESyfOlKzkdxYZFd80GsEZZyaeW6iI7iQ477SExIols3bvJ6+qg1ac1GF8d9vf3YOZcyNkqoKL/YpFvZG48o9wOWe6ANJR+GzBOcj6B9odpcHkIpLyml0ydbyH32wON7MSdEzqA8V4RNKvtkHZUvh+e7eMb7+vjxesXXmVy7eo33ebLFhxVz4DDnAjU8UNumP9vcFhF+LnFuwnYSeYMi39JReVDjx0+i2z0POB9vWl0etUlYaBjnI+aAffNV5MbJzAibVJkb54h8OcxhEc87b64HXWdcXLtylfedmNdnR5jjQz6WbTBSIbNpC3ILac+uvSbu7K3hI5+3bEOJugzK44OVLVu2cz6qaxq1OTzEssBjEeejudH1rjV8uuDiCpPLly6b/AHW+AAX+ScKKC8n35SDjJgrOY5ezZKVncf58JXqc2kydFJbXU1nOzvoM/d5qh8rfFiRYSGmv9EL4jLTXy5duEgR4ZFW+UCcZn4OY8OYT7lsnmEvyNXuV0/vI86Hpls5R6Ijozkfe/33usR4ZT0oJzuHLnZfpAtdFyg702jVd+U+ex6vG3giO5fX1RN8QAeC7STqlOCn2K9RU7yih8dizkdr21lt7jpJ1qxey/kwZmerdozCzoEOJfei0SXrGBvd1H2+i62DNRZ9WOLvjes2cS5yMnPIaDD2+53CdhDMqCH2KiQ0kvORdDxVm7tOkrGjx3M+Ll3oHvaxwM6Vn+Hip9hzU9r2/nsCqOtcF/fvokekNT42MD6MfWxkZ7x8HsB3JetsapZsZjOBj51+/trcdaJUVVRwPuATGu51wtpr4MMS+YT+u/cyNs7RuTNnGeNnrfIRERLBuUA91piov2uIuko+VMeZbs7H/PmLtXnrRElKSOR8+Hj7qn6scu1R9znzOBdnOs7QmfZOU81lS3sg4cHhlKXPpMy0TArt21vDvqCr9DLvvf+Y86HNWefKnt3+nI/oqGjVjxVrh9jrdp8zl/do7GzvoI62dprTt89piQ/0SjKkGSgjNYNCgkJMvLlCLR8PjyWcj7aO89qcdbIsXbKM85Gfl+dafLD1oqOtg9pb23mfRnN8yL8nJyRThi6d90vy3u5j+jxX0K8EH8WlVdqcdbJg7wN8VFVWqH6schw66mi2My7aTrVSa8tp2unj1y8f6SnppE/W896sa1a+7AmMfUFXqHcVGhbF+Th0+Kg2Z50smGfg48b1ay5hf8i9blsZG6cZG6dOnuIxWf3xAS7SjqdSapLOxMdgY0uczUdISKQ2Z4dBXIUPpZxmXKD/dUvTSVOsviU+wAX6tOqYnrV6xcu4MVeJLdH40Piwdf2Q9ytamlroZONJam5sJp8dvv3yATZSGBvJx47Tqr56cI4QEcMs8gbl/iiO+g5dqoHz4bfLNeIc3jQpKynhfHjMXzDoeQIRPZ1F3qzY25D768jHB2qDiN/BRXNDEzXVN5K3l0//9jnjIjk+iY4fTaRVy1bxY9hzlHvMmhNlHwPle3AuIndQ9KgVOTKOqhFUUVXH+fDw0PY+hkNyjEaH8oHfRRyI2AfHvJL7s8n9x4QoeyKbE6PUYw1cNNY1UENtA+3Y7t0vH+AiKS6BEo8co5V99XAwf83VhpBFOUbRQ06wLc5bmQdlrd+7xsfbzYeI8RN1C2zJq5PXF0sifwa4qK+pp7qaOvLa1j8fiX1scD761g85T8OSmFvjcD6CdWfysaqvv5UmrsOHmANKPpT1bWzhQ5ljZU7kOKx6xkVddS3VVtUwPnb0y0dCbDxnA2uIsD8Gsz8I7rGWyXzI+pXIR3fE/Yll49bs8+GT9rZWzsd0txkDep+YB2BAyYfgBs9aUQNH1q9EL7+BfJ+cYwupraqlmsoaqq6opu19+e6W+AAX0LFgg6xe8ZKPwcSXiDxaZ9jnmv/Kdf1XgpH+7HPxHB2sfY69PHk/D1xUl1dRVVklbfPc3r99zrhIYTY6/Ltr+vy7sPVdoaeBxofm37VHqsorqZKxUVFaQVu3bOuXD/h24eNNS9LRWmn/XN5vVKvs2h3I+UB+rTZfnStjx0zgfJw/p/68NOhCcp0fcFFeUk5lxWXkufl1PmSJCAmntOM60ienUnBgsEvdIy3+avhExF+5QnyiLJM+nkzljIuyolIqLSyhtavX9ctHcMB+Sk9JowydnkL7ai66yvoxYfwkzsfFKze1Oetk2b7Ni/ORrterfqywPYQ9Pd1tJpUyNkoYG8UFxeQ2bWa/fIQEBZMhNZ0y0zIobH+oS9kfEJH/Iepxa+Ik2y84lPMRFKi+ngdKgT9WxO+ijjC4KMovosK8Ql6fxBwfptqJXr6UlWag7PRMrmfhGNhwlfyohqZTWv7gMIghPYPzsWK5+nusIF9D5NcuWbSMihgXhbkFVHAin/fv7I+P9WvXczaMGdmU01efAXxYim8XezHwxamhPkNyip7zERwcoc1bJ4qozzC+r0bncAnmoLV6OpjLYj9v88YtVMDYyGds5OXkvcaD8m/smecYsulEppFys3Jo1Idj+HG5Ton8U+zZqKVvlKenF+ejqFj9eTpviiDnDny0t7YO+1gwDwdSvwTxVuAi15hLudknrPKBelfgIo+9Np+9x+3Tl/Wv1N6T8x//GEXvjdxNMz6rMtWH0+auc8TP14/zoUtOUe0YlfWvxPGoiGjGxctabxGhlvfNBB8fj5/EuShgTBWyNWfJwqUmG11tObbvvLeCRo7W0+hPLtN4t99N0nnuS87Hyr79G02GVlJTdJyP9es2qH6sSl9TEu/H+7KeVZAiBt0cHxDYKUVMJ4PdsqWvtwz0NXvrt8t2ymDqU//rfz6jER+E0Yfja17hQQg4+feoODocq+d8JCTqtPk7xILeUahPDT7GjZ2g+vEq9yqMvBdvNmVlZNG6tRvM6lbKY8eOxFNxfhGVFBTR4YOHBz0mZe8GEXOm7G+gjOP95z+ncJ3pg7EFNGbKvdd4wDH8790RW7h+Jd6H+F3wgf5R2hweWlm1YjXnIz/X9WIWsF+WzbhArbdMfSYtmLfQIh+yhIeEU2lhMZUVlZAhLcN0/NCBKLvGIfu2LPXHEXYU5ro5nQky7tNv+NqBNQTs9Ped3Rev8f4fK1aovz+7K0visUTOxzbPbXZ/hhyTiHwPEb8qesWIZ+xgcwYhvjt2mOyE2TPdOReintXUydP65UMc99y8lcqLSqmipIwqS8sHfQ1hEwm/geBA8CF0pvnLH5jVmT6a2MZ1JrxuIN95MOYI5+NYQrI2j4dI0NsZ/dXAx9gx4x3CB+aHyEUVfY9tyRm0VWQbet2a9ZyLdF066VP0Fn1XyuPoo1NZUk5VpRVUXV5JM6fP4sdhf9hT50f0rMbPtva7NH5SOE2eXkszPF6Y1Zmwfih1poGKm9sszgf6c47T+hwMiezauZvzERd7ZFCfI/OBdUGsDeIZ6qhefLDLZdsD9Q/TdXrGRhpFSr4ra3yMHjWWx8IjJr6mopo2rNtoYm+gcSaY4/rM2+S+oM6sDQFGtvs9o8aW/6O1awMcev/yC0s5H4GBrlFb25XkvXf/TQW5+ZyPhQvsi1UwlzOIeS9sVdG/01F8wHcl1+FJjE+ktOQ0Sj2eSl5bd1i1PeT/wT6vraymuqpaUw94sNFfnR9wj32YaW5buU4E3ciSzgSdytsn8bX8SUfew02btnE+Os90a/FYDpYtmzx5//PcnBN2vd9SzqC5uW9LziA4gm4m7BVzAh+s0K8+ZN8PLnRJOkpJTDHtY1izzYXEsO+vr66lhpo6ysvJNcsHzhHjSdFVUEb2EwoM+8uszgRbW+hMzr6PzS1tdPnqLQoI2K/NaweuHUZDFudjMPFWlnIGRS9XuS6ONfsc+ruy/oKodyJegxhCEVcCG0KuZTV50lSb+DD1yVm/iRpr66mproGa6xsZd+NMa0Rycg7XmaKP/C8tXP2HWT8T/K7wzVrzMw21bNzoyfloaz9HI97X1hCHXFOmbxflFVBmukE1Y8JzGuuHnLstBH4w8CPXoNru6cVrTR9nbCTFJ1m1PZT/B0+oC4S6WScbm5ltvsY0Dq89f77GhPC7DtTP5AxpbDpNFy9dp/Bw9dfeV/3a8c4I0uvSOB/LlixX5RjxDAcL0MNE7QOIrKMdiDjAuUg8mkj+fnsHzAcEvivUJEVt0qiIKNOaGBnz2KQzIcZD7fd07twFnI+u7is01QX7japJfLx8KSfTyPeQXWXM0LFE/RM+h0eO4lwkxCWw8zhGK/rqvNlie8iviYuN477t1pZTVFZc+oqfzBXqVctiNOZzPgyGHG2eD+K5DH8o+BB5RK4ist/1sznzKOEIYyP2GMUfjuf9Ewdim8v7hG1Mb2s/3UodrW2m/UXYOa7Sb03IuLEf0+nTnXT23EWmI3pr832A8i7Tq6CTgA+/vh4AriT7g/7eO0Bfm/jYeDp66Cg7p4M261bK14GrjtNt1NnWTmfaO2i33x7Ta1xt/YB4sesCPpqYPTJlips27wcgmzdsYbZsEo93fe/dES59LjGRMRR3KI6OxByhTes2D/j9Mkd5J/J438KzHWeokNlk5nh0JTEYjNTZ2UUncgp4Txdt7luXWTPmUFxMHOdjikry4AYi2DMX+g70wjjGRezBWIo9cJjHYA1k7VAygr3Bc51neW/orrPnadwY9ccw9yeo09TUeIra2s5QVORBbf5bkdEfjaOw/WGcj/Vr1Z/fYU2wXsQeiKXD0YfpUNQhkx5kLx+fMj2k6+w56j53ni6c7zLVf0d+uyvU/DEn6OkLPk61tNPmTVs1DiwI5k6QfxAdCD9AgXsCXfIcEC8o72lHhUZxLqBjeUr33l4+IKhtfbGrmy51X6CyklKb3g8/MHxq9sZZDrV4bvHifDQzW2SlFgP/uj3O2Ni7O4AOMvs1bF+Y6uxNzC/sB1qr/S/7WqdNmU4xUTH8nMD8rOlz7GJDyUiAfyBdunCRLl+8RFcuXaZpfTnpyjq/EPiaMW7szailZoMliWT6FfhoqG8mj/mLNC4k2bHNm+voYfvDafSocaocIxgR+4D4qYzfg44jrx3QDwUb0WHRdutWSj7gGwUXVy9foWtXrlJ01IFX+LQ2TjVLRHg056OkqJw+mThFYwP27OZt3P8JPsZ8pE42lIJ1BM9liHguyzUT8LvgAoLcD3t1K3Pvgx/r+tVrdOPadepitog4LuJe7O1xg/eLGAA5X0yubS8fd7Qgfzpdn0m11Q1UVVFDy5aqv77ZkOlU74ygXT67eNwF+JgzyzGxQpbi0eW4dXkemOtHNpA1Be/Fs1qeM3Pd53MuwMhBpjd82ufft5cNJSObNm6hm9ev060bN+j2zZs8vtkR1w7XR5yHyBfD77hWYh2CHePIPiHmGDl2NJHzUV5aSUsXqzOuaCgFcVVRbC1FvDf4cJ8912GfLfMB/ULE5iIeCvcZxxA/KOYBdHQ5ptdekWN3A/cEcd0KtnmwlA/kKD4g3V1ddOfWLeq5fZvpI8Wm44gZtre/lIhDFvXncJ1wXL4+yvyYoZL9QSGcj5LCUvL28n1r2EBNJ6wXyDONP3LM4T58JR8iTlC+r8o+e4PhAzq/PB8nTviE+6vg0z3CdMZlS1Y4hA3xGeJzYg4eYmzcobs9PdR79y6vfS3GY2+8iVzbBGwI5oeDD8hO392cj8K8Iv48Ra7Dm8zG4oVLOBeo4YF1w5H1QXEvhb4j60ui556z+Ni2eTu3pbCHE3/4KPfNOYoP+XMmjJtIvT136d7dXrp/7x7pUnSvrCGi5q8964dsY4nrI/Qrsf46a84sWbSc85FrzKO0ZL1JV32T5H3G/d49AbzWGWoHwu8JHcuR34H7JnIvZD5EX2/Rh1mpZ4vex45g4z8jR/E4kqOMC8QjDmbPwxYdKyVZRw/u3aeH9x/QowcPeQ0hMS57+FDa5yIG2Vn2uUWdg63JxxOSyWjI4TVgUCfv3XdcO+5IyIzpsygjzcDr+oOP7X2510MhuJ/m7G3RM9xW+9xWn6iyljrixqA7IpY9KT7RpDs6ig0lIws8FjEuHtAXDx/S40dfkD7t77ooct34/nwLzp7rdtus7Bnr57OL85Geome2XQzNcJvlumvGeyN5vFB1RRXvJ4bagYj1doWxwx9lrRc4fLjy2oE8jwT0Yj6ayPMEA/2DHL52mPu8qopKevzFF/Tk8WN6+uWX7Fn7kgnYIJb4kOt+4acr7ZEgrh92HfKVjx9NIn8/f1O+sivIiPdHkq/3Tqooq6C6mjrOR1DAPpexrYS+JdYWS3vPyrVj5fLVPKaS99RM0pliKx3NhpIR1HN5wrh4+uQJffX0KRkyDBbHCBtNmVsf0E8dYLUKdKvVK9ZwPtAfPiXhOO0P2G/KiVEnF//hOQn1tfU8B7Spvon0qXqaOX22y11/PE9FrROhc0MXEc9Z5bMZ9ws2hy4phdmQqbRf6qU51HxAamtq6euvvqJvvv6avv3mGza2T16xQ6ydj6sK1uytzMYDH/rkNN5rKzI0ghYvUE9/LcQ7RIRF0qmTLXSmo5PaTrcxW6OIVr0BcWbmnrfQTZR8eLFjqegzi16aqelWa4c6mpFFC5dwLr779lv6/rvvKDsr+zW/hbX10KU5YZx7b/PmfKCXEPpBoK8QcuuGI04F9b02b/Kk/Nx8Hgt0sfsCnT97nirLK2nt6s/fOP8b5phcqwTMiGcvaluh7htyHVE/Oiw4bMjXDnOf39DQQM++/46eP3tGPzx/TrNnuZsYF/Ui7I07cRX58IPRtOHzjZSSmEwl+UVUUVxGNex5gF5EEWxdwXNkqPKwZjA9ac/uvVRWWsb3pG7fvMXjf8CHLllHS1VaX8SRzyjoJMKHLI777/KnDMZFpt7A67N/OtXNKWwoGZk1cw49f87Y+OE5/fjjD9TC1nPZf2ePv9el1373+bSP2b3F+YW8rt7JhiZe26KzrYPZxNXcNx4YEETz5y4gj/kLbf7cSRMn87nuw2zsgwdiqL6+gb5iuu2XzAZ89PAR34sCH7XVNeTrs5PrV2/LNYfPSq7ZO3XKNM5FVkYmGTOzKTLMel3doVxDcow59NNPP9LPP/9Ev/zyM23c8Hc+L2rJv018yLKAzf9A/0DKyTJyPpB/CZ0HMdA3r9/gcQgP2Lx+/OgR9dzpoQY255ubmukU46mttY2uXbtKf/75X/rjxQv67bdf6Zeff+bPoGfPvmd6xbecjzu3b1PuiTzazZ6XE8Y7twa32BuXfUyi15H8OnFM2ffPUYKa6XLsRkx0DBmZnovrnms8Yeqf6Sw2lIxM/HgyPX36hH799Rd+H3t7e/mepXgdxu6KtRwcLdhn2OHlzfvdFeQVUDtjQPDx1ZOn3I6DjgoOXrz4nbMh8wFuTjaf5OvHus83mPoQD5fIexFib0+OFcJx6DxyXyRH58opY5pWLl/Faw9Bt83PyTXlug4nH5DYw0fo999+4/f1jz9ekF6fbvofagHZUvNd9Fp7G9nBXF+8aCktWbyM61HLlq6g5cvUHWcv8yH6xIr/idgpZd8bW2LoBuL7l/UT7OWkp6bzWtGICcg2ZJn2d5zNhjlG7rFn4X/ZM0I899znzH2F8/4YwdoLH9dA1mDcE+X1Hu6YlLdJzO1li1wg3EslH7bGmAr/bX/7AOZ6xQYHBVM+0zVRY6e4oJA9l5eZ5uhw8iG+G887cPHXX39yuXb1qul1sNMt8SHq0g90XwSvl3sZQpyZM/K2iuiVJ/OBa455jeMiTsJePsTnQTezpE9gLsm9YqG7FubmU9H/t3em/1GVVxw//0nfdbOtrQIqiFpAkM0FEWUJWUnCVpBqVLYkZN8Xsu/7MknIvpM9IYRFkJaK1ip9Yav92NL6F/T5PcMZnrm5M3NvmAlJ5r44n8AwTO6d+3yfsz7n1NRRY10DJcYnPjG7yp0OKSwscuiPH3/8H6Ukpzrdk/asujpLa6HPSv3On1RNvD8J57bAAK9f/OS/gw9+DqzDuS6b9YqZ56ud86Gtg7XPWiiTs2Sb6hvJ1thMv/vtqiXBhpYR+OX37t2TbMDWgi+yZfNWx31x7Rj2GfWsx0JFq0MsPhaPEZ4LqO51fC5Qex5Ue7bHjOAz1NlJ2hpYOUu2vkFw0UQtTTYKD4tYMrpDz87avXuP5AJxF/jr2niW9n69oe9Ve/dJnRmxxHfiaj89sC9A9k1vaWqmNlsLpSr2ylJhQ+968vML6L8PHtCDB/+Rscm2tktO/pc3mNDOQLH8c//wffjPyJnCH29tbqFLLTgTXS/n6T5pn9yonXVV6FSwgbzIv3/4gY4de9TzW69vliX+JWbsB8SqVH/8Fz9/inIFKzhn0Y4ZmZfaZe5jqeoOPTsLfsf9+9/InDpyXsivc33WQuzd5VgTb4m+wB5G3tAoI9p47sdRnwgu2mQ9TVdHB509fXbJs6F3fdAZ4AL1J//6/nu6feu20C2P4rxG6k/4fCbEX/OHK82X4NpuI4xgjaj+OGaNdwh7vau9g7o7u6i4sEiei1wObOgxUlFRKeuGvv/uO1k/MTkx6fRed7OoVDbMxgYtMbdmub6P6xhU4TUM31Gvxsqs4HM8MaKXA9y0cTN1gouOTurtQj+/FnHdLy1pn8MII1OTk/RPwQbq4P/x7bdUWvLorAj2Br3eQL5gQ+2ZjZ/8XLA2uAeN+ro/+b1qDxk+T8HC8/t47jL/9CUjWp9j3dqXZG/0nq4u6uvpoYHePtr73r5lY1e580V+JXTEl198Qd8KNnCWCrV42ryP6q/7Sm8gRsi9ZvjPeB3PB/F7vM4z6/2VD6xTfO/a2J82X+6t/oZ6jGAtqPUWsJ+qK6uor7uH+nt7abC/n44r8Z7lxoYeIzgrcu/zz2VtNs4d4lxupFJfyTrElzaV+ozV/KG/5xW1/dvABvYOVU94s3+bJ0ZUPsAGfIz+HsFFXz8NDQxQbHTssmdD7/oPRx6VXPwdcv++7O0QGXHYaW360t/gM5lch80xMX/lA/fPfV2ZD7Y1+T18BtRXfGgZUb97sFFSVEwDfX2SC8yKraqocJzHXG4+hxFGoDPAxTeQr7+WfVDQD0WN/S2EDSM+o9oDmfdIf+aD1yUY0LOvuK4K72O7FK/xPuOOu4VcC/8ufi36XLS0pYYHB2lkeFjYWJUrjg09RqLPx0ou/vYV5Cu6feuW7OnnyjfzJOrs94X4H9zrkusd1bMM/sAI7ln9/tS6KeaGGdHWWOkJ/k3rX7oT2FPas9gx52Pk2eTLQ0M0evmy9MlXPbtmRbKhx0hBfqHsMffXL7+UZ6g/vXnTwQjH9mCDejpbxfOqrPjV0hI8E0+1RHjOEG2MH/4FczE2MiJ9cpwrXyk+hxF/HZKfly/jWl/cuyd893vyzEhYaLjTvuKuDoXPCVjrcWkKno27vUZrJ6DP44WYWGlLgYuJsVHpe6j9wVcqG64YuZibJ/tdowfHX+7epbt/visYcZ4pi+9QT4/g+1/Mvlrsm2jrtb1Rx/24NpKeDlX3cO7Xp7WbfCl4Nq58Se3sY/gV8L3HRi7T+OgoTY5jvnC/ozePP7DhihH0vcHMBMxOQJ+aP925Q6EhYU77DPSvaqOyr7iY1+1qlg/38MPrWA+LrdNcxRTUmBPX+/MZJvjlC+XYzJ7E35W7Zwk24HvbuRijqYkJ4ZMP+CUbrhjJEd8h+tzc+ewO3bn9mex1lpmRNU+P6H3nRn14b+yZXF+h9hswG//i86h6n6u+rvbMcWenGOFDm+Pw1Avd1XWDf/UcsxFR9zJtPx74Fa02m7ClwMU4zUxNSt/Dn9lwxcgfjp+gz27flnWMtz69JftEFRYUyd6Z2mdkdr/j+Prj1AGzbuAzWQvlQ/sevT44HHtV5/TprUmul1I/j9/nbT4guBbcr9kYn54vgh4e8L0nBRfTk5N0ZXqKmhoaaPWq5/yeDVeMhASHSi7QJxPzcm8IabG1zOsJqD2j72lda3NPC7WvvJF/175Hrw+Odj3r9Wrl/IS2FwXHqH3Bh5rDNWKfcewWbKh8hB+KkD7G9OQEzQguZmdmqLmpUeyFv7bY+In72O/2bTvFdzchZ62j3yD6yY6NjMq+UGpskGPA7vqYmn2enuwEtUaP15vaFw37vKfYvzs++N+Mrmeux9HqD97nVZ61+uhx4lKe9huO2+IZqfYUfI2E+ATpY8CWmp2ZpquzVyg1JcXBxkrNb3iTkVde3kC2ZhvNzc7Js4hXr8zK/pyYmafVI9ij+Hno7fnerFfhGm8j/oPe/wU73uSDP1f7e9nuctUD9HFyPPgc3nNc5QnRi0Mbm4evUVdbS9OCiyvg4sqM2PtmKSY6xqU9YYlrRrCfIP4LLq5Mz4j9Zkbo42kqLS6lVZoZxHq5Et5bzfiT+D++ihnzvq724ITo9cEBR2q8CfrKl7Fsbd2VEV3K8zfU16ErtLFbSER4pKyhgo8xK7iYE1yMj41SUGCwxcZj+iTQGTNT04KNKaGXJ6Xt1d/bL/txav8v+pnu2LbD0ftHb9ajJ9vBl/fGOU3Vv9XLnzyJfIUZn5tn0PL3Cxs3MCBg3vtgT+VkZYvnNyVtqblZ9Oi+KmNWsBEsNrzDyNbXttNA3wBNjE3Q+Og4jY+Myb7o6akZuvM1XO1vnvwCfz7nDk7N3L9WP2vPgaKXMPIY7GNcm5sVPuUcFRYUOMUkLS68wwg4KCookr76qGBjZHhEzg7rau+Uc2i0z47tFr3ziY+7f3JN5FKv1eK8oNFeR0b9NPb1WL+ptp/UGdk5wpZ65GNcF1wgjhscFGLpDB9zcig0nLo7uujy4DANDwzRUP+gnD+Zm50rWFjtZAPY3x/q9Exd2d9m6hzZP13qc+NwT2byFeDeyD3BlsK+o90fcJ5neGjQ7mM8tKVuXr9Gba2ttGb18xYbi8TIs8+sobycPBoUbMDugj/S19NHvd29dCTyqKOnhSofR9ljX3r9ILjvslE7hM+7GbXbfGEL+eJasd7dsYS9Ri+eDvu3ob7e4WNcE1zcuD5Hn968Th9FfeQyBmOJ7+JbEMykbBM2QZ/gorerh3o6u4Vu6abmhmbao/QMU+XUiRPzODFjW5ndk828T9vX1l38yKyuM2oL6vXTBxd6durqZ5+jpMQke7wWXFy1+xg3b1yn2poaS2csCV2ymhLjkyQXXe1d1Cn8kY5LHdTR1k7lJeW0Y/vrbjmBjW6mFynn3oz+H6NrmXM1RvQNrtlovpM/16jvrcYp0H9Kjwv4GOfOnJPx2qsP47XXrwlb6sY1mRNHHYS7Z2bJ4jIC2bRxC1WWVUou0HcSMzHbbG3U2txKyYkptH3rTrfrF3aDp1lwam7MyH6MNWx0XZrhw0wfKo7lGfG9mQVX7wUXp97/4zwf44bwMWBLxcVemBebsrhYWpwcPBBEddV1kouWphayNdrIJuyt5vomOYNLL28C4VlwyP26m+djppbLzDo2wwc4NXqGlWts3MW6Obeql9uDIB+bmJAoz4LP8zEe2lK/f2WjxcUy4QT+eXhoBFVXVMse+E2Cjca6RmqobaD6mnrKy86j4MBQx4w6VcAH9lH85JklLFzraNRmwvuM2v1m+DBjt0E4V6raZNgDkEt1V+u5dcs2ycWMpibE7mNck1zs2L7TsqWWESNOnIj1HxZyiCpKKyQX0Cu1VbVUU1lDNYKd6vIqOnn8fcHBBl1bg+u7eP1wztio7W9mDZvlw0xMgWsKoXNwP+ACtqSWf7ahAvYfpEutbY66cycfQ9hStdXVFhcryOaCnggJCqXSwpKHXFRTVVkVVZZWUkVJBZUXl1N6Sgbteftdevo3z7iMBXHfNKwt2GPeXMO+0B/caw1ccM8vV7Wcu956m+Lj4ufVnas+Ro3FxYrn5M3Xd1FWepaDi7KiMsFNKZUUlFBxfjEV5RVR7LlY2v3WO/S0C9tI5SP67Gnp2+Pv7Lvw+vMlH+xD83pne4mvCfoP1+Su/h9zpeMEO+ifYz/D51x3zjUh6Wlp4rMtLvzF7oJseXUrfXgqSuqUkoJiwUaRYKOQCi8WUEFuAeXn5Es/5dzp8xQUEEwvrn3J7e9hv0W1x3iP5zgp/o0ZYp+YOVP54HPafH5CfT/PheDPBhPwq1U/wlVNDfKq+/bul31C0OvZ3ifEfrZV1p0rNSFgJurDKKcchsWF/3ECe+qdXXsoOSHZiYuLWRcpNzOXcjJyKDs9m7LSsigpLomORh6jN3a+ReteWG/4d6t9CXjeNXPBMSOVD87HYe2zjcR88E8j+X7khtCfMuqDKCovLXP0IlT7hLCPwXXnqSmptGf3u4b0sSX+Y3tB1qx6noIPhlB8TLwTF5mpmZQh/JP05HRKS0qj1MRUSklIoeT4ZPrg5Ae0d89+sZZfpxeeW+cxh+IrWbd2Pe3c8QYdjjwiZ4DXVtc4+p2DC+655ugTAh/jYd15Xu5FCjoY5HS+1d2eYol/6xQIaifee2cvffLhacpIFmwkCTYSBRsJgo14wUZcMiVdSKLE2ERKiEmg+Oh4ijsfRxfOXaAzUWfo8KEjFBZ0iHa9uZt2CnbWPv+i1Dnas11GBH4T8gsbXtlE27fukDWa4WHhlJKUQnk5F+VMpc6HM5V6u7tlv3NHX2cHFyMOH2NocIByc3IoUIcJS1dYYpaVn/30l/Ta5m0UEhhKZz4645KL2LOxUvBnvJ4QmyBtMvCUJnQO9A90UXZ6FuUK/QQbLj8nT/o88H9KhC9UVlxKFSXlVFVWSdUVVVRbVUP1NXXUWFtPTfWNZGtsptZmm5zb2t5mn0/JM5Xk7Bhw0Y9+54NOvQjRC/3UyVOyltDs/VtiiZm1An/g5fUbpH45En7UiQuwAm7AEOwv2GLQPZnCPoOtliO5yJVcwN9BTADxgbKiUiovKaPKsgqZl6mtrKa66lpqkFw0CC4w69tGbbZWOZ+yU86n7LTPVOq2z1RiWwqzljLS0qWOQR+dhd6nJZaYYcXdOsKcLPgfbwt7KjgghE4cPUnnT5+XfktWWqbgIlv6+/D9C3LzJRfFggvEz8qLBRelFVRVXinneksuoDPqGmT+v6WpWXDRInN2PJ+yR9hS2ZlZ8vzqsSPHad97++XcYG/ciyWW+JoXrX22ft3LUuDHH9gXIHPUBw8EUuCBIBk/Dj4oJDCEkMcMDQ6TeX/2MyIORdCmDa/KGZWvbtzs02u1xBJfM7PYa/FJ/35LLPHWuvWmWN+xJZZYYoklliwt+T9QSwECFwsUAAIACADaiD5b9K4ncf4/AAAAcQIABAAJAAAAAAAAAAAAAIAAAAAAZGF0YVVUBQAHJQ7caFBLBQYAAAAAAQABADsAAAAxQAAAAAA=</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #11</Name>
|
|
<Index>11</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPlu4cp2s7j8AAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J33W5TH2se/f8l7zvWe6z0nlphmYmKLSYydqMSCit1YjhpAEQuoCCgiSpHem3RYdqlL71XBgqjYY4stMSbn9/POPTDr7AMoC7u4C88P98Wy9Xlm5jN3mfue+fvf/oG/q/Le5G//87+DFrW9VBkL494Wvl8VVSw1TtVrUkXlYXDjbuHCxVzc9rvDzc0d4RExSExKY5KKouIytJ6/iNa2i2hp7UBzSzuXpuYLaGw6j8bGNjQ0tqK+gUl9C6Ki4pnEITIyDocOHoGT016sWbMec+cuxOTPpph07WpfqmIJJgZ6zzfffI9Nm7bCy/skUs5lop6N7Y5LXWi/eBUXOjqZXMH5diYXLqPtwiXGxaU3XLQquGgiLtoMXNTVN6O2jkltE2pqGlFd04Dq6npUVdWjsrIOFRW1TGpQXl6NuLgk+Pmdwa6dzpjz/XyM++BDlRdVRpSHCeMnYaWDI3x8/HAuLRuXrlzncvHyNXRc7jJw0c656JS4YCK4aOsw6Azioqn5PGeDuGggLhqICyaCi9pGxgZx0WDgorJScFGDsrJqlJVWoVRfCb2+AvqScpQUl6O4qAwpyWk4cdwPG9dvwfSpX6usqDIsLvp7zc5uKQ4eOgJdfgkuX+3G5c4buNT5hgvOhuBC6Aziot2Yi4LCUsQnpCAuniQZe/fu57JnD4kbFxcXkn1wcd4HZ2dXLj5ML0Uw2yw8nElYNNcZxEU5cVHGuCit7GGjpMLARXFRKYoK9SgsKEEBu+4CXTHytUXIYEx7e53AimWr8Oknn6usqDIkXeHgsBZBweFoZuP6Slc3rhi4uNGHiw6Ji6TkdPifDsI+t0NYvnwVFiz4gescS1z/jOmzmB21AJuZbbdrpxOCg8KYvkhnXJQyLhgbggtdEXTaQujyCqDV5CMvNx+aHB1ys7U4yz6z1nEDPvl4ssqKKm/VFYKJFsZEZ9dNxsXNHi6u3uhhg7gQthTjIpeNt2Nevti48SfMmjXbau5v3AcT8f3sedixfRfTPb5cZ2g1BT1c5OoYG1rGRh5ysjTIzsxFdkYustJzEHgmGGtWr+vDisrJ2NUVU76YiuMn/FHJ7PvOa7cUXHQbuCDRMPuEfPBFC5fY3P2TLbV8mQOOHfVBSlIacjI1PVxk5CAzPZsxlIWM1Eykn8tAWko63A8ehv2SZSbZoaqMHi4cVq1FLPMBrl6/3cMFkz5cMImKTuCxKUvZSO9Lpn41A7t3OSMyLKqXi0zGRQZSmX2Wynz6c0mpSEk8h2jm92xctwkff/SZyskY4GLLlh2oqmnkXFzt5cJIZxATMcTEtlHHxEBC9tRmZiOGMttScJGckIJkNn8kxSUjMTYJCTGJcGI8kb5VORldXEyY8BHc3T3ReuHygFxomS+7afPYYWIg+WrKNLg47UVUeDQS4xgXsYmMjQTER8cjLioOsZGx8GC219czvlE5sXG/m3PhIXEhbKleLppbOxAYFMbX99T2M5YP/jUBS36wxwnm3wsuYiNiERMeg+iwaEQxu+yQ2yHMnD5L5cQG41FkR7VJXMg6o6Kqnq9njHVdMVghXbHPxQ3R4T1cRIZGIjIkAhFnwxEeHIYDrgfw0YefqJzYABd2dvaoqm1C1wBcbGY2lNp2Q5OPJn2Kndt3GbgICwpFWGAoQgNCEBJwFttY2/7rn+NVRqyQDfIbM7I0KhcjwQnTFTu2/huhgT1cnD0TjODTQQj2D4Qfs8eW2C1VdYkV6QzyMbpu3DH2Ma4x/6Ktg3GxXW03C8kkxgnpDOIi6FQAAv3OIODkaZzx9cdBZnNNnzpTZeQ9siFsKaWPQTkhqn8xckIc7P15D2eDi99pBDJegvwDsMFxg2pzjRAb4jHFpU74nu7XloqJTcIXihi9KiMj8+cswElmX5EuCT4dyOyuIGZ/BePEMR/MmPa1ysgI6Ixvv52DgqKyXp1h7GPYKexer2Pe3AZQ29Fy4rrXDdOlsU+6gnRGCPNJQplvEhYUwnz5UObTh8Fx1doB5zxVhs+Gk7OrwsfoyQnxOX6qjy1VWlqG//73v4iLS1Db0oL+x+vXr3k7O6xcbfQa6QtfrxOICA5DZEg4okIjEB0WCR9Pb3w86VNVl5jZnhK5Usq4lN0iY52xa8cO/pf6i/qNRJ7fVDGfZGfn8vZtbm7h/69auRKffTrZSJds2bAF0aGRiAmLQmxENOIiY7g+mTdnvsqImewpni+lyAmhdW9ZZ6xfu7bPd1G/yf2nivlkwfxFhvlH6I4P2Tz2z/8bhzmz5/DH4r20vniG+e1xkbGIj45DQkw8kmITsGPrDpWRYbCxZct2XqutzAlxcHA0vEfMV1992dcnJ72h7ENVzCNi7iEdonxN8CH3CeWr7Hfdj8ReNpLjE5GSkAxvZm/Ra6pPYhobVJOhzDunHEJlbGrRgkVv/d6gwGDejw8fPlLb2Yw+ObUp+R5vs1370+mrVqxGSnwSzjE2UpNSkJZ8DuHMd5/65XSVkUGwMWH8R7yGT5lfGxgUamRPkZ/Rn854mw9JrKjtPXyfnOYaU9pzj5OT0f+UIxwXFYv05FRkpKQhMzUdSXGJ+E7KE1UZ6Z8NXaG+Tw3f7p/39NEJQ53v1DYfnsj62NTYuWzjkk0V6B+ArNQMZKdlIicjC7mZ2Vj+4wrVJ+kvRsV0g65Ab8RFU0s7Vq5842sIfUG+oalxW7KT6XPqGB+ebP1pO2eD/pryOeov4oP8RfLh6blxvT5JTkY2YyMHmqxc5OVosGKZw5hnxChGxfQqxWrl2tbG5gt96jIofijrBBJ1zL4fG8tUpmitVvShHAMmcd7tjLxsDbQ5edDlapGfp4PHQY8xy4h8r8QAxaREbStJnq7IyNeQuVDOSUPRCSL2IuyE0b4+Iq8FyfE8um/hS8hxcGFDCZvUVF0hC/1GfzEusU4lhHRGvkaLAsZGoTYfRboCHHE/MuYY6Y8NeZ+QPO0bNkQ8/W3zGLW9KfMZ8dTVdc3wP62zj3a/XcS5le1Ec7qwU4XfTdwQE+K99J6hrh/Rd1D79tc/ZCtT38q6ZOXyVZyL4vxClBQUQV9YDM/DnmOGEfn+iA3yL+S9CDVaY71BbSivMw003k3xRaj/5f4mNsZCXIvaiMY93bu4X+W902tC1wzUXqb+5tv0O7GhtA0cVqzmXJQWlaCsWI/yklIcO3ps1Me1jONUk1BeWWe0F6FGW2hgo792G6x9q/LR/zwuYkfCpqJxa0k+TPEPaT2RxGBPO6xBGeOiXF+GitJyVJZVwIn5KKOVESUbebpio70INXlv2KC+HErO7WA/Q/0t21dknw2WrdFiX9H9UzsQG7J9Rc+LvBHxXhrjZCOZ2hemzDlkI5DIfuCaVY6ci6rySlRXVKGmshpr16wbdYz0ZaPIaL/zXAUb1EcklsxLH2v+ubB1lH74SPjnpugb+j1Z5ziuXsu4qEJtVQ3qqmtRX1OHdY7rRxUj8j0EBIYY7eucqykw8jdo7hJr3ZZmRBXrEcFGf/lcpDPqa2rRUFuHxrp6lDNd9vXMb0cFI/K10761hv3OL11FXUOrERvHvTxVRlQ2+HM/bd5sFNfavnUHmuob0NzQiJbGJlRVVOLzyV/adExLvuaNm7b2ctFzRgad/SL2O6d2UK4XqYyoekMZ+z3p64eWpma0MhuwraUV2ZnZhvnV1vgwiuMyDui8sZ6zY3rOVKIz+cR7KYbbX56hysjYZUPMm8oYZmJ8As63tuFC23m0n7+AyPBIm7SzZH9cX1pldKbSzp1v4nTviuHKjKg1TmOHDVnkWqsJ4z9EblYOOi6042J7By51XMTuXU42xYh8jRGRsUbnU/r7B/WZI971fcSIiNfLz1N8Us4HpTYX8Xy1Fso2+HgXG2KMyDkU38z6Do3MF7l88SKuXLqEzstXYLdosU34IvK17dzlbHQ+ZVa21mAv/rjUflC1G28TeW2L4o9kg4l4vlpzbv1iyhxG+kPO11q5YhXj4jKuXrmCrs5OtLW2Wr0vIrNLvrd8PmV1TSM+//wr/pq5/AiZj4HWgdVxaBmR80bE+joJrSOK52nO6u95c8lxnxPounoV17q6cP3aNSRIOUbWyIjsc2Tn6N6c23r+Ij+nUp43TM0pVPmwLpHbV+RzifV4sdYuakREf5u6Bj9Qn8t2QVFBIW5cu47uGzdws7sbe1z2WiUj8rV4eh5nbFzi+yrQmcZ+pwKM9KTwKYZaryRYUPmwDj5kX1DoDHrOXDmOwuag8aLsU9qTvKO9Hbe6b+L2rVu4zPyRL6dMtSo+ZLuKzjIWZ323tHWgoFA/YM4h3TPpaVNrnEQOCsW1BBP0HbL/Iednq2I+EW0q8yF0A7U9PTY3HzSH0vcLvUH7cZD/Kl4nnXGHsXH39h3cu3MX2jytVekQ+RoKi8r42cgtrR1obmln92bHn39bnjqNbVNrZUX+mxq/Gnm9QX2ltK/EY5kDc/Ah16coRY7vpCSn4N7du7h/7x4e3L+Pfa5uVsGI/NuurgcNXJAcPuJleE25X9i75ghVrFd/kJ6W9xOj+Yh8DRr/9FfodPqf3kt/SZ+bkiMt7KmB8iJpLMl7B01k/5Ov/uCXX/DwwQPcuH6dP2ctfFAuTHMvG03NF6DLL8b4cW9iuYNtE3X/BNtghNiQ7VfqN3puoDUqU/pV1OMO5jOzZs4yrI3sc92PRw8f4vGjR3jy+DEyMzLfqw6RfzMuPplz0dR8Ho1N5zG/164yhY+xJIuYn0ZrWh6HPHDE4wg8jx7rsSVi41CqL0VYaBhO+fnDz+8UTp70w+7dTvjRfjmzKaaPKT/nXUJ2ibx2WFhYiF+fPMHTX3/Fs6dPYW+/7L3wIfvky5Y5cDaIi8bGNgQHhxl0oMrGPzD3+/m89i3oTBDytTqeP0S5EbTue+PaNdy+eRP3797jcx/168sXL/DHH6/w119/cnn9xx/4/fff+PPPnj3FkyePkZ9fgNP+Z7Bt644+55GPNZHz976fPY9z8fzZM7x4/hxNjY3vRYfIv6XTFTM22tDA2Cgtq8Lk3rxjZf7lWJFxH0zAih9X4riXD99joJzpA6p/o9qe5sYmzkdpiR5pqWkICT5rpD/2ux3AhvUbea6qrD/Ky8q5XhF8PGQs3Wd+6J07d3Cz+yZqqmv4ehnlXoxFPuRxdjY4BC9ePMfLly/w228vue5VzukjpTu2b9/FuWhoaEV9QwtcXPYZ3tdfvHo0y9LF9jh80IPvBZjH7p32qSE+0s+lwZuN/W3M11wwb5EZxsM0rHVcz5nS5Go4H7R+fLWzE5cvXoK+uASeR44xn3DKmLHFKCYg1gk+nPgxmzvucZ376tXvbC55wJ8bKR0ifmP8uA+ZvqjmXFA9h15fyZ8TcTmRnzma41J0vsXa1ev42Ui05zLtJ0t8hAaFYMO6jey+Z1r8GiZOmMT3M6Ax0tjQyHNbqT6CdFV0ZAzsly4btWwQE6I+WF7zcmd+Hdmor1//gT//fM118UjoEPn7XVzcUM+4qKtrRm1dExwdN/SJz8k1zNR/o2XNbhKbj7Zt2cbPAKdzXxKi43A2IBibN2zBJx+/X5tyxXIHhIWEcT7qa+tRU1WNTMYsMTRauBDrKfIeAspY8PXr17n/9p///IVff30yIjpE1h2kL2qJjdom5OToDO+h2kg5j0R5H7a8JyjpC4dlq/gZrXT2JPHhsd8di+2WWN21kn3lcegwigqLUFFWgdJiPaIiojD7u7k22/4i9qucd+WxJx47OblwNkiIE/LlLOmrG+kO532ci5qaRlTXNMBxzZs9JfpbBxR7Gov7ssUzASkme9rXH0GnAjkf+1xcjc5ktVahueznXU583+ei/CLomF/kddTrves5U4VsdlErJ2pHlPaIsmaiu/sGZ4NsrMePH1lUh8i6o7i4vIeN6gZkZ+UZ3qM850EpxDrdoy2tA9JZku4HPJiPEY6QgLPwOnwM3/bWzttWXG0iDrsf4Xxo2NhKYv4S7TFlK9cv9hx6V+4prauLeJbTz86cDfJDSCgWaCk/RHyf45oNnIuq6npUVdVhzeo3uuNte+XKvomt9Mm8OQsQFhyO6PBozsfqFauNzrq3RZk2dQZCgkKQlZ6FtJQ0rkvk880sNbaFHUT9L9vc9JieIxtD1g/K/eXoPYOxzZVrCtevX+O+OsmDBw8sYmPJ35Wdnce4qEdlZR0yM9/URx5wcx3Sd4t8NyHC9rJ0fc27ZI+zKxLjkhAXFQ9vTx980VvfNVrkp81bOR90BmBESAQ/Q3Mk+FDuXyn2cqQ+Fj622MNxqL8nn6Hw824nvHr1isd6KeYr6tUtwcfSpcs5F5WVtaioqGG/7WKS7uhPqF3EWomcq2OJ+ppB2SFsLj3DfIxzSamcj61bto8qLozs9SnTcJbZjAkxCYiJiIGdtK+MpfgQezaK/hb7VyrtpuHwodz3n/IWiQ1aL+zs7DSrDpG/IzwsmnFRi/LyGuh0RYb1jqHqDqEnSK+KfXCF/WXO+prBytSvZiApIQXp5zIQExXH7avRyoaQnnNlD3A+SI9s/2mH2b6b5jqxfifbV6JWh0TYV+bkg4Rym4QO8T1xEr+9fMnX1F+8eMFz2czNx+TPpqCCcVFeXo2ysip4HvV5a8zKFBE5oUKXvA8+pk2diXPJacjKyEF4SOSYyQUUsnbNes5HSGAIs722meU7yV+guU8+Y2Ug+4r6V9hXpE+Ge1akvO8Jxa0of43yTp4/f4Z4M9aqi8/vd3NnXDA2SqtQqq/EjOmzDHME+QxDXSNXtp0l6jMHw0Z6aiZymW8VxOyNcRb2V61VKIZNfAT6B/K1TnMxIvvbQ/XPhyKyPkqIT+B5i5TD9vTpU0ycOPz6EPmz6WlZbCxXQq+vQEy08foFsSFqW03d61u0iznra0wRuvasjFxoNQUICQ7jcdCxyIaQhfPtOB/+vv7YsG6TzV0/sUZjhewQOd5FeTaU20s50rSeTrmg5uJjyeIfuc7Ql1SgpLgcqxx64uaUf081Ksr5QulLDGaMmqu+xhQhHZibo0VBfjHCQiPHPBtC5s9dyPnw9fbFOmnt15pF2DE09oQtQ/aVPD4vdnTw+hCqn6qpqRmWjSV/5ugRL5SUlDM2ylBcVGoYR2TjDeR7iFwAa80nodhCXl4Bu58yRIbHqGwohGITxIf3EW8ssbPOOh6xJiLGmXI+Jj7kc6m8vXw4G1RjSPU2X06ZZhY+cnN0fBwVFZbixPFTBjaUusOWJD4+hevElOR0lY0BZM7seZwPr8NemDt7vtVdHzHxrhoKmr9F3gnVBjx69JCzQXXqZ04HDJuPxT/Ycy6KCvUoLCjBD3ZLbZ4Pby9fvn5D+kPdE+Idca3V6zgfXsyG+Pwz26spITZoTyDxf1VVFR48+IWvibS2tAzJxpLfe9jDk3GhZzZ6Cfdj+9NbtiT29it4fgzxQX6VysC7xXmXC/x8/HBov7tN5tfI64W0988v9+/zvYBIZn83Z1h8ZGVquP+aryuCD7NHBR/y/iq2IlT7W6Kv4Hwc2O+hjv1BCvU36Y+g04HYtH6zzV2/vB86+RzEBe2XdffOHezd4zpkPqjenbjI11JedCFW9O6jO9z1wPclMTGJvGYlKSlNHfcmyjdff8f5iAgJt2iuliUZF4+bm5o4G3du3+Z1/abaWOJ9e1z2cS60zE7XavINfqzyfDhbkHXrNvFaeeJjpg32rzUI1UwSHwGnztjctcs5UFRvS/v13r55C7du3uQ1yoPlQ34PrQkQF3m5+Qg9G2543tbqZGkP4IrKOs6HvIeEKqYJ+R6kQ+Kj45idZXtrh0IW/7CUc0F7vnff6Mbq3joYU/ggXUFcaHJ10ORosa03b02cNS/va2/t7eG67yDf21HL7ER1nA9P/p+9836L6tr6+PpX7nPvm+L1JsYak2jsGhW72GJDogiIioBSpCiCgIAwMDDA0HuXZqHYwN4RW4ymm97u/QPe/d2yJ9vjNIYzw4yeH9YDHKacM7M+Z6+19irI8QUfBYZ8t69BlPdHkJsh54A/evCQz0VAL1LkLw6Vj4XscwAXyEmqr22imTOe+/ny7Di5DhjvjT1zd4uXYi4PZi2Aj+XLV2k6roLERMVQRUkZ7Q3Z63bnhnwl7KOLPsGygBHxuNqaWrp/7z7dZ49ra2mz2wcR/98ZFMy5qK9ppLqaF+fEgQGZS+V5DDUHy5mScuQo5wM9UDXdVkemTZ3B+ahnOjb2veGvIcrcU3O9qW3Vy8k9pWQRufRKOwc9gDB7auDuAN3tv2vXfDb5f0mJKZwL5HsnHnpet2tu5i4E54rzw3mbm70hX5tcVy/y/5XH1RLU/GE2KPiY/8kiTbdVlPi4eM5HZHjksF9LWesh+lrJx2zVywm7Bo8TebJKfcI+odjTRv/jAcbF3Tv91H/njokfe/moq2ZsVNVTTWUd7QjYaYqRORK3wnmLXADZDpPryMC52jm6e/dGcT6Kiis0nVZZ0KMCfLQ2Hxt2fo65WihlLyhb9Q5gwZZtr+xF2s/YuHP7Dt25dZv27Y2wm48Z02dTTVUdVVfWUnVFjWnODfhzZO9DzuUH2+BAeY3KGWlqyPm+K5yPTSrVMmjyomSy7wt8BPrvcNh/tsSHcg1Rqx5I7pmOWVPoyXrr5k0qLy232zf/dO0GxkUtVZXXUGVZtSlOYWvOja3PQtR0iHkRzuTDx2cb3bg1QB0nujVddpKsXL6K81FZXuGQPog1wlItrdwXUS0+5LyPtNR0unXjJu+nj16Ttnx0cTzQP4hdczVjo4oqSitNtpWj+YjyPGB5Bpoz+TDkFXE+wvZGarrsRKmtqqZTx0/QvDlDz++FToiaQVlXhE8qx2TVqpfD/V3c4wMDgni/4utMrl29xuc82RPDij+QwLlADw/0trHmm9sjIs4lrk34TqJuUNRbqlUHNXHiB3S7/wHn41Xry+NuEhUZxfmIP+CYvoraOJkZ4ZMqa+PUqJeDDot83gXzveg64+Lalat87sSCQT/CHB/ysQKDkcqZT1tWXE67d+4xcedoDx/5umUfSvRlUB4frmzZso3z0djUpumwk2WR1xLOR0eb533WiOmCiytMLl+6bIoH2OIDXJQWlVFJYampBhk5V3IevTtLfkEJ5yNQ6s+lifOkubGRzp7uoU/mLXD7c0UMKyYqwvQ3ZkFcZvbLpQsXKXp/jE0+kKdZWsjYMJZSMdMz7AV52vfVP/CI86HZVq6RuJg4zsee4D0ecb6yHVRYUEgX+y7Shd4LVJBntBm7mjdnAe8bWFRQzPvqCT5gA8F3En1K8FPs17hTvqKX11LOR2fXWU13XSRr16zjfBgLCtz2HIWfAxtKnkWjy9AxNvqo73wvWwebLMawxN+b1m/mXBTmFZLRYLT6nsJ3EMy4Q+5VRGQM5yP9aJamuy6S8WMncj4uXegb8XOBnyvfw8VPseem9O2Dd4dQ77leHt/FjEhbfGxkfBgH2SjIfX4/QOxKttncWQqYzwQ+dgQFa7rrQmmoq+N8ICY00uuErccghiXqCYN37WFsnKNzZ84yxs/a5CM6IppzgX6s8bF/9xD1lHqonjN9nI+FC5dqeutCSU9N43wE+Ae6/bnKvUfnzV3AuTjTc4bOdJ829Vy2tAeyP3w/5evzKC87jyIH99awL+gps8wH7j/mfGg661rZvSuY8xEXG+f254q1Q+x1z5s7n89oPN3dQz1d3TR3cJ/TEh+YlWTINlBuVi5FhEWYePOEXj5eXss4H1095zWddbEsX7aC81FaUuJZfLD1oqerh7o7u/mcRnN8yL9npGZQri6Hz0vy3xZgej1PsK8EH5XVDZrOuliw9wE+Gurr3P5c5Tx09NHsZlx0neykzhOnaEdAkFU+cjJzSJ+h57NZ1656PhMY+4Ke0O8qMiqW83EoIVnTWRcL9Ax83Lh+zSP8D3nWbSdj4xRj4+Txkzwnyxof4CL7aBZlpetMfAw3t8TVfERExGg6OwLiKXwo5RTjAvOvT7QfN+XqW+IDXGBOq47ZWWu8n+eNeUpuicaHxoe964e8X3Gi/QQdbztOHW0dFLA90CofYCOTsZFx5CitHuwHp4aIHGZRNyjPR1HrPXRZBs5H0E7PyHN41aSmqorz4bVw0bD1BCJmOou6WbG3Ic/XkY8P1QcRv4OLjtZ2am9pI3+/AOv+OeMiIyWdjian0eoVq/kx7DnKM2bNiXKOgfI5uBZROyhm1IoaGbV6BNU1HON8eHlpex8jIYVGo6p84HeRByL2waFX8nw2ef6YEOVMZHNilGasgYu2Y63U2txK27f5W+UDXKQnpVLa4SO0arAfDvTXXG8IWZTnKGbICbbFdSvroGzNe9f4eL35EDl+om+BPXV18vpiSeTXABctTS10rOkY+W21zkfaIBucj8H1Q67TsCTm1jhcj2DdlXysHpxvpYnn8CF0QMmHsr+NPXwoa6zMiZyH1cK4ONbYTM0NTYyP7Vb5SE1M4WxgDRH+x3D2B8E91jKZD9m+EvXoanw/iey8Nf985KS7q5PzMWP6zCE9T+gBGFDyIbjBvVb0wJHtKzHLbyjvJ9fYQpobmqmpvoka6xpp22C9uyU+wAVsLPgga7yf8zGc/BJRR+sK/1yLX3lu/EowYs0/F/fR4frn2MuT9/PARWNtAzXU1NNW323W/XPGRSbz0RHfXTsY34Wv7wkzDTQ+tPiuI9JQW0/1jI266jr6bMtWq3wgtosYb3a6jtZJ++fyfqO7ys5doZwP1Ndq+upaGT9uEufj/Dn3r0uDLST3+QEXtVW1VFNZQ74+L/MhS3TEfso+qiN9RhaFh4Z71Hek5V+NnIj8K0/IT5Tlg/c/olrGRU1FNVWXV9G6Neut8hEeso9yMrMpV6enyMGei56yfkya+AHn4+KVm5rOuli2bfXjfOTo9W5/rvA9hD89Y/osqmZsVDE2Kssqafq0WVb5iAgLJ0NWDuVl51LUvkiP8j8gov5D9OPWxEW+X3gk5yMs1P1mHigF8ViRv4s+wuCiorSCykvKeX8Sc3yYeif6BVJ+toEKcvK4nYVjYMNT6qNa209q9YMjIIacXM6H90r3n7GCeg1RX7tsyQqqYFyUF5dRWVEpn99pjY8N6zZwNoy5BVQ42J8BfFjKbxd7MYjFuUN/hoxMPecjPDxa01sXiujPMHGwR+dICXTQVj8d6LLYz/PZtIXKGBuljI2SwpKXeFD+jT3zQkMBFeUZqTi/kMa8O44fl/uUyD/Fno27zI3y9fXjfFRUun+dzqsiqLkDH92dnSN+LtDDofQvQb4VuCg2FlNxQZFNPtDvClyUsMeWsudM//h5/ytPmckJH130h9N01zUSFBjE+dBlZLrtOSr7X4njsdFxjIvnvd6iIy3vmwk+3mf6BS7KGFPlbM1Ztni5yUf3lB4mqD8HH6sG9280ca5kZeo4HxvWb3T7c1XGmtL5PN7n/azCFDno5viAwE+pYDYZ/JYtg7NlYK852r9d9lNc0Z86/lAy5yM1Tafpr5MFs6PQnxp8TBg/ye3PV7lXYeSzeAsoPzef1q/baNa2Uh47cjiFKksrqKqsghIOJgz7nJSzG0TOmXK+gVp5vMjfBR+YH6XpsHNltfcazkdpseflLMAWL2BcoNdbnj6PFi1YbJEPWfZH7Kfq8kqqqagiQ3au6fihA7EOnYcc27I0H0f4UWpde9/Fa3z+h7e3+89n92RJO5LG+djqu9Xh15BzElHvIfJXxawYcY8dbs0gJHD7dpOfMGfWPM6F6Gc19aNpVvkQx319PqPaimqqq6qh+uraYX+G8IlE3EBw4Oz5UQfjD3M+jqRmaHrsJMFsZ8xXAx/jx01UhQ/oh6hFFXOP7akZtFdkH3r92g2cixxdDukz9WZtKXN8YI5OfVUtNVTXUWNtPc2aMZsfh//hSJ8fMbNa/LS3zsUR+cc/xtBbo3fRYu9ezgfmc07Q5hw4RXbu2MX5SEo8PKzXkfnAuiDWBqEjaukK/HLZ90D/wxydnrGRTTFS7MoWH2PHjOe58MiJb6prpI3rN5nYcyTPxFyNIO4J8nxnczXsQ5F//nMKvTO+jCZ8/DVNnP47l+r6zzkfoaGe0Vvbk+StN/9NZcWlnI/FixzLVTBXMwi9F76qmN+pFh+IXcl9eNJS0ig7I5uyjmaR32fbbfoe8v/gnzfXN9KxhmbTDHiwYa3PD7gXs83l48p6eXlWp7J+csjfE1sr3pvcZWICMm7KPRr1ThT5bAnmfJw+06flY6ksWzb78vnnxYVFDj3fUs2gOd23p2YQHEHPhL9iThCDFfbVu+z9wYUuXUeZaZmmfQxbvrmQePb+LY3N1Np0jEoKi83ygWvE+Yj5m8J/Gs46YO9a8e8xSS+sFRCsH2+85f3CYztOdNHlq7coJGSfptcqrh1GQz7nYzj5VpZqBsUsV9mmsOWfw25X9l8Q/U7EY5BDKPJK4EPIvaw++mCqXXyY5uRs2ExtzS3UfqyVOlraGHcTTGsEOBXXpRScpzWGhyNvjtpC705semmtACtgxtxzNm3y5Xx0dZ+jUW9ra4gasonZ2xUlZZSXY3Cbc4LOQS/l+7QQxMGgl/J9e5uvH+81fZSxkZ6SbtP3UP4fPKEvEPpmHW/rYL75WtN5yO8NTkQ8yhnXDX8bthI4kLkAJ+DFntdoaz9FFy9dp/373b/3vtuvHW+MIr0um/OxYtlKtzxH3MPBAuwa0ftA6Kp4zIHoA5yLtOQ0Cg7aM2Q+IIhdoScpepPGRsea1kS8r5hh7qxrhJ0Ee0lmAvbU6LF6i2uFJZk/fxHno7fvCk31wHmj7iQBfoFUmGfke8iecs6wsUT/E67Do8dwLlKTUtl1HCHvwT5v9vge8mOSEpN4bLvzxEmqqax+IU7mjH7VIjY79sPLL3AB/xvHh/PaRmMp58NgKNT0fBj3ZcRDwYeoI/IUkeOun8xdQKmHGRuJRyglIYXPTxyKby7vE3Yxu637VCf1dHaZ9hfh56iZq/iv//vkpdgsfscx/E+N95gw/n06deo0nT13ka19/pq+D9X3Y3YVbBLwETQ4A8CTZF9YiOl3zLVJSUyh5EPJ7JoO2m1bKR8HrnpOddHprm46091Du4J2/23/qLB+WIrN4jjWErU/Iz/2uYCPduaPTJkyXdP7IYjPxi3Ml03n+a5vvTnKo68lPiaekg4l0eH4w7R5vc+Qny9zVFJUwucWnu05Q+XMJzPH41AEvgN8CHtis84Qg8FIp0/3UlFhGZ/poum+bZk9cy4lxSdxPqa4SR3cUAR75sLegV2YxLhIPJhIiQcSeA7WUNYOJSPYGzx3+iyfDd179jxNGOdYDrO12Kwz1gpLgj5N7W0nqavrDMXGHNT034aMfW8CRe2L4nxsWOf+9R22BOtF4oFESohLoEOxh0x2kKN8fMzskN6z56jv3Hm6cL7X1P8d9e22ev5A76H/w4nNOkMw0xd8nDzRTT6bP9M4sCDQnbDgMDqw/wCF7g71yGtAvqC8px0bGcu5gI3lK333jvIBQW/ri719dKnvAtVUVdv+XFWMzTpLfLf4cT46mC+ySsuBf3m9Z2zs2RVCB5n/GrU3yu3m62FvAfuBtvbd5FjrtCkzKD42nl8TmJ89Y65DbCgZCQkOpUsXLtLli5foyqXLNG2wJl3u8ytis8q1Qo3YrLMkhtlX4KO1pYO8Fi7RuJBk+1Z/bqNH7dtPY8dMcMtzBCNiHxA/lftxsHHktQP2oWAjLirOYdtKyQdio+Di6uUrdO3KVYqLPfD3Ob7zodNjs86U6P1xnI+qilr6cLJ7rG0j7s/6bOXxT/Ax7j33ZEMpWEewnkBEbpbcMwG/Cy4gqP1w1LayFMe6fvUa3bh2nXqZLyKOr1sXMqzYLPbhRQ6AXC8m97aXj6stqJ/O0edRc2MrNdQ10Yrl7t/fzGk21RujaGfATp53AT7mzlbn/mYpH13OW5f1wNw8sqGsKXiuyPEQx+fPW8i5ACMHmd3w8WB831E2lIxs3rSFbl6/Trdu3KDbN2/y/GbxGDDhaGwWn4+4DlEvht/xWYn1ErkBas4JMcfIkeQ0zkdtdT0tX+qeeUXOFORVxbK1FPne4GPenPmqvbbMB+wgkZuLfCh8zzgm57UiH0TO6XVU5Nzd0N1h3LaCbx4u1QOpxQekr7eX7ty6Rf23bzN7pNJ0HDnDjs6XEnnIov8cPicclz8fZX2Ms2RfWATno6q8mvz9Al8bNtDTCesF6kxTDh9xOIZvLx8iT1D+XpU1dMPhAz65rI+TJ33I41WI6R5mNuOKZd6qsCFeQ7xO/MFDjI07dLe/nwbu3uW9r8X5OJpvIvc2ARuC+ZHgA7IjcBfno7ykgt9PUevwKrOxdPEyzgV6eGDdULM/KL5LYe/I9pKYuecqPrb6bOO+FPZwUhKSeWxOLT7k15k0YTIN9N+le3cH6P69e6TL1L2whoiev46sH7KPJT4fYV+J9ddVOrNsyUrOR7GxhLIz9CZb9VWStxn3e3aH8F5n6B2IuCdsLDXfA9+bqL2Q+RBzvUVdqdLOFrOP1WDjP6PH8DySZMYF8hGHs+dhj42VmaGjB/fu08P7D+jRg4e8h5A4L0f4UPrnIgfZVf65RZuDrclHUzPIaCjkPWDQJ+/NNzw770jIzBmzKTfbwPv6g49tg7XXzhB8n+b8bTEz3F7/3N5aCmUvdeSNwXZELnt6SprJdlSLDSUji7yWMC4e0OcPH9LjR5+TPvvvvihy33hrsQVX67rDPiu7xwYF7OR85GTqmW8XTzOnz/bcNeOt0TxfqLGugc8TQ+9A5Hp7wrkjHmVrFjhiuPLagTqPVMxiTk7jdYKhwWGqrx3mXq+hrp4ef/45PXn8mJ5+8QW71z5nAj6IJT7kvl/46Sn9riHI64dfh3rlo8npFBwUbKpX9gQZ9fZoCvTfQXU1dXSs6RjnIyxkr8f4VsLeEmsLWDHXH065dqxauYbnVPKZmuk6U26l2mwoGUE/lyeMi6dPntCXT5+SIddg8Rzhoylr653dv8EZAttqjfdazgfmw2emHqV9IftMNTHuycV/eE1CS3MLrwFtb2knfZaeZs2Y43Gfv6hblW1u2CLiPqu8N+P7gs+hS89kPmQW7ZNmaTqbD0hzUzN99eWX9PVXX9E3X3/Nzu3DF/wQW9fjqYI1+zPm44EPfUY2n7UVExlNSxe5z3wt5DtER8XQyeMn6EzPaeo61cV8jQpa/QrkmZm738I2UfLhx45lYc4sZmlm5djsHao2I0sWL+NcfPvNN/Tdt99SQX7BS3ELW+uhR3PCOPff6s/5wCwhzIPAXCHU1o1Engr6e/ls9qXS4lKeC3Sx7wKdP3ue6mvrad2aT1+5+Bt0TO5VAmbEvRe9rdD3DbWO6B8dFR7l9LXD3Ou3trbS9999S8++/55+ePaM5syeZ2Jc9ItwVl8Td5F33xlLGz/dRJlpGVRVWkF1lTXUxO4HmEUUzdYV3EecVYc1k9lJu3ftoZrqGr4ndfvmLZ7/Az50GTpa7qb9RdS8R8EmETFkcTx4ZzDlMi7y9Aben/3jqdNdwoaSkdmz5tKzZ4yNH57Rjz/+QCfYei7H7xyJ93r02j9vIe1lfm9laTnvq3e8tZ33tjjd1cN84kYeGw8NCaOF8xeR18LFdr/uB5M/4roewHzsgwfiqaWllb5ktu0XzAd89PAR34sCH82NTRQYsIPbV6/LZ46Yldyzd+qUaZyL/Nw8MuYVUEyU7b66zlxDCo2F9NNPP9LPP/9Ev/zyM23a+Hc9L3rJv058yLKI6X9ocCgV5hs5H6i/hM2DHOib12/wPIQHTK8fP3pE/Xf6qZXpfEd7B51kPHV1dtG1a1fpv//9i/784w/67bdf6Zeff+b3oO+//47ZFd9wPu7cvk3FRSW0i90vJ010bQ9usTcux5hEL2X5ceKYcu6fWoKe6XLuRnxcPBmZnYvPvdhYZJqf6So2lIxMfv8jevr0Cf366y/8exwYGOB7luJxOHd3q60ZCcE+w3Y/fz7vrqykjLoZA4KPL5885X4cbFRw8Mcfv3M2ZD7AzfGO43z9WP/pRtMc4pESeS9C7O3JuUI4DptHnouk5vwKoVvy36tWrua9h2DblhYWm2pdR5IPSGLCYfr9t9/49/rnn3+QXp9j+h96AdnT813MPHgd2YGuL12ynJYtXcHtqBXLvWnlCvfOs5f5EHNixf9E7pRy7o09OXRDif3L9gn2cnKycnivaOQEFBjyTfs7rmbDHCP32L3wL3aPEPe9eXPnv8C5NUaw9iLGNZQ1WPR+Vx4byZyU10nM7WWLHrj4LpV82JtjKuK31vYBzM2KDQ8Lp1Jma6LHTmVZObsvrzDp6EjyId4b9ztw8b///ZfLtatXTY+Dn26JD9GXfqj7Ini8PMsQ4sqakddVxKw8mQ985tBrHBd5Eo7yIV4PtpklewK6JM+Khe1aXlxKFaXlVFVeSQnxCSNmV1lbQ3Jyck3rx19//UlJh5NfuCbl7Cl5lpaj35X8mY9UTvzrJGJvS8w2Ep+1+Fv0Lxf3K/wt8rLFujKU71c550OZB/t81kIBnyVbXVFFtVU1/9/eebZHcV1x/HyTvEtPnNiAbTC2AxhMc8EYmyJUkUQLmNiyTZOEei+o915WEuoddQkhisEkxLLj2OSFEzuPE/IRcv93Ocvd0ezujNgVknZenAdYVquZnfu7p95z6Pe/W7Ms2NAyAr98fn5esgFbC77Itq3bHffFtWPYZ9SzHosVrQ6x+Fg6RtQ5R7zX8blA7XlQ7dkeM8LzZdgu0NbAylmy9Q2CiyZqabJReFjEstEdenbW3r37JBeIu8Bf18aztPfrDX2v2rtP68yIJb4TV/vpoQMBsm96S1MztdlaKFWxV5YLG3rXk59fQP97+JAePvyvjE22tV1x8r+8wYR2Borln/uH78N/R84U/nhrcwtdacGZ6Ho5T/dp++RG7azrQqeCDeRF/vPjj3TixOOe32rfLEv8U8zYD4hVqf74L37+K8oVrOCcRTtmZF5pl7mP5ao79Ows+B0PHnwrc+rIeSG/zvVZi7F3V2JNvCX6AnsYeUOjjGjjuZ9EfSq4aJP1NF0dHXT+7Pllz4be9UFngAvUn/z7hx/o7p27Qrc8jvMaqT/h85kQf80frjZfgmu7jTCCNaL645g13iHs9a72Duru7KLiwiJ5LnIlsKHHSEVFpawb+uH772X9xOTEpNN73c2iUtkwGxu0xNya5fo+rmNQhdcwfEe9Giuzgs/xxIheDnDL5q3UCS46Oqm3C/38WsR1v7ysfQ4jjExNTtK/BBuog//nd99RacnjsyLYG/R6A/mCDTwHxNM5rs7PBWuDe9Cor/uT36v2kOHzFOq8enwvPHeZ//QlI1qfY8P6l2Vv9J6uLurr6aGB3j7a//6BFWNXufNFfi10xFdffknfCTZwlgq1eNq8j+qv+0pvIEbIvWb473gdzwfxe7zOM+v9lQ+sU3zv2tifNl/urf6GeoxgLaj1FrCfqiurqK+7h/p7e2mwv59OKvGelcaGHiM4KzL/xReyNhvnDnEuN1Kpr2Qd4kubSn3Gav7Q3/OK2v5tYAN7h6onvNm/zRMjKh9gAz5Gf4/goq+fhgYGKDY6dsWzoXf9RyOPSy7+AXnwQPZ2iIw46rQ2felv8JlMrsPmmJi/8oH7576uzAfbmvwePgPqKz60jKjfPdgoKSqmgb4+yQVmxVZVVDjOY640n8MII9AZ4OJbyDffyD4o6Ieixv4Ww4YRn1Htgcx7pD/zwesSDOjZV1xXhfexXYrXeJ9xx91iroV/F78WfSFa2lLDg4M0MjwsbKzKVceGHiPRF2MlF3//GvI13b1zR/b0c+WbeRJ19vti/A/udcn1jupZBn9gBPesfn9q3RRzw4xoa6z0BP+n9S/dCewp7VnsmIsx8mzy1aEhGr16Vfrka55btyrZ0GOkIL9Q9pj721dfyTPUn92+7WCEY3uwQT2drcJzM7qerfjV0gmeiadaIjxniDbGD/+CuRgbGZE+Oc6Vrxafw4i/DsnPy5dxrS/n54XvPi/PjISFhjvtK+7qUPicgLUel6fg2bjba7R2Avo8XoqJlbYUuJgYG5W+h9offLWy4YqRy7l5st81enD89f59uv+X+4IR55my+A719Ai+/6Xsq8W+ibZe2xt13E9qI+npUHUP5359WrvJl4Jn48qX1M4+hl8B33ts5CqNj47S5DjmC/c7evP4AxuuGEHfG8xMwOwE9Kn58717FBoS5rTPQP+qNir7ikt53a5m+XAPP7yO9bDUOs1VTEGNOXG9P59hgl++WI7N7En8Xbl7lmADvredizGampgQPvmAX7LhipEc8R2iz829z+/Rvbufy15nmRlZC/SI3ndu1If3xp7J9RVqvwGz8S8+j6r3uerras8cd3aKET60OQ5PvdBdXTf4V88xGxF1L9P244Ff0WqzCVsKXIzTzNSk9D38mQ1XjPzx5Cn6/O5dWcd457M7sk9UYUGR7J2pfUZm9zuOrz9JHTDrBj6TtVg+tO/R64PDsVd1Tp/emuR6KfXz+H3e5gOCa8H9mo3x6fki6OEB33tScDE9OUnXpqeoqaGB1q553u/ZcMVISHCo5AJ9MjEv95aQFlvLgp6A2jP6nta1Nve0WPvKG/l37Xv0+uBo17Ner1bOT2h7UXCM2hd8qDlcI/YZx27BhspH+JEI6WNMT07QjOBidmaGmpsaxV74G4uNn7iP/e7csVt8dxNy1jr6DaKf7NjIqOwLpcYGOQbsro+p2efpyU5Qa/R4val90bDPe4r9u+OD/8/oeuZ6HK3+4H1e5Vmrj54kLuVpv+G4LZ6Rak/B10iIT5A+Bmyp2Zlpuj57jVJTUhxsrNb8hjcZefWVTWRrttHc7Jw8i3j92qzsz4mZeVo9gj2Kn4fenu/NehWu8TbiP+j9LNjxJh/8udrfy3aXqx6gT5LjwefwnuMqT4heHNrYPHyNutpamhZcXAMX12bE3jdLMdExLu0JS1wzgv0E8V9wcW16Ruw3M0IfT1NpcSmt0cwg1suV8N5qxp/Ez/gqZsz7utqDE6LXBwccqfEm6CtfxrK1dVdGdCnP31Bfh67Qxm4hEeGRsoYKPsas4GJOcDE+NkpBgcEWG0/ok0BnzExNCzamhF6elLZXf2+/7Mep/Vn0M921Y5ej94/erEdPtoMv741zmqp/q5c/eRr5CjM+N8+g5e8XNm5gQMCC98GeysnKFs9vStpSc7Po0X1dxqxgI1hseIeR7a/vpIG+AZoYm6Dx0XEaHxmTfdHTUzN052u42t88+QX+fM4dnJq5f61+1p4DRS9h5DHYx7gxNyt8yjkqLChwiklaXHiHEXBQVFAkffVRwcbI8IicHdbV3inn0GifHdsteucTn3T/5JrI5V6rxXlBo72OjPpp7OuxflNtP6kzsnOELfXYx7gpuEAcNzgoxNIZPubkSGg4dXd00dXBYRoeGKKh/kE5fzI3O1ewsNbJBrC/P9Tpmbqyv83UObJ/utznxuGezOQrwL2Re4IthX1Huz/gPM/w0KDdx3hkS92+eYPaWltp3doXLDaWiJHnnl1HeTl5NCjYgN0Ff6Svp496u3vpWORxR08LVT6Jsse+9PpBcN9lo3YIn3czarf5whbyxbVivbtjCXuNXjwd9m9Dfb3Dx7ghuLh1c44+u32TPo762GUMxhLfxbcgmEnZJmyCPsFFb1cP9XR2C93STc0NzbRP6RmmyplTpxZwYsa2Mrsnm3mftq+tu/iRWV1n1BbU66cPLvTs1LXPPU9JiUn2eC24uG73MW7fukm1NTWWzlgWumQtJcYnSS662ruoU/gjHVc6qKOtncpLymnXzjfccgIb3UwvUs69Gf0Zo2uZczVG9A2u2Wi+kz/XqO+txinQf0qPC/gYF85dkPHa64/itTdvCFvq1g2ZE0cdhLtnZsnSMgLZsnkbVZZVSi7QdxIzMdtsbdTa3ErJiSm0c/tut+sXdoOnWXBqbszIfow1bHRdmuHDTB8qjuUZ8b2ZBVfvBRdnPvjTAh/jlvAxYEvFxV5aEJuyuFhenBw+FER11XWSi5amFrI12sgm7K3m+iY5g0svbwLhWXDI/bqb52OmlsvMOjbDBzg1eoaVa2zcxbo5t6qX24MgH5uYkCjPgi/wMR7ZUn94dbPFxQrhBP55eGgEVVdUyx74TYKNxrpGaqhtoPqaesrLzqPgwFDHjDpVwAf2UfzJM0tYuNbRqM2E9xm1+83wYcZug3CuVLXJsAcgl+qu1nP7th2SixlNTYjdx7ghudi1c7dlS60gRpw4Ees/LOQIVZRWSC6gV2qraqmmsoZqBDvV5VV0+uQHgoNNurYG13fx+uGcsVHb38waNsuHmZgC1xRC5+B+wAVsSS3/bEMFHDxMV1rbHHXnTj6GsKVqq6stLlaRzQU9ERIUSqWFJY+4qKaqsiqqLK2kipIKKi8up/SUDNr3znv0zG+fdRkL4r5pWFuwx7y5hn2hP7jXGrjgnl+uajn3vP0OxcfFL6g7V32MGouLVc/JW2/soaz0LAcXZUVlgptSKikooeL8YirKK6LYC7G09+136RkXtpHKR/T5s9K3x7/Zd+H150s+2Ifm9c72El8T9B+uyV39P+ZKxwl20D/HfobPue6ca0LS09LEZ1tc+IvdBdn22nb66EyU1CklBcWCjSLBRiEVXi6ggtwCys/Jl37KhbMXKSggmF5a/7Lb38N+i2qP8R7PcVL8HzPEPjFzpvLB57T5/IT6fp4LwZ8NJuBXq36Eq5oa5FUP7D8o+4Sg17O9T4j9bKusO1dqQsBM1EdRTjkMiwv/4wT21Lt79lFyQrITF5ezLlNuZi7lZORQdno2ZaVlUVJcEh2PPEFv7n6bNry40fDvVvsS8Lxr5oJjRiofnI/D2mcbifngP43k+5EbQn/KqA+jqLy0zNGLUO0Twj4G152npqTSvr3vGdLHlviP7QVZt+YFCj4cQvEx8U5cZKZmUobwT9KT0yktKY1SE1MpJSGFkuOT6cPTH9L+fQfFWn6DXnx+g8cciq9kw/qNtHvXm3Q08picAV5bXePodw4uuOeao08IfIxHded5uZcp6HCQ0/lWd3uKJf6tUyConXj/3f306UdnKSNZsJEk2EgUbCQINuIFG3HJlHQpiRJjEykhJoHio+Mp7mIcXbpwic5FnaOjR45RWNAR2vPWXtot2Fn/wktS52jPdhkR+E3IL2x6dQvt3L5L1miGh4VTSlIK5eVcljOVOh/NVOrt7pb9zh19nR1cjDh8jKHBAcrNyaFAHSYsXWGJWVZ+9tNf0utbd1BIYCid+/icSy5iz8dKwd/xekJsgrTJwFOa0DnQP9BF2elZlCv0E2y4/Jw86fPA/ykRvlBZcSlVlJRTVVklVVdUUW1VDdXX1FFjbT011TeSrbGZWpttcm5re5t9PiXPVJKzY8BFP/qdDzr1IkQv9DOnz8haQrP3b4klZtYK/IFXNm6S+uVY+HEnLsAKuAFDsL9gi0H3ZAr7DLZajuQiV3IBfwcxAcQHyopKqbykjCrLKmRepraymuqqa6lBctEguMCsbxu12VrlfMpOOZ+y0z5Tqds+U4ltKcxaykhLlzoGfXQWe5+WWGKGFXfrCHOy4H+8I+yp4IAQOnX8NF08e1H6LVlpmYKLbOnvw/cvyM2XXBQLLhA/Ky8WXJRWUFV5pZzrLbmAzqhrkPn/lqZmwUWLzNnxfMoeYUtlZ2bJ86snjp2kA+8flHODvXEvlljia1609tnGDa9IgR9/6ECAzFEfPhRIgYeCZPw4+LCQwBBCHjM0OEzm/dnPiDgSQVs2vSZnVL62eatPr9USS3zNzFKvxaf9+y2xxFvr1ptifceWWGKJJZZYsrzk/1BLAQIXCxQAAgAIANqIPlu4cp2s7j8AAABxAgAEAAkAAAAAAAAAAAAAgAAAAABkYXRhVVQFAAclDtxoUEsFBgAAAAABAAEAOwAAACFAAAAAAA==</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #12</Name>
|
|
<Index>12</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPlt4RfnMIkAAAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J33W5TH2se/f8l7zvWe6z0nlphmYmKLSYydqMSCit1YjhpAEQuoCCgiSpHem3RYdqlL71XBgqjYY4stMSbn9/POPTDr7AMoC7u4C88P98Wy9Xlm5jN3mfue+fvf/oG/q/Le5G//87+DFrW9VBkL494Wvl8VVSw1TtVrUkXlYXDjbuHCxVzc9rvDzc0d4RExSExKY5KKouIytJ6/iNa2i2hp7UBzSzuXpuYLaGw6j8bGNjQ0tqK+gUl9C6Ki4pnEITIyDocOHoGT016sWbMec+cuxOTPpph07WpfqmIJJgZ6zzfffI9Nm7bCy/skUs5lop6N7Y5LXWi/eBUXOjqZXMH5diYXLqPtwiXGxaU3XLQquGgiLtoMXNTVN6O2jkltE2pqGlFd04Dq6npUVdWjsrIOFRW1TGpQXl6NuLgk+Pmdwa6dzpjz/XyM++BDlRdVRpSHCeMnYaWDI3x8/HAuLRuXrlzncvHyNXRc7jJw0c656JS4YCK4aOsw6Azioqn5PGeDuGggLhqICyaCi9pGxgZx0WDgorJScFGDsrJqlJVWoVRfCb2+AvqScpQUl6O4qAwpyWk4cdwPG9dvwfSpX6usqDIsLvp7zc5uKQ4eOgJdfgkuX+3G5c4buNT5hgvOhuBC6Aziot2Yi4LCUsQnpCAuniQZe/fu57JnD4kbFxcXkn1wcd4HZ2dXLj5ML0Uw2yw8nElYNNcZxEU5cVHGuCit7GGjpMLARXFRKYoK9SgsKEEBu+4CXTHytUXIYEx7e53AimWr8Oknn6usqDIkXeHgsBZBweFoZuP6Slc3rhi4uNGHiw6Ji6TkdPifDsI+t0NYvnwVFiz4gescS1z/jOmzmB21AJuZbbdrpxOCg8KYvkhnXJQyLhgbggtdEXTaQujyCqDV5CMvNx+aHB1ys7U4yz6z1nEDPvl4ssqKKm/VFYKJFsZEZ9dNxsXNHi6u3uhhg7gQthTjIpeNt2Nevti48SfMmjXbau5v3AcT8f3sedixfRfTPb5cZ2g1BT1c5OoYG1rGRh5ysjTIzsxFdkYustJzEHgmGGtWr+vDisrJ2NUVU76YiuMn/FHJ7PvOa7cUXHQbuCDRMPuEfPBFC5fY3P2TLbV8mQOOHfVBSlIacjI1PVxk5CAzPZsxlIWM1Eykn8tAWko63A8ehv2SZSbZoaqMHi4cVq1FLPMBrl6/3cMFkz5cMImKTuCxKUvZSO9Lpn41A7t3OSMyLKqXi0zGRQZSmX2Wynz6c0mpSEk8h2jm92xctwkff/SZyskY4GLLlh2oqmnkXFzt5cJIZxATMcTEtlHHxEBC9tRmZiOGMttScJGckIJkNn8kxSUjMTYJCTGJcGI8kb5VORldXEyY8BHc3T3ReuHygFxomS+7afPYYWIg+WrKNLg47UVUeDQS4xgXsYmMjQTER8cjLioOsZGx8GC219czvlE5sXG/m3PhIXEhbKleLppbOxAYFMbX99T2M5YP/jUBS36wxwnm3wsuYiNiERMeg+iwaEQxu+yQ2yHMnD5L5cQG41FkR7VJXMg6o6Kqnq9njHVdMVghXbHPxQ3R4T1cRIZGIjIkAhFnwxEeHIYDrgfw0YefqJzYABd2dvaoqm1C1wBcbGY2lNp2Q5OPJn2Kndt3GbgICwpFWGAoQgNCEBJwFttY2/7rn+NVRqyQDfIbM7I0KhcjwQnTFTu2/huhgT1cnD0TjODTQQj2D4Qfs8eW2C1VdYkV6QzyMbpu3DH2Ma4x/6Ktg3GxXW03C8kkxgnpDOIi6FQAAv3OIODkaZzx9cdBZnNNnzpTZeQ9siFsKaWPQTkhqn8xckIc7P15D2eDi99pBDJegvwDsMFxg2pzjRAb4jHFpU74nu7XloqJTcIXihi9KiMj8+cswElmX5EuCT4dyOyuIGZ/BePEMR/MmPa1ysgI6Ixvv52DgqKyXp1h7GPYKexer2Pe3AZQ29Fy4rrXDdOlsU+6gnRGCPNJQplvEhYUwnz5UObTh8Fx1doB5zxVhs+Gk7OrwsfoyQnxOX6qjy1VWlqG//73v4iLS1Db0oL+x+vXr3k7O6xcbfQa6QtfrxOICA5DZEg4okIjEB0WCR9Pb3w86VNVl5jZnhK5Usq4lN0iY52xa8cO/pf6i/qNRJ7fVDGfZGfn8vZtbm7h/69auRKffTrZSJds2bAF0aGRiAmLQmxENOIiY7g+mTdnvsqImewpni+lyAmhdW9ZZ6xfu7bPd1G/yf2nivlkwfxFhvlH6I4P2Tz2z/8bhzmz5/DH4r20vniG+e1xkbGIj45DQkw8kmITsGPrDpWRYbCxZct2XqutzAlxcHA0vEfMV1992dcnJ72h7ENVzCNi7iEdonxN8CH3CeWr7Hfdj8ReNpLjE5GSkAxvZm/Ra6pPYhobVJOhzDunHEJlbGrRgkVv/d6gwGDejw8fPlLb2Yw+ObUp+R5vs1370+mrVqxGSnwSzjE2UpNSkJZ8DuHMd5/65XSVkUGwMWH8R7yGT5lfGxgUamRPkZ/Rn854mw9JrKjtPXyfnOYaU9pzj5OT0f+UIxwXFYv05FRkpKQhMzUdSXGJ+E7KE1UZ6Z8NXaG+Tw3f7p/39NEJQ53v1DYfnsj62NTYuWzjkk0V6B+ArNQMZKdlIicjC7mZ2Vj+4wrVJ+kvRsV0g65Ab8RFU0s7Vq5842sIfUG+oalxW7KT6XPqGB+ebP1pO2eD/pryOeov4oP8RfLh6blxvT5JTkY2YyMHmqxc5OVosGKZw5hnxChGxfQqxWrl2tbG5gt96jIofijrBBJ1zL4fG8tUpmitVvShHAMmcd7tjLxsDbQ5edDlapGfp4PHQY8xy4h8r8QAxaREbStJnq7IyNeQuVDOSUPRCSL2IuyE0b4+Iq8FyfE8um/hS8hxcGFDCZvUVF0hC/1GfzEusU4lhHRGvkaLAsZGoTYfRboCHHE/MuYY6Y8NeZ+QPO0bNkQ8/W3zGLW9KfMZ8dTVdc3wP62zj3a/XcS5le1Ec7qwU4XfTdwQE+K99J6hrh/Rd1D79tc/ZCtT38q6ZOXyVZyL4vxClBQUQV9YDM/DnmOGEfn+iA3yL+S9CDVaY71BbSivMw003k3xRaj/5f4mNsZCXIvaiMY93bu4X+W902tC1wzUXqb+5tv0O7GhtA0cVqzmXJQWlaCsWI/yklIcO3ps1Me1jONUk1BeWWe0F6FGW2hgo792G6x9q/LR/zwuYkfCpqJxa0k+TPEPaT2RxGBPO6xBGeOiXF+GitJyVJZVwIn5KKOVESUbebpio70INXlv2KC+HErO7WA/Q/0t21dknw2WrdFiX9H9UzsQG7J9Rc+LvBHxXhrjZCOZ2hemzDlkI5DIfuCaVY6ci6rySlRXVKGmshpr16wbdYz0ZaPIaL/zXAUb1EcklsxLH2v+ubB1lH74SPjnpugb+j1Z5ziuXsu4qEJtVQ3qqmtRX1OHdY7rRxUj8j0EBIYY7eucqykw8jdo7hJr3ZZmRBXrEcFGf/lcpDPqa2rRUFuHxrp6lDNd9vXMb0cFI/K10761hv3OL11FXUOrERvHvTxVRlQ2+HM/bd5sFNfavnUHmuob0NzQiJbGJlRVVOLzyV/adExLvuaNm7b2ctFzRgad/SL2O6d2UK4XqYyoekMZ+z3p64eWpma0MhuwraUV2ZnZhvnV1vgwiuMyDui8sZ6zY3rOVKIz+cR7KYbbX56hysjYZUPMm8oYZmJ8As63tuFC23m0n7+AyPBIm7SzZH9cX1pldKbSzp1v4nTviuHKjKg1TmOHDVnkWqsJ4z9EblYOOi6042J7By51XMTuXU42xYh8jRGRsUbnU/r7B/WZI971fcSIiNfLz1N8Us4HpTYX8Xy1Fso2+HgXG2KMyDkU38z6Do3MF7l88SKuXLqEzstXYLdosU34IvK17dzlbHQ+ZVa21mAv/rjUflC1G28TeW2L4o9kg4l4vlpzbv1iyhxG+kPO11q5YhXj4jKuXrmCrs5OtLW2Wr0vIrNLvrd8PmV1TSM+//wr/pq5/AiZj4HWgdVxaBmR80bE+joJrSOK52nO6u95c8lxnxPounoV17q6cP3aNSRIOUbWyIjsc2Tn6N6c23r+Ij+nUp43TM0pVPmwLpHbV+RzifV4sdYuakREf5u6Bj9Qn8t2QVFBIW5cu47uGzdws7sbe1z2WiUj8rV4eh5nbFzi+yrQmcZ+pwKM9KTwKYZaryRYUPmwDj5kX1DoDHrOXDmOwuag8aLsU9qTvKO9Hbe6b+L2rVu4zPyRL6dMtSo+ZLuKzjIWZ323tHWgoFA/YM4h3TPpaVNrnEQOCsW1BBP0HbL/Iednq2I+EW0q8yF0A7U9PTY3HzSH0vcLvUH7cZD/Kl4nnXGHsXH39h3cu3MX2jytVekQ+RoKi8r42cgtrR1obmln92bHn39bnjqNbVNrZUX+mxq/Gnm9QX2ltK/EY5kDc/Ah16coRY7vpCSn4N7du7h/7x4e3L+Pfa5uVsGI/NuurgcNXJAcPuJleE25X9i75ghVrFd/kJ6W9xOj+Yh8DRr/9FfodPqf3kt/SZ+bkiMt7KmB8iJpLMl7B01k/5Ov/uCXX/DwwQPcuH6dP2ctfFAuTHMvG03NF6DLL8b4cW9iuYNtE3X/BNtghNiQ7VfqN3puoDUqU/pV1OMO5jOzZs4yrI3sc92PRw8f4vGjR3jy+DEyMzLfqw6RfzMuPplz0dR8Ho1N5zG/164yhY+xJIuYn0ZrWh6HPHDE4wg8jx7rsSVi41CqL0VYaBhO+fnDz+8UTp70w+7dTvjRfjmzKaaPKT/nXUJ2ibx2WFhYiF+fPMHTX3/Fs6dPYW+/7L3wIfvky5Y5cDaIi8bGNgQHhxl0oMrGPzD3+/m89i3oTBDytTqeP0S5EbTue+PaNdy+eRP3797jcx/168sXL/DHH6/w119/cnn9xx/4/fff+PPPnj3FkyePkZ9fgNP+Z7Bt644+55GPNZHz976fPY9z8fzZM7x4/hxNjY3vRYfIv6XTFTM22tDA2Cgtq8Lk3rxjZf7lWJFxH0zAih9X4riXD99joJzpA6p/o9qe5sYmzkdpiR5pqWkICT5rpD/2ux3AhvUbea6qrD/Ky8q5XhF8PGQs3Wd+6J07d3Cz+yZqqmv4ehnlXoxFPuRxdjY4BC9ePMfLly/w228vue5VzukjpTu2b9/FuWhoaEV9QwtcXPYZ3tdfvHo0y9LF9jh80IPvBZjH7p32qSE+0s+lwZuN/W3M11wwb5EZxsM0rHVcz5nS5Go4H7R+fLWzE5cvXoK+uASeR44xn3DKmLHFKCYg1gk+nPgxmzvucZ376tXvbC55wJ8bKR0ifmP8uA+ZvqjmXFA9h15fyZ8TcTmRnzma41J0vsXa1ev42Ui05zLtJ0t8hAaFYMO6jey+Z1r8GiZOmMT3M6Ax0tjQyHNbqT6CdFV0ZAzsly4btWwQE6I+WF7zcmd+Hdmor1//gT//fM118UjoEPn7XVzcUM+4qKtrRm1dExwdN/SJz8k1zNR/o2XNbhKbj7Zt2cbPAKdzXxKi43A2IBibN2zBJx+/X5tyxXIHhIWEcT7qa+tRU1WNTMYsMTRauBDrKfIeAspY8PXr17n/9p///IVff30yIjpE1h2kL2qJjdom5OToDO+h2kg5j0R5H7a8JyjpC4dlq/gZrXT2JPHhsd8di+2WWN21kn3lcegwigqLUFFWgdJiPaIiojD7u7k22/4i9qucd+WxJx47OblwNkiIE/LlLOmrG+kO532ci5qaRlTXNMBxzZs9JfpbBxR7Gov7ssUzASkme9rXH0GnAjkf+1xcjc5ktVahueznXU583+ei/CLomF/kddTrves5U4VsdlErJ2pHlPaIsmaiu/sGZ4NsrMePH1lUh8i6o7i4vIeN6gZkZ+UZ3qM850EpxDrdoy2tA9JZku4HPJiPEY6QgLPwOnwM3/bWzttWXG0iDrsf4Xxo2NhKYv4S7TFlK9cv9hx6V+4prauLeJbTz86cDfJDSCgWaCk/RHyf45oNnIuq6npUVdVhzeo3uuNte+XKvomt9Mm8OQsQFhyO6PBozsfqFauNzrq3RZk2dQZCgkKQlZ6FtJQ0rkvk880sNbaFHUT9L9vc9JieIxtD1g/K/eXoPYOxzZVrCtevX+O+OsmDBw8sYmPJ35Wdnce4qEdlZR0yM9/URx5wcx3Sd4t8NyHC9rJ0fc27ZI+zKxLjkhAXFQ9vTx980VvfNVrkp81bOR90BmBESAQ/Q3Mk+FDuXyn2cqQ+Fj622MNxqL8nn6Hw824nvHr1isd6KeYr6tUtwcfSpcs5F5WVtaioqGG/7WKS7uhPqF3EWomcq2OJ+ppB2SFsLj3DfIxzSamcj61bto8qLozs9SnTcJbZjAkxCYiJiIGdtK+MpfgQezaK/hb7VyrtpuHwodz3n/IWiQ1aL+zs7DSrDpG/IzwsmnFRi/LyGuh0RYb1jqHqDqEnSK+KfXCF/WXO+prBytSvZiApIQXp5zIQExXH7avRyoaQnnNlD3A+SI9s/2mH2b6b5jqxfifbV6JWh0TYV+bkg4Rym4QO8T1xEr+9fMnX1F+8eMFz2czNx+TPpqCCcVFeXo2ysip4HvV5a8zKFBE5oUKXvA8+pk2diXPJacjKyEF4SOSYyQUUsnbNes5HSGAIs722meU7yV+guU8+Y2Ug+4r6V9hXpE+Ge1akvO8Jxa0of43yTp4/f4Z4M9aqi8/vd3NnXDA2SqtQqq/EjOmzDHME+QxDXSNXtp0l6jMHw0Z6aiZymW8VxOyNcRb2V61VKIZNfAT6B/K1TnMxIvvbQ/XPhyKyPkqIT+B5i5TD9vTpU0ycOPz6EPmz6WlZbCxXQq+vQEy08foFsSFqW03d61u0iznra0wRuvasjFxoNQUICQ7jcdCxyIaQhfPtOB/+vv7YsG6TzV0/sUZjhewQOd5FeTaU20s50rSeTrmg5uJjyeIfuc7Ql1SgpLgcqxx64uaUf081Ksr5QulLDGaMmqu+xhQhHZibo0VBfjHCQiPHPBtC5s9dyPnw9fbFOmnt15pF2DE09oQtQ/aVPD4vdnTw+hCqn6qpqRmWjSV/5ugRL5SUlDM2ylBcVGoYR2TjDeR7iFwAa80nodhCXl4Bu58yRIbHqGwohGITxIf3EW8ssbPOOh6xJiLGmXI+Jj7kc6m8vXw4G1RjSPU2X06ZZhY+cnN0fBwVFZbixPFTBjaUusOWJD4+hevElOR0lY0BZM7seZwPr8NemDt7vtVdHzHxrhoKmr9F3gnVBjx69JCzQXXqZ04HDJuPxT/Ycy6KCvUoLCjBD3ZLbZ4Pby9fvn5D+kPdE+Idca3V6zgfXsyG+Pwz26spITZoTyDxf1VVFR48+IWvibS2tAzJxpLfe9jDk3GhZzZ6Cfdj+9NbtiT29it4fgzxQX6VysC7xXmXC/x8/HBov7tN5tfI64W0988v9+/zvYBIZn83Z1h8ZGVquP+aryuCD7NHBR/y/iq2IlT7W6Kv4Hwc2O+hjv1BCvU36Y+g04HYtH6zzV2/vB86+RzEBe2XdffOHezd4zpkPqjenbjI11JedCFW9O6jO9z1wPclMTGJvGYlKSlNHfcmyjdff8f5iAgJt2iuliUZF4+bm5o4G3du3+Z1/abaWOJ9e1z2cS60zE7XavINfqzyfDhbkHXrNvFaeeJjpg32rzUI1UwSHwGnztjctcs5UFRvS/v13r55C7du3uQ1yoPlQ34PrQkQF3m5+Qg9G2543tbqZGkP4IrKOs6HvIeEKqYJ+R6kQ+Kj45idZXtrh0IW/7CUc0F7vnff6Mbq3joYU/ggXUFcaHJ10ORosa03b02cNS/va2/t7eG67yDf21HL7ER1nA9P/p+98/6KItv2+P5X7rrvTfB675gdZ9Qx66iYs2NmBAFREVCCBEUREBAamthIzkmSgWACMSfENI5OdvI4d+5ab633fnnne+TUHGq66aapbrq1ftgLKKq7T3XtT529z9kBMb7gIzcrx+VzEOX9EcRmyDHgTx495n0RUIsU8YuD5WMh+x7ABWKSqivraOaMV36+3DtOzgPGZ2PP3NXWS9GXB70WwMfy5at1HddAIsMjqaSgiPYF7nO5sSFeCfvook6wLGBEnFdZUUkPHzykh+y8poYmm30Q8f9d/gGci+qKWqqq6N8nDgzIXKrHMdgYLEdKwrHjnA/UQNV1WxuZNnUG56Oa6diY0UOfQ9Sxp+ZqU1vLl5NrSskiYunVdg5qAKH3VO/9Xrrfc9+m/mzy/+JiEzgXiPeOPfwqb9dcz10IxorxYdzmem/I1ybn1Yv4f/VxrQQ5f+gNCj7mf7xI120NJSY6hvMRFhI25PdS53qIulbyMWv5csKuwXkiTlatT9gnFHvaqH/cy7i4f6+Heu7dU/ixlY+qcsZGWTVVlFbRTt9dyhqZPetWGLeIBZDtMDmPDJxrHaO7b1845+NEfomu0xoLalSAj8b6k0OOzzGXC6WuBWUt3wEsWLPt1bVIexgb9+7eo3t37tL+faE28zFj+myqKKui8tJKKi+pUPrcgD979j7kWH6wDQ7U16jukaaFXOq6xvnYrFEugy79JZXdL/Dh57PTbv/ZEh/qOUSrfCC5Zjp6TaEm653bt6m4sNhm3/yTdRsZF5VUVlxBpUXlyjqFtT431r4LkdMh+kU4ko+tW73o1p1eajndruuyg2Tl8tWcj9LiErv0QcwRlnJp5bqIWvEhx30kJSbTnVu3eT191Jq05qOL434+/uyayxkbZVRSWKrYVvbGI8r9gOUeaI7kIyv7BOcjeF+YrssOlMqycjp76jTNmzP4+F7ohMgZlHVF+KTymqxW+XJ4votnvJ+vP69XfJPJjes3eJ8nW9awYg4e4Vyghgdq2wzkm9siYp1LXJvwnUTeoMi31CoPasKED+huzyPOx+tWl8fVJDwsnPMRc9A+fRW5cTIzwidV58ZpkS8HHRbxvAvme9BNxsWNa9d534kFfX6EOT7kY7lZJipmPm1RfjHt2bVX4c7eGj7ydcs+lKjLoD4+VNm2zYvzUVvXpOuwg2WRxxLOR0uT+33XWNMFF9eYXL1yVVkPsMYHuCg8UUQFeYVKDjJiruQ4eleWnNwCzoefVJ9LF8dJfW0tXTjXQR/PW+DyY8UaVmR4qPI3ekFcZfbLlcvdFHEg0iofiNMszGNsmAopn+kZ9oLc7X719D7hfOi2lXMkOjKa87E3YK9bjFe2g/Jy86i7q5sud16m3GyT1bWreXMW8LqBJ3LzeV09wQdsIPhOok4Jfor9GleKV/TwWMr5aG27oOuuk2Td2vWcD1NursuOUfg5sKHkXjSGFANjo4u6LnWyebDO4hqW+Hvzhi2ci7zsPDJlmQb8TOE7CGZcIfYqNCyS85F8PE3XXSfJuDETOB9XLncN+1jg58rPcPFT7LmpffuAPYHUebGTr++iR6Q1PjYxPkx9bORmvnoeYO1KttlcWXKZzwQ+dvoH6LrrRKmpquJ8YE1ouOcJa+dgDUvkEwbs3svYuEgXz19gjF+wykdEaATnAvVYY6L+rCHqLvlQHee7OB8LFy7V9daJkpyYxPnw9fFz+bHKtUfnzV3AuTjfcZ7Ot59Tai5b2gM5EHKAcozZlJ2eTWF9e2vYF3SXXua9D59yPnSdda7s2R3A+YiOinb5sWLuEHvd8+bO5z0az7V3UEdbO83t2+e0xAd6JWWlZ1FmWiaFBocqvLlDLR8Pj2Wcj7aOS7rOOlmWL1vB+SgsKHAvPth80dHWQe2t7bxPozk+5N9TElMo05DB+yX5ePkq7+cO9pXgo7S8RtdZJwv2PsBHTXWVy49VjkNHHc12xkXbmVZqPX2Wdvr6D8hHRmoGGVOMvDfrutWvegJjX9Ad6l2FhUdxPg4fidd11skCPQMft27ecAv/Q+5128rYOMvYOHPqDI/JGogPcJF+PI3Skg0KH0ONLXE2H6GhkbrODoO4Cx9qOcu4QP/r082nlFh9S3yAC/RpNTA7a+2qV3Fj7hJbovOh82Hr/CHvV5xuPk2nmk5RS1ML+e7wG5APsJHK2Eg5dpzW9NWD00JEDLPIG5T7o2j1GYa0LM6H/y73iHN43aSirIzz4bFw0ZD1BCJ6Oou8WbG3IffXkY8P1gcRv4OLlsZmam5oIh9v34H9c8ZFSkIyHY9PojUr1vBj2HOUe8yaE3UfA/VrcC0id1D0qBU5MlrVCKqqOcn58PDQ9z6GQ/JMJk35wO8iDkTsg0Ov5P5scv8xIeqeyObEJPVYAxdNJxupsb6Rdnj5DMgHuEiOS6Sko8dodV89HOivudoQsqjHKHrICbbFdavzoKz1e9f5eLP5EDF+om6BLXl18vxiSeT3ABcNdQ10su4keW8fmI+kPjY4H33zh5ynYUnMzXG4HsG6M/lY09ffShf34UPogJoPdX0bW/hQ51iZEzkOq4FxcbK2nupr6hgfOwbkIzE2gbOBOUT4H0PZHwT3mMtkPmT7SuSja3F/Ytm4df98+KS9rZXzMWP6zEG9TugBGFDzIbjBs1bUwJHtK9HLbzCfJ+fYQupr6qmuuo5qq2rJqy/f3RIf4AI2FnyQtate8TGU+BKRR+sM/1xfv3Lf9SvByED+uXiODtU/x16evJ8HLmora6imopq2e3oN7J8zLlKZj4713XV967vw9d2hp4HOh76+a4/UVFZTNWOjqryKPt22fUA+sLaLNd70ZAOtl/bP5f1GV5Vdu4M4H8iv1fXVuTJu7ETOx6WLrp+XBltIrvMDLirLKqmitII8t/6VD1kiQg9Q+nEDGVPSKCQoxK3ukR5/NXwi4q/cIT5Rlg/en0yVjIuKknIqLy6j9Ws3DMhHSOB+ykhNp0yDkcL6ai66y/wxccIHnI/ua7d1nXWyeG335nxkGI0uP1b4HsKfnjF9FpUzNsoYG6VFpTR92qwB+QgNDqGstAzKTs+k8P1hbuV/QET+h6jHrYuTfL+QMM5HcJDr9TxQC9ZjRfwu6giDi5LCEiouKOb1SczxodRO9PajnPQsys3I5nYWjoENd8mPamw+o+cPDoNkZWRyPlatdP0eK8jXEPm1y5asoBLGRXF+ERWdKOT9OwfiY+P6jZwNU2Yu5fXVZwAfluLbxV4M1uJcoT5DSqqR8xESEqHrrRNF1GeY0Fejc7gEOmitng50Weznbd28jYoYG4WMjYK8gr/woP4be+Z5Wbl0IttE+Tl5NOq9sfy4XKdE/in2bFylb5Snpzfno6TU9fN0XhdBzh34aG9tHfaxQA8HU78E8VbgIt+UT/m5J6zygXpX4KKAnVvIXjP9o1f1r9ylJyd8dFEfTtdd54i/nz/nw5CS6rJjVNe/EsejIqIZF69qvUWEWd43E3y8z/QLXBQxporZnLNs8XLFR3eXGibIPwcfq/v2b3RxrKSlGjgfGzdscvmxqteaknk/3lf1rIJVMejm+IDATylhNhn8lm19vWVgr9lbv132U5xRnzrmcDznIzHJoOuvgwW9o1CfGnyMHzfR5cer3qsw8V68uZSTmUMb1m8ya1upjx07mkClhSVUVlRCRw4dGfKY1L0bRMyZur+BVnG8iN8FH+gfpeuwY2XNqrWcj8J894tZgC2ey7hArbdsYzYtWrDYIh+yHAg9QOXFpVRRUkZZ6ZnK8cMHo+wah7y2Zak/jvCjtLr2ru4bvP/HqlWu35/dnSXpWBLnY7vndrvfQ45JRL6HiF8VvWLEM3aoOYMQvx07FD9hzqx5nAtRz2rq5GkD8iGOe279lCpLyqmqrIKqyyuH/B3CJxLrBoIDR/ePOhRzlPNxLDFF12MHCXo7o78a+Bg3doImfEA/RC6q6HtsS86grSL70BvWbeRcZBgyyJhqNGtLmeMDfXSqyyqppryKaiuradaM2fw4/A976vyIntXip615LkOR6dNncz7Qn3O83ufAIbJr527OR1zs0SG9j8wH5gUxNwgd0UpX4JfLvgfqH2YYjIyNdIqU1q6s8TFm1DgeC4+Y+LqqWtq0YbPCnj1xJuZyBPFMkPs7m8thH6oUFpdzPoKC3KO2tjvJO2//g4ryCzkfixfZF6tgLmcQei98VdG/Uys+sHYl1+FJSkii9JR0SjueRt6f7rDqe8j/g39eX11LJ2vqlR7wYGOgOj/gXvQ2l4+r8+XlXp3q/Ekt7+GWLds5H+fOd+nxWBrLti2evP95ft4Ju15vKWfQnO7bkjMIjqBnwl8xJ1iDFfbVe+zzwYUh2UCpSanKPoY131xIDPv8htp6aqw7SQV5+Wb5wDViPKL/pvCftJ4HhiItp9vo6vU7FBi4X9drDecOU1YO52Mo8VaWcgZFL1fZprDmn8NuV9dfEPVOxDmIIRRxJfAh5FpWkz+YahMfSp+cjVuoqb6Bmk82UktDE+NuvDJHgFNxXWrBOAdi2NmyebMn56Ot/SKNeFefQzT5Tpm9XVJQRNkZWS4zJugc9FJ+TgvBOhj0Un5ue3l681rTxxkbyQnJVn0P9f/BE+oCoW7WqaYW5puvU8YhfzY4EetRrno/m5rPUveVm3TggOvX3nf5ueOtEWQ0pHM+Vixb6ZJjxDMcLMCuEbUPhK6Kcw5GHORcJMUnUYD/3kHzAcHaFWqSojZpVESUMific0UPc1e+l3/72ygaOcZI67e94Hx0dl2jqW7Yb9SVxNfbj/KyTXwP2V3GDBtL1D/hOjxyFOciMS6RXccxWtVX580W30M+Jy42jq9tt54+QxWl5f3WyVy9XvWIf4XT+I++ognTf+NSUHyF85GVlafr+RCey1gPBR8ij8hdRF53/XjuAko8ytiIPUYJRxJ4/8TB+ObyPmEbs9vaz7ZSR2ubsr8IP8dVYxXfemcVjfnwqsLF2CkP+LHx496ns2fP0YWL3Wzu89H1fZDyNrOrYJOAD/++HgDuJPuDA5Xf0dcmITaB4g/Hs2s6ZLNtpT4PXHWcbaNzbe10vr2Ddvvv+VMPXWz++Pvfp9B7E+oULjB3YA6Rz/Fm3wv4aGb+yJQp03W9H4Rs3bSN+bLJPN71nbdHuPW1xETGUNzhODoac5S2bNg66NfLHBWcKOB9Cy90nKdi5pOZ43G4fYx/jIpTuIDA58Bxc+dnZZno3LlOOpFXxHu66LpvXWbPnEtxMXGcjykukgc3GMGeubB3YBfGMS5iD8VS7MEjPAZrMHOHmhHsDV48d4H3hu68cInGj3WdGOZ3Ru7u52OMntTG55GBXoM6Tc1NZ6it7TxFRR7S9d+KjBk9nsL3h3M+Nq53/fwOa4L5IvZgLB2JPkKHow4rdpC9fHzE7JDOCxep6+IlunypU6n/jvz24ar5A38CLMg+xtsjbB8LevqCjzOn22nrlk91Dix9z0x3ggOC6eCBgxS0J8gtrwHxgvKedlRYFOcCNpandO/t5QOC2tbdnV10pesyVZSV2/R6rP1iTU3LmEPMDf8aV9TPx4BtZc97eW7z5ny0MF9ktR4D/1d/nLGxd3cgHWL+a/i+cJfzN6Ff2A+0tu8mr7VOmzKDYqJi+DWB+dkz5trFhpqRwIAgunK5m652X6FrV67StL6cdHWdXwjWmjFu7JFolRMofAzZlgInlnwMWyWS2Vfgo7GhhTwWLtG5kGTHdh9uo4fvP0BjRo13yTGCEbEPiJ/q/TjYOPLcAftQsBEdHm23baXmA2uj4OL61Wt049p1io462I9Pa+Mcqo8B+0n2Mf7rvz/W7P0jDkRzPspKKunDSVN0NuDPbt3O1z/Bx9jRrsmGWjCP4LkMEc9luWYCfhdcQJD7Ya9tZWkd6+b1G3Trxk3qZL6IOC7iXuyNL8HrRQyAnC/m45tE3nv+6OdjgBWtv1fkT2cYs6m+tpFqqupoxXLXr2/mMJvqrRG0y3cXj7sAH3Nna/McshSPLsety3pgrh/ZYOYUvFbEeCh2zbyFnAswcojZDR/1re/by4aakS2bt9Htmzfpzq1bdPf2bR7frMV3h+9HXAd+Xr3a+xcfY+W6Bmpt7XaYXoCRY/FJnI/K8mpavtQ144ocKYirimJzKeK9wce8OfM1e2+ZD9gXIjYX8VBgAsfkuFbY6HJMr70ix+4G7QnmthV88xApH0grPiBdnZ10784d6rl7l9kjpcpxxAzb219KxCHjWTJpagbN9HjZz8eAT67Oj3GU7A8O5XyUFZeTj7ffG8MGajphvkCeacLRY5qv4av5EHGC8n1V59ANhQ/Y/LI+Tpr4IV+vwpruUWYzrli2ShM2xHuI94k5dJixcY/u9/RQ7/37vPa1GI+98Sb4Xs53/i8tXvt7Px/j5p3/MzsPO1p2+u3mfBQXlPDnKXIdXmc2li5exrlADQ/MG1rWB8XzW9g7sr0keu45i4/tW724L4U9nIQj8XxtTis+5PeZOH4S9fbcpwf3e+nhgwdkSDX0m0NEzV9bBXPDwpWPFC4wd8Qn3VG+H+Hni/nXWTqzbMlKzke+qYDSU4yKrfo6ybuM+717AnmtM9QOxLonbCwtPwP3TeReyHyIvt4ir1RtZ4vex1qw8c+Ro3gcSTzjAvGIQ9nzsMXGSk0x0KMHD+nxw0f05NFjXkNIjMtWPkTcuRwTkpP/P/Ttty+VGGS595zstzvN5mBz8vHEFDJl5fEaMKiT9/Zb7h13JGTmjNmUmZ7F6/qDD6++3GtHCO6nOX9b9Ay31T+3dU1UXUsdcWOwHRHLnpyQpNiOWrGhZmSRxxLGxSP67PFjevrkMzKm/1kXRa4bb2lt4f3J8f32MRBTaC0mZNh8VvaM9ffdxfnISDUy3y6GZk6f7b5zxjsjebxQbVUN7yeG2oGI9XaHsWM9ylovcKzhynMH8jwS0Ys5PonnCQYFBGs+d5h7v5qqanr62Wf07OlTev755+xZ+4oJ+CCW+Bg7wbPfPgZi0BEn4g73BnH98OuQr3w8PpkC/AOUfGV3kBHvjiQ/n51UVVFFJ+tOcj6CA/e5jW8l7C0xt1jae1bPHatXruUxlbynZrJBia3Umg01I6jn8oxx8fzZM/ri+XPKysyyOMbRo+f3i5XC3OGIfQxHC2yrtavWcT7QHz418TjtD9yv5MS4Jhf/5DkJDfUNPAe0uaGZjGlGmjVjjtt9/yJvVba5YYMJu0v9bMb9gs9hSE5lPmQa7Zd6aTqaD0h9XT19+cUX9NWXX9LXX33FxvZhPz8EPsbchSU2x527zX1ic/anzMcDH8aUdN5rKzIsgpYucp3+Woh3iAiPpDOnTtP5jnPUdraN+RoltOY1iDPDmpi6lgl8FzUf3uxYGvrMopdmWobV2qFaM7Jk8TLOxTdff03ffvMN5ebkKud4eQUNOu7cHZ9nPtt9OB/oJYR+EOgrhNy64YhTQX2vrVs8qTC/kMcCdXddpksXLlF1ZTWtX/vJa7f+Br9frlUCZsRcgtpWqPuGXEfUjw4PCXf43GHu/RsbG+m7b7+hF999R9+/eEFzZs9TGEdsiMhtfd3ujSzv/WsMbfpkM6UmpVBZYQlVlVZQHbMD0Isogs0reI44Kg9rJrOT9uzeSxXlFXxP6u7tOzz+B3wYUgy03EXri2j5jIKNJdaQxfGAXQGUybjINmbx+uwfTZ3uFDbUjMyeNZdevGBsfP+CfvjhezrN5nNxzoIFawe9H+L2c/+8hbSP+b2lhcW8rt6pxmZe2+JcWwfziWv52nhQYDAtnL+IPBYutvl9P5g0meu6L/OxDx2MoYaGRvqC2bafMx/wyeMnfC8KfNTX1pGf705uX70p3znWrOSavVOnTONc5GRmkyk7lyLDrdfVdeQckmfKox9//IF++ulH+vnnn2jzpj/zeVFL/k3iQ5ZFTP+DAoIoL8fE+UD+JWwexEDfvnmLxyE8Ynr99MkT6rnXQ41M51uaW+gM46mttY1u3LhOf/zxb/r95Uv69ddf6OeffuLPoO+++5bZFV9zPu7dvUv5JwpoN3teTpzg3BrcYm9cXmMStZTl88Qxdd8/rQQ10+XYjZjoGDIxOxffe77phNI/01lsqBmZ9P5kev78Gf3yy8/8Pvb29vI9S3Eexu7qtYCcIdhn2OHtw/vdFRUUUTtjQPDxxbPn3I+DjQoOXr78jbMh8wFuTrWc4vPHhk82KX2Ih0vkvQixtyf3QcJx2DxyXyQtc+WEbsl/r165htcegm1bmJev5LoOJx+Q2CNH6bdff+X39fffX5LRmKH8D7WAbKn5LnoevInsQNeXLllOy5au4HbUiuWraOUK146zl/kQfWLF/0TslLrvjS0xdIOp3SzbJ9jLyUjL4LWiEROQm5Wj7O84mw1zjDxgz8J/s2eEeO7Nmzu/H+cDMYK5F2vbg5mDRe139bHhjEl5k8TcXrbIBcK9VPNha4ypWL8dKJ7EXK/YkOAQKmS2JmrslBYVs+fyCkVHh5MP8dl43oGL//znDy43rl9XzoOfbokPUZd+sDmHOF/uZQjB3+J9kPvurJjfN0lErzyZD3zn0GscF/3R7OVDvB9sM0v2BHRJ7hUL27U4v5BKCouprLiUjvx/e2f6H1V5xfHzn/RdN9vaKqCCqAUE2VwQUZaQlSRsBalGZUtC9n0h+74vk4TsO9kTQlgEaanRWqUvbLUfW1r/gj6/J5zhmZs7M/cmMyHJ3BfnAwyTydx7n+9z1uec2PgnZle50iH5+QV2/fHjj/+jpMRkh2vSnlVXZ2kt9Fmp93yhz8MS48I1uTzbiO81/5v7l/N+hX/z2VfWK2aer3bOh7YOdm7WQomcJdtQW0+2+kb63W/XLAs2tIzAL5+dnZVswNaCL7Jt63b7dXHtGPYZ7A+LjWlodYjFx9Ixos454r2OzwWq50H5tYU+b54vw3aBtgZWzpKtrRNcNFBTg41CQ8KWje7Qs7P27t0nuUDcBf66Np6lvV5P6HvV3n1SZ0Ys8Z44208PHfCTfdObGhqpxdZEyYq9slzY0Ps+ubl59N+HD+nhw//I2GRLyxUH/8sTTGhnoFj+uW/4Pvx35Ezhjzc3NtGVJpyJrpXzdJ+0T27UzroudCrYQF7k3z/8QCdOPO75rdc3yxLfEjP2A2JVqj/+i58/RdmCFZyzaMWMzCutMvexXHWHnp0Fv+PBg29kTh05L+TXuT5rIfbucpppaMniBPYw8oZGGdHGcz+O+ERw0SLraTra2uj82fPLng297wedAS5Qf/Kv77+nu3fuCt3yOM5rpP6Ez2dCfDV/uNp8CT7rZIQRrBHVH8es8TZhr3e0tlFnewcV5hfIc5ErgQ09RsrKymXd0PfffSfrJ8bHxh3e62oWlcqG2digJebWLNf3cR2DKryG4Tvq1ViZFXyOO0b0coBbNm+ldnDR1k7dHejn1yS+90vL2ucwwsjE+Dj9U7CBOvh/fPstFRc9PiuCvUGvN5A32FB7ZuNPfi5YG9yDRn3dl/xe9n3VvgnqvHrcF567zH96kxGtz7Fh/UuyN3pXRwf1dHVRX3cP7X/vwIqxq1z5Ir8SOuLLL76gbwUbOEuFWjxt3kf1172lNxAj5F4z/He8jueD+D1e55n1vsoH1inuuzb2p82Xe6q/oR4jWAtqvQXsp8ryCurp7KLe7m7q7+2lk0q8Z6WxoccIzorMfv65rM3GuUOcyw1X6itZh3jTplKfsZo/9PW8orZ/G9jA3qHqCU/2b3PHiMoH2ICP0dsluOjppYG+PoqOjF7xbOh9/6PhxyUXf4c8eCB7O4SHHXVYm970N/hMJtdhc0zMV/nA9eN6VT7Y1uT34D7xPfEGH1pG1HsPNooKCqmvp0dygVmxFWVl9vOYK83nMMIIdAa4+Aby9deyDwr6oaixv4WwYcRnVHsg8x7py3zwugQDevYV11XhfWyX4jXeZ1xxt5Dvwr+LX4u8ECltqcH+fhoaHBQ2VvmqY0OPkciL0ZKLv30F+Yru3rkje/o5883ciTr7fSH+B/e65HpH9SyDLzCCa1bvn1o3xdwwI9oaKz3B/2n9S1cCe0p7FjvqYpQ8m3x1YICGr16VPvmaZ9etSjb0GMnLzZc95v765ZfyDPWnt2/bGeHYHmxQd2ereF6VFb9aXoJn4q6WCM8Zoo3xw79gLkaGhqRPjnPlq8XnMOKvQ3JzcmVc64vZWeG7z8ozIyHBoQ77iqs6FD4nYK3H5Sl4Nq72Gq2dgD6Pl6KipS0FLsZGhqXvofYHX61sOGPkcnaO7HeNHhx/uX+f7v/5vmDEcaYs7qGeHsH9f3EJ53Gzb6Kt1/ZEHfdibSQ9Haru4dx/UGs3eVPwbJz5ktrZx/Ar4HuPDF2l0eFhGh/FfOFee28eX2DDGSPoe4OZCZidgD41f7p3j4KDQhz2Gehf1UZlX3Epv7c6y4d9GPZf2J/FelhqneYspqDGnLjen88wwS9fKMdm9iS+V66eJdiA7z3HxQhNjI0Jn7zPJ9lwxkiWuIfoc3Pvs3t07+5nstdZelrGPD2id8+N+vCe2DO5vkLtN2A2/sXnUfU+V31d7Znjyk4xwoc2x+GuF7qz7w3+1XPMRkTdy7T9eOBXNNtswpYCF6M0NTEufQ9fZsMZI384eYo+u3tX1jHe+fSO7BOVn1cge2dqn5HZ/Y7j64upA2bdwGeyFsqH9j16fXA49qrO6dNbk1wvpX4ev8/TfEDwXXC9ZmN8er4IenjA9x4XXEyOj9O1yQlqqKujtWue83k2nDESFBgsuUCfTMzLvSWkydY0ryeg9oy+u3WtzT0t1L7yRP5d+x69Pjja9cx5Ou3nwLbT9qLgGLU3+FBzuEbsM47dgg2Vj9AjYdLHmBwfoynBxfTUFDU21Iu98NcWGz9xHfvduWO3uHdjctY6+g2in+zI0LDsC6XGBjkG7KqPqdnn6c5OUGv0eL2pfdGwz7uL/bvig//P6Hrmehyt/uB9XuVZq48WE5dyt99w3BbPSLWn4GvExcZJHwO21PTUJF2fvkbJSUl2NlZrfsOTjLzy8iayNdpoZnpGnkW8fm1a9ufEzDytHsEexc9Db8/3ZL0K13gb8R/0fhbseJIP/lzt72W7y1kP0MXkePA5vOc4yxOiF4c2Ng9fo6a6miYFF9fAxbUpsfdNU1RklFN7whLnjGA/QfwXXFybnBL7zZTQx5NUXFhMazQziPVyJby3mvEn8TPeihnzvq724ITo9cEBR2q8CfrKm7Fsbd2VEV3K8zfU16ErtLFbSFhouKyhgo8xLbiYEVyMjgxTgH+gxcYifRLojKmJScHGhNDL49L26u3ulf04tT+Lfqa7duyy9/7Rm/Xoznbw5rVxTlP1b/XyJ08iX2HG5+YZtHx/YeP6+/nNex/sqayMTPH8JqQtNTONHt3XZcwKNoLFhmcY2f7aTurr6aOxkTEaHR6l0aER2Rc9NTlNd76Gs/3NnV/gy+fcwamZ69fqZ+05UPQSRh6DfYwbM9PCp5yh/Lw8h5ikxYVnGAEHBXkF0lcfFmwMDQ7J2WEdre1yDo322bHdonc+cbH7J9dELvdaLc4LGu11ZNRPY1+P9Ztq+0mdkZklbKnHPsZNwQXiuIEBQZbO8DInR4JDqbOtg672D9Jg3wAN9PbL+ZPZmdmChbUONsDc+4Mdnqkz+9tMnSP7p0tZ37JQm8lMvgLcG7km2FLYd7T7A87zDA70z/kYj2yp2zdvUEtzM61b+7zFxhIx8uwz6ygnK4f6BRuwu+CP9HT1UHdnNx0LP27vaaHKxxFzsS+9fhDcd9moHcLn3Yzabd6whbzxXbHeXbGEvUYvng77t6621u5j3BBc3Lo5Q5/evkkfRXzkNAZjiffiWxDMpGwRNkGP4KK7o4u62juFbumkxrpG2qf0DFPlzKlT8zgxY1uZ3ZPNvE/b19ZV/MisrjNqC+r10wcXenbq2mefo4T4hLl4Lbi4Pudj3L51k6qrqiydsSx0yVqKj02QXHS0dlC78EfarrRRW0srlRaV0q6dr7vkBDa6mV6knHsz+jNG1zLnaozoG3xno/lO/lyjvrcap0D/KT0u4GNcOHdBxmuvP4rX3rwhbKlbN2ROHHUQrp6ZJUvLCGTL5m1UXlIuuUDfSczEbLG1UHNjMyXGJ9HO7btdrl/YDe5mwam5MSP7Mdaw0XVphg8zfag4lmfE92YWnL0XXJx5/4/zfIxbwseALRUTfWlebMriYnlxcvhQANVU1kgumhqayFZvI5uwtxprG+QMLr28CYRnwSH362qej5laLjPr2Awf4NToGVausXEV6+bcql5uD4J8bHxcvDwLPs/HeGRL/f6VzRYXK4QT+OehwWFUWVYpe+A3CDbqa+qprrqOaqtqKSczhwL9g+0z6lQBH9hH8SfPLGHhWkejNhPeZ9TuN8OHGbsNwrlS1SbDHoBcqqtaz+3bdkgupjQ1IXM+xg3Jxa6duy1bagUx4sCJWP8hQUeorLhMcgG9Ul1RTVXlVVQl2KksraDTJ98XHGzStTW4vovXD+eMjdr+ZtawWT7MxBS4phA6B9cDLmBLavlnG8rv4GG60txirzt38DGELVVdWWlxsYpsLuiJoIBgKs4vesRFJVWUVFB5cTmVFZVRaWEppSal0b6336Wnf/OM01gQ903D2oI95sk17A39wb3WwAX3/HJWy7nnrbcpNiZ2Xt256mNUWVysek7efH0PZaRm2LkoKSgR3BRTUV4RFeYWUkFOAUVfiKa9b71DTzuxjVQ+Is+flb49/s2+C68/b/LBPjSvd7aX+DtB/+E7uar/x1zpGMEO+ufMneFzrDvnmpDUlBTx2RYXvmJ3Qba9up0+PBMhdUpRXqFgo0CwkU/5l/MoLzuPcrNypZ9y4exFCvALpBfXv+Ty97DfotpjvMdznBT/xwyxT8ycqXzwOW0+P6G+n+dC8GeDCfjVqh/hrKYGedUD+w/KPiHo9TzXJ2TubKusO1dqQsBMxIcRDjkMiwvf4wT21Dt79lFiXKIDF5czLlN2ejZlpWVRZmomZaRkUEJMAh0PP0Fv7H6LNryw0fDvVvsS8Lxr5oJjRiofnI/D2mcbifngP43k+5EbQn/KiA8iqLS4xN6LUO0Twj4G150nJyXTvr3vGtLHlviO7QVZt+Z5CjwcRLFRsQ5cpCenU5rwT1ITUyklIYWS45MpKS6JEmMT6YPTH9D+fQfFWn6dXnhug9scirdkw/qNtHvXG3Q0/JicAV5dWWXvdw4uuOeavU8IfIxHdec52Zcp4HCAw/lWV3uKJb6tUyConXjvnf30yYdnKS1RsJEg2IgXbMQJNmIFGzGJlHApgeKj4ykuKo5iI2Mp5mIMXbpwic5FnKOjR45RSMAR2vPmXtot2Fn//ItS52jPdhkR+E3IL2x6ZQvt3L5L1miGhoRSUkIS5WRdljOV2h/NVOru7JT9zu19ne1cDNl9jIH+PsrOyiJ/HSYsXWGJWVZ+9tNf0mtbd1CQfzCd++icUy6iz0dLwd/xelx0nLTJwFOK0DnQP9BFmakZlC30E2y43Kwc6fPA/ykSvlBJYTGVFZVSRUk5VZZVUHVFFdVW1VB9dS011NaTrb6Rmhttcm5ra8vcfEqeqSRnx4CLXvQ773foRYhe6GdOn5G1hGav3xJLzKwV+AMvb9wk9cux0OMOXIAVcAOGYH/BFoPuSRf2GWy1LMlFtuQC/g5iAogPlBQUU2lRCZWXlMm8THV5JdVUVlOd5KJOcIFZ3zZqsTXL+ZTtcj5l+9xMpc65mUpsS2HWUlpKqtQx6KOz0Ou0xBIzrLhaR5iTBf/jbWFPBfoF0anjp+ni2YvSb8lISRdcZEp/H75/Xnau5KJQcIH4WWmh4KK4jCpKy+Vcb8kFdEZNncz/NzU0Ci6aZM6O51N2CVsqMz1Dnl89cewkHXjvoJwb7IlrscQSb/Oitc82bnhZCvz4Qwf8ZI768CF/8j8UIOPHgYeF+AcR8pjBgSEy789+RtiRMNqy6VU5o/LVzVu9+l0tscTbzCz1WnzSv98SSzy1bj0p1j22xBJLLLHEkuUl/wdQSwECFwsUAAIACADaiD5beEX5zCJAAAAAcQIABAAJAAAAAAAAAAAAAIAAAAAAZGF0YVVUBQAHJQ7caFBLBQYAAAAAAQABADsAAABVQAAAAAA=</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #13</Name>
|
|
<Index>13</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPltdHK/C+j8AAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J33W5TH2se/f8l7zvWe6z0nlphmYmKLSYydqMSCit1YjhpAEQuoCCgiSpHem3RYdqlL71XBgqjYY4stMSbn9/POPTDr7AMoC7u4C88P98Wy9Xlm5jN3mfue+fvf/oG/q/Le5G//87+DFrW9VBkL494Wvl8VVSw1TtVrUkXlYXDjbuHCxVzc9rvDzc0d4RExSExKY5KKouIytJ6/iNa2i2hp7UBzSzuXpuYLaGw6j8bGNjQ0tqK+gUl9C6Ki4pnEITIyDocOHoGT016sWbMec+cuxOTPpph07WpfqmIJJgZ6zzfffI9Nm7bCy/skUs5lop6N7Y5LXWi/eBUXOjqZXMH5diYXLqPtwiXGxaU3XLQquGgiLtoMXNTVN6O2jkltE2pqGlFd04Dq6npUVdWjsrIOFRW1TGpQXl6NuLgk+Pmdwa6dzpjz/XyM++BDlRdVRpSHCeMnYaWDI3x8/HAuLRuXrlzncvHyNXRc7jJw0c656JS4YCK4aOsw6Azioqn5PGeDuGggLhqICyaCi9pGxgZx0WDgorJScFGDsrJqlJVWoVRfCb2+AvqScpQUl6O4qAwpyWk4cdwPG9dvwfSpX6usqDIsLvp7zc5uKQ4eOgJdfgkuX+3G5c4buNT5hgvOhuBC6Aziot2Yi4LCUsQnpCAuniQZe/fu57JnD4kbFxcXkn1wcd4HZ2dXLj5ML0Uw2yw8nElYNNcZxEU5cVHGuCit7GGjpMLARXFRKYoK9SgsKEEBu+4CXTHytUXIYEx7e53AimWr8Oknn6usqDIkXeHgsBZBweFoZuP6Slc3rhi4uNGHiw6Ji6TkdPifDsI+t0NYvnwVFiz4gescS1z/jOmzmB21AJuZbbdrpxOCg8KYvkhnXJQyLhgbggtdEXTaQujyCqDV5CMvNx+aHB1ys7U4yz6z1nEDPvl4ssqKKm/VFYKJFsZEZ9dNxsXNHi6u3uhhg7gQthTjIpeNt2Nevti48SfMmjXbau5v3AcT8f3sedixfRfTPb5cZ2g1BT1c5OoYG1rGRh5ysjTIzsxFdkYustJzEHgmGGtWr+vDisrJ2NUVU76YiuMn/FHJ7PvOa7cUXHQbuCDRMPuEfPBFC5fY3P2TLbV8mQOOHfVBSlIacjI1PVxk5CAzPZsxlIWM1Eykn8tAWko63A8ehv2SZSbZoaqMHi4cVq1FLPMBrl6/3cMFkz5cMImKTuCxKUvZSO9Lpn41A7t3OSMyLKqXi0zGRQZSmX2Wynz6c0mpSEk8h2jm92xctwkff/SZyskY4GLLlh2oqmnkXFzt5cJIZxATMcTEtlHHxEBC9tRmZiOGMttScJGckIJkNn8kxSUjMTYJCTGJcGI8kb5VORldXEyY8BHc3T3ReuHygFxomS+7afPYYWIg+WrKNLg47UVUeDQS4xgXsYmMjQTER8cjLioOsZGx8GC219czvlE5sXG/m3PhIXEhbKleLppbOxAYFMbX99T2M5YP/jUBS36wxwnm3wsuYiNiERMeg+iwaEQxu+yQ2yHMnD5L5cQG41FkR7VJXMg6o6Kqnq9njHVdMVghXbHPxQ3R4T1cRIZGIjIkAhFnwxEeHIYDrgfw0YefqJzYABd2dvaoqm1C1wBcbGY2lNp2Q5OPJn2Kndt3GbgICwpFWGAoQgNCEBJwFttY2/7rn+NVRqyQDfIbM7I0KhcjwQnTFTu2/huhgT1cnD0TjODTQQj2D4Qfs8eW2C1VdYkV6QzyMbpu3DH2Ma4x/6Ktg3GxXW03C8kkxgnpDOIi6FQAAv3OIODkaZzx9cdBZnNNnzpTZeQ9siFsKaWPQTkhqn8xckIc7P15D2eDi99pBDJegvwDsMFxg2pzjRAb4jHFpU74nu7XloqJTcIXihi9KiMj8+cswElmX5EuCT4dyOyuIGZ/BePEMR/MmPa1ysgI6Ixvv52DgqKyXp1h7GPYKexer2Pe3AZQ29Fy4rrXDdOlsU+6gnRGCPNJQplvEhYUwnz5UObTh8Fx1doB5zxVhs+Gk7OrwsfoyQnxOX6qjy1VWlqG//73v4iLS1Db0oL+x+vXr3k7O6xcbfQa6QtfrxOICA5DZEg4okIjEB0WCR9Pb3w86VNVl5jZnhK5Usq4lN0iY52xa8cO/pf6i/qNRJ7fVDGfZGfn8vZtbm7h/69auRKffTrZSJds2bAF0aGRiAmLQmxENOIiY7g+mTdnvsqImewpni+lyAmhdW9ZZ6xfu7bPd1G/yf2nivlkwfxFhvlH6I4P2Tz2z/8bhzmz5/DH4r20vniG+e1xkbGIj45DQkw8kmITsGPrDpWRYbCxZct2XqutzAlxcHA0vEfMV1992dcnJ72h7ENVzCNi7iEdonxN8CH3CeWr7Hfdj8ReNpLjE5GSkAxvZm/Ra6pPYhobVJOhzDunHEJlbGrRgkVv/d6gwGDejw8fPlLb2Yw+ObUp+R5vs1370+mrVqxGSnwSzjE2UpNSkJZ8DuHMd5/65XSVkUGwMWH8R7yGT5lfGxgUamRPkZ/Rn854mw9JrKjtPXyfnOYaU9pzj5OT0f+UIxwXFYv05FRkpKQhMzUdSXGJ+E7KE1UZ6Z8NXaG+Tw3f7p/39NEJQ53v1DYfnsj62NTYuWzjkk0V6B+ArNQMZKdlIicjC7mZ2Vj+4wrVJ+kvRsV0g65Ab8RFU0s7Vq5842sIfUG+oalxW7KT6XPqGB+ebP1pO2eD/pryOeov4oP8RfLh6blxvT5JTkY2YyMHmqxc5OVosGKZw5hnxChGxfQqxWrl2tbG5gt96jIofijrBBJ1zL4fG8tUpmitVvShHAMmcd7tjLxsDbQ5edDlapGfp4PHQY8xy4h8r8QAxaREbStJnq7IyNeQuVDOSUPRCSL2IuyE0b4+Iq8FyfE8um/hS8hxcGFDCZvUVF0hC/1GfzEusU4lhHRGvkaLAsZGoTYfRboCHHE/MuYY6Y8NeZ+QPO0bNkQ8/W3zGLW9KfMZ8dTVdc3wP62zj3a/XcS5le1Ec7qwU4XfTdwQE+K99J6hrh/Rd1D79tc/ZCtT38q6ZOXyVZyL4vxClBQUQV9YDM/DnmOGEfn+iA3yL+S9CDVaY71BbSivMw003k3xRaj/5f4mNsZCXIvaiMY93bu4X+W902tC1wzUXqb+5tv0O7GhtA0cVqzmXJQWlaCsWI/yklIcO3ps1Me1jONUk1BeWWe0F6FGW2hgo792G6x9q/LR/zwuYkfCpqJxa0k+TPEPaT2RxGBPO6xBGeOiXF+GitJyVJZVwIn5KKOVESUbebpio70INXlv2KC+HErO7WA/Q/0t21dknw2WrdFiX9H9UzsQG7J9Rc+LvBHxXhrjZCOZ2hemzDlkI5DIfuCaVY6ci6rySlRXVKGmshpr16wbdYz0ZaPIaL/zXAUb1EcklsxLH2v+ubB1lH74SPjnpugb+j1Z5ziuXsu4qEJtVQ3qqmtRX1OHdY7rRxUj8j0EBIYY7eucqykw8jdo7hJr3ZZmRBXrEcFGf/lcpDPqa2rRUFuHxrp6lDNd9vXMb0cFI/K10761hv3OL11FXUOrERvHvTxVRlQ2+HM/bd5sFNfavnUHmuob0NzQiJbGJlRVVOLzyV/adExLvuaNm7b2ctFzRgad/SL2O6d2UK4XqYyoekMZ+z3p64eWpma0MhuwraUV2ZnZhvnV1vgwiuMyDui8sZ6zY3rOVKIz+cR7KYbbX56hysjYZUPMm8oYZmJ8As63tuFC23m0n7+AyPBIm7SzZH9cX1pldKbSzp1v4nTviuHKjKg1TmOHDVnkWqsJ4z9EblYOOi6042J7By51XMTuXU42xYh8jRGRsUbnU/r7B/WZI971fcSIiNfLz1N8Us4HpTYX8Xy1Fso2+HgXG2KMyDkU38z6Do3MF7l88SKuXLqEzstXYLdosU34IvK17dzlbHQ+ZVa21mAv/rjUflC1G28TeW2L4o9kg4l4vlpzbv1iyhxG+kPO11q5YhXj4jKuXrmCrs5OtLW2Wr0vIrNLvrd8PmV1TSM+//wr/pq5/AiZj4HWgdVxaBmR80bE+joJrSOK52nO6u95c8lxnxPounoV17q6cP3aNSRIOUbWyIjsc2Tn6N6c23r+Ij+nUp43TM0pVPmwLpHbV+RzifV4sdYuakREf5u6Bj9Qn8t2QVFBIW5cu47uGzdws7sbe1z2WiUj8rV4eh5nbFzi+yrQmcZ+pwKM9KTwKYZaryRYUPmwDj5kX1DoDHrOXDmOwuag8aLsU9qTvKO9Hbe6b+L2rVu4zPyRL6dMtSo+ZLuKzjIWZ323tHWgoFA/YM4h3TPpaVNrnEQOCsW1BBP0HbL/Iednq2I+EW0q8yF0A7U9PTY3HzSH0vcLvUH7cZD/Kl4nnXGHsXH39h3cu3MX2jytVekQ+RoKi8r42cgtrR1obmln92bHn39bnjqNbVNrZUX+mxq/Gnm9QX2ltK/EY5kDc/Ah16coRY7vpCSn4N7du7h/7x4e3L+Pfa5uVsGI/NuurgcNXJAcPuJleE25X9i75ghVrFd/kJ6W9xOj+Yh8DRr/9FfodPqf3kt/SZ+bkiMt7KmB8iJpLMl7B01k/5Ov/uCXX/DwwQPcuH6dP2ctfFAuTHMvG03NF6DLL8b4cW9iuYNtE3X/BNtghNiQ7VfqN3puoDUqU/pV1OMO5jOzZs4yrI3sc92PRw8f4vGjR3jy+DEyMzLfqw6RfzMuPplz0dR8Ho1N5zG/164yhY+xJIuYn0ZrWh6HPHDE4wg8jx7rsSVi41CqL0VYaBhO+fnDz+8UTp70w+7dTvjRfjmzKaaPKT/nXUJ2ibx2WFhYiF+fPMHTX3/Fs6dPYW+/7L3wIfvky5Y5cDaIi8bGNgQHhxl0oMrGPzD3+/m89i3oTBDytTqeP0S5EbTue+PaNdy+eRP3797jcx/168sXL/DHH6/w119/cnn9xx/4/fff+PPPnj3FkyePkZ9fgNP+Z7Bt644+55GPNZHz976fPY9z8fzZM7x4/hxNjY3vRYfIv6XTFTM22tDA2Cgtq8Lk3rxjZf7lWJFxH0zAih9X4riXD99joJzpA6p/o9qe5sYmzkdpiR5pqWkICT5rpD/2ux3AhvUbea6qrD/Ky8q5XhF8PGQs3Wd+6J07d3Cz+yZqqmv4ehnlXoxFPuRxdjY4BC9ePMfLly/w228vue5VzukjpTu2b9/FuWhoaEV9QwtcXPYZ3tdfvHo0y9LF9jh80IPvBZjH7p32qSE+0s+lwZuN/W3M11wwb5EZxsM0rHVcz5nS5Go4H7R+fLWzE5cvXoK+uASeR44xn3DKmLHFKCYg1gk+nPgxmzvucZ376tXvbC55wJ8bKR0ifmP8uA+ZvqjmXFA9h15fyZ8TcTmRnzma41J0vsXa1ev42Ui05zLtJ0t8hAaFYMO6jey+Z1r8GiZOmMT3M6Ax0tjQyHNbqT6CdFV0ZAzsly4btWwQE6I+WF7zcmd+Hdmor1//gT//fM118UjoEPn7XVzcUM+4qKtrRm1dExwdN/SJz8k1zNR/o2XNbhKbj7Zt2cbPAKdzXxKi43A2IBibN2zBJx+/X5tyxXIHhIWEcT7qa+tRU1WNTMYsMTRauBDrKfIeAspY8PXr17n/9p///IVff30yIjpE1h2kL2qJjdom5OToDO+h2kg5j0R5H7a8JyjpC4dlq/gZrXT2JPHhsd8di+2WWN21kn3lcegwigqLUFFWgdJiPaIiojD7u7k22/4i9qucd+WxJx47OblwNkiIE/LlLOmrG+kO532ci5qaRlTXNMBxzZs9JfpbBxR7Gov7ssUzASkme9rXH0GnAjkf+1xcjc5ktVahueznXU583+ei/CLomF/kddTrves5U4VsdlErJ2pHlPaIsmaiu/sGZ4NsrMePH1lUh8i6o7i4vIeN6gZkZ+UZ3qM850EpxDrdoy2tA9JZku4HPJiPEY6QgLPwOnwM3/bWzttWXG0iDrsf4Xxo2NhKYv4S7TFlK9cv9hx6V+4prauLeJbTz86cDfJDSCgWaCk/RHyf45oNnIuq6npUVdVhzeo3uuNte+XKvomt9Mm8OQsQFhyO6PBozsfqFauNzrq3RZk2dQZCgkKQlZ6FtJQ0rkvk880sNbaFHUT9L9vc9JieIxtD1g/K/eXoPYOxzZVrCtevX+O+OsmDBw8sYmPJ35Wdnce4qEdlZR0yM9/URx5wcx3Sd4t8NyHC9rJ0fc27ZI+zKxLjkhAXFQ9vTx980VvfNVrkp81bOR90BmBESAQ/Q3Mk+FDuXyn2cqQ+Fj622MNxqL8nn6Hw824nvHr1isd6KeYr6tUtwcfSpcs5F5WVtaioqGG/7WKS7uhPqF3EWomcq2OJ+ppB2SFsLj3DfIxzSamcj61bto8qLozs9SnTcJbZjAkxCYiJiIGdtK+MpfgQezaK/hb7VyrtpuHwodz3n/IWiQ1aL+zs7DSrDpG/IzwsmnFRi/LyGuh0RYb1jqHqDqEnSK+KfXCF/WXO+prBytSvZiApIQXp5zIQExXH7avRyoaQnnNlD3A+SI9s/2mH2b6b5jqxfifbV6JWh0TYV+bkg4Rym4QO8T1xEr+9fMnX1F+8eMFz2czNx+TPpqCCcVFeXo2ysip4HvV5a8zKFBE5oUKXvA8+pk2diXPJacjKyEF4SOSYyQUUsnbNes5HSGAIs722meU7yV+guU8+Y2Ug+4r6V9hXpE+Ge1akvO8Jxa0of43yTp4/f4Z4M9aqi8/vd3NnXDA2SqtQqq/EjOmzDHME+QxDXSNXtp0l6jMHw0Z6aiZymW8VxOyNcRb2V61VKIZNfAT6B/K1TnMxIvvbQ/XPhyKyPkqIT+B5i5TD9vTpU0ycOPz6EPmz6WlZbCxXQq+vQEy08foFsSFqW03d61u0iznra0wRuvasjFxoNQUICQ7jcdCxyIaQhfPtOB/+vv7YsG6TzV0/sUZjhewQOd5FeTaU20s50rSeTrmg5uJjyeIfuc7Ql1SgpLgcqxx64uaUf081Ksr5QulLDGaMmqu+xhQhHZibo0VBfjHCQiPHPBtC5s9dyPnw9fbFOmnt15pF2DE09oQtQ/aVPD4vdnTw+hCqn6qpqRmWjSV/5ugRL5SUlDM2ylBcVGoYR2TjDeR7iFwAa80nodhCXl4Bu58yRIbHqGwohGITxIf3EW8ssbPOOh6xJiLGmXI+Jj7kc6m8vXw4G1RjSPU2X06ZZhY+cnN0fBwVFZbixPFTBjaUusOWJD4+hevElOR0lY0BZM7seZwPr8NemDt7vtVdHzHxrhoKmr9F3gnVBjx69JCzQXXqZ04HDJuPxT/Ycy6KCvUoLCjBD3ZLbZ4Pby9fvn5D+kPdE+Idca3V6zgfXsyG+Pwz26spITZoTyDxf1VVFR48+IWvibS2tAzJxpLfe9jDk3GhZzZ6Cfdj+9NbtiT29it4fgzxQX6VysC7xXmXC/x8/HBov7tN5tfI64W0988v9+/zvYBIZn83Z1h8ZGVquP+aryuCD7NHBR/y/iq2IlT7W6Kv4Hwc2O+hjv1BCvU36Y+g04HYtH6zzV2/vB86+RzEBe2XdffOHezd4zpkPqjenbjI11JedCFW9O6jO9z1wPclMTGJvGYlKSlNHfcmyjdff8f5iAgJt2iuliUZF4+bm5o4G3du3+Z1/abaWOJ9e1z2cS60zE7XavINfqzyfDhbkHXrNvFaeeJjpg32rzUI1UwSHwGnztjctcs5UFRvS/v13r55C7du3uQ1yoPlQ34PrQkQF3m5+Qg9G2543tbqZGkP4IrKOs6HvIeEKqYJ+R6kQ+Kj45idZXtrh0IW/7CUc0F7vnff6Mbq3joYU/ggXUFcaHJ10ORosa03b02cNS/va2/t7eG67yDf21HL7ER1nA9P/p+9836L6tr6+PpX7nPvm+L1JsYak2jsGhV7N3aiCIiKgFKkKIKAgDAwMMAgDL0jzUKxgb0jthhNN73eP+Dd3y37ZHsyjeEwzHjPD+sBDlP2OWd9zl5r71UQ4ws+Ckz5Hp+DKO+PIDZDjgF//PAR74uAWqSIXxwoH/PZdQAXiEmqrW6g6dNe+Ply7zg5DxjfjT1zT1svRV8e9FoAH0uXrtR1XAOJiYqhsuIS2huy1+PGhngl7KOLOsGygBHxuuqqanpw/wE9YK9raWpx2gcR/98ZFMy5qK2qp5qql/vEgQGZS/U4BhqDNZSScuQo5wM1UHXd1kamTJ7G+ahlOjb6ncHPIerYU2u1qR3ly8k1pWQRsfRqOwc1gNB7qu9eH93rvedUfzb5f0mJKZwLxHsnHnqRt2ut5y4EY8X4MG5rvTfkc5Pz6kX8v/q4VoKcP/QGBR9zP1qg67aGEh8Xz/mIDI8c9Gepcz1EXSv5mKN8OWHX4HUiTlatT9gnFHvaqH/cx7i4d7eXeu/eVfhxlo+aSsZGRS1VldfQjoCdyhqZK+tWGLeIBZDtMDmPDJxrHaO7d28U5+NYUZmu0xoLalSAj+bG44OOz7GWC6WuBeUo3wEsOLLt1bVIexkbd+/cpbu379C+vRFO8zFt6kyqqqihyvJqqiyrUvrcgD9X9j7kWH6wDQ7U56jukaaFXOi5yvnYqFEugy4vSya7X+Aj0H+Hy/6zLT7Uc4hW+UByzXT0mkJN1tu3blGppdRp3/zjNesZF9VUUVpF5SWVyjqFoz43jq6FyOkQ/SKGko/Nm7fRzdt91HayU9flIZLlS1dyPspLy1zSBzFH2MqllesiasWHHPeRlppOt2/e4vX0UWvSkY8ujgf6B7FzrmRsVFCZpVyxrVyNR5T7Acs90IaSD1PeMc5H2N5IXZeHUKorKun0iZM0Z9bA43uhEyJnUNYV4ZPKa7Ja5cvh+S6e8YEBQbxe8Q0m169d532enFnDij+QwLlADQ/UtrHnmzsjYp1LnJvwnUTeoMi31CoPavz49+hO70POx6tWl8fTJCoyivMRf8A1fRW5cTIzwidV58ZpkS8HHRbxvPPm+tANxsX1q9d434l5/X6ENT7kYwUmM5Uyn7akqJR279yjcOdqDR/5vGUfStRlUB8frGzZso3zUd/QouvwEMsCn0Wcj7YW77vWWNMFF1eZXLl8RVkPcMQHuLAcK6HiQouSg4yYKzmO3pMlv6CY8xEo1efSZeiksb6ezp3poo/mzPP4sWINKyYqQvkbvSCuMPvl8sVLFL0/xiEfiNO0FDI2zBYqYnqGvSBvu1+9fY85H7pt5R6Ji4njfOwJ3uMV45XtoMKCQrrUc4kudl+kgjyzw7WrObPm8bqBxwqKeF09wQdsIPhOok4Jfor9Gk+KV/TxWcz5aO84p+uum2TN6rWcD3NBgceOUfg5sKHkXjSGDANjo4d6LnSzebDB5hqW+Hvjuk2ci8K8QjKbzHa/U/gOghlPiL2KiIzhfKQfzdJ1100ydvR4zsfliz3DPhb4ufIzXPwUe25q3z54dwh1n+/m67voEemIjw2MD3M/GwW5L54HWLuSbTZPlgLmM4GPHUHBuu66UepqajgfWBMa7nnC0WuwhiXyCYN37WFsnKfzZ88xxs855CM6IppzgXqs8bF/1RD1lnyorrM9nI/58xfreutGSU9N43wE+Ad6/Fjl2qNzZs/jXJztOktnO88oNZdt7YHsD99P+cY8ysvOo8j+vTXsC3pLL/O+B084H7rOuld27wrmfMTFxnn8WDF3iL3uObPn8h6NZzq7qKujk2b373Pa4gO9kkzZJsrNyqWIsAiFN2+o5ePjs4Tz0dF1QddZN8vSJcs4H5biYu/ig80XXR1d1Nneyfs0WuND/j0jNYNyDTm8X5L/tgDl87zBvhJ8lFfW6TrrZsHeB/ioq63x+LHKceioo9nJuOg41U7tJ0/TjoAgu3zkZOaQMcPIe7OuWfmiJzD2Bb2h3lVkVCzn41BCsq6zbhboGfi4eeO6V/gfcq/bdsbGacbGqROneEyWPT7ARfbRLMpKNyh8DDa2xN18RETE6Do7DOItfKjlNOMC/a9Ptp5QYvVt8QEu0KfVwOys1StexI15S2yJzofOh7Pzh7xfcbL1JJ1oOUFtLW0UsD3QLh9gI5OxkXHkKK3qrwenhYgYZpE3KPdH0eo7DFkmzkfQTu+Ic3jVpKqigvPhM3/BoPUEIno6i7xZsbch99eRjw/UBxG/g4u25lZqbWohf78A+/454yIjJZ2OJqfRqmWr+DHsOco9Zq2Juo+B+j04F5E7KHrUihwZrWoE1dQd53z4+Oh7H8MhhWazpnzgdxEHIvbBoVdyfza5/5gQdU9ka2KWeqyBi5bjzdTc2Ezbt/nb5QNcpCelUtrhI7Syvx4O9NdabQhZ1GMUPeQE2+K81XlQjvq963z8b/MhYvxE3QJn8urk+cWWyJ8BLpoamuh4w3Hy22qfj7R+Njgf/fOHnKdhS6zNcTgfwbo7+VjV399KF+/hQ+iAmg91fRtn+FDnWFkTOQ6riXFxvL6RGusaGB/b7fKRmpjC2cAcIvyPwewPgnvMZTIfsn0l8tG1uD+JbNy6fz580tnRzvmYNnX6gN4n9AAMqPkQ3OBZK2rgyPaV6OU3kO+Tc2whjXWN1FDbQPU19bStP9/dFh/gAjYWfJDVK17wMZj4EpFH6w7/XF+/8t71K8GIPf9cPEcH659jL0/ezwMX9dV1VFdVS1t9t9n3zxkXmcxHx/rumv71Xfj63tDTQOdDX991Reqqa6mWsVFTWUOfbNlqlw+s7WKNNzvdQGul/XN5v9FTZeeuUM4H8mt1fXWvjB0zgfNx4bzn56XBFpLr/ICL6opqqiqvIt/Nf+dDluiI/ZR91EDGjCwKDw33qnukx18Nn4j4K2+IT5TlvXc/oGrGRVVZJVWWVtDa1evs8hEeso9yMrMp12CkyP6ai94yf0wY/x7n49LVW7rOulm2bfXjfOQYjR4/Vvgewp+eNnUGVTI2Khgb5SXlNHXKDLt8RISFkykrh/KycylqX6RX+R8Qkf8h6nHr4ibfLzyS8xEW6nk9D9SC9VgRv4s6wuCizFJGpcWlvD6JNT6U2ol+gZSfbaKCnDxuZ+EY2PCW/Kjm1lN6/uAwiCknl/OxYrnn91hBvobIr12yaBmVMS5Ki0qo5JiF9++0x8f6tes5G+bcAirsr88APmzFt4u9GKzFeUJ9hoxMI+cjPDxa11s3iqjPML6/RudwCXTQUT0d6LLYz9u8cQuVMDYsjI3iwuK/8aD+G3vmhaYCOpZnpqL8Qhr19hh+XK5TIv8Uezae0jfK19eP81FW7vl5Oq+KIOcOfHS2tw/7WKCHA6lfgngrcFFkLqKigmMO+UC9K3BRzF5rYe+Z+uGL+lfe0pMTPrqoD6frrnskKDCI82HIyPTYMarrX4njsdFxjIsXtd6iI23vmwk+3mX6BS5KGFOlbM5ZsnCp4qN7Sw0T5J+Dj5X9+ze6DK1kZRo4H+vXbfD4sarXmtJ5P94X9azCVDHo1viAwE8pYzYZ/JYt/b1lYK+5Wr9d9lPcUZ86/lAy5yM1zaDr7xALekehPjX4GDd2gsePV71XYea9eAsoPzef1q3dYNW2Uh87cjiFyi1lVFFSRgkHEwY9JnXvBhFzpu5voFUcL+J3wQf6R+k6PLSyasVqzoelyPtiFmCLFzAuUOstz5hHC+YttMmHLPsj9lNlaTlVlVWQKTtXOX7oQKxL45DXtmz1xxF+lFbn3nPpOu//sWKF5/dn92ZJO5LG+djqu9Xlz5BjEpHvIeJXRa8Y8YwdbM4gJHD7dsVPmDVjDudC1LOa/MEUu3yI476bP6Hqskqqqaii2srqQV9D+ERi3UBwMNT9ow7GH+Z8HEnN0PV4iAS9ndFfDXyMHTNeEz6gHyIXVfQ9diZn0FmRfeh1a9ZzLnIMOWTMNFq1pazxgT46tRXVVFdZQ/XVtTRj2kx+HP6HK3V+RM9q8dPZPJfByNSpMzkf6M85Tu9zMCSyc8cuzkdS4uFBfY7MB+YFMTcIHdFKV+CXy74H6h/mGIyMjWyKkdauHPExetRYHguPmPiGmnrasG6jwp4rcSbWcgTxTJD7O1vLYR+sWEorOR+hod5RW9ub5I3X/00lRRbOx8IFrsUqWMsZhN4LX1X079SKD6xdyXV40lLSKDsjm7KOZpHfJ9sd+h7y/+CfN9bW0/G6RqUHPNiwV+cH3Ive5vJxdb683KtTnT+p5T3ctGkr5+PM2R49Hktj2bLJl/c/Lyo85tL7beUMWtN9Z3IGwRH0TPgr1gRrsMK+ept9P7gwpBsoMy1T2cdw5JsLiWff31TfSM0Nx6m4sMgqHzhHjEf03xT+k9bzwGCk7WQHXbl2m0JC9ul6reHcYTblcz4GE29lK2dQ9HKVbQpH/jnsdnX9BVHvRLwGMYQirgQ+hFzL6oP3JjvFh9InZ/0mamlsotbjzdTW1MK4G6fMEeBUnJdaME57DLtbNm705Xx0dJ6nEW/qc4gm15TZ22XFJZSXY/KYMUHnoJfyc1oI1sGgl/Jze5uvH681fZSxkZ6S7tD3UP8fPKEuEOpmnWhpY775GmUc8neDE7Ee5an3s6X1NF26fIP27/f82vseP3e8NoKMhmzOx7Ilyz1yjHiGgwXYNaL2gdBV8ZoD0Qc4F2nJaRQctGfAfECwdoWapKhNGhsdq8yJ+F7Rw9wb7uncuQs4H909V2myF/Yb9SQJ8Aukwjwz30P2ljHDxhL1T7gOjxzFuUhNSmXncYRW9Nd5c8b3kF+TlJjE17bbT56iqvLKl9bJvKFe9ctrBBbOh8lUqOv5IJ7LWA8FHyKPyFtEXnf9aPY8Sj3M2Eg8QikJKbx/4kB8c3mfsIPZbZ2n26mrvUPZX4Sf4y2xikLGjX2XTp8+Q+fOX2Jzn7+u7wOU15ldBZsEfAT19wDwJtkXFqL8jr42KYkplHwomZ3TQadtK/XrwFXX6Q4609FJZzu7aFfQbuU13jZ/QPzYdQEfrcwfmTRpqq73A5DNG7YwXzadx7u+8foIrz6X+Jh4SjqURIfjD9OmdZsH/H6Zo+Jjxbxv4bmus1TKfDJrPHqTmExmOnOmm44VlvCeLrruO5aZ02dTUnwS52OSh+TBDUSwZy7sHdiFSYyLxIOJlHgggcdgDWTuUDOCvcHzZ87x3tDd5y7QuDGeH8NsS/7xj1E0fV43tZ24SB0dZyk25qCu/w5k9DvjKGpfFOdj/VrPz+9wJJgvEg8kUkJcAh2KPaTYQa7y8SGzQ7rPnaee8xfo4oVupf478tu9oeaPYg++sYLGffgljZ/6K61c/4DzcepkJ23e9InOga1rxnQnLDiMDuw/QKG7Q73yHBAvKO9px0bGci5gY/lK995VPiCobX2pu4cu91ykqopKp96PtV+sqWkZc+iq/HtUEucCMvr9K/Sv//uIfLf4cT7amC+yUo+B/7s/ztjYsyuEDjL/NWpvlMf5m9Av7Ac62neT11qnTJpG8bHx/JzA/Mxps11iQ81ISHAoXb54ia5cukxXL1+hKf056eo6vxCsNWPc2CMZ7poNsKfemdihsPHW2BJ+TPw/htlX4KO5qY185i/SuZBk+1Z/bqNH7dtPo0eN88gxghGxD4if6v042Djy3AH7ULARFxXnsm2l5gNro+Di2pWrdP3qNYqLPfASn47GOdz2FH6+MXKX1ddF74/jfFSUVdP7EyfpbMCf3byVr3+CjzHveCYbasE8gucyRDyX5ZoJ+F1wAUHuh6u2la11rBvXrtPN6zeom/ki4riIe3E1vgTvFzEAcr6YXNtePu6qPWXrtcifzjHmUWN9M9XVNNCypZ5f32zIbKrXRtDOgJ087gJ8zJ75kSafayseXY5bl/XAWj+ygcwpeK+I8VDsmjnzORdg5CCzGz7sX993lQ01I5s2bqFbN27Q7Zs36c6tWzy+WYtrh+sjzkPki+F3XCsxD8GPcaZPCGynt8c32LSn7DFyJDmN81FdWUtLF3tmXNFQCuKqYtlcinhv8DFn1lzNPlvmA/aFiM1FPBTuM47Jca2w0eWYXldFjt0N3R3GbSv45uFSPpBWfEB6urvp7u3b1HvnDrNHypXjiBl2tb+UiEMW9edwnXBcvj7q/BhrgjlizKT7Chu27Cl7si8sgvNRUVpJ/n6B/zNsoKYT5gvkmaYcPqL5Gr6aDxEnKN9XdQ7dYPiAzS/r48QJ7/P1KqzpHmY247IlKzRhQ3yG+Jz4g4cYG3fpXm8v9d27x2tfi/G4Gm8i1zYBG4L5gfAx4q0ohQswYs+eciQ7AndxPkqLy/jzFLkOrzIbixcu4VyghgfmDS3rg+JeCntHtpdEzz138bF18zbuS2EPJyUhma/NacWH/DkTxk2kvt57dP9eHz24f58MmYaX5hBR89eV+UP2scT1EfaVmH8d2VP43Rl7ypEsWbSc81FkLqbsDKNiq75K8ibjfs/uEF7rDLUDse4JG0vL78B9E7kXMh+ir7fIK1Xb2aL3sRZs/GfkKB5Hksy4QDziYPY8nLGxMjMM9PD+A3r04CE9fviI1xAS43KFD7V/LmKQHfnnansKc4imNgebk4+mZpDZVMhrwKBO3uuveXfckZDp02ZSbraJ1/UHH9v6c6+HQnA/rfnbome4s/65s2ui6lrqiBuD7YhY9vSUNMV21IoNNSMLfBYxLh7Sp48e0ZPHn5Ix+6+6KHLdeHtrC4PNL4RvoZU9Zfd72DM2KGAn5yMn08h8u3iaPnWm984Zb4zk8UL1NXW8nxhqByLW2xvGjvUoR73AsYYrzx3I80hFL+bkNJ4nGBocpvncYe3z6mpq6cmnn9LTJ0/o2WefsWftCybgg9jiQ677hZ+u7JHAdsKalNb2lCNBXD/8OuQrH01Op+CgYCVf2RtkxJsjKdB/B9VU1dDxhuOcj7CQvV7jWwl7S8wttvae1XPHyuWreUwl76mZblBiK7VmQ80I6rk8ZVw8e/qUPn/2jEy5JptjhI+mzq13pX4D5gjsZQg2sMfhznsE22r1ijWcD/SHz0w9SvtC9ik5MZ7JxX94TkJTYxPPAW1taiVjlpFmTJvlNWzLtoeodSJsbtgi4jmrfjbjfsHnMKRnMh8yi/ZJvTSHmg9IY0MjffH55/TlF1/QV19+ycb2/kt+iKPzGag9Je+FY2982O4Tm7M/YT4e+DBmZPNeWzGR0bR4gef010K8Q3RUDJ06cZLOdp2hjtMdzNcoo1WvQJyZtectbBM1H37sWBb6zKKXZlaOw9qhWjOyaOESzsXXX31F33z9NRXkF/xt3cLRfDhQewqxVO6wp5x9nvlv9ed8oJcQ+kGgrxBy64YjTgX1vTZv8iVLkYXHAl3quUgXzl2g2upaWrv641du/Q06JtcqATPi2YvaVqj7hlxH1I+OCo8a8rnD2uc3NzfTt998Tc+//Za+e/6cZs2cozAu6kW4Gncy3PaUs/L2W6Npw8cbKTMtgyosZVRTXkUN7HmAXkTRbF7Bc2So8rCmMztp9649VFVZxfek7ty6zeN/wIchw0BLPbS+iJbPKNgkYg1ZHA/eGUy5jIs8o4nXZ/9w8lS3sKFmZOaM2fT8OWPju+f0/fff0Uk2n8vrd66s93LbccQWj7GnBjT3z5lPe5nfW24p5XX1TjS38toWZzq6mE9cz9fGQ0PCaP7cBeQzf6HTn/vexA+4rgcwH/vggXhqamqmz5lt+xnzAR8/esz3osBHY30DBQbs4PbVq8yFes1Krtk7edIUzkV+bh6Z8wooJspxXd2hnEMKzYX0ww/f048//kA//fQjbdzwVz4vaskP9LNHjja+FFvoKfbUQGUB0//Q4FAqzDdzPpB/CZsHMdC3btzkcQgPmV4/efyYeu/2UjPT+bbWNjrFeOpo76Dr16/Rn3/+Qb//9hv98svP9NOPP/Jn0LfffsPsiq84H3fv3KGiY8W0iz0vJ4x3bw1usTcurzGJWsry68Qxdd8/rQQ10+XYjfi4eDIzOxfXvch8TOmf6S421IxMfPcDevbsKf3880/8Pvb19fE9S/E6jN2Z3Jp//nPSS/YUOHmVnnPYZ9ju58/73ZUUl1AnY0Dw8fnTZ9yPg40KDn777VfOhswHuDnRdoLPH+s+3qD0IR4ukfcixN6eHCuE47B55L5IWufKqWOaVi5fxWsPwba1FBYpua7DyQckMeEw/frLL/y+/v77b2Q05ij/Qy0gRzXf1fYU/v5fsQ8g0PXFi5bSksXLuB21bOkKWr7Ms+PsZT5En1jxPxE7pe5740wM9kDW/mX7BHs5OVk5vFY0YgIKTPnK/o672bDGyH32LPyDPSPEc2/O7LkvcW6LEbU9hXnEme8Wtd/Vx1zNGdHFdT5kBkTuqJoPZ2Kwhd0mr0XZ8jnUc0d4WDhZmK2JGjvlJaXsubxM0dHh5EN8N5534OK///2Ty/Vr15TXwU9X8wG/YjD2FK6f3MsQ4krOiC4DE9ErT+YD1xx6jeMiTsJVPsTnwTaztfYJXZJ7xcJ2LS2yUJmllCpKyykhPmHY7Cp7c0hOTq4yf/zxx++UdDj5pXMS++rq3FdX7Sn1HOLq/dDFeRF7W6K3kbjW4m9Rv1w8r/C3iMsW88pA7q+6z4c6DvZFr4UC3ku2sqyCqiuq/r+9M/2Pqrzi+PlP+q57a6uACoIWEISACyLKmpUkbAWpRmVLQvZ9Ifu+L5OE7DvZE0ICCNJSo7VKX9hqP7b0T+jze8IZnrm5M3NvMhOTzH1xPoHJZObO3Of7nPU5h37/u3Urgg0tI/DL5+bmJBuwteCL7Nyxy/65UDtm5uyrWR1i8bF8jKhzjiDqDCTteVDt2R4zwvNl2C7Q1sDKWbK1dYKLBmpqsFFoSNiK0R16dtb+/QckF4i7wF/XxrO27Jw1dfbVyB6j2rvuzoxYsvoEdpseX0cOHZV905saGqnF1kTJir2yUtjQu57c3Dz63+PH9Pjxf2VssqXluv13mzf7LTk+pfrhLJZ/7hu+D/8bOVP4482NTXS9CWeia+U83R/bJzdqZ90SOhVsIC/ynx9+oNOnn/b81uubZYlviZk6VcSqVH/8Fz//FWULVnDOohUzMq+3ytzHStUdenYW/I5Hj76ROXXkvJBf5/qsxdi7K2mmoSVLE9jDyBsaZUQbz/044hPBRYusp+loa6NLFy6teDb0rg86A1yg/uTf339P9+/dF7rlaZzXSP0Jn8+ErOQZbpYY9yW4ttsII1gjqj+OWeNtwl7vaG2jzvYOKswvkOciVwMbeoyUlZXLuqHvv/tO1k+Mj407PNfVLCqVDbOxQUvMrVmu78N65ZopFl7D8I/1aqzMCl7HHSN6OcDt23ZQO7hoa6fuDvTzaxLXvWVF+xxGGJkYH6d/CTZQB//Pb7+l4qKnZ0WwN+j1BvIGG2rPbPzk+4K1wT1o1Md9ye9Ve8jweQp1Xj2+F567zD+9yYjW59i0cYvsjd7V0UE9XV3U191DB987tGrsKle+yK+Fjvjyiy/oW8EGzlKhFk+b91H9dW/pDcQIudcM/xuP4/4gfo/HeWa9r/KBdYrvXRv70+bLPdXfUI8RrAW13gL2U2V5BfV0dlFvdzf19/bSGSXes9rY0GMEZ0XmPv9c1mbj3CHO5YYr9ZWsQ7xpU6n3WM0f+npeUdu/DWxg71D1hCf7t7ljROUDbMDH6O0SXPT00kBfH0VHRq96NvSu/0T4KcnFPyCPHsneDuFhJxzWpjf9DT6TyXXYHBPzVT7w+bmvK/PBtiY/h8+AeosPLSPqdw82igoKqa+nR3KBWbEVZWX285irzecwwgh0Brj4BvL117IPCvqhqLG/xbBhxGdUeyDzHunLfPC6BAN69hXXVeF5bJfiMd5nXHG3mGvh9+LHIi9HSltqsL+fhgYHhY1VvubY0GMk8kq05OLvX0G+ovv37smefs58M3eizn5fjP/BvS653lE9y+ALjOAzq9+fWjfF3DAj2horPcHvtP6lK4E9pT2LHXUlSp5NvjEwQMM3bkiffN1zG9YkG3qM5OXmyx5zf/vyS3mG+tO7d+2McGwPNqi7s1U8r8qKX60swT1xV4+I+wzRxvjhXzAXI0ND0ifHufK14nMY8dchuTm5Mq71xdyc8N3n5JmRkOBQh33FVR0KnxOw1uPKFNwbV3uN1k5An8erUdHSlgIXYyPD0vdQ+4OvVTacMXItO0f2u0YPjr8+fEgP//JQMOI4UxbfoZ4ewfe/nDMO2TfR1mt7oo57qTaSng5V93Du16e1m7wpuDfOfEnt7GP4FfC9R4Zu0OjwMI2PYr5wr703jy+w4YwR9L3BzATMTkCfmj8/eEDBQSEO+wz0r2qjsq+4nNftbJYP9/DD41gPy63TnMUU1JgT1/vzGSb45Yvl2MyexN+Vq3sJNuB7z3MxQhNjY8In7/NJNpwxkiW+Q/S5efDZA3pw/zPZ6yw9LWOBHtH7zo368J7YM7m+Qu03YDb+xedR9V5XfVztmePKTjHChzbH4a4XurPrBv/qOWYjou5l2n488CuabTZhS4GLUZqaGJe+hy+z4YyRP545S5/dvy/rGO99ek/2icrPK5C9M7X3yOx+x/H1pdQBs27gM1mL5UP7HL0+OBx7Vef06a1JrpdSX4+f52k+ILgWfF6zMT49XwQ9POB7jwsuJsfH6ebkBDXU1dH6dc/7PBvOGAkKDJZcoE8m5uXeEdJka1rQE1B7Rt/dutbmnhZrX3ki/659jl4fHO161uvVyvkJbS8KjlF7gw81h2vEPuPYLdhQ+Qg9HiZ9jMnxMZoSXExPTVFjQ73YC39jsfET17Ffv917xXc3Jmeto98g+smODA3LvlBqbJBjwK76mJq9n+7sBLVGj9eb2hcN+7y72L8rPvh3Rtcz1+No9Qfv8yrPWn20lLiUu/2G47a4R6o9BV8jLjZO+hiwpaanJunW9E1KTkqys7FW8xueZOSVl7eSrdFGM9Mz8izirZvTsj8nZuZp9Qj2KL4fenu+J+tVuMbbiP+g97dgx5N88Otq35ftLmc9QJeS48Hr8J7jLE+IXhza2Dx8jZrqapoUXNwEFzenxN43TVGRUU7tCUucM4L9BPFfcHFzckrsN1NCH09ScWExrdPMINbLlfDeasafxN94K2bM+7ragxOi1wcHHKnxJugrb8aytXVXRnQpz99QH4eu0MZuIWGh4bKGCj7GtOBiRnAxOjJMAf6BFhtL9EmgM6YmJgUbE0Ivj0vbq7e7V/bj1P4t+pnu2b3H3vtHb9ajO9vBm5+Nc5qqf6uXP/kx8hVmfG6eQcvfL2xc/6NHFzwP9lRWRqa4fxPSlpqZRo/uWzJmBRvBYsMzjOx6zY/6evpobGSMRodHaXRoRPZFT01O052v4Wx/c+cX+PI5d3Bq5vNr9bP2HCh6CSOPwT7G7My08ClnKD8vzyEmaXHhGUbAQUFegfTVhwUbQ4NDcnZYR2u7nEOjvXdst+idT1zq/sk1kSu9VovzgkZ7HRn109jXY/2m2n5SZ2RmCVvqqY9xW3CBOG5gQJClM7zMyfHgUOps66Ab/YM02DdAA739cv5kdma2YGG9gw0w//xgh3vqzP42U+fI/uly1rcs1mYyk68A90Y+E2wp7Dva/QHneQYH+ud9jCe21N3bs9TS3Ewb1r9gsbFMjDz37AbKycqhfsEG7C74Iz1dPdTd2U0nw0/Ze1qo8nHEfOxLrx8E9102aofweTejdps3bCFvXCvWuyuWsNfoxdNh/9bV1tp9jFnBxZ3bM/Tp3dv0UcRHTmMwlngvvgXBTMoWYRP0CC66O7qoq71T6JZOaqxrpANKzzBVzp89u4ATM7aV2T3ZzPO0fW1dxY/M6jqjtiCuQ/tccKFnp65/7nlKiE+Yj9eCi1vzPsbdO7epuqrK0hkrQpesp/jYBMlFR2sHtQt/pO16G7W1tFJpUSnt8XvdJSew0c30IuXcm9G/MbqWOVdjRN/gmo3mO/l1jfreapwC/af0uICPcfniZRmvvfUkXnt7VthSd2ZlThx1EK7umSXLywhk+7adVF5SLrlA30nMxGyxtVBzYzMlxieR3669Ltcv7AZ3s+DU3JiR/Rhr2Oi6NMOHmT5UHMsz4nszC86eCy7Ov/+nBT7GHeFjwJaKib66IDZlcbGyODl2JIBqKmskF00NTWSrt5FN2FuNtQ1yBpde3gTCs+CQ+3Xmy+vVc3hqHZvhA5waPcPKNTauYt2cW9XL7UGQj42Pi5dnwRf4GE9sqT+8ss3iYpVwAv88NDiMKssqZQ/8BsFGfU091VXXUW1VLeVk5lCgf7B9Rp0q4AP7KH5C1N9xraNRmwnPM2r3m+HDjN0G4VypapNhD0Au1VWt566duyUXU5qakHkfY1Zyscdvr2VLrSJGHDgR6z8k6DiVFZdJLqBXqiuqqaq8iqoEO5WlFXTuzPuCg626tgbXd/H64ZyxUdvfzBo2y4eZmALXFELn4POAC9iSWv7Zhjp6+Bhdb26x1507+BjClqqurLS4WEM2F/REUEAwFecXPeGikipKKqi8uJzKisqotLCUUpPS6MDb79Izv33WaSyI+6ZhbcEe8+Qa9ob+4F5r4IJ7fjmr5dz31tsUGxO7oO5c9TGqLC7WPCdvvr6PMlIz7FyUFJQIboqpKK+ICnMLqSCngKIvR9P+t96hZ5zYRiofkZcuSN8e/2ffhdefN/lgH5rXO9tLfE3Qf7gmV/X/mCsdI9hB/5z5M3yOdedcE5KakiJe2+LCV+wuyM5Xd9GH5yOkTinKKxRsFAg28in/Wh7lZedRblau9FMuX7hCAUcD6aWNW1y+D/stqj3GezzHSfE7Zoh9YuZM5YPPafP5CfX5PBeCXxtMwK9W/QhnNTXIqx46eFj2CUGv5/k+IfNnW2XduVITAmYiPoxwyGFYXPgeJ7Cn3tl3gBLjEh24uJZxjbLTsykrLYsyUzMpIyWDEmIS6FT4aXpj71u06cXNht9b7UvA866ZC44ZqXxwPg5rn20k5oN/Gsn3IzeE/pQRH0RQaXGJvReh2ieEfQyuO09OSqYD+981pI8t8R3bC7Jh3QsUeCyIYqNiHbhIT06nNOGfpCamUkpCCiXHJ1NSXBIlxibSB+c+oIMHDou1/Dq9+PwmtzkUb8mmjZtp75436ET4STkDvLqyyt7vHFxwzzV7nxD4GE/qznOyr1HAsQCH862u9hRLfFunQFA78d47B+mTDy9QWqJgI0GwES/YiBNsxAo2YhIp4WoCxUfHU1xUHMVGxlLMlRi6evkqXYy4SCeOn6SQgOO07839tFews/GFl6TO0Z7tMiLwm5Bf2PrKdvLbtUfWaIaGhFJSQhLlZF2TM5Xan8xU6u7slP3O7X2d7VwM2X2Mgf4+ys7KIn8dJixdYYlZVn7201/Sazt2U5B/MF386KJTLqIvRUvBv/F4XHSctMnAU4rQOdA/0EWZqRmULfQTbLjcrBzp88D/KRK+UElhMZUVlVJFSTlVllVQdUUV1VbVUH11LTXU1pOtvpGaG21ybmtry/x8Sp6pJGfHgIte9Dvvd+hFiF7o58+dl7WEZj+/JZaYWSvwB17evFXql5Ohpxy4ACvgBgzB/oItBt2TLuwz2GpZkotsyQX8HcQEEB8oKSim0qISKi8pk3mZ6vJKqqmspjrJRZ3gArO+bdRia5bzKdvlfMr2+ZlKnfMzldiWwqyltJRUqWPQR2exn9MSS8yw4modYU4W/I+3hT0VeDSIzp46R1cuXJF+S0ZKuuAiU/r78P3zsnMlF4WCC8TPSgsFF8VlVFFaLud6Sy6gM2rqZP6/qaFRcNEkc3Y8n7JL2FKZ6Rny/Orpk2fo0HuH5dxgT3wWSyzxNi9a+2zzppelwI8/cuiozFEfO+JP/kcCZPw48JgQ/yBCHjM4METm/dnPCDseRtu3vipnVL66bYdXr9USS7zNzHKvxR/7/S2xxFPr1pNifceWWGKJJZZYsrLk/1BLAQIXCxQAAgAIANqIPltdHK/C+j8AAABxAgAEAAkAAAAAAAAAAAAAgAAAAABkYXRhVVQFAAclDtxoUEsFBgAAAAABAAEAOwAAAC1AAAAAAA==</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #14</Name>
|
|
<Index>14</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPlvYVcUCrj8AAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J33W5TH2se/f8l7zvWe6z0nlphmYmKLSYydqMSCit1YjhpAEQuoCCgiSpHem3RYdqlL71XBgqjYY4stMSbn9/POPTDr7AMoC7u4C88P98Wy9Xlm5jN3mfue+fvf/oG/q/Le5G//87+DFrW9VBkL494Wvl8VVSw1TtVrUkXlYXDjbuHCxVzc9rvDzc0d4RExSExKY5KKouIytJ6/iNa2i2hp7UBzSzuXpuYLaGw6j8bGNjQ0tqK+gUl9C6Ki4pnEITIyDocOHoGT016sWbMec+cuxOTPpph07WpfqmIJJgZ6zzfffI9Nm7bCy/skUs5lop6N7Y5LXWi/eBUXOjqZXMH5diYXLqPtwiXGxaU3XLQquGgiLtoMXNTVN6O2jkltE2pqGlFd04Dq6npUVdWjsrIOFRW1TGpQXl6NuLgk+Pmdwa6dzpjz/XyM++BDlRdVRpSHCeMnYaWDI3x8/HAuLRuXrlzncvHyNXRc7jJw0c656JS4YCK4aOsw6Azioqn5PGeDuGggLhqICyaCi9pGxgZx0WDgorJScFGDsrJqlJVWoVRfCb2+AvqScpQUl6O4qAwpyWk4cdwPG9dvwfSpX6usqDIsLvp7zc5uKQ4eOgJdfgkuX+3G5c4buNT5hgvOhuBC6Aziot2Yi4LCUsQnpCAuniQZe/fu57JnD4kbFxcXkn1wcd4HZ2dXLj5ML0Uw2yw8nElYNNcZxEU5cVHGuCit7GGjpMLARXFRKYoK9SgsKEEBu+4CXTHytUXIYEx7e53AimWr8Oknn6usqDIkXeHgsBZBweFoZuP6Slc3rhi4uNGHiw6Ji6TkdPifDsI+t0NYvnwVFiz4gescS1z/jOmzmB21AJuZbbdrpxOCg8KYvkhnXJQyLhgbggtdEXTaQujyCqDV5CMvNx+aHB1ys7U4yz6z1nEDPvl4ssqKKm/VFYKJFsZEZ9dNxsXNHi6u3uhhg7gQthTjIpeNt2Nevti48SfMmjXbau5v3AcT8f3sedixfRfTPb5cZ2g1BT1c5OoYG1rGRh5ysjTIzsxFdkYustJzEHgmGGtWr+vDisrJ2NUVU76YiuMn/FHJ7PvOa7cUXHQbuCDRMPuEfPBFC5fY3P2TLbV8mQOOHfVBSlIacjI1PVxk5CAzPZsxlIWM1Eykn8tAWko63A8ehv2SZSbZoaqMHi4cVq1FLPMBrl6/3cMFkz5cMImKTuCxKUvZSO9Lpn41A7t3OSMyLKqXi0zGRQZSmX2Wynz6c0mpSEk8h2jm92xctwkff/SZyskY4GLLlh2oqmnkXFzt5cJIZxATMcTEtlHHxEBC9tRmZiOGMttScJGckIJkNn8kxSUjMTYJCTGJcGI8kb5VORldXEyY8BHc3T3ReuHygFxomS+7afPYYWIg+WrKNLg47UVUeDQS4xgXsYmMjQTER8cjLioOsZGx8GC219czvlE5sXG/m3PhIXEhbKleLppbOxAYFMbX99T2M5YP/jUBS36wxwnm3wsuYiNiERMeg+iwaEQxu+yQ2yHMnD5L5cQG41FkR7VJXMg6o6Kqnq9njHVdMVghXbHPxQ3R4T1cRIZGIjIkAhFnwxEeHIYDrgfw0YefqJzYABd2dvaoqm1C1wBcbGY2lNp2Q5OPJn2Kndt3GbgICwpFWGAoQgNCEBJwFttY2/7rn+NVRqyQDfIbM7I0KhcjwQnTFTu2/huhgT1cnD0TjODTQQj2D4Qfs8eW2C1VdYkV6QzyMbpu3DH2Ma4x/6Ktg3GxXW03C8kkxgnpDOIi6FQAAv3OIODkaZzx9cdBZnNNnzpTZeQ9siFsKaWPQTkhqn8xckIc7P15D2eDi99pBDJegvwDsMFxg2pzjRAb4jHFpU74nu7XloqJTcIXihi9KiMj8+cswElmX5EuCT4dyOyuIGZ/BePEMR/MmPa1ysgI6Ixvv52DgqKyXp1h7GPYKexer2Pe3AZQ29Fy4rrXDdOlsU+6gnRGCPNJQplvEhYUwnz5UObTh8Fx1doB5zxVhs+Gk7OrwsfoyQnxOX6qjy1VWlqG//73v4iLS1Db0oL+x+vXr3k7O6xcbfQa6QtfrxOICA5DZEg4okIjEB0WCR9Pb3w86VNVl5jZnhK5Usq4lN0iY52xa8cO/pf6i/qNRJ7fVDGfZGfn8vZtbm7h/69auRKffTrZSJds2bAF0aGRiAmLQmxENOIiY7g+mTdnvsqImewpni+lyAmhdW9ZZ6xfu7bPd1G/yf2nivlkwfxFhvlH6I4P2Tz2z/8bhzmz5/DH4r20vniG+e1xkbGIj45DQkw8kmITsGPrDpWRYbCxZct2XqutzAlxcHA0vEfMV1992dcnJ72h7ENVzCNi7iEdonxN8CH3CeWr7Hfdj8ReNpLjE5GSkAxvZm/Ra6pPYhobVJOhzDunHEJlbGrRgkVv/d6gwGDejw8fPlLb2Yw+ObUp+R5vs1370+mrVqxGSnwSzjE2UpNSkJZ8DuHMd5/65XSVkUGwMWH8R7yGT5lfGxgUamRPkZ/Rn854mw9JrKjtPXyfnOYaU9pzj5OT0f+UIxwXFYv05FRkpKQhMzUdSXGJ+E7KE1UZ6Z8NXaG+Tw3f7p/39NEJQ53v1DYfnsj62NTYuWzjkk0V6B+ArNQMZKdlIicjC7mZ2Vj+4wrVJ+kvRsV0g65Ab8RFU0s7Vq5842sIfUG+oalxW7KT6XPqGB+ebP1pO2eD/pryOeov4oP8RfLh6blxvT5JTkY2YyMHmqxc5OVosGKZw5hnxChGxfQqxWrl2tbG5gt96jIofijrBBJ1zL4fG8tUpmitVvShHAMmcd7tjLxsDbQ5edDlapGfp4PHQY8xy4h8r8QAxaREbStJnq7IyNeQuVDOSUPRCSL2IuyE0b4+Iq8FyfE8um/hS8hxcGFDCZvUVF0hC/1GfzEusU4lhHRGvkaLAsZGoTYfRboCHHE/MuYY6Y8NeZ+QPO0bNkQ8/W3zGLW9KfMZ8dTVdc3wP62zj3a/XcS5le1Ec7qwU4XfTdwQE+K99J6hrh/Rd1D79tc/ZCtT38q6ZOXyVZyL4vxClBQUQV9YDM/DnmOGEfn+iA3yL+S9CDVaY71BbSivMw003k3xRaj/5f4mNsZCXIvaiMY93bu4X+W902tC1wzUXqb+5tv0O7GhtA0cVqzmXJQWlaCsWI/yklIcO3ps1Me1jONUk1BeWWe0F6FGW2hgo792G6x9q/LR/zwuYkfCpqJxa0k+TPEPaT2RxGBPO6xBGeOiXF+GitJyVJZVwIn5KKOVESUbebpio70INXlv2KC+HErO7WA/Q/0t21dknw2WrdFiX9H9UzsQG7J9Rc+LvBHxXhrjZCOZ2hemzDlkI5DIfuCaVY6ci6rySlRXVKGmshpr16wbdYz0ZaPIaL/zXAUb1EcklsxLH2v+ubB1lH74SPjnpugb+j1Z5ziuXsu4qEJtVQ3qqmtRX1OHdY7rRxUj8j0EBIYY7eucqykw8jdo7hJr3ZZmRBXrEcFGf/lcpDPqa2rRUFuHxrp6lDNd9vXMb0cFI/K10761hv3OL11FXUOrERvHvTxVRlQ2+HM/bd5sFNfavnUHmuob0NzQiJbGJlRVVOLzyV/adExLvuaNm7b2ctFzRgad/SL2O6d2UK4XqYyoekMZ+z3p64eWpma0MhuwraUV2ZnZhvnV1vgwiuMyDui8sZ6zY3rOVKIz+cR7KYbbX56hysjYZUPMm8oYZmJ8As63tuFC23m0n7+AyPBIm7SzZH9cX1pldKbSzp1v4nTviuHKjKg1TmOHDVnkWqsJ4z9EblYOOi6042J7By51XMTuXU42xYh8jRGRsUbnU/r7B/WZI971fcSIiNfLz1N8Us4HpTYX8Xy1Fso2+HgXG2KMyDkU38z6Do3MF7l88SKuXLqEzstXYLdosU34IvK17dzlbHQ+ZVa21mAv/rjUflC1G28TeW2L4o9kg4l4vlpzbv1iyhxG+kPO11q5YhXj4jKuXrmCrs5OtLW2Wr0vIrNLvrd8PmV1TSM+//wr/pq5/AiZj4HWgdVxaBmR80bE+joJrSOK52nO6u95c8lxnxPounoV17q6cP3aNSRIOUbWyIjsc2Tn6N6c23r+Ij+nUp43TM0pVPmwLpHbV+RzifV4sdYuakREf5u6Bj9Qn8t2QVFBIW5cu47uGzdws7sbe1z2WiUj8rV4eh5nbFzi+yrQmcZ+pwKM9KTwKYZaryRYUPmwDj5kX1DoDHrOXDmOwuag8aLsU9qTvKO9Hbe6b+L2rVu4zPyRL6dMtSo+ZLuKzjIWZ323tHWgoFA/YM4h3TPpaVNrnEQOCsW1BBP0HbL/Iednq2I+EW0q8yF0A7U9PTY3HzSH0vcLvUH7cZD/Kl4nnXGHsXH39h3cu3MX2jytVekQ+RoKi8r42cgtrR1obmln92bHn39bnjqNbVNrZUX+mxq/Gnm9QX2ltK/EY5kDc/Ah16coRY7vpCSn4N7du7h/7x4e3L+Pfa5uVsGI/NuurgcNXJAcPuJleE25X9i75ghVrFd/kJ6W9xOj+Yh8DRr/9FfodPqf3kt/SZ+bkiMt7KmB8iJpLMl7B01k/5Ov/uCXX/DwwQPcuH6dP2ctfFAuTHMvG03NF6DLL8b4cW9iuYNtE3X/BNtghNiQ7VfqN3puoDUqU/pV1OMO5jOzZs4yrI3sc92PRw8f4vGjR3jy+DEyMzLfqw6RfzMuPplz0dR8Ho1N5zG/164yhY+xJIuYn0ZrWh6HPHDE4wg8jx7rsSVi41CqL0VYaBhO+fnDz+8UTp70w+7dTvjRfjmzKaaPKT/nXUJ2ibx2WFhYiF+fPMHTX3/Fs6dPYW+/7L3wIfvky5Y5cDaIi8bGNgQHhxl0oMrGPzD3+/m89i3oTBDytTqeP0S5EbTue+PaNdy+eRP3797jcx/168sXL/DHH6/w119/cnn9xx/4/fff+PPPnj3FkyePkZ9fgNP+Z7Bt644+55GPNZHz976fPY9z8fzZM7x4/hxNjY3vRYfIv6XTFTM22tDA2Cgtq8Lk3rxjZf7lWJFxH0zAih9X4riXD99joJzpA6p/o9qe5sYmzkdpiR5pqWkICT5rpD/2ux3AhvUbea6qrD/Ky8q5XhF8PGQs3Wd+6J07d3Cz+yZqqmv4ehnlXoxFPuRxdjY4BC9ePMfLly/w228vue5VzukjpTu2b9/FuWhoaEV9QwtcXPYZ3tdfvHo0y9LF9jh80IPvBZjH7p32qSE+0s+lwZuN/W3M11wwb5EZxsM0rHVcz5nS5Go4H7R+fLWzE5cvXoK+uASeR44xn3DKmLHFKCYg1gk+nPgxmzvucZ376tXvbC55wJ8bKR0ifmP8uA+ZvqjmXFA9h15fyZ8TcTmRnzma41J0vsXa1ev42Ui05zLtJ0t8hAaFYMO6jey+Z1r8GiZOmMT3M6Ax0tjQyHNbqT6CdFV0ZAzsly4btWwQE6I+WF7zcmd+Hdmor1//gT//fM118UjoEPn7XVzcUM+4qKtrRm1dExwdN/SJz8k1zNR/o2XNbhKbj7Zt2cbPAKdzXxKi43A2IBibN2zBJx+/X5tyxXIHhIWEcT7qa+tRU1WNTMYsMTRauBDrKfIeAspY8PXr17n/9p///IVff30yIjpE1h2kL2qJjdom5OToDO+h2kg5j0R5H7a8JyjpC4dlq/gZrXT2JPHhsd8di+2WWN21kn3lcegwigqLUFFWgdJiPaIiojD7u7k22/4i9qucd+WxJx47OblwNkiIE/LlLOmrG+kO532ci5qaRlTXNMBxzZs9JfpbBxR7Gov7ssUzASkme9rXH0GnAjkf+1xcjc5ktVahueznXU583+ei/CLomF/kddTrves5U4VsdlErJ2pHlPaIsmaiu/sGZ4NsrMePH1lUh8i6o7i4vIeN6gZkZ+UZ3qM850EpxDrdoy2tA9JZku4HPJiPEY6QgLPwOnwM3/bWzttWXG0iDrsf4Xxo2NhKYv4S7TFlK9cv9hx6V+4prauLeJbTz86cDfJDSCgWaCk/RHyf45oNnIuq6npUVdVhzeo3uuNte+XKvomt9Mm8OQsQFhyO6PBozsfqFauNzrq3RZk2dQZCgkKQlZ6FtJQ0rkvk880sNbaFHUT9L9vc9JieIxtD1g/K/eXoPYOxzZVrCtevX+O+OsmDBw8sYmPJ35Wdnce4qEdlZR0yM9/URx5wcx3Sd4t8NyHC9rJ0fc27ZI+zKxLjkhAXFQ9vTx980VvfNVrkp81bOR90BmBESAQ/Q3Mk+FDuXyn2cqQ+Fj622MNxqL8nn6Hw824nvHr1isd6KeYr6tUtwcfSpcs5F5WVtaioqGG/7WKS7uhPqF3EWomcq2OJ+ppB2SFsLj3DfIxzSamcj61bto8qLozs9SnTcJbZjAkxCYiJiIGdtK+MpfgQezaK/hb7VyrtpuHwodz3n/IWiQ1aL+zs7DSrDpG/IzwsmnFRi/LyGuh0RYb1jqHqDqEnSK+KfXCF/WXO+prBytSvZiApIQXp5zIQExXH7avRyoaQnnNlD3A+SI9s/2mH2b6b5jqxfifbV6JWh0TYV+bkg4Rym4QO8T1xEr+9fMnX1F+8eMFz2czNx+TPpqCCcVFeXo2ysip4HvV5a8zKFBE5oUKXvA8+pk2diXPJacjKyEF4SOSYyQUUsnbNes5HSGAIs722meU7yV+guU8+Y2Ug+4r6V9hXpE+Ge1akvO8Jxa0of43yTp4/f4Z4M9aqi8/vd3NnXDA2SqtQqq/EjOmzDHME+QxDXSNXtp0l6jMHw0Z6aiZymW8VxOyNcRb2V61VKIZNfAT6B/K1TnMxIvvbQ/XPhyKyPkqIT+B5i5TD9vTpU0ycOPz6EPmz6WlZbCxXQq+vQEy08foFsSFqW03d61u0iznra0wRuvasjFxoNQUICQ7jcdCxyIaQhfPtOB/+vv7YsG6TzV0/sUZjhewQOd5FeTaU20s50rSeTrmg5uJjyeIfuc7Ql1SgpLgcqxx64uaUf081Ksr5QulLDGaMmqu+xhQhHZibo0VBfjHCQiPHPBtC5s9dyPnw9fbFOmnt15pF2DE09oQtQ/aVPD4vdnTw+hCqn6qpqRmWjSV/5ugRL5SUlDM2ylBcVGoYR2TjDeR7iFwAa80nodhCXl4Bu58yRIbHqGwohGITxIf3EW8ssbPOOh6xJiLGmXI+Jj7kc6m8vXw4G1RjSPU2X06ZZhY+cnN0fBwVFZbixPFTBjaUusOWJD4+hevElOR0lY0BZM7seZwPr8NemDt7vtVdHzHxrhoKmr9F3gnVBjx69JCzQXXqZ04HDJuPxT/Ycy6KCvUoLCjBD3ZLbZ4Pby9fvn5D+kPdE+Idca3V6zgfXsyG+Pwz26spITZoTyDxf1VVFR48+IWvibS2tAzJxpLfe9jDk3GhZzZ6Cfdj+9NbtiT29it4fgzxQX6VysC7xXmXC/x8/HBov7tN5tfI64W0988v9+/zvYBIZn83Z1h8ZGVquP+aryuCD7NHBR/y/iq2IlT7W6Kv4Hwc2O+hjv1BCvU36Y+g04HYtH6zzV2/vB86+RzEBe2XdffOHezd4zpkPqjenbjI11JedCFW9O6jO9z1wPclMTGJvGYlKSlNHfcmyjdff8f5iAgJt2iuliUZF4+bm5o4G3du3+Z1/abaWOJ9e1z2cS60zE7XavINfqzyfDhbkHXrNvFaeeJjpg32rzUI1UwSHwGnztjctcs5UFRvS/v13r55C7du3uQ1yoPlQ34PrQkQF3m5+Qg9G2543tbqZGkP4IrKOs6HvIeEKqYJ+R6kQ+Kj45idZXtrh0IW/7CUc0F7vnff6Mbq3joYU/ggXUFcaHJ10ORosa03b02cNS/va2/t7eG67yDf21HL7ER1nA9P/p+983yL6toa+PpX7vO8N+3m3hhjSdPYxYK9GzsiAqIioBQpiiAiIAxtgKEMDAwdaRaKDewdscVouklMNffzfd69tqyT7ck0Zs4M55jzYT3AYco+M+u391p7r4IxvshHibFY9TmI4vkIxmaIMeAP7z/gfRGwFinGLw6Xj7nsc0AuMCapoa4Zpk554eeLvePEPGB8bzwzV9t+KfblwV4LyMfixct1HVdAEuISwFJRCbsjdqtubBivhOfoVCdYFGSEHldXWwf37t6De+xx7a3tLvsg9P/tYeGci4baJqivfblPHDIgcikfx3BjsLwp6YePcD6wBqqu28rIpIlTOB8NTMdGv+v5GiKPPbVVm9pZvpxYU0oUiqWX2zlYAwh7Tw3eGYQ7A3dc6s8m/i8tNZ1zgfHeqQde5O3a6rmLgmPF8eG4bfXeEO9NzKun+H/5daUEc/6wNyjyMXvWPF23FZTkpGTOR2x0rMevJc/1oLpW4jVn+XJk1+DjKE5Wrk94Tkhn2lj/eJBxcef2AAzcvi3x4yof9VbGRk0D1FbXw7aQ7dIemTv7VjhuigUQ7TAxjww5VzpGd/fuOM5HWblF12mFBWtUIB9tLUc9js+xlQslrwXlLN8BWXBm28trkQ4wNm7fug23b96CPbtjXOZjyuTpUFtTD9bqOrBaaqU+N8ifO2cfYiw/so0cyO9R3iNNCTnXf5nzsV6hXAZdXpYc9n0hH6HB29z2n+3xIV9DlMoHEmumY68prMl688YNqDJXueybf7pqLeOiDmqqaqG60irtUzjrc+Pss6CcDuoX4U0+Nm7cAtdvDkLn8R5dl70kSxcv53xUV1nc0gdaI+zl0op1EZXiQ4z7yMzIgpvXb/B6+lhr0pmPTtdDg8PYPVsZGzVgMVdLtpW78YhiP2CxB5o3+TAWlXE+onbH6rrsRamrscLJY8fBb8bw43tRJyhnUNQV8knFPVml8uVwfqc5PjQkjNcrvsbk6pWrvM+TK3tYyftSOBdYwwNr2zjyzV0R2ueieyPfifIGKd9SqTyoceM+hFsD9zkfr1pdHrVJXGwc5yN5n3v6SrlxIjPkk8pz45TIl0MdpnjeObP94Rrj4urlK7zvxJwhP8IWH+K1EqMJqphPW1leBTu375K4c7eGj3jfog9FdRnk1z2VTZu2cD6amtt1HfayzPNfwPnobNfeZ417usjFZSaXLl6S9gOc8YFcmMsqoaLULOUgY8yVGEevZikuqeB8hAr1uXTxnrQ0NcGZU70wy2+O6seKe1gJcTHS39gL4hKzXy6evwDxexOc8oFxmuZSxobJDOVMz/AsSGvf18DgQ86Hblv5RpISkjgfu8J3aWK8oh1UWlIKF/ovwPm+81BSZHK6d+U3Yw6vG1hWUs7r6hEfaAOh70R1SvAnndeoKV7R338h56Or+4yuuz6SVStXcz5MJSWqHSP5OWhDib1oDNkGxkY/9J/rY+tgs909LPp7/ZoNnIvSolIwGU0O35N8B2JGDbFXMbEJnI+sI7m67vpIxowex/m4eL5/xMeCfq44h9NPOnOT+/bhOyOg72wf39/FHpHO+FjH+DANsVFS+GI+wL0r0WZTs5Qwnwn52BYWruuuD6Wxvp7zgXtCI71OOHsM7mFRPmH4jl2MjbNw9vQZxvgZp3zEx8RzLrAea3LinzVEtZIP1Xu6n/Mxd+5CXW99KFkZmZyPkOBQ1Y9VrD3qN3MO5+J072k43XNKqrls7wxkb/ReKM4vgqK8IogdOlvDc0Gt9DIfvPeI86HrrG9l545wzkdSYpLqx4prB511+82czXs0nurphd7uHpg5dM5pjw/slWTMM0JhbiHERMVIvGmhlo+//yLOR3fvOV1nfSyLFy3hfJgrKrTFB1svert7oaerh/dptMWH+Ht2RjYUGgp4v6TgLSHS62nBviI+qq2Nus76WPDsA/lobKhX/VjFOHSso9nDuOg+0QVdx0/CtpAwh3wU5BRAfnY+7826avmLnsB4LqiFelexcYmcjwMph3Sd9bGgniEf169d1YT/Ifa67WJsnGRsnDh2gsdkOeIDucg7kgu5WQaJD09jS3zNR0xMgq6zIyBa4UMuJxkX2P/6eMcxKVbfHh/IBfZpNTA7a+WyF3FjWokt0fnQ+XB1/RDPK453HIdj7cegs70TQraGOuQD2chhbGQfPgIrhurBKSEUw0x5g2J/FKXew5Br5HyEbddGnMOrJrU1NZwP/7nzPNYTFOrpTHmzdLYh9tcRrw/XB6HfkYvOtg7oaG2H4KAQx/454yI7PQuOHMqEFUtW8Gt45ij2mLUl8j4G8ufgvVDuIPWopRwZpWoE1Tce5Xz4++tnHyMhpSaTonzg7xQHQufgqFdifzax/xiJvCeyLTEJPdaQi/ajbdDW0gZbtwQ75AO5yErLgMyDh2H5UD0c1F9btSFEkY+ResgR23Tf8jwoZ/3edT7+3nxQjB/VLXAlr05cX+yJ+BrIRWtzKxxtPgpBgY75yBxig/MxtH6IeRr2xNYah/dDrPuSjxVD/a100Q4fpANyPuT1bVzhQ55jZUvEOKxWxsXRphZoaWxmfGx1yEdGajpnA9cQ8j88OR9E7nEtE/kQ7SvKR1fi+0ll49b985GTnu4uzseUyVOH9TzSA2RAzgdxg3Mt1cAR7Svq5Tec9xNzbFFaGluguaEZmuqbYMtQvrs9PpALtLHQB1m57AUfnsSXUB6tL/xzff9Ku/tXxIgj/5zmUU/9czzLE8/zkIumukZorG2AwIAtjv1zxkUO89Fxf3fV0P4u+vpa6Gmg86Hv77ojjXUN0MDYqLfWw+ZNgQ75wL1d3OPNyzLAauH8XDxvVKts3xHJ+cD8Wl1ffStj3hvP+Th3Vv15aWgLiXV+kIu6mjqora6FgI1/5UOU+Ji9kHfEAPnZuRAdGa2p70iPvxo5ofgrLcQnivLh+x9DHeOi1mIFa1UNrF65xiEf0RF7oCAnDwoN+RA7VHNRK+vH+HEfcj4uXL6h66yPZUtgEOejID9f9WNF34P86SmTp4GVsVHD2KiurIbJk6Y55CMmKhqMuQVQlFcIcXtiNeV/oFD+B9Xj1sVHvl90LOcjKlJ9PQ/kgvuxFL+LdYSRC4vZAlUVVbw+iS0+pNqJQaFQnGeEkoIibmfhNWRDK/lRbR0n9PzBERBjQSHnY9lS9fdYwXwNyq9dtGAJWBgXVeWVUFlm5v07HfGxdvVazoapsARKh+ozIB/24tvpLAb34tRQnyE7J5/zER0dr+utD4XqM4wbqtE5UoI66KyeDuoynedtXL8JKhkbZsZGRWnFX3iQ/41n5qXGEigrMkF5cSmMeuc9fl2sUyL+pDMbtfSNCggI4nxYqtWfp/OqCObcIR89XV0jPhbUw+HUL8F4K+Si3FQO5SVlTvnAelfIRQV7rJk9Z/InL+pfaaUnJ/roVB9O113fSFhoGOfDkJ2j2jHK61/R9cT4JMbFi1pv8bH2z82Ij/eZfiEXlYypKrbmLJq/WPLRtVLDBPPPkY/lQ+c3unhXcnMMnI+1a9apfqzyvaYs3o/3RT2rKFkMui0+UNBPsTCbDP2WTUO9ZdBec7d+u+in+KI+dfKBQ5yPjEyDrr9eFuwdhfWpkY+xY8arfrzyswoT78VbAsWFxbBm9TqbtpX82uGD6VBttkBNpQVS9qd4PCZ57waKOZP3N1Aqjhfjd5EP7B+l67B3ZcWylZwPc7n2YhbQFi9hXGCtt6L8Ipg3Z75dPkTZG7MXrFXVUGupAWNeoXT9wL5Et8Yh7m3Z649DfpRS995/4Srv/7Fsmfr7s2tZMg9ncj4CAwLdfg0xJhHzPSh+lXrF0Bzrac4gSujWrZKfMGOaH+eC6llN/HiSQz7oesDGzVBnsUJ9TS00WOs8/gzRJ6J9A+LA2/2j9icf5HwczsjW9dhLgr2dsb8a8jHmvXGK8IH6Qbmo1PfYlZxBV0X0odesWsu5KDAUQH5Ovk1byhYf2EenoaYOGq310FTXANOmTOfX0f9wp84P9aymn67muXgikydP53xgf86xep8Dr8j2bTs4H2mpBz16HZEPXBdobSAdUUpX0C8XfQ+sf1hgyGds5EGCsHfljI/Ro8bwWHiMiW+ub4J1a9ZL7LkTZ2IrRxDnBLG/s60cdk/FXGXlfERGaqO2tpbkjdf/BZXlZs7H/HnuxSrYyhlEvSdflfp3KsUH7l2JdXgy0zMhLzsPco/kQtDmrU59D/F/6J+3NDTB0cYWqQc8suGozg9yT73NxevyfHmxV6c8f1LJ73DDhkDOx6nT/Xo8lsKyaUMA739eXlrm1vPt5Qza0n1XcgaRI9Qz8ldsCe7Bkn31Dnt/5MKQZYCczBzpHMOZb06SzN6/takF2pqPQkVpuU0+8B5xPNR/k/wnpdcBT6TzeDdcunITIiL26Hqt4NphMhZzPjyJt7KXM0i9XEWbwpl/jna7vP4C1Tuhx2AMIcWVoA8h1rL6+MOJLvEh9clZuwHaW1qh42gbdLa2M+7GSmsEckr3JRccpyOGfS3r1wdwPrp7zsJbb+priCKfKbO3LRWVUFRgVM2YUOdQL8V5mgT3wVAvxXl7S0AQrzV9hLGRlZ7l1PeQ/x95wrpAWDfrWHsn881XSeMQ3xs5of0otX6f7R0n4cLFa7B3r/pr76t+7XjtLcg35HE+lixaqsox4hyOLKBdQ7UPSFfpMfvi93EuMg9lQnjYrmHzgYJ7V1iTFGuTJsYnSmsivi/1MNfCdzp79jzOR1//ZZiowX6japKQoFAoLTLxM2StjBltLKp/wnX47VGci4y0DHYfh2HZUJ03V3wP8TFpqWl8b7vr+Amorba+tE+mhXrVL+8RmDkfRmOprucezMu4H4p8UB6RVkTcd501cw5kHGRspB6G9JR03j9xOL65eE7Yzey2npNd0NvVLZ0vop+jlVhFkrFj3oeTJ0/BmbMX2NoXrOv7MOV1ZlehTYJ8hA31ANCS7ImKkH7Hvjbpqelw6MAhdk/7Xbat5I9DrnpPdsOp7h443dMLO8J2So/R2vqBEsQ+F+Sjg/kjEyZM1vV+GLJx3Sbmy2bxeNc3Xn9L0/eSnJAMaQfS4GDyQdiwZuOwny9yVFFWwfsWnuk9DVXMJ7PFo5bEaDTBqVN9UFZayXu66LrvXKZPnQlpyWmcjwkqyYMbjuCZOdk7aBemMS5S96dC6r4UHoM1nLVDzgieDZ49dYb3hu47cw7Gvqf+GGZHgnWaOtpPQHf3aUhM2K/rvxMZ/e5YiNsTx/lYu1r9+R3OBNeL1H2pkJKUAgcSD0h2kLt8fMLskL4zZ6H/7Dk4f65Pqv+O+e1aqPljS7CnL/Jx4ngPbNywWefAjqDuRIVHwb69+yByZ6Qm7wHjBcUz7cTYRM4F2lgBwnfvLh8oWNv6Ql8/XOw/D7U1Vpeej3u/uKemZMyhkhKwKYjz0cl8keV6DPxf/XHGxq4dEbCf+a9xu+NU52+ifuF5oLNzN3GvddKEKZCcmMzvCZmfPmWmW2zIGYkIj4SL5y/ApQsX4fLFSzBpKCddXucXBfeacdx4RqKWmg32JIHZV8hHW2sn+M9doHMhyNbAYG6jx+3ZC6NHjVXlGJEROgfEn/LzOLRxxLUD7UNiIykuyW3bSs4H7o0iF1cuXYarl69AUuK+l/h0Nk41S/zeJM5HjaUOPvpggs4G+rMbA/n+J/Lx3rvqZEMuuI7gvIxC87JYMwF/Jy5QMPfDXdvK1vNwH+valatw/eo16GO+CF2nuBd340vw+RQDIOaLibXtxeuK+59jo6G45Ay0NLVBY30zLFms/vpmXrOpXnsLtods53EXyMfM6bMUeV178ehi3LqoB7b6kQ1nTcHnUoyHZNf4zeVcICP7md3wydD+vrtsyBnZsH4T3Lh2DW5evw63btzg8c1KfHb4+dB9UL4Y/o6fFa1D6Mco2SeE5I23d8C4yb/CRL9nkJVl5XzUWRtg8UJ1xhV5UzCuKpGtpRjvjXz4zZit2GuLfKB9QbG5GA+F3zNeE+Na0UYXY3rdFTF2N3JnFLet0DePFvKBlOIDpb+vD27fvAkDt24xe6Rauo4xw+72l6I4ZKo/h58TXhc/H3l+jJJsoPxnTCW/ticqhvNRU2WF4KDQvw0bWNMJ1wvMM00/eFjxPXw5HxQnKH6v8hw6T/hAm1/Uxw/Gf8T3q3BP9yCzGZcsWqYIG/Qa9DrJ+w8wNm7DnYEBGLxzh9e+pvG4G28i1jZBNoh5b/Jhiw2SbaE7OB9VFRY+n2Kuw6vMxsL5izgXWMMD1w0l64Pid0n2jmgvUc89X/ERuHEL96XwDCc95RDfm1OKD/F1xo/9AAYH7sDdO4Nw7+5dMOQYXlpDqOavO+uH6GPR50P2Fa2/3maDZNGCpZyPclMF5GXnS7bqqyRvMu537Yzgtc6wdiDue6KNpeR74PdGuRciH9TXm/JK5XY29T5Wgo1/vz2Kx5EcYlxgPKInZx6u2Fg52Qa4f/cePLh3Hx7ef8BrCNG43OFD7p9TDLI3/PPX3ljmlA3J5mBr8pGMbDAZS3kNGKyT9/pr2o47Ipk6ZToU5hl5XX/kY8tQ7rU3BL9PW/429Qx31T93dU9UXksd48bQdsRY9qz0TMl2VIoNOSPz/BcwLu7DZw8ewKOHn0F+3p91UcS68Y72FkYiv/D//jkLxn7ylUtsSGsNm2PDQrZzPgpy8plvlwxTJ0/X7prxxts8XqipvpH3E8PagRjrrYWx436Us17guIcrrh2Y55GBvZgPZfI8wcjwKMXXDluv11jfAI8++wweP3oETz7/nM21L5hAH8QeH2LdL/zpyzMSd9gQBeP60a/DfOUjh7IgPCxcylfWgrz15tsQGrwN6mvr4WjzUc5HVMRuzfhWZG/R2mLv7Fm+dixfupLHVPKemlkGKbZSaTbkjGA9l8eMiyePH8MXT56AsdBod4zoo8lz631Zv8FTNkjQtlq5bBXnA/vD52QcgT0Re6ScGHVy8W+ek9Da0spzQDtaOyA/Nx+mTZmhGbZF24NqnZDNjbYIzbPyuRm/L/Q5DFk5zIfMhT1CL01v84HS0twCX37xBXz15Zfw9VdfsbF99JIf4ux+tMTGS98TW7M3Mx8P+cjPzuO9thJi42HhPPX018J4h/i4BDhx7Dic7j0F3Se7ma9hgRWvQJyZrfkWbRM5H0HsWi72mcVemrkFTmuHKs3IgvmLOBfffP01fPvNN1BSXPKXfQtn66HW2JDPZ8GBwZwP7CWE/SCwrxDm1o1EnArW99q4IQDM5WYeC3Sh/zycO3MOGuoaYPXKT1+5/TfUMbFWCTJDcy/WtsK6b5jriPWj46LjvL522Hr9trY2+O7bb+Dpd9/B90+fwozpfhLjVC9iJOqaeJsNUd75z2hY9+l6yMnMhhqzBeqra6GZzQfYiyierSs4j3grD2sqs5N27tgFtdZafiZ168ZNHv+DfBiyDbBYpfVFlJyj0CahPWS6Hr49HAoZF0X5Rl6f/ZOJk33ChpyR6dNmwtOnjI3vn8IPP3wPx9l6Lu7fubPfqyU2/rL2+82F3czvrTZX8bp6x9o6eG2LU929zCdu4nvjkRFRMHf2PPCfO9/l1/3wg4+5rocwH3v/vmRobW2DL5ht+znzAR8+eMjPopCPlqZmCA3Zxu2rV5kL+Z6VWLN34oRJnIviwiIwFZVAQpzzurreXENKTaXw448/wLNnP8JPPz2D9ev+zOfFWvIjxcbojy7BP/4xasS+t3lM/yPDI6G02MT5wPxLtHkwBvrGtes8DuE+0+tHDx/CwO0BaGM639nRCScYT91d3XD16hX444/n8Ptvv8Evv/wMPz17xueg7777ltkVX3M+bt+6BeVlFbCDzZfjx/m2BjedjYt7TFRLWXwcXZP3/VNKsGa6GLuRnJQMJmbn4udebiqT+mf6ig05Ix+8/zE8efIYfv75J/49Dg4O8jNLehyO3Re5NWpiw5bgOcPWoGDe766yohJ6GAPExxePn3A/Dm1U5OC3337lbIh8IDfHOo/x9WPNp+ukPsQjJeJZBJ3tibFCeB1tHrEvktK5cvKYpuVLV/DaQ2jbmkvLpVzXkeQDJTXlIPz6yy/8e/39998gP79A+h/WAnKl5jv1PHgV2XAmqOsLFyyGRQuXcDtqyeJlsHSJuuPsRT6oTyz9j2Kn5H1vXImhG87ev2if4FlOQW4BrxWNMQElxmLpfMfXbNhi5C6bC5+zOYLmPb+Zs1/i3BEjuPbiHtdw1mCq/S6y8enm5/D8j/95PWdEF9s9KygXCL9LOR+uxpjS/q2jcwBbvWKjo6LBzGxNrLFTXVnF5uUlko6OJB/03jjfIRf//e8fXK5euSI9Dv10e3xQXfrhnovg469c++WldQPZ8HbOyN9dqFeeyAd+5qjXeJ3iJNzlg14PbTN79gTqktgrFm3XqnIzWMxVUFNVDSnJKSNmVzlaQwoKCqX14/nz3yHt4KGX7kmeqy720lLCpvJ2zoguf55tUW8j+qzpb6pfjtdpDae4bFpXhsOivM+HPA72Ra+FEt5L1mqpgbqaWnh31BhVsCFnBP3y+/fvczbQ1kJfZOaMWdJ9UewYzjNirocnbKBNtXLlFo/mK12Gz4jY54jmOsoLlOeDynN7hiPUX4bsAnkMLO8la6lmXFih3loHgf/f3nW2R3Ud4fkn+Zae+HliwDYY2wFcKAIbY2yKUANJtICxLds0Saj3gnpZ9baSUO+oSwhRDCYhxo5jkw9O7DxOcP5BznuWWc5e3V3dK+0KSXs/zCNYrXbv7j3vmXln5rxzOGLZ+A69OGvPnr0SF8i7gK9r81naz7tYv5GTY3OJd31xZsSyp2vu9tOD+wOlbnpzYxO12pspVYlXlgs29K4nP7+Afnr0iB49+q/MTba2XnHhXwt9D3dcnP3GUmk6WPb0uA//GzVT8PGWpma60owz0XVynu7T5uRG46zrwqcCG6iL/OfHH+nEiSea33q6WQvhG9aaWblmJn5Arkrl47/65W8oV2AF5yzaMCPzSpusfSxX36EXZ4F3PHz4raypo+aF+jr3Z5m1nbs+sLCxigzxMOqGRjGized+EvWpwEWr7KfpbG+n82fPL3ts6F0ffAZwgf6Tf//wA929c1f4lid5XiP9J8DG5oCfLGysIi7Bvd1GMII1ovJxzBpvF/F6Z1s7dXV0UnFhkTwXuRKwoYcRm61C9g398P33sn9iYnzC5bmeZlFZ2Fi6Ncv9fdzHoBqvYXBHvR4rs4bXmQ8jejXALZtfow7gor2Dejqh59csrvulZc05jGBkcmKC/iWwgT74f373HZWWPDkrgr1BTxvIF9hQNbPxk+8L1gZr0KiP+xPvVTVk+DyFOq8e3wvPXeafvsSIlnNsWP+S1Ebv7uyk3u5u6u/ppX3v7V8xcZUnLvJb4SO++vJL+k5gA2ep0IunrfuofN1XfgM5Qtaa4X/jcdwf5O/xOM+s91d8YJ1izWpzf9p6ubf0DfUwgrWg9lsgfqqqqKTerm7q6+mhgb4+Oqnke1YaNvQwgrMiD774QvZm49whzuVGKv2V7EN8GVOp91itH/p7XVGr3wZsYO9Q/YQ39dvmw4iKD2ADHKOvW+Cit48G+/spNjp2xWND7/qPRh6XuPgH7OFDqe0QGXHUZW3u2vc/n/ENPpPJfdjc2+Kv+MDnZ11XxgfHmvwcPgPqK3xoMaJ+98BGSVEx9ff2SlxgVmylzeY8j7nSOIcRjMBnABffwr75RuqgQA+Ff5+YZKeNW4ZNY8MIZ1Q1kHmP9Gd88LoEBvTiK+6rwvM4LsVjvM94wt1CroXfix+LvhAtY6mhgQEaHhoSMVbFqsOGHkaiL8ZKXPz9a9jXdPfOHanp546bzWfq7PeF8A/WuuSeefUsgz9gBJ9Z/f7UvinGDWNE22OlZ/idll96MsRT2rPYMRdj5Nnkq4ODNHL1quTka55dtyqxoYeRgvxCqTH3t6++kmeoP7t924kRzu0hBp3vbBXPq7LyV8vLcE/m6yXCfYZpc/zgF4yL0eFhyclxrny1cA4jfB2Wn5cv81pfPngguPsDeWbkcFi4y77iqQ+FzwlY63F5Gu6Np71GGydA5/FSTKyMpYCL8dERyT1UffDVig13GLmcmyf1rqHB8df79+n+X+4LjLjOlMV3qOdH8P0vpa4WcxNtv7Y3+rgXGyPp+VB1D2e9Pm3c5EvDvXGXK9fOPgavAPceHb5KYyMjNDGG+cJ9Tm0ef8CGO4xA9wYzEzA7ATo1f753j8JCD7vsM/C/aozKXHEpr9vdLB/W8MPjWA9L7dPc5RTUnBP3+/MZJvDyheLYzJ7E35WnewlsgHs7cDFKk+PjgpP3+yU23GEkR3yH0Lm59/k9unf3c6l1lpmRNceP6H3nRjm8N/ZM7q9Q9QbM5r/4PKre66qPq5o5nuIUI/jQ1jjm00J3d93Avzr7zoipe5lWjwe8osVuF7EUcDFG05MTknv4MzbcYeRPJ0/R53fvyj7GO5/dkTpRhQVFUjtTe4/M7necX1+MNjb7Bp7/uFB8aJ+jp4PDuVd1Tp/emuR+KfX1+HnexgcM14LPazbHp8dFoOEB7j0hcDE1MUHXpiapsb6e1q55zu+x4Q4joSFhEhfQycS83FvCmu3NczQBtWf051vX2trTQuMrb9Tftc/R08HRrmc9rVauT2i1KDhH7Qt8cH8WzEh8xrlbYEPFR/iRCMkxpibGaVrgYmZ6mpoaG8Re+DsLGz/znPvdvi1AfHfjctY69AahJzs6PCJ1odTcIOeAPemYmr2f88UJao8erzdVFw37/Hy5f0/44N8ZXc88n0nrP3ifV/Gs9UeLyUvNt99w3hb3SI2nwDUS4hMkx0AsNTM9RddnrlFqSooTG6u1vuFNjLzy8iayN9lpdmZWnkW8fm1G6nNiZp7Wj2CP4vuht+ezhry3ckV6eplGdDS5D9ab+ODX1b4vx13uNEAXU+PB6/Ce465OCC0ObW4eXKO2poamBC6uARfXpsXeN0Mx0TFu4wnL3GME+wnyv8DFtalpsd9MC388RaXFpbRGM4NYr1bCe6sZPom/8VXOmPd1VYMTpqeDAxyp+Sb4K1/msrV9V0Z8Kc/fUB+Hr9DmbmER4ZGyhwocY0bgYlbgYmx0hIKDQixsLJKTwGdMT04JbEwKvzwhY6++nj6px6n9W+iZ7tjm0E5mTm7mvvs6N8s1TZXf6tVPnka9wgzn5hm0/P0ixg0KDJzzPMRTOVnZ4v5NylhqdgYa3ddlzgoxgoUN72Bk6xvbqb+3n8ZHx2lsZIzGhkelLnp6aobufA13+9t8vGApZ78tNwNOzXx+rX/WngOFljDqGMwxbszOCE45S4UFBS45SQsX3sEIcFBUUCS5+ojAxvDQsJwd1tnWIefQaO8dxy165xMXu39yT+Ry79XiuqBRrSOjPI25Hvs3NfaTPiM7R8RSTzjGTYEL5HFDgkMtn+FjnBwJC6eu9k66OjBEQ/2DNNg3IOdP5mbnCiysdYkBHM8Pc7mn7uJvM32OzE+Xem7cQmImM/UK4N7IZ0IshX1Huz/gPM/Q4ICDYzyOpW7fvEGtLS20bu3zFjaWCCPP/mEd5eXk0YDABuIu8JHe7l7q6eqhY5HHnZoWqn0S5ch96elBsO6y0TiEz7sZjdt8EQv54lqx3j1hCXuNXj4d8W99XZ2TY9wQuLh1c5Y+u32TPo762G0OxjLf5bdgmEnZKmKCXoGLns5u6u7oEr6li5rqm2ivohmm2plTp+bgxExsZXZPNvM8ra6tp/yRWV9nNBbU09MHLvTi1LXPPkdJiUmOfC1wcd3BMW7fukk11dWWz1gWvmQtJcYnSVx0tnVSh+Aj7Vfaqb21jcpLymnH9p0ecYIY3YwWKdfejP6N0bXMtRoj/gbXbLTeya9rlHureQroT+nhAhzjwrkLMl97/XG+9uYNEUvduiFr4uiD8HTPLFtajMC2bH6dKsoqJC6gO4mZmK32VmppaqHkxBTavjXA4/pF3DDfLDi1NmZkP8YaNrouzeDDjA4V5/KMcG/GgrvnAhdn3v9gDse4JTgGYqm42EtzclMWLpYXTg4dDKbaqlqJi+bGZrI32Mku4q2mukY5g0uvbgLjWXCo/Xqa52Oml8vMOjaDD+DU6BlW7rHxlOvm2qpebQ+GemxiQqI8Cz6HYzyOpf74ymYLFysEJ+Dn4WERVGWrkhr4jQIbDbUNVF9TT3XVdZSXnUchQWHOGXWqAR/YR/GTZ5awca+j0ZgJzzMa95vBh5m4Dca1UjUmwx6AWqqnXs+tr2+TuJjW9IQ4OMYNiYsd2wOsWGoFYcQFJ2L9Hw49QrZSm8QF/EpNZQ1VV1RTtcBOVXklnT75vsDBJt1Yg/u7eP1wzdho7G9mDZvFh5mcAvcUwufg8wAXiCW1+OcYKvDAIbrS0ursO3fhGCKWqqmqsnCximIu+InQ4DAqLSx5jIsqqiyrpIrSCrKV2Ki8uJzSUzJo79vv0jO//4PbXBDrpmFtIR7z5hr2hf9grTXggjW/3PVy7n7rbYqPi5/Td65yjGoLF6seJ2/u3E1Z6VlOXJQVlQnclFJJQQkV5xdTUV4RxV6IpT1vvUPPuImNVHxEnz8ruT3+z9yF158v8cEcmtc7x0t8TfB/uCZP/f+YKx0nsAP9HMcZPte+c+4JSU9LE69t4cJf4i7Y669upY/OREmfUlJQLLBRJLBRSIWXC6ggt4Dyc/IlT7lw9iIFB4bQi+tf8vg+zFvUeIz3eM6T4neMIebEjDMVH3xOm89PqM/nuRD82sAEeLXKI9z11KCuun/fAakTAq1nh06I42yr7DtXekKAmaiPolxqGBYu/A8niKfe2b2XkhOSXXBxOesy5WbmUk5GDmWnZ1NWWhYlxSXR8cgTtCvgLdrwwkbD763qEvC8a8YF54xUfHA9DmufYyTGB/80Uu9HbQj6lFEfRlF5aZlTi1DVCWGOwX3nqSmptHfPu4b8sWX+E3vB1q15nkIOhVJ8TLwLLjJTMylD8JP05HRKS0qj1MRUSklIoeT4ZPrw9Ie0b+8BsZZ30gvPbZi3huIr27B+IwXs2EVHI4/JGeA1VdVOvXPggjXXnDoh4BiP+87zci9T8KFgl/OtnvYUy/zbp8DQO/HeO/vo04/OUkaywEaSwEaiwEaCwEa8wEZcMiVdSqLE2ERKiEmg+Oh4irsYR5cuXKJzUefo6JFjdDj4CO1+cw8FCOysf/5F6XO0Z7uMGHgT6gubXtlC27fukD2a4YfDKSUphfJyLsuZSh2PZyr1dHVJvXOnrrMTF8NOjjE40E+5OTkUpIMJy1dYZhYrv/j5r+mN17ZRaFAYnfv4nFtcxJ6PlYZ/4/GE2AQZkwFPacLnwP/AF2WnZ1Gu8E+I4fJz8iTnAf8pEVyorLiUbCXlVFlWQVW2SqqprKa66lpqqKmjxroGsjc0UUuTXc5tbWt1zKfkmUpydgxw0Qe98wEXLUJooZ85fUb2Epr9/JZZZmatgA+8vHGT9C/Hwo+74AJYAW6AIcRfiMXgezJFfIZYLUfiIlfiAnwHOQHkB8qKSqm8pIwqymyyLlNTUUW1VTVUL3FRL3CBWd92arW3yPmUHXI+ZYdjplKXY6YSx1KYtZSRli59DHR0Fvo5LbPMDFY8rSPMyQL/eFvEUyGBoXTq+Gm6ePai5C1ZaZkCF9mS74P7F+TmS1wUC1wgf1ZeLHBRaqPK8go511viAj6jtl7W/5sbmwQummXNjudTdotYKjszS55fPXHsJO1/74CcG+yNz2KZZb7GizY+27jhZWng8Qf3B8oa9aGDQRR0MFjmj0MOCQsKJdQxw0IOy7o/84yIIxG0ZdOrckblq5tf8+m1WmaZrzGz1Gvxab+/ZZZ5a91606zv2DLLLLPMMsuWl/0fUEsBAhcLFAACAAgA2og+W9hVxQKuPwAAAHECAAQACQAAAAAAAAAAAACAAAAAAGRhdGFVVAUAByUO3GhQSwUGAAAAAAEAAQA7AAAA4T8AAAAA</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #15</Name>
|
|
<Index>15</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPluqbKOaDUAAAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J33W5TH2se/f8l7zvWe6z0nlphmYmKLSYydqMSCit1YjhpAEQuoCCgiSpHem3RYdqlL71XBgqjYY4stMSbn9/POPTDr7AMoC7u4C88P98Wy9Xlm5jN3mfue+fvf/oG/q/Le5G//87+DFrW9VBkL494Wvl8VVSw1TtVrUkXlYXDjbuHCxVzc9rvDzc0d4RExSExKY5KKouIytJ6/iNa2i2hp7UBzSzuXpuYLaGw6j8bGNjQ0tqK+gUl9C6Ki4pnEITIyDocOHoGT016sWbMec+cuxOTPpph07WpfqmIJJgZ6zzfffI9Nm7bCy/skUs5lop6N7Y5LXWi/eBUXOjqZXMH5diYXLqPtwiXGxaU3XLQquGgiLtoMXNTVN6O2jkltE2pqGlFd04Dq6npUVdWjsrIOFRW1TGpQXl6NuLgk+Pmdwa6dzpjz/XyM++BDlRdVRpSHCeMnYaWDI3x8/HAuLRuXrlzncvHyNXRc7jJw0c656JS4YCK4aOsw6Azioqn5PGeDuGggLhqICyaCi9pGxgZx0WDgorJScFGDsrJqlJVWoVRfCb2+AvqScpQUl6O4qAwpyWk4cdwPG9dvwfSpX6usqDIsLvp7zc5uKQ4eOgJdfgkuX+3G5c4buNT5hgvOhuBC6Aziot2Yi4LCUsQnpCAuniQZe/fu57JnD4kbFxcXkn1wcd4HZ2dXLj5ML0Uw2yw8nElYNNcZxEU5cVHGuCit7GGjpMLARXFRKYoK9SgsKEEBu+4CXTHytUXIYEx7e53AimWr8Oknn6usqDIkXeHgsBZBweFoZuP6Slc3rhi4uNGHiw6Ji6TkdPifDsI+t0NYvnwVFiz4gescS1z/jOmzmB21AJuZbbdrpxOCg8KYvkhnXJQyLhgbggtdEXTaQujyCqDV5CMvNx+aHB1ys7U4yz6z1nEDPvl4ssqKKm/VFYKJFsZEZ9dNxsXNHi6u3uhhg7gQthTjIpeNt2Nevti48SfMmjXbau5v3AcT8f3sedixfRfTPb5cZ2g1BT1c5OoYG1rGRh5ysjTIzsxFdkYustJzEHgmGGtWr+vDisrJ2NUVU76YiuMn/FHJ7PvOa7cUXHQbuCDRMPuEfPBFC5fY3P2TLbV8mQOOHfVBSlIacjI1PVxk5CAzPZsxlIWM1Eykn8tAWko63A8ehv2SZSbZoaqMHi4cVq1FLPMBrl6/3cMFkz5cMImKTuCxKUvZSO9Lpn41A7t3OSMyLKqXi0zGRQZSmX2Wynz6c0mpSEk8h2jm92xctwkff/SZyskY4GLLlh2oqmnkXFzt5cJIZxATMcTEtlHHxEBC9tRmZiOGMttScJGckIJkNn8kxSUjMTYJCTGJcGI8kb5VORldXEyY8BHc3T3ReuHygFxomS+7afPYYWIg+WrKNLg47UVUeDQS4xgXsYmMjQTER8cjLioOsZGx8GC219czvlE5sXG/m3PhIXEhbKleLppbOxAYFMbX99T2M5YP/jUBS36wxwnm3wsuYiNiERMeg+iwaEQxu+yQ2yHMnD5L5cQG41FkR7VJXMg6o6Kqnq9njHVdMVghXbHPxQ3R4T1cRIZGIjIkAhFnwxEeHIYDrgfw0YefqJzYABd2dvaoqm1C1wBcbGY2lNp2Q5OPJn2Kndt3GbgICwpFWGAoQgNCEBJwFttY2/7rn+NVRqyQDfIbM7I0KhcjwQnTFTu2/huhgT1cnD0TjODTQQj2D4Qfs8eW2C1VdYkV6QzyMbpu3DH2Ma4x/6Ktg3GxXW03C8kkxgnpDOIi6FQAAv3OIODkaZzx9cdBZnNNnzpTZeQ9siFsKaWPQTkhqn8xckIc7P15D2eDi99pBDJegvwDsMFxg2pzjRAb4jHFpU74nu7XloqJTcIXihi9KiMj8+cswElmX5EuCT4dyOyuIGZ/BePEMR/MmPa1ysgI6Ixvv52DgqKyXp1h7GPYKexer2Pe3AZQ29Fy4rrXDdOlsU+6gnRGCPNJQplvEhYUwnz5UObTh8Fx1doB5zxVhs+Gk7OrwsfoyQnxOX6qjy1VWlqG//73v4iLS1Db0oL+x+vXr3k7O6xcbfQa6QtfrxOICA5DZEg4okIjEB0WCR9Pb3w86VNVl5jZnhK5Usq4lN0iY52xa8cO/pf6i/qNRJ7fVDGfZGfn8vZtbm7h/69auRKffTrZSJds2bAF0aGRiAmLQmxENOIiY7g+mTdnvsqImewpni+lyAmhdW9ZZ6xfu7bPd1G/yf2nivlkwfxFhvlH6I4P2Tz2z/8bhzmz5/DH4r20vniG+e1xkbGIj45DQkw8kmITsGPrDpWRYbCxZct2XqutzAlxcHA0vEfMV1992dcnJ72h7ENVzCNi7iEdonxN8CH3CeWr7Hfdj8ReNpLjE5GSkAxvZm/Ra6pPYhobVJOhzDunHEJlbGrRgkVv/d6gwGDejw8fPlLb2Yw+ObUp+R5vs1370+mrVqxGSnwSzjE2UpNSkJZ8DuHMd5/65XSVkUGwMWH8R7yGT5lfGxgUamRPkZ/Rn854mw9JrKjtPXyfnOYaU9pzj5OT0f+UIxwXFYv05FRkpKQhMzUdSXGJ+E7KE1UZ6Z8NXaG+Tw3f7p/39NEJQ53v1DYfnsj62NTYuWzjkk0V6B+ArNQMZKdlIicjC7mZ2Vj+4wrVJ+kvRsV0g65Ab8RFU0s7Vq5842sIfUG+oalxW7KT6XPqGB+ebP1pO2eD/pryOeov4oP8RfLh6blxvT5JTkY2YyMHmqxc5OVosGKZw5hnxChGxfQqxWrl2tbG5gt96jIofijrBBJ1zL4fG8tUpmitVvShHAMmcd7tjLxsDbQ5edDlapGfp4PHQY8xy4h8r8QAxaREbStJnq7IyNeQuVDOSUPRCSL2IuyE0b4+Iq8FyfE8um/hS8hxcGFDCZvUVF0hC/1GfzEusU4lhHRGvkaLAsZGoTYfRboCHHE/MuYY6Y8NeZ+QPO0bNkQ8/W3zGLW9KfMZ8dTVdc3wP62zj3a/XcS5le1Ec7qwU4XfTdwQE+K99J6hrh/Rd1D79tc/ZCtT38q6ZOXyVZyL4vxClBQUQV9YDM/DnmOGEfn+iA3yL+S9CDVaY71BbSivMw003k3xRaj/5f4mNsZCXIvaiMY93bu4X+W902tC1wzUXqb+5tv0O7GhtA0cVqzmXJQWlaCsWI/yklIcO3ps1Me1jONUk1BeWWe0F6FGW2hgo792G6x9q/LR/zwuYkfCpqJxa0k+TPEPaT2RxGBPO6xBGeOiXF+GitJyVJZVwIn5KKOVESUbebpio70INXlv2KC+HErO7WA/Q/0t21dknw2WrdFiX9H9UzsQG7J9Rc+LvBHxXhrjZCOZ2hemzDlkI5DIfuCaVY6ci6rySlRXVKGmshpr16wbdYz0ZaPIaL/zXAUb1EcklsxLH2v+ubB1lH74SPjnpugb+j1Z5ziuXsu4qEJtVQ3qqmtRX1OHdY7rRxUj8j0EBIYY7eucqykw8jdo7hJr3ZZmRBXrEcFGf/lcpDPqa2rRUFuHxrp6lDNd9vXMb0cFI/K10761hv3OL11FXUOrERvHvTxVRlQ2+HM/bd5sFNfavnUHmuob0NzQiJbGJlRVVOLzyV/adExLvuaNm7b2ctFzRgad/SL2O6d2UK4XqYyoekMZ+z3p64eWpma0MhuwraUV2ZnZhvnV1vgwiuMyDui8sZ6zY3rOVKIz+cR7KYbbX56hysjYZUPMm8oYZmJ8As63tuFC23m0n7+AyPBIm7SzZH9cX1pldKbSzp1v4nTviuHKjKg1TmOHDVnkWqsJ4z9EblYOOi6042J7By51XMTuXU42xYh8jRGRsUbnU/r7B/WZI971fcSIiNfLz1N8Us4HpTYX8Xy1Fso2+HgXG2KMyDkU38z6Do3MF7l88SKuXLqEzstXYLdosU34IvK17dzlbHQ+ZVa21mAv/rjUflC1G28TeW2L4o9kg4l4vlpzbv1iyhxG+kPO11q5YhXj4jKuXrmCrs5OtLW2Wr0vIrNLvrd8PmV1TSM+//wr/pq5/AiZj4HWgdVxaBmR80bE+joJrSOK52nO6u95c8lxnxPounoV17q6cP3aNSRIOUbWyIjsc2Tn6N6c23r+Ij+nUp43TM0pVPmwLpHbV+RzifV4sdYuakREf5u6Bj9Qn8t2QVFBIW5cu47uGzdws7sbe1z2WiUj8rV4eh5nbFzi+yrQmcZ+pwKM9KTwKYZaryRYUPmwDj5kX1DoDHrOXDmOwuag8aLsU9qTvKO9Hbe6b+L2rVu4zPyRL6dMtSo+ZLuKzjIWZ323tHWgoFA/YM4h3TPpaVNrnEQOCsW1BBP0HbL/Iednq2I+EW0q8yF0A7U9PTY3HzSH0vcLvUH7cZD/Kl4nnXGHsXH39h3cu3MX2jytVekQ+RoKi8r42cgtrR1obmln92bHn39bnjqNbVNrZUX+mxq/Gnm9QX2ltK/EY5kDc/Ah16coRY7vpCSn4N7du7h/7x4e3L+Pfa5uVsGI/NuurgcNXJAcPuJleE25X9i75ghVrFd/kJ6W9xOj+Yh8DRr/9FfodPqf3kt/SZ+bkiMt7KmB8iJpLMl7B01k/5Ov/uCXX/DwwQPcuH6dP2ctfFAuTHMvG03NF6DLL8b4cW9iuYNtE3X/BNtghNiQ7VfqN3puoDUqU/pV1OMO5jOzZs4yrI3sc92PRw8f4vGjR3jy+DEyMzLfqw6RfzMuPplz0dR8Ho1N5zG/164yhY+xJIuYn0ZrWh6HPHDE4wg8jx7rsSVi41CqL0VYaBhO+fnDz+8UTp70w+7dTvjRfjmzKaaPKT/nXUJ2ibx2WFhYiF+fPMHTX3/Fs6dPYW+/7L3wIfvky5Y5cDaIi8bGNgQHhxl0oMrGPzD3+/m89i3oTBDytTqeP0S5EbTue+PaNdy+eRP3797jcx/168sXL/DHH6/w119/cnn9xx/4/fff+PPPnj3FkyePkZ9fgNP+Z7Bt644+55GPNZHz976fPY9z8fzZM7x4/hxNjY3vRYfIv6XTFTM22tDA2Cgtq8Lk3rxjZf7lWJFxH0zAih9X4riXD99joJzpA6p/o9qe5sYmzkdpiR5pqWkICT5rpD/2ux3AhvUbea6qrD/Ky8q5XhF8PGQs3Wd+6J07d3Cz+yZqqmv4ehnlXoxFPuRxdjY4BC9ePMfLly/w228vue5VzukjpTu2b9/FuWhoaEV9QwtcXPYZ3tdfvHo0y9LF9jh80IPvBZjH7p32qSE+0s+lwZuN/W3M11wwb5EZxsM0rHVcz5nS5Go4H7R+fLWzE5cvXoK+uASeR44xn3DKmLHFKCYg1gk+nPgxmzvucZ376tXvbC55wJ8bKR0ifmP8uA+ZvqjmXFA9h15fyZ8TcTmRnzma41J0vsXa1ev42Ui05zLtJ0t8hAaFYMO6jey+Z1r8GiZOmMT3M6Ax0tjQyHNbqT6CdFV0ZAzsly4btWwQE6I+WF7zcmd+Hdmor1//gT//fM118UjoEPn7XVzcUM+4qKtrRm1dExwdN/SJz8k1zNR/o2XNbhKbj7Zt2cbPAKdzXxKi43A2IBibN2zBJx+/X5tyxXIHhIWEcT7qa+tRU1WNTMYsMTRauBDrKfIeAspY8PXr17n/9p///IVff30yIjpE1h2kL2qJjdom5OToDO+h2kg5j0R5H7a8JyjpC4dlq/gZrXT2JPHhsd8di+2WWN21kn3lcegwigqLUFFWgdJiPaIiojD7u7k22/4i9qucd+WxJx47OblwNkiIE/LlLOmrG+kO532ci5qaRlTXNMBxzZs9JfpbBxR7Gov7ssUzASkme9rXH0GnAjkf+1xcjc5ktVahueznXU583+ei/CLomF/kddTrves5U4VsdlErJ2pHlPaIsmaiu/sGZ4NsrMePH1lUh8i6o7i4vIeN6gZkZ+UZ3qM850EpxDrdoy2tA9JZku4HPJiPEY6QgLPwOnwM3/bWzttWXG0iDrsf4Xxo2NhKYv4S7TFlK9cv9hx6V+4prauLeJbTz86cDfJDSCgWaCk/RHyf45oNnIuq6npUVdVhzeo3uuNte+XKvomt9Mm8OQsQFhyO6PBozsfqFauNzrq3RZk2dQZCgkKQlZ6FtJQ0rkvk880sNbaFHUT9L9vc9JieIxtD1g/K/eXoPYOxzZVrCtevX+O+OsmDBw8sYmPJ35Wdnce4qEdlZR0yM9/URx5wcx3Sd4t8NyHC9rJ0fc27ZI+zKxLjkhAXFQ9vTx980VvfNVrkp81bOR90BmBESAQ/Q3Mk+FDuXyn2cqQ+Fj622MNxqL8nn6Hw824nvHr1isd6KeYr6tUtwcfSpcs5F5WVtaioqGG/7WKS7uhPqF3EWomcq2OJ+ppB2SFsLj3DfIxzSamcj61bto8qLozs9SnTcJbZjAkxCYiJiIGdtK+MpfgQezaK/hb7VyrtpuHwodz3n/IWiQ1aL+zs7DSrDpG/IzwsmnFRi/LyGuh0RYb1jqHqDqEnSK+KfXCF/WXO+prBytSvZiApIQXp5zIQExXH7avRyoaQnnNlD3A+SI9s/2mH2b6b5jqxfifbV6JWh0TYV+bkg4Rym4QO8T1xEr+9fMnX1F+8eMFz2czNx+TPpqCCcVFeXo2ysip4HvV5a8zKFBE5oUKXvA8+pk2diXPJacjKyEF4SOSYyQUUsnbNes5HSGAIs722meU7yV+guU8+Y2Ug+4r6V9hXpE+Ge1akvO8Jxa0of43yTp4/f4Z4M9aqi8/vd3NnXDA2SqtQqq/EjOmzDHME+QxDXSNXtp0l6jMHw0Z6aiZymW8VxOyNcRb2V61VKIZNfAT6B/K1TnMxIvvbQ/XPhyKyPkqIT+B5i5TD9vTpU0ycOPz6EPmz6WlZbCxXQq+vQEy08foFsSFqW03d61u0iznra0wRuvasjFxoNQUICQ7jcdCxyIaQhfPtOB/+vv7YsG6TzV0/sUZjhewQOd5FeTaU20s50rSeTrmg5uJjyeIfuc7Ql1SgpLgcqxx64uaUf081Ksr5QulLDGaMmqu+xhQhHZibo0VBfjHCQiPHPBtC5s9dyPnw9fbFOmnt15pF2DE09oQtQ/aVPD4vdnTw+hCqn6qpqRmWjSV/5ugRL5SUlDM2ylBcVGoYR2TjDeR7iFwAa80nodhCXl4Bu58yRIbHqGwohGITxIf3EW8ssbPOOh6xJiLGmXI+Jj7kc6m8vXw4G1RjSPU2X06ZZhY+cnN0fBwVFZbixPFTBjaUusOWJD4+hevElOR0lY0BZM7seZwPr8NemDt7vtVdHzHxrhoKmr9F3gnVBjx69JCzQXXqZ04HDJuPxT/Ycy6KCvUoLCjBD3ZLbZ4Pby9fvn5D+kPdE+Idca3V6zgfXsyG+Pwz26spITZoTyDxf1VVFR48+IWvibS2tAzJxpLfe9jDk3GhZzZ6Cfdj+9NbtiT29it4fgzxQX6VysC7xXmXC/x8/HBov7tN5tfI64W0988v9+/zvYBIZn83Z1h8ZGVquP+aryuCD7NHBR/y/iq2IlT7W6Kv4Hwc2O+hjv1BCvU36Y+g04HYtH6zzV2/vB86+RzEBe2XdffOHezd4zpkPqjenbjI11JedCFW9O6jO9z1wPclMTGJvGYlKSlNHfcmyjdff8f5iAgJt2iuliUZF4+bm5o4G3du3+Z1/abaWOJ9e1z2cS60zE7XavINfqzyfDhbkHXrNvFaeeJjpg32rzUI1UwSHwGnztjctcs5UFRvS/v13r55C7du3uQ1yoPlQ34PrQkQF3m5+Qg9G2543tbqZGkP4IrKOs6HvIeEKqYJ+R6kQ+Kj45idZXtrh0IW/7CUc0F7vnff6Mbq3joYU/ggXUFcaHJ10ORosa03b02cNS/va2/t7eG67yDf21HL7ER1nA9P/p+9836LItn6+PlX7nPfd4PX+65r3KRrzpiza2YVAVERUIIERRAQEAaGOAhDzkgyEExgzohpXd3s5nj/gLe+JdW3bIeZYWiGHrd/OA/QTKjuPp+uc6pOQIwv+MjPydN9DqK8P4LYDDkG/PHDR7wvAmqRIn5xoHzMZ9cBXCAmqaaqnqZNfeHny73j5DxgfDf2zPW2Xoq+POi1AD6WLl1p6LgGEhURRaVFxbQ3aK/uxoZ4JeyjizrBsoAR8bqqyip6cP8BPWCva25sdtoHEf/fGRDIuaiprKPqypf7xIEBmUv1OAYagzWUknTkKOcDNVAN3dZGJk+ayvmoYTo2+t3BzyHq2FNbtakd5cvJNaVkEbH0ajsHNYDQe6r3Xi/d67nnVH82+X8J8UmcC8R7xx96kbdrq+cuBGPF+DBuW7035HOT8+pF/L/6uFaCnD/0BgUfc+csMHRbQ4mNieV8hIeGD/qz1Lkeoq6VfMxRvpywa/A6ESer1ifsE4o9bdQ/7mVc3LvbQz137yr8OMtHdQVjo7yGKsuqaYffTmWNzJV1K4xbxALIdpicRwbOtY7R3bs3gvNxrLDU0GmNBTUqwEdTw/FBx+fYyoVS14JylO8AFhzZ9upapD2Mjbt37tLd23do394wp/mYOmUGVZZXU0VZFVWUVip9bsCfK3sfciw/2AYH6nNU90jTQi50X+V8bNQol8GQlyWd3S/w4e+7w2X/uT8+1HOIVvlAcs109JpCTdbbt25RibXEad/8kzXrGRdVVF5SSWXFFco6haM+N46uhcjpEP0ihpKPzZu30c3bvdR6ssPQ5SGS5UtXcj7KSkpd0gcxR/SXSyvXRdSKDznuIyU5lW7fvMXr6aPWpCMfXRz39w1g51zB2CinUmuZYlu5Go8o9wOWe6ANJR85ucc4HyF7ww1dHkKpKq+g0ydO0uyZA4/vhU6InEFZV4RPKq/JapUvh+e7eMb7+wXwesU3mFy/dp33eXJmDSv2QBznAjU8UNvGnm/ujIh1LnFuwncSeYMi31KrPKjx4z+gOz0POR+vW10evUlEeATnI/aAa/oqcuNkZoRPqs6N0yJfDjos4nnnzfWiG4yL61ev8b4T8/r8CFt8yMfycyxUwnza4sIS2r1zj8KdqzV85POWfShRl0F9fLCyZcs2zkddfbOhw0MsC7wWcT5amz3vWmNNF1xcZXLl8hVlPcARH+DCeqyYigqsSg4yYq7kOHo9S15+EefDX6rPZcjQSUNdHZ0700lzZs/T/VixhhUVEab8jV4QV5j9cvniJYrcH+WQD8RpWgsYGxYrFTI9w16Qp92vnt7HnA/DtnKPxETFcD72BO7xiPHKdlBBfgFd6r5EF7suUn6uxeHa1eyZ83jdwGP5hbyunuADNhB8J1GnBD/Ffo2e4hW9vBZzPtrazxm66yZZs3ot58OSn6/bMQo/BzaU3IvGlGZibHRT94UuNg/W97uGJf7euG4T56Igt4AsORa73yl8B8GMHmKvwsKjOB+pRzMM3XWTjB09nvNx+WL3sI8Ffq78DBc/xZ6b2rcP3B1EXee7+PouekQ64mMD48PSx0Z+9ovnAdauZJtNz5LPfCbwsSMg0NBdN0ptdTXnA2tCwz1POHoN1rBEPmHgrj2MjfN0/uw5xvg5h3xEhkVyLlCPNTb6vzVEPSUfqvNsN+dj/vzFht66UVKTUzgffr7+uh+rXHt09qx5nIuznWfpbMcZpeZyf3sg+0P3U545l3Izcym8b28N+4Ke0su898ETzoehs+6V3bsCOR8x0TG6HyvmDrHXPXvWXN6j8UxHJ3W2d9Csvn3O/vhAr6SczBzKzsimsJAwhTdPqOXj5bWE89HeecHQWTfL0iXLOB/WoiLP4oPNF53tndTR1sH7NNriQ/49LTmNsk1ZvF+S7zY/5fM8wb4SfJRV1Bo662bB3gf4qK2p1v1Y5Th01NHsYFy0n2qjtpOnaYdfgF0+stKzyJxm5r1Z16x80RMY+4KeUO8qPCKa83EoLtHQWTcL9Ax83Lxx3SP8D7nXbRtj4zRj49SJUzwmyx4f4CLzaAZlpJoUPgYbW+JuPsLCogydHQbxFD7Ucppxgf7XJ1tOKLH6/fEBLtCn1cTsrNUrXsSNeUpsicGHwYez84e8X3Gy5SSdaD5Brc2t5Lfd3y4fYCOdsZF25Cit6qsHp4WIGGaRNyj3R9HqO0wZOZyPgJ2eEefwuklleTnnw2v+gkHrCUT0dBZ5s2JvQ+6vIx8fqA8ifgcXrU0t1NLYTL4+fvb9c8ZFWlIqHU1MoVXLVvFj2HOUe8zaEnUfA/V7cC4id1D0qBU5MlrVCKquPc758PIy9j6GQwosFk35wO8iDkTsg0Ov5P5scv8xIeqeyLbEIvVYAxfNx5uoqaGJtm/ztcsHuEhNSKaUw0doZV89HOivrdoQsqjHKHrICbbFeavzoBz1ezf4+HvzIWL8RN0CZ/Lq5PmlP5E/A1w01jfS8frj5LPVPh8pfWxwPvrmDzlPoz+xNcfhfATr7uRjVV9/K0M8hw+hA2o+1PVtnOFDnWNlS+Q4rEbGxfG6BmqorWd8bLfLR3J8EmcDc4jwPwazPwjuMZfJfMj2lchH1+L+xLNxG/758ElHexvnY+qUaQN6n9ADMKDmQ3CDZ62ogSPbV6KX30C+T86xhTTUNlB9TT3VVdfRtr589/74ABewseCDrF7xgo/BxJeIPFp3+OfG+pXnrl8JRuz55+I5Olj/HHt58n4euKirqqXayhra6r3Nvn/OuEhnPjrWd9f0re/C1/eEngYGH8b6ritSW1VDNYyN6opq+nTLVrt8YG0Xa7yZqSZaK+2fy/uNepWdu4I5H8ivNfTVvTJ2zATOx4Xz+s9Lgy0k1/kBF1XlVVRZVknem1/lQ5bIsP2UedRE5rQMCg0O9ah7ZMRfDZ+I+CtPiE+U5YP3PqIqxkVlaQVVlJTT2tXr7PIRGrSPstIzKdtkpvC+moueMn9MGP8B5+PS1VuGzrpZtm314Xxkmc26Hyt8D+FPT50ynSoYG+WMjbLiMpoyebpdPsJCQiknI4tyM7MpYl+4R/kfEJH/IepxG+Im3y80nPMREqy/ngdqwXqsiN9FHWFwUWotpZKiEl6fxBYfSu1EH3/Ky8yh/KxcbmfhGNjwlPyoppZTRv7gMEhOVjbnY8Vy/fdYQb6GyK9dsmgZlTIuSgqLqfiYlffvtMfH+rXrORuW7Hwq6KvPAD76i28XezFYi9NDfYa0dDPnIzQ00tBbN4qozzC+r0bncAl00FE9Heiy2M/bvHELFTM2rIyNooKiV3hQ/40984KcfDqWa6HCvAIa9c4YflyuUyL/FHs2eukb5e3tw/koLdN/ns7rIsi5Ax8dbW3DPhbo4UDqlyDeClwUWgqpMP+YQz5Q7wpcFLHXWtl7pnz8ov6Vp/TkhI8u6sMZuuseCfAP4HyY0tJ1O0Z1/StxPDoyhnHxotZbZHj/+2aCj/eYfoGLYsZUCZtzlixcqvjonlLDBPnn4GNl3/6NIUMrGekmzsf6dRt0P1b1WlMq78f7op5ViCoG3RYfEPgppcwmg9+ypa+3DOw1V+u3y36KO+pTxx5K5Hwkp5gM/R1iQe8o1KcGH+PGTtD9eNV7FRbeizef8rLzaN3aDTZtK/WxI4eTqMxaSuXFpRR3MG7QY1L3bhAxZ+r+BlrF8SJ+F3ygf5Shw0Mrq1as5nxYCz0vZgG2eD7jArXecs25tGDewn75kGV/2H6qKCmjytJyysnMVo4fOhDt0jjkta3++uMIP0qrc+++dJ33/1ixQv/92T1ZUo6kcD62em91+TPkmETke4j4VdErRjxjB5szCPHfvl3xE2ZOn825EPWsJn002S4f4rj35k+pqrSCqssrqaaiatDXED6RWDcQHAx1/6iDsYc5H0eS0ww9HiJBb2f0VwMfY8eM14QP6IfIRRV9j53JGXRWZB963Zr1nIssUxaZ0802bSlbfKCPTk15FdVWVFNdVQ1NnzqDH4f/4UqdH9GzWvx0Ns9lMDJlygzOB/pzjjP6HAyJ7Nyxi/OREH94UJ8j84F5QcwNQke00hX45bLvgfqHWSYzYyOToqS1K0d8jB41lsfCIya+vrqONqzbqLDnSpyJrRxBPBPk/s62ctgHK9aSCs5HcLBn1Nb2JHnrzX9RcaGV87FwgWuxCrZyBqH3wlcV/Tu14gNrV3IdnpSkFMpMy6SMoxnk8+l2h76H/D/45w01dXS8tkHpAQ827NX5Afeit7l8XJ0vL/fqVOdPankPN23ayvk4c7bbiMfSWLZs8ub9zwsLjrn0/v5yBm3pvjM5g+AIeib8FVuCNVhhX73Dvh9cmFJNlJ6SruxjOPLNhcSy72+sa6Cm+uNUVFBokw+cI8Yj+m8K/0nreWAw0nqyna5cu01BQfsMvdZw7rDk5HE+BhNv1V/OoOjlKtsUjvxz2O3q+gui3ol4DWIIRVwJfAi5ltVHH0xyig+lT876TdTc0Egtx5uotbGZcTdOmSPAqTgvtWCc9hh2t2zc6M35aO84TyPeNuYQTa4ps7dLi4opNytHN2OCzkEv5ee0EKyDQS/l5/Y2bx9ea/ooYyM1KdWh76H+P3hCXSDUzTrR3Mp88zXKOOTvBidiPUqv97O55TRdunyD9u/Xf+193c8db4wgsymT87FsyXJdjhHPcLAAu0bUPhC6Kl5zIPIA5yIlMYUCA/YMmA8I1q5QkxS1SaMjo5U5Ed8reph7wj2dO3cB56Or+ypN8sB+o3oSPx9/Ksi18D1kTxkzbCxR/4Tr8MhRnIvkhGR2HkdoRV+dN2d8D/k1CfEJfG277eQpqiyreGmdzBPqVb+8RmDlfOTkFBh6PojnMtZDwYfII/IUkddd58yaR8mHGRvxRygpLon3TxyIby7vE7Yzu63jdBt1trUr+4vwczwlVlHIuLHv0enTZ+jc+Uts7vM19H2A8iazq2CTgI+Avh4AniT7QoKU39HXJik+iRIPJbJzOui0baV+HbjqPN1OZ9o76GxHJ+0K2K28xtPmD4gPuy7go4X5IxMnTjH0fgCyecMW5sum8njXt94c4dHnEhsVSwmHEuhw7GHatG7zgN8vc1R0rIj3LTzXeZZKmE9mi0dPkpwcC50500XHCop5TxdD9x3LjGmzKCE2gfMxUSd5cAMR7JkLewd2YQLjIv5gPMUfiOMxWAOZO9SMYG/w/JlzvDd017kLNG6M/mOY7QnqNLU0n6L29rMUHXXQ0H8HMvrdcRSxL4LzsX6t/vM7HAnmi/gD8RQXE0eHog8pdpCrfHzM7JCuc+ep+/wFunihS6n/jvx2T6j5Y0vQ0xd8nDrZQZs3fWpw0I9Ad0ICQ+jA/gMUvDvYI88B8YLynnZ0eDTnAjaWt3TvXeUDgtrWl7q66XL3Raosr3Dq/Vj7xZqaljGHWor3Fh/ORyvzRVYaMfCv+uOMjT27gugg818j9kbozt+EfmE/0NG+m7zWOnniVIqNjuXnBOZnTJ3lEhtqRoICg+nyxUt05dJlunr5Ck3uy0lX1/mFYK0Z48YeiV5qNvQnUcy+Ah9Nja3kNX+RwYUk27f6chs9Yt9+Gj1qnC7HCEbEPiB+qvfjYOPIcwfsQ8FGTESMy7aVmg+sjYKLa1eu0vWr1ygm+sBLfDoap54lcn8M56O8tIo+fH+iwQb82c1b+fon+Bjzrj7ZUAvmETyXIeK5LNdMwO+CCwhyP1y1rWy9D+tYN65dp5vXb1AX80XEcRH34mp8Cd4vYgDkfDG5tr18XGtB/nSWOZca6pqotrqeli3Vf32zIbOp3hhBO/128rgL8DFrxhxNPre/eHQ5bl3WA1v9yAYyp+C9IsZDsWtmz+dcgJGDzG74uG9931U21Ixs2riFbt24Qbdv3qQ7t27x+GYtrh2ujzgPkS+G33GtxDwEP0bLPiG2GDmSmML5qKqooaWL9RlXNJSCuKpoNpci3ht8zJ45V7PPlvmAfSFicxEPhfuMY3JcK2x0OabXVZFjd4N3h3DbCr55qJQPpBUfkO6uLrp7+zb13LnD7JEy5Thihl3tLyXikEX9OVwnHJevjzo/ZqhkX0gY56O8pIJ8ffz/NmygphPmC+SZJh0+ovkavpoPESco31d1Dt1g+IDNL+vj+xM+5OtVWNM9zGzGZUtWaMKG+AzxObEHDzE27tK9nh7qvXeP174W43E13kSubQI2BPPDwQdkh/8uzkdJUSl/niLX4XVmY/HCJZwL1PDAvKFlfVDcS2HvyPaS6LnnLj62bt7GfSns4STFJfK1Oa34kD9nwrj3qbfnHt2/10sP7t8nU7rppTlE1Px1Zf6QfSxxfYR9JeZfd+nM6rWZnI9CSxFlppkVW/V1krcZ93t2B/FaZ6gdiHVP2Fhafgfum8i9kPkQfb1FXqnazha9j7Vg498jR/E4kkTGBeIRB7Pn4YyNlZ5moof3H9CjBw/p8cNHvIaQGJcrfKj9cxGD7C7//BUfdcQWGj/lN5q79Es6mpxGlpwCXgMGdfLefMOz446ETJs6g7Izc3hdf/CxrS/3eigE99OWvy16hjvrnzu7JqqupY64MdiOiGVPTUpRbEet2FAzssBrEePiIX326BE9efwZmTP/WxdFrhtvb21BT/mFsvzznxNp3MdfcT5GjjZz2yrAbyfnIyvdzHy7WJo2ZYbnzhlvjeTxQnXVtbyfGGoHItbbE8aO9ShHvcCxhivPHcjzSEYv5sQUnicYHBii+dxh6/Nqq2voyWef0dMnT+jZ55/TexNeMAEfpD8+5Lpf+Km3PZJ//GMUjf7wCmcDP+X/Ia4ffh3ylY8mplJgQKCSr+wJMuLtkeTvu4OqK6vpeP1xzkdI0F6P8a2EvSXmlv72ntVzx8rlq3lMJe+pmWpSYiu1ZkPNCOq5PGVcPHv6lL549oxysnP6HSN8NHVuvZ7qNyjPmrHFnA3MH5hHXrG7mG21esUazgf6w6cnH6V9QfuUnBh9cvFvnpPQ2NDIc0BbGlvInGGm6VNnegzbsu0hap0Imxu2iHjOqp/NuF/wOUyp6cyHzKB9Ui/NoeYD0lDfQF9+8QV99eWX9PVXX7GxffiSH+LofPQkb43cxdmAvPHWCvv3ic3ZnzIfD3yY0zJ5r62o8EhavEA//bUQ7xAZEUWnTpyks51nqP10O/M1SmnVaxBnZut5C9tEzYcPO5aBPrPopZmR5bB2qNaMLFq4hHPxzddf07fffEP5efmvrFs4mg/1IP/zv3MUn+NfoxIG9Dzz3erL+UAvIfSDQF8h5NYNR5wK6ntt3uRN1kIrjwW61H2RLpy7QDVVNbR29Sev3fobdEyuVQJmxLMXta1Q9w25jqgfHREaMeRzh63Pb2pqou++/Yaef/cdff/8Oc2cMVthXNSL0HNdE/gcYybe52y8M77epc945/9G04ZPNlJ6ShqVW0upuqyS6tnzAL2IItm8gufIUOVhTWN20u5de6iyopLvSd25dZvH/4APU5qJluq0voiWNhdsErGGLI4H7gykbMZFrjmH12f/eNIUt7ChZmTG9Fn0/Dlj4/vn9MMP39NJNp/L63eurPe6U8AE2AAjYGXQc//s+bSX+b1l1hJeV+9EUwuvbXGmvZP5xHV8bTw4KITmz11AXvMXOv25H7z/Edd1P+ZjHzwQS42NTfQFs20/Zz7g40eP+V4U+Gioqyd/vx3cvnqduVCvWck1eydNnMy5yMvOJUtuPkVFOK6rO5RzSIGlgH788Qf66acf6eeff6KNG/6bz4ta8nq9rrClhM8BG0vrz1/A9D84MJgK8iycD+RfwuZBDPStGzd5HMJDptdPHj+mnrs91MR0vrWllU4xntrb2un69Wv0119/0h+//06//voL/fzTT/wZ9N133zK74mvOx907d6jwWBHtYs/LCePdW4Nb7I3La0yilrL8OnFM3fdPK0HNdDl2IzYmlizMzsV1L7QcU/pnuosNNSPvv/cRPXv2lH755Wd+H3t7e/mepXgdxq633Br44IIN+Obu+E7sM2z38eX97oqLiqmDMSD4+OLpM+7HwUYFB7///htnQ+YD3JxoPcHnj3WfbFD6EA+XyHsRYm9PjhXCcdg8cl8krXPl1DFNK5ev4rWHYNtaCwqVXNfh5AMSH3eYfvv1V35f//jjdzKbs5T/oRaQMzXfRc8Dd/gcwh/Hmq4eeIWuL160lJYsXsbtqGVLV9DyZfqOs5f5EH1ixf9E7JS6740zMXQDWfuX7RPs5WRlZPFa0YgJyM/JU/Z33M2GLUbus2fhn+wZIZ57s2fNfYlze4xg7sUa10DmYFH7XX3MUUyKvAeohc/xdxVbe9kiFwj3Us2HszGmYv3W3j6ArV6xoSGhZGW2JmrslBWXsOfyMkVHh5MP8d143oGL//znLy7Xr11TXgc/vT8+RF36ge6L4PVyL0OIo5wRxIyIPcCh8Dn+DiJ65cl84JpDr3FcxEm4yof4PNhm/dkT0CW5Vyxs15JCK5VaS6i8pIziYuOGza6yN4dkZWUr88eff/5BCYcTXzonda663EvL1XslX3N790PEHULwu6HrronY2xK9jcS1Fn+L+uXieYW/RVy2mFcGcn/VfT7UcbAvei3k816yFaXlVFVeSe+OGqsLNtSMwC9/+PAhZwO2FnyRWTPnKOclYsfwnPn/9s6zPYrriuPnm+RdipPgJ6bYBmM7FNs0F4yxKUK90AImtmzTJKHeC+q9l5WEekddQohiMAkxdhybvHBi53FCnnyC3P8VZ7k7mlnNSLtCZV6cR7AabZv7u6fec9SzHvMVrQ4x4kPNAUKH2Ot84Yyoc454r+NzgdrzoNqzPVaE58uwXaCtgZWzZGtqBRf11FjvoJCg0CWjO/TsrH379ksuEHeBv66NZ2k/ryf0vWrvas+MuKs7tGV5iNF+evigj+yb3ljfQM2ORkpS7JWlwobe+8nJyaX/PnpEjx79R8Ymm5uvuPhfnmBCOwPFyD9X6w5tf3z5+z78b+RM4Y83NTTSlUacia6R83Sftk9u1s66LnQq2EBe5N8//UQnTjzp+a3XN8sbYqXu0JbFFSv2A2JVqj/+q1/+mrIEKzhn0YIZmVdaZO5jqeoOPTsLfsfDh9/JnDpyXsivc33WfOxdq348fA5mw0rdoS3eF9jDyBuaZUQbz/00/DPBRbOsp2lvbaXzZ88veTb03h90BrhA/cm/fvyR7t65K3TLkzivmfoTPp8JMZs/9ETdoS3e8yW4ttsMI1gjqj+OWeOtwl5vb2mljrZ2KsjLl+cilwMbeoyUlpbJuqEff/hB1k+MjY65XOtuFpXKhpXYoKfrDlfDmuX6Pq5jUIXXMHxHvRorq4LnmYsRvRzgtq2vURu4aG2jrnb082sU7/vlJe1zmGFkfGyM/inYQB38P77/nooKn5wVwd6g1xtovmy4qztUe2bjJ98XrA3uQaM+vpr8XrWHDJ+nUOfV43vhucv805uMaH2OTRtflr3RO9vbqbuzk3q7uunABweXjV3lzhf5jdARX3/1FX0v2MBZKtTiafM+qr8+XzbmqjtEjJB7zfC/8TjuD+L3eJxn1q9WPrBO8b1ra3O0+XJP9TfUYwRrQa23gP1UUVZO3R2d1NPVRX09PXRSifcsNzb0GMFZkQdffilrs3HuEOdyw5T6StYh82XDTN2heo/V/OHT6kW3FPmAgA3sHaqe8GT/trkYUfkAG/AxejoFF9091N/bS1ERUcueDb33fzTsuOTi75CHD2Vvh7DQoy5rcz5sQMzUHfKZTK7D5pjYauUDn5/7ujIfbGvyNXwG1Ft8aBlRv3uwUZhfQL3d3ZILzIotLy11nsdcbj6HGUagM8DFd5Bvv5V9UNAPRY39WWXDbN2h2gOZ98jVzAevSzCgZ19xXRWuY7sUj/E+4467+bwXfi1+LOJChLSlBvr6aHBgQNhYZSuODT1GIi5GSS7+9g3kG7p7547s6Wfkm7kTK3WHRv4H97rkekf1LMNqYASfWV3Tat0Uc8OMaGus9AS/0/qX7gT2lPYsduTFSHk2+Wp/Pw1dvSp98nVrN6xINvQYyc3Jkz3m/vr11/IM9ee3bzsZ4dgebFB350as1h3a8avFE+wxc9US4T5DtDF++BfMxfDgoPTJca58pfgcZvx1SE52joxrffXggfDdH8gzI0GBIS77ilEdilp3+LsXr9prcgkK9I27vUZrJ6DP46XIKGlLgYvR4SHpe6j9wVcqG0aMXM7Klv2u0YPjL/fv0/0/3xeMuM6UxXeo1SNPo+6QfRNtvbYn6rgXaiPp2YTqHs79+rR2kzcFetnIl9TOPoZfAd97ePAqjQwN0dgI5gv3OHvzrAY2jBhB3xvMTMDsBPSp+dO9exQYEOSyz0D/so36tOoOjWb5cA8/PI71sJizGNzFFNSYE9f78xkm+OXz5dhKrz/+rozuJbMB33uGi2EaHx0VPnnvqmTDiJFM8R2iz829L+7RvbtfyF5naanps/SIWnf4zJrzpl/PU7Omub5C7TdgNf7F51H1nld9XO2Z485OMcOHNscxVy90o/cN/tVzzGaE9xS+h2q9BPyKJodD2FLgYoQmx8ek77Ga2TBi5A8nT9EXd+/KOsY7n9+RfaLycvNl70y+5rm179Ph4P9ZqjtUa+IWcp6XdQOfyZovH9pr9PrgcOxVndOntya5Xkp9Pr7O03xA8F7wea3G+PR8EfTwgO89JriYGBujaxPjVF9bS+vXPb/q2TBiJMA/UHKBPpmYl3tLSKOj0aUnIPyNNWs2mY4Bc5/sheY1PJV/116j1wdHu571erVyfkLbi4Jj1N7gQ83hmrHPOHYLNlQ+QoJDpY8xMTZKk4KLqclJaqivE3vhb202fuY+9rtr5x7x3Y3KWevoN4h+ssODQ7IvlBob5Biwuz6mVu/nXHaCWqPH603ti4Z9fq7Yvzs++Hdm1zPX42j1B+/zKs9afbSQuNRc+w3HbXGPVHsKvkZsTKz0MWBLTU1O0PWpa5SUmOhkY6XmNzzJyKuvbCFHg4Omp6blWcTr16Zkf07MzFP/hvui8P3Q2/PnU6/iLlak1y/TTB9NroP1JB/8vNrXZbvLqAfoQnI8eB7ec4zyhOjFoY3Nw9eorqqiCcHFNXBxbVLsfVMUGRFpaE/YYswI9hPEf8HFtYlJsd9MCn08QUUFRbROM4NYL1fCe6sVfxJ/461ZDLyvqz04IXp9cMCRGm+CvvLmjAht3ZUZXcrzN9THoSu0sVtIaEiYrKGCjzEluJgWXIwMD5Gfr7/NxgJ9EuiMyfEJwca40Mtj0vbq6eqR/Ti1f4t+prt37nb2/tGb9TiX7eDNz8a9z1T/Vi9/8jTyFVZ8bp5By98vbFxfH59Z18GeykzPEPdvXNpS01Po0X1dxqxgI9hseIaRHW/sot7uXhodHqWRoREaGRyWfdFTklJ152sY7W9z+QVLcfbbYgk4tfL5tfpZew4UvYSRx2Af48b0lPAppykvN9clJmlz4RlGwEF+br701YcEG4MDg3J2WHtLm5xDo713bLfonU9c6P4J+wevsdRrtTgvaHZmsFk/jX091m+q7Sd1RkamsKWe+Bg3BReI4/r7Bdg6w8ucBAeGUEdrO13tG6CB3n7q7+mT8yezMrIEC+tdbICZ6wNd7qmR/W2WD64BhyzVuXEq81byFeDezGeCLYV9R7s/4DzPQH/fjI/x2Ja6ffMGNTc10Yb1L9hsLBIja5/bQNmZ2dQn2IDdBX+ku7Obujq66FjYcWdPC1U+DZ+Jfen1g+C+y2btED7vZtZu84Yt5I33ivXujiXsNXrxdNi/tTU1Th/jhuDi1s1p+vz2Tfok/BPDGIwt3otvQTCTslnYBN2Ci672Tups6xC6pYMaahtov9IzTJUzp07N4sSKbWV1T7Zynbavrbv4kVVdZ9YW1OunDy707NT1a5+n+Lj4mXgtuLg+42PcvnWTqiorbZ2xJHTJeoqLiZdctLe0U5vwR1qvtFJrcwuVFJbQ7l1vuuUENrrZ/RjCuTezf2N2LXOuxoy+wXs2m+/k5zXre6txCvSf0uMCPsaFcxdkvPb643jtzRvClrp1Q+bEUQfh7p7ZsriMQLZtfZ3KisskF+g7iZmYzY5mampoooS4RNq1Y4/b9Qu7Ya5ZcGpuzMx+jDVsdl1a4cNKHyqO5ZnxvZkFo2vBxZkP/zjLx7glfAzYUtFRl2bFpmwulhYnRw77UXVFteSisb6RHHUOcgh7q6GmXs7g0subQHgWHHK/7ub5WKnlsrKOrfABTs2eYeUaG3exbs6t6uX2IMjHxsXGybPgs3yMx7bU71/danOxTDiBfx4SGEoVpRWyB369YKOuuo5qq2qpprKGsjOyyd830DmjThXwgX0UP3lmCQvXOpq1mXCdWbvfCh9W7DYI50pVmwx7AHKp2nlMLn736zslF5OampAZH+OG5GL3rj22LbWMGHHhRKz/oIBgKi0qlVxAr1SVV1FlWSVVCnYqSsrp9MkPBQdbdG0Nru/i9cM5Y7O2v5U1bJUPKzEFrimEzsHnARewJbX8sw3lc+gIXWlqdtadu/gYwpaqqqiwuVhBNhf0RIBfIBXlFT7mooLKi8uprKiMSgtLqaSghFISU2n/u+/Ts2ueM4wFcd80rC3YY55cw97QH9xrDVxwzy+jWs6977xLMdExs+rOVR+j0uZixXPy9pt7KT0l3clFcX6x4KaICnMLqSCngPKz8ynqQhTte+c9etbANlL5iDh/Vvr2+D/7Lrz+vMkH+9C83tle4vcE/Yf35K7+H3OlowU76J8zc4bPte6ca0JSkpPFc9tcrBa7C/L69h308ZlwqVMKcwsEG/mCjTzKu5xLuVm5lJOZI/2UC2cvkp+PP7208WW3r8N+i2qP8R7PcVL8jhlin5g5U/ngc9p8fkK9nudC8HODCfjVqh9hVFODvOrBA4dknxD0ep7pEzJztlXWnSs1IWAm/ONwlxyGzcXq4wT21Ht791NCbIILF5fTL1NWWhZlpmZSRkoGpSenU3x0PB0PO0Fv7XmHNr242fRrq30JeN41c8ExI5UPzsdh7bONxHzwTzP5fuSG0J8y/KNwKikqdvYiVPuEsI/BdedJiUm0f9/7pvSxLavH9oJsWPcC+R8JoJjIGBcu0pLSKFX4JykJKZQcn0xJcUmUGJtICTEJ9NHpj+jA/kNiLb9JLz6/ac4cirdk08bNtGf3W3Q07JicAV5VUensdw4uuOeas08IfIzHdefZWZfJ74ify/lWd3uKLatbp0BQO/HBewfos4/PUmqCYCNesBEn2IgVbMQINqITKP5SPMVFxVFsZCzFRMRQ9MVounThEp0LP0dHg49RkF8w7X17H+0R7Gx84SWpc7Rnu8wI/CbkF7a8uo127dgtazRDgkIoMT6RsjMvy5lKbY9nKnV1dMh+586+zk4uBp0+Rn9fL2VlZpKvDhO2rrDFKiu/+Pkz9MZrOynAN5DOfXLOkIuo81FS8G88HhsVK20y8JQsdA70D3RRRko6ZQn9BBsuJzNb+jzwfwqFL1RcUESlhSVUXlxGFaXlVFVeSTWV1VRXVUP1NXXkqGugpgaHnNva0jwzn5JnKsnZMeCiB/3O+1x6EaIX+pnTZ2QtodXPb4stVtYK/IFXNm+R+uVYyHEXLsAKuAFDsL9gi0H3pAn7DLZapuQiS3IBfwcxAcQHivOLqKSwmMqKS2VepqqsgqorqqhWclEruMCsbwc1O5rkfMo2OZ+ybWamUsfMTCW2pTBrKTU5ReoY9NGZ7+e0xRYrrLhbR5iTBf/jXWFP+fsE0Knjp+ni2YvSb0lPThNcZEh/H75/blaO5KJAcIH4WUmB4KKolMpLyuRcb8kFdEZ1rcz/N9Y3CC4aZc6O51N2ClsqIy1dnl89cewkHfzgkJwb7InPYost3uZFa59t3vSKFPjxhw/6yBz1kcO+5HvYT8aP/Y8I8Q0g5DED/YNk3p/9jNDgUNq2ZbucUbl962tefa+22OJtZhZ7LT7t17fFFk+tW0+K/R3bYosttthiy9KS/wNQSwECFwsUAAIACADaiD5bqmyjmg1AAAAAcQIABAAJAAAAAAAAAAAAAIAAAAAAZGF0YVVUBQAHJQ7caFBLBQYAAAAAAQABADsAAABAQAAAAAA=</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #16</Name>
|
|
<Index>16</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPluS+xwVM0AAAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J33W5TH2se/f8l7zvWe6z0nlphmYmKLSYydqMSCit1YjhpAEQuoCCgiSpHem3RYdqlL71XBgqjYY4stMSbn9/POPTDr7AMoC7u4C88P98Wy9Xlm5jN3mfue+fvf/oG/q/Le5G//87+DFrW9VBkL494Wvl8VVSw1TtVrUkXlYXDjbuHCxVzc9rvDzc0d4RExSExKY5KKouIytJ6/iNa2i2hp7UBzSzuXpuYLaGw6j8bGNjQ0tqK+gUl9C6Ki4pnEITIyDocOHoGT016sWbMec+cuxOTPpph07WpfqmIJJgZ6zzfffI9Nm7bCy/skUs5lop6N7Y5LXWi/eBUXOjqZXMH5diYXLqPtwiXGxaU3XLQquGgiLtoMXNTVN6O2jkltE2pqGlFd04Dq6npUVdWjsrIOFRW1TGpQXl6NuLgk+Pmdwa6dzpjz/XyM++BDlRdVRpSHCeMnYaWDI3x8/HAuLRuXrlzncvHyNXRc7jJw0c656JS4YCK4aOsw6Azioqn5PGeDuGggLhqICyaCi9pGxgZx0WDgorJScFGDsrJqlJVWoVRfCb2+AvqScpQUl6O4qAwpyWk4cdwPG9dvwfSpX6usqDIsLvp7zc5uKQ4eOgJdfgkuX+3G5c4buNT5hgvOhuBC6Aziot2Yi4LCUsQnpCAuniQZe/fu57JnD4kbFxcXkn1wcd4HZ2dXLj5ML0Uw2yw8nElYNNcZxEU5cVHGuCit7GGjpMLARXFRKYoK9SgsKEEBu+4CXTHytUXIYEx7e53AimWr8Oknn6usqDIkXeHgsBZBweFoZuP6Slc3rhi4uNGHiw6Ji6TkdPifDsI+t0NYvnwVFiz4gescS1z/jOmzmB21AJuZbbdrpxOCg8KYvkhnXJQyLhgbggtdEXTaQujyCqDV5CMvNx+aHB1ys7U4yz6z1nEDPvl4ssqKKm/VFYKJFsZEZ9dNxsXNHi6u3uhhg7gQthTjIpeNt2Nevti48SfMmjXbau5v3AcT8f3sedixfRfTPb5cZ2g1BT1c5OoYG1rGRh5ysjTIzsxFdkYustJzEHgmGGtWr+vDisrJ2NUVU76YiuMn/FHJ7PvOa7cUXHQbuCDRMPuEfPBFC5fY3P2TLbV8mQOOHfVBSlIacjI1PVxk5CAzPZsxlIWM1Eykn8tAWko63A8ehv2SZSbZoaqMHi4cVq1FLPMBrl6/3cMFkz5cMImKTuCxKUvZSO9Lpn41A7t3OSMyLKqXi0zGRQZSmX2Wynz6c0mpSEk8h2jm92xctwkff/SZyskY4GLLlh2oqmnkXFzt5cJIZxATMcTEtlHHxEBC9tRmZiOGMttScJGckIJkNn8kxSUjMTYJCTGJcGI8kb5VORldXEyY8BHc3T3ReuHygFxomS+7afPYYWIg+WrKNLg47UVUeDQS4xgXsYmMjQTER8cjLioOsZGx8GC219czvlE5sXG/m3PhIXEhbKleLppbOxAYFMbX99T2M5YP/jUBS36wxwnm3wsuYiNiERMeg+iwaEQxu+yQ2yHMnD5L5cQG41FkR7VJXMg6o6Kqnq9njHVdMVghXbHPxQ3R4T1cRIZGIjIkAhFnwxEeHIYDrgfw0YefqJzYABd2dvaoqm1C1wBcbGY2lNp2Q5OPJn2Kndt3GbgICwpFWGAoQgNCEBJwFttY2/7rn+NVRqyQDfIbM7I0KhcjwQnTFTu2/huhgT1cnD0TjODTQQj2D4Qfs8eW2C1VdYkV6QzyMbpu3DH2Ma4x/6Ktg3GxXW03C8kkxgnpDOIi6FQAAv3OIODkaZzx9cdBZnNNnzpTZeQ9siFsKaWPQTkhqn8xckIc7P15D2eDi99pBDJegvwDsMFxg2pzjRAb4jHFpU74nu7XloqJTcIXihi9KiMj8+cswElmX5EuCT4dyOyuIGZ/BePEMR/MmPa1ysgI6Ixvv52DgqKyXp1h7GPYKexer2Pe3AZQ29Fy4rrXDdOlsU+6gnRGCPNJQplvEhYUwnz5UObTh8Fx1doB5zxVhs+Gk7OrwsfoyQnxOX6qjy1VWlqG//73v4iLS1Db0oL+x+vXr3k7O6xcbfQa6QtfrxOICA5DZEg4okIjEB0WCR9Pb3w86VNVl5jZnhK5Usq4lN0iY52xa8cO/pf6i/qNRJ7fVDGfZGfn8vZtbm7h/69auRKffTrZSJds2bAF0aGRiAmLQmxENOIiY7g+mTdnvsqImewpni+lyAmhdW9ZZ6xfu7bPd1G/yf2nivlkwfxFhvlH6I4P2Tz2z/8bhzmz5/DH4r20vniG+e1xkbGIj45DQkw8kmITsGPrDpWRYbCxZct2XqutzAlxcHA0vEfMV1992dcnJ72h7ENVzCNi7iEdonxN8CH3CeWr7Hfdj8ReNpLjE5GSkAxvZm/Ra6pPYhobVJOhzDunHEJlbGrRgkVv/d6gwGDejw8fPlLb2Yw+ObUp+R5vs1370+mrVqxGSnwSzjE2UpNSkJZ8DuHMd5/65XSVkUGwMWH8R7yGT5lfGxgUamRPkZ/Rn854mw9JrKjtPXyfnOYaU9pzj5OT0f+UIxwXFYv05FRkpKQhMzUdSXGJ+E7KE1UZ6Z8NXaG+Tw3f7p/39NEJQ53v1DYfnsj62NTYuWzjkk0V6B+ArNQMZKdlIicjC7mZ2Vj+4wrVJ+kvRsV0g65Ab8RFU0s7Vq5842sIfUG+oalxW7KT6XPqGB+ebP1pO2eD/pryOeov4oP8RfLh6blxvT5JTkY2YyMHmqxc5OVosGKZw5hnxChGxfQqxWrl2tbG5gt96jIofijrBBJ1zL4fG8tUpmitVvShHAMmcd7tjLxsDbQ5edDlapGfp4PHQY8xy4h8r8QAxaREbStJnq7IyNeQuVDOSUPRCSL2IuyE0b4+Iq8FyfE8um/hS8hxcGFDCZvUVF0hC/1GfzEusU4lhHRGvkaLAsZGoTYfRboCHHE/MuYY6Y8NeZ+QPO0bNkQ8/W3zGLW9KfMZ8dTVdc3wP62zj3a/XcS5le1Ec7qwU4XfTdwQE+K99J6hrh/Rd1D79tc/ZCtT38q6ZOXyVZyL4vxClBQUQV9YDM/DnmOGEfn+iA3yL+S9CDVaY71BbSivMw003k3xRaj/5f4mNsZCXIvaiMY93bu4X+W902tC1wzUXqb+5tv0O7GhtA0cVqzmXJQWlaCsWI/yklIcO3ps1Me1jONUk1BeWWe0F6FGW2hgo792G6x9q/LR/zwuYkfCpqJxa0k+TPEPaT2RxGBPO6xBGeOiXF+GitJyVJZVwIn5KKOVESUbebpio70INXlv2KC+HErO7WA/Q/0t21dknw2WrdFiX9H9UzsQG7J9Rc+LvBHxXhrjZCOZ2hemzDlkI5DIfuCaVY6ci6rySlRXVKGmshpr16wbdYz0ZaPIaL/zXAUb1EcklsxLH2v+ubB1lH74SPjnpugb+j1Z5ziuXsu4qEJtVQ3qqmtRX1OHdY7rRxUj8j0EBIYY7eucqykw8jdo7hJr3ZZmRBXrEcFGf/lcpDPqa2rRUFuHxrp6lDNd9vXMb0cFI/K10761hv3OL11FXUOrERvHvTxVRlQ2+HM/bd5sFNfavnUHmuob0NzQiJbGJlRVVOLzyV/adExLvuaNm7b2ctFzRgad/SL2O6d2UK4XqYyoekMZ+z3p64eWpma0MhuwraUV2ZnZhvnV1vgwiuMyDui8sZ6zY3rOVKIz+cR7KYbbX56hysjYZUPMm8oYZmJ8As63tuFC23m0n7+AyPBIm7SzZH9cX1pldKbSzp1v4nTviuHKjKg1TmOHDVnkWqsJ4z9EblYOOi6042J7By51XMTuXU42xYh8jRGRsUbnU/r7B/WZI971fcSIiNfLz1N8Us4HpTYX8Xy1Fso2+HgXG2KMyDkU38z6Do3MF7l88SKuXLqEzstXYLdosU34IvK17dzlbHQ+ZVa21mAv/rjUflC1G28TeW2L4o9kg4l4vlpzbv1iyhxG+kPO11q5YhXj4jKuXrmCrs5OtLW2Wr0vIrNLvrd8PmV1TSM+//wr/pq5/AiZj4HWgdVxaBmR80bE+joJrSOK52nO6u95c8lxnxPounoV17q6cP3aNSRIOUbWyIjsc2Tn6N6c23r+Ij+nUp43TM0pVPmwLpHbV+RzifV4sdYuakREf5u6Bj9Qn8t2QVFBIW5cu47uGzdws7sbe1z2WiUj8rV4eh5nbFzi+yrQmcZ+pwKM9KTwKYZaryRYUPmwDj5kX1DoDHrOXDmOwuag8aLsU9qTvKO9Hbe6b+L2rVu4zPyRL6dMtSo+ZLuKzjIWZ323tHWgoFA/YM4h3TPpaVNrnEQOCsW1BBP0HbL/Iednq2I+EW0q8yF0A7U9PTY3HzSH0vcLvUH7cZD/Kl4nnXGHsXH39h3cu3MX2jytVekQ+RoKi8r42cgtrR1obmln92bHn39bnjqNbVNrZUX+mxq/Gnm9QX2ltK/EY5kDc/Ah16coRY7vpCSn4N7du7h/7x4e3L+Pfa5uVsGI/NuurgcNXJAcPuJleE25X9i75ghVrFd/kJ6W9xOj+Yh8DRr/9FfodPqf3kt/SZ+bkiMt7KmB8iJpLMl7B01k/5Ov/uCXX/DwwQPcuH6dP2ctfFAuTHMvG03NF6DLL8b4cW9iuYNtE3X/BNtghNiQ7VfqN3puoDUqU/pV1OMO5jOzZs4yrI3sc92PRw8f4vGjR3jy+DEyMzLfqw6RfzMuPplz0dR8Ho1N5zG/164yhY+xJIuYn0ZrWh6HPHDE4wg8jx7rsSVi41CqL0VYaBhO+fnDz+8UTp70w+7dTvjRfjmzKaaPKT/nXUJ2ibx2WFhYiF+fPMHTX3/Fs6dPYW+/7L3wIfvky5Y5cDaIi8bGNgQHhxl0oMrGPzD3+/m89i3oTBDytTqeP0S5EbTue+PaNdy+eRP3797jcx/168sXL/DHH6/w119/cnn9xx/4/fff+PPPnj3FkyePkZ9fgNP+Z7Bt644+55GPNZHz976fPY9z8fzZM7x4/hxNjY3vRYfIv6XTFTM22tDA2Cgtq8Lk3rxjZf7lWJFxH0zAih9X4riXD99joJzpA6p/o9qe5sYmzkdpiR5pqWkICT5rpD/2ux3AhvUbea6qrD/Ky8q5XhF8PGQs3Wd+6J07d3Cz+yZqqmv4ehnlXoxFPuRxdjY4BC9ePMfLly/w228vue5VzukjpTu2b9/FuWhoaEV9QwtcXPYZ3tdfvHo0y9LF9jh80IPvBZjH7p32qSE+0s+lwZuN/W3M11wwb5EZxsM0rHVcz5nS5Go4H7R+fLWzE5cvXoK+uASeR44xn3DKmLHFKCYg1gk+nPgxmzvucZ376tXvbC55wJ8bKR0ifmP8uA+ZvqjmXFA9h15fyZ8TcTmRnzma41J0vsXa1ev42Ui05zLtJ0t8hAaFYMO6jey+Z1r8GiZOmMT3M6Ax0tjQyHNbqT6CdFV0ZAzsly4btWwQE6I+WF7zcmd+Hdmor1//gT//fM118UjoEPn7XVzcUM+4qKtrRm1dExwdN/SJz8k1zNR/o2XNbhKbj7Zt2cbPAKdzXxKi43A2IBibN2zBJx+/X5tyxXIHhIWEcT7qa+tRU1WNTMYsMTRauBDrKfIeAspY8PXr17n/9p///IVff30yIjpE1h2kL2qJjdom5OToDO+h2kg5j0R5H7a8JyjpC4dlq/gZrXT2JPHhsd8di+2WWN21kn3lcegwigqLUFFWgdJiPaIiojD7u7k22/4i9qucd+WxJx47OblwNkiIE/LlLOmrG+kO532ci5qaRlTXNMBxzZs9JfpbBxR7Gov7ssUzASkme9rXH0GnAjkf+1xcjc5ktVahueznXU583+ei/CLomF/kddTrves5U4VsdlErJ2pHlPaIsmaiu/sGZ4NsrMePH1lUh8i6o7i4vIeN6gZkZ+UZ3qM850EpxDrdoy2tA9JZku4HPJiPEY6QgLPwOnwM3/bWzttWXG0iDrsf4Xxo2NhKYv4S7TFlK9cv9hx6V+4prauLeJbTz86cDfJDSCgWaCk/RHyf45oNnIuq6npUVdVhzeo3uuNte+XKvomt9Mm8OQsQFhyO6PBozsfqFauNzrq3RZk2dQZCgkKQlZ6FtJQ0rkvk880sNbaFHUT9L9vc9JieIxtD1g/K/eXoPYOxzZVrCtevX+O+OsmDBw8sYmPJ35Wdnce4qEdlZR0yM9/URx5wcx3Sd4t8NyHC9rJ0fc27ZI+zKxLjkhAXFQ9vTx980VvfNVrkp81bOR90BmBESAQ/Q3Mk+FDuXyn2cqQ+Fj622MNxqL8nn6Hw824nvHr1isd6KeYr6tUtwcfSpcs5F5WVtaioqGG/7WKS7uhPqF3EWomcq2OJ+ppB2SFsLj3DfIxzSamcj61bto8qLozs9SnTcJbZjAkxCYiJiIGdtK+MpfgQezaK/hb7VyrtpuHwodz3n/IWiQ1aL+zs7DSrDpG/IzwsmnFRi/LyGuh0RYb1jqHqDqEnSK+KfXCF/WXO+prBytSvZiApIQXp5zIQExXH7avRyoaQnnNlD3A+SI9s/2mH2b6b5jqxfifbV6JWh0TYV+bkg4Rym4QO8T1xEr+9fMnX1F+8eMFz2czNx+TPpqCCcVFeXo2ysip4HvV5a8zKFBE5oUKXvA8+pk2diXPJacjKyEF4SOSYyQUUsnbNes5HSGAIs722meU7yV+guU8+Y2Ug+4r6V9hXpE+Ge1akvO8Jxa0of43yTp4/f4Z4M9aqi8/vd3NnXDA2SqtQqq/EjOmzDHME+QxDXSNXtp0l6jMHw0Z6aiZymW8VxOyNcRb2V61VKIZNfAT6B/K1TnMxIvvbQ/XPhyKyPkqIT+B5i5TD9vTpU0ycOPz6EPmz6WlZbCxXQq+vQEy08foFsSFqW03d61u0iznra0wRuvasjFxoNQUICQ7jcdCxyIaQhfPtOB/+vv7YsG6TzV0/sUZjhewQOd5FeTaU20s50rSeTrmg5uJjyeIfuc7Ql1SgpLgcqxx64uaUf081Ksr5QulLDGaMmqu+xhQhHZibo0VBfjHCQiPHPBtC5s9dyPnw9fbFOmnt15pF2DE09oQtQ/aVPD4vdnTw+hCqn6qpqRmWjSV/5ugRL5SUlDM2ylBcVGoYR2TjDeR7iFwAa80nodhCXl4Bu58yRIbHqGwohGITxIf3EW8ssbPOOh6xJiLGmXI+Jj7kc6m8vXw4G1RjSPU2X06ZZhY+cnN0fBwVFZbixPFTBjaUusOWJD4+hevElOR0lY0BZM7seZwPr8NemDt7vtVdHzHxrhoKmr9F3gnVBjx69JCzQXXqZ04HDJuPxT/Ycy6KCvUoLCjBD3ZLbZ4Pby9fvn5D+kPdE+Idca3V6zgfXsyG+Pwz26spITZoTyDxf1VVFR48+IWvibS2tAzJxpLfe9jDk3GhZzZ6Cfdj+9NbtiT29it4fgzxQX6VysC7xXmXC/x8/HBov7tN5tfI64W0988v9+/zvYBIZn83Z1h8ZGVquP+aryuCD7NHBR/y/iq2IlT7W6Kv4Hwc2O+hjv1BCvU36Y+g04HYtH6zzV2/vB86+RzEBe2XdffOHezd4zpkPqjenbjI11JedCFW9O6jO9z1wPclMTGJvGYlKSlNHfcmyjdff8f5iAgJt2iuliUZF4+bm5o4G3du3+Z1/abaWOJ9e1z2cS60zE7XavINfqzyfDhbkHXrNvFaeeJjpg32rzUI1UwSHwGnztjctcs5UFRvS/v13r55C7du3uQ1yoPlQ34PrQkQF3m5+Qg9G2543tbqZGkP4IrKOs6HvIeEKqYJ+R6kQ+Kj45idZXtrh0IW/7CUc0F7vnff6Mbq3joYU/ggXUFcaHJ10ORosa03b02cNS/va2/t7eG67yDf21HL7ER1nA9P/p+9826LIlsaeH2V+9z7bvDuvWt23V1dc8acXTMqAqIiIDmJICBxYGCAIQwMOUkyEExgzohpXd3s5ng/wHvqSPUeeycxNEO323/UAzQTTnefX5+qOhUwxhf5KDIVqj4HUdwfwdgMMQb8yaPHvC8C1iLF+MWh8rGEXQfkAmOS6mubYPasl3a+2DtOzAPG78Y9c7X5S7EvD/ZaQD5WrVqnz3EFJCYyBqxl5XA46LDqxobxSriPTnWCRUFG6HW1NbXw8MFDeMhe19bS5rINQv/fHxDIuaivaYS6mlf7xCEDIpfycQw1BmskJfV4JucDa6Dqc1sZmTF9Fuejns2x8eOGv4bIY09t1aZ2li8n1pQShWLp5XoO1gDC3lMD9wfgfv99l/qzif9LTkrlXGC8d9LRl3m7tnruouBYcXw4blu9N8RzE/PqKf5fflwpwZw/7A2KfCxauFSf2wpKQlwC5yMiLGLYnyXP9aC6VuIxZ/lypNfg6yhOVj6fcJ+Q9rSx/vEA4+L+vX7ov3dP4sdVPuqqGRtV9VBTWQf7/PZLPjJ3/FY4booFEPUwMY8MOVc6Rvfw4UjOR0mpVZ/TCgvWqEA+WptPDDs+x1YulLwWlLN8B2TBmW4vr0Xaz9i4d/ce3LtzF0IPh7vMx6yZc6Gmqg6qK2uh2loj9blB/tzZ+xBj+ZFt5EB+jvIeaUrIxb5rnI9tCuUy6PKqZLP7hXz4++5z2362x4d8DVEqH0ismY69prAm653bt6HCUuGybf7xxi2Mi1qoqqiByvJqyU/hrM+Ns2tBOR3UL2Ik+dixYw/cujMAHae69bk8QrJm1TrOR2WF1a35QGuEvVxasS6iUnyIcR/paRlw59ZtXk8fa006s9HpuL9vADvnasZGFVgtlZJu5W48otgPWOyBNpJ8mApKOB8hhyP0uTyCUltVDWdOnoIF84Ye34tzgnIGxblCNqnok1UqXw6f7/SM9/cL4PWKbzK5cf0G7/Pkig8rIT6Rc4E1PLC2jSPb3BUhPxedG9lOlDdI+ZZK5UFNnvw+3O1/xPl43eryqE0iIyI5Hwnx7s1Xyo0TmSGbVJ4bp0S+HM5hiuddvMgLbjIubly7zvtOLB60I2zxIR4rMpmhgtm05aUVcHD/IYk7d2v4iOct2lBUl0F+fLiyc+cezkdjU5s+h0dYlnot53x0tGnvWqNPF7m4xuTqlauSP8AZH8iFpaQcyootUg4yxlyJcfRqlsKiMs6Hv1CfS5eRk+bGRjh/tgcWLlis+rGiDysmMlz6G3tBXGX6y5VLlyE6KsYpHxinaSlmbJgtUMrmGe4Fae1+9Q884XzoupVnJC4mjvNxKPCQJsYr6kHFRcVwue8yXOq9BEUFZqe+qwXzFvO6gSVFpbyuHvGBOhDaTlSnBH/Sfo2a4hW9vFZwPjq7zutz10OyccMmzoe5qEi1YyQ7B3UosReNIcvA2OiDvou9bB1ssuvDor+3bd7OuSguKAazyezwO8l2IGbUEHsVHhHD+cjIzNHnrodk4vjJnI8rl/pGfSxo54rPcPpJe25y2z7wYBD0Xujl/l3sEemMj62MD/MgG0X5L58H6LsSdTY1SxGzmZCPfQGB+tz1oDTU1XE+0Cc02uuEs9egD4vyCQMPHGJsXIAL584zxs875SM6PJpzgfVYE2L/rCGqlXyonnN9nI8lS1bo89aDkpGWzvnw8/VX/VjF2qML5i/mXJzrOQfnus9KNZft7YFEhUVBobEACnILIGJwbw33BbXSy3zg4VPOhz5nPSsHDwRyPuJi41Q/Vlw7aK97wfxFvEfj2e4e6OnqhvmD+5z2+MBeSaZcE+Tn5EN4SLjEmxZq+Xh5reR8dPVc1Oesh2XVytWcD0tZmbb4YOtFT1cPdHd28z6NtvgQf89Ky4J8Qx7vl+S7x0/6PC3oV8RHZXWDPmc9LLj3gXw01NepfqxiHDrW0exmXHSd7oTOU2dgn1+AQz7ysvPAmGXkvVk3rnvZExj3BbVQ7yoiMpbzcTQxRZ+zHhacZ8jHrZs3NGF/iL1uOxkbZxgbp0+e5jFZjvhALnIzcyAnwyDxMdzYEk/zER4eo8/ZURCt8CGXM4wL7H99qv2kFKtvjw/kAvu0GpietWHty7gxrcSW6HzofLi6foj7FafaT8HJtpPQ0dYBfnv9HfKBbGQzNrKOZ8L6wXpwSgjFMFPeoNgfRanvMOSYOB8B+7UR5/C6SU1VFefDa8nSYc8TFOrpTHmztLch9tcRjw/VBqHfkYuO1nZob2kDXx8/x/Y54yIrNQMyU9Jh/er1/BjuOYo9Zm2JvI+B/D14LpQ7SD1qKUdGqRpBdQ0nOB9eXvrex2hIsdmsKB/4O8WB0D44ziuxP5vYf4xE3hPZlpiFHmvIRduJVmhtboW9e3wd8oFcZCSnQfqx47BusB4Ozl9btSFEkY+ResgR23Te8jwoZ/3edT7+3nxQjB/VLXAlr05cX+yJ+BnIRUtTC5xoOgE+ux3zkT7IBudjcP0Q8zTsia01Ds+HWPckH+sH+1vpoh0+aA7I+ZDXt3GFD3mOlS0R47BaGBcnGpuhuaGJ8bHXIR9pSamcDVxDyP4Yzv4gco9rmciHqF9RProS9yeJjVu3z0dPurs6OR+zZs4e0vtoHiADcj6IG3zWUg0cUb+iXn5D+T4xxxaluaEZmuqboLGuEfYM5rvb4wO5QB0LbZANa1/yMZz4Esqj9YR9rvuvtOu/IkYc2ef0HB2ufY57eeJ+HnLRWNsADTX1sNt7j2P7nHGRzWx09O9uHPTvoq2vhZ4GOh+6f9cdaaith3rGRl11HezaudshH+jbRR9vboYBNgn75+J+o1pl/4Fgzgfm1+rz1bMyccIUzsfFC+rPS0NdSKzzg1zUVtVCTWUNeO/4Kx+iRIdHQW6mAYxZORAWHKape6THX42eUPyVFuITRXn/vQ+hlnFRY62G6ooq2LRhs0M+woJCIS87F/INRogYrLmolfVjyuT3OR+Xr93W56yHZc9uH85HntGo+rGi7UH29KyZc6CasVHF2Kgsr4SZM+Y45CM8JAxMOXlQkJsPkaERmrI/UCj/g+px6+Ih2y8sgvMREqy+ngdyQX8sxe9iHWHkwmqxQkVZBa9PYosPqXaijz8U5pqgKK+A61l4DNnQSn5Ua/tpPX9wFMSUl8/5WLtG/T1WMF+D8mtXLl8NVsZFRWk5lJdYeP9OR3xs2bSFs2HOL4LiwfoMyIe9+Hbai0FfnBrqM2RlGzkfYWHR+rz1oFB9hsmDNTpHS3AOOqung3OZ9vN2bNsJ5YwNC2OjrLjsLzzI/8Y982JTEZQUmKG0sBjGvjuBHxfrlIg/ac9GLX2jvL19OB/WSvXn6bwugjl3yEd3Z+eojwXn4VDql2C8FXJRai6F0qISp3xgvSvkooy91sLeM/Ojl/WvtNKTE210qg+nz13PSIB/AOfDkJWt2jHK61/R8djoOMbFy1pv0RH2982Ij/fY/EIuyhlTFWzNWblslWSja6WGCeafIx/rBvdvdBlZyck2cD62bN6q+rHKfU0ZvB/vy3pWIbIYdFt8oKCdYmU6GdotOwd7y6C+5m79dtFO8UR96oSjKZyPtHSDPn9HWLB3FNanRj4mTZyi+vHK9yrMvBdvERTmF8LmTVtt6lbyY8ePpUKlxQpV5VZIPJI47DHJezdQzJm8v4FScbwYv4t8YP8ofQ6PrKxfu4HzYSnVXswC6uJFjAus9VZgLICli5fZ5UOUqPAoqK6ohBprFZhy86XjR+Nj3RqH6Nuy1x+H7Cilzr3v8g3e/2PtWvX3Z9eypB9P53zs9t7t9meIMYmY70Hxq9Qrhp6xw80ZRPHfu1eyE+bNWcC5oHpW0z+c4ZAPOu69YxfUWquhrqoG6qtrh30N0SYivwFxMNL9o44kHON8HE/L0ufxCAn2dsb+asjHxAmTFeED5wflolLfY1dyBl0V0YbevHEL5yLPkAfGbKNNXcoWH9hHp76qFhqq66Cxth7mzJrLj6P94U6dH+pZTT9dzXMZjsycOZfzgf05J+l9DkZE9u87wPlITjo2rM8R+cB1gdYGmiNKzRW0y0XbA+sf5hmMjI1ciBF8V874GD92Io+Fx5j4prpG2Lp5m8SeO3EmtnIE8Zkg9ne2lcM+XLFUVHM+goO1UVtbS/LWm/+G8lIL52PZUvdiFWzlDOK8J1uV+ncqxQf6rsQ6POmp6ZCblQs5mTngs2uvU9tD/B/a5831jXCioVnqAY9sOKrzg9xTb3PxuDxfXuzVKc+fVPIebt++m/Nx9lyfHo+lsOzc7s37n5cWl7j1fns5g7bmvis5g8gRzjOyV2wJ+mBJv3qXfT9yYcgwQHZ6trSP4cw2J0lg39/S2AytTSegrLjUJh94jjge6r9J9pPS68BwpONUF1y9fgeCgkL1ea3g2mE2FXI+hhNvZS9nkHq5ijqFM/sc9XZ5/QWqd0KvwRhCiitBG0KsZfXh+9Nd4kPqk7NlO7Q1t0D7iVboaGlj3E2S1gjklM5LLjhORwx7WrZt8+Z8dHVfgDFv62uIIteU6dvWsnIoyDOpZkw453Beis9pEvSD4bwUn9t7vH14relMxkZGaoZT20P+f+QJ6wJh3ayTbR3MNt8ojUP8buSE/FFqvZ9t7Wfg8pWbEBWl/tr7ql873hgDRkMu52P1yjWqHCM+w5EF1Guo9gHNVXpNfHQ85yI9JR0CAw4NmQ8U9F1hTVKsTRobHSutifi91MNcC/d00aKlnI/evmswXYP9RtUkfj7+UFxg5nvIWhkz6lhU/4TP4XfGci7SktPYeRyHtYN13lyxPcTXJCclc99256nTUFNZ/YqfTAv1ql/1EVg4HyZTsT7Ph/FcRn8o8kF5RFoR0e+6cP5iSDvG2Eg6DqmJqbx/4lBsc3GfsIvpbd1nOqGns0vaX0Q7RyuxiiSTJr4HZ86chfMXLrO1z1ef70OUN5lehToJ8hEw2ANASxIaEiT9jn1tUpNSIeVoCjunIy7rVvLXIVc9Z7rgbFc3nOvugQMBB6XXaG39QPFh1wX5aGf2yLRpM/V5PwTZsXUns2UzeLzrW2+O0fS5JMQkQPLRZDiWcAy2b94x5PeLHJWVlPG+hed7zkEFs8ls8aglMZnMcPZsL5QUl/OeLvrcdy5zZ8+H5IRkzsc0leTBDUVwz5z0HdQLkxkXSUeSICk+kcdgDWXtkDOCe4MXzp7nvaF7z1+ESRPUH8PsSLBOU3vbaejqOgexMUf0+e9Exo+bBJGhkZyPLZvUn9/hTHC9SIpPgsS4RDgae1TSg9zl4yOmh/SevwB9Fy7CpYu9Uv13zG/XQs0fW4I9fZGP06e6Ycf2XToHdgTnTkhgCMRHxUPwwWBNngPGC4p72rERsZwL1LG8hXvvLh8oWNv6cm8fXOm7BDVV1S69H32/6FNTMuZQSfHe6cP56GC2yDo9Bv6v9jhj49CBIDjC7NfIw5GqszdxfuF+oLN9N9HXOmPaLEiITeDnhMzPnTXfLTbkjAQFBsOVS5fh6uUrcO3KVZgxmJMur/OLgr5mHDfukailZoM9iWH6FfLR2tIBXkuW61wIsne3L9fRI0OjYPzYSaocIzJC+4D4U74fhzqOuHagfkhsxEXGua1byflA3yhycf3qNbhx7TrExca/wqezcapZoqPiOB9V1lr4YOo0nQ20Z3fs5v5P5GPCOHWyIRdcR/C5jELPZbFmAv5OXKBg7oe7upWt96Ef6+b1G3Drxk3oZbYIHae4F3fjS/D9FAMg5ouJte3F40oL5k/nGQugubEVGuqaYPUq9dc3GzGd6o0xsN9vP4+7QD7mz12oyOfai0cX49bFeWCrH9lQ1hR8L8V4SHrNgiWcC2TkCNMbPhr077vLhpyR7dt2wu2bN+HOrVtw9/ZtHt+sxLXD60PnQfli+DteK1qH0I5Rsk+ILUaOp6RzPmqr62HVCnXGFY2kYFxVLFtLMd4b+Vgwb5Finy3ygfoFxeZiPBTeZzwmxrWiji7G9LorYuxu8MEQrluhbR4m5AMpxQdKX28v3LtzB/rv3mX6SKV0HGOG3e0vRXHIVH8OrxMeF6+PPD9mpCQ0JJzzUVVRDb4+/n8bNrCmE64XmGeaeuy44j58OR8UJyjeV3kO3XD4QJ1fnI9Tp3zA/VXo0z3GdMbVK9cqwgZ9Bn1OwpGjjI17cL+/Hwbu3+e1r2k87sabiLVNkA1ifjT4QNnnf4DzUVFm5c9TzHV4ndlYsWwl5wJreOC6oWR9ULyXpO+I+hL13PMUH7t37OG2FO7hpCamcN+cUnyInzNl0lQY6L8PD+4PwMMHD8CQbXhlDaGav+6sH6KNRdeH9Ctafz01Z1YuX8P5KDWXQW6WUdJVXyd5m3F/6GAQr3WGtQPR74k6lpLfgfeNci9EPqivN+WVyvVs6n2sBBv/eWcsjyNJYVxgPOJw9jxc0bGyswzw6MFDePzwETx59JjXEKJxucOH3D6nGGRP2ed2dQ62JmemZYHZVMxrwGCdvDff0HbcEcnsWXMhP9fE6/ojH3sGc69HQvB+2rK3qWe4q/a5qz5ReS11jBtD3RFj2TNS0yXdUSk25Iws9VrOuHgEnzx+DE+ffALG3D/rooh14x35FtSUX+jQZmXP2AC//ZyPvGwjs+0SYPbMudpdM956h8cLNdY18H5iWDsQY721MHb0RznrBY4+XHHtwDyPNOzFnJLO8wSDA0MUXztsfV5DXT08/eQTePb0KTz/9FP2rH3JBNog9vgQ637hTy3tkWBcP9p1mK+cmZIBgQGBUr6yFmTM2++Av+8+qKupgxNNJzgfIUGHNWNbkb5Fa4u9vWf52rFuzQYeU8l7amYYpNhKpdmQM4L1XJ4xLp4/ewafPX8OpnyT3TGijSbPrVdT/QZX5b/jfMF7zznOB/aHz07LhNCgUCknRp1c/IfnJLQ0t/Ac0PaWdjDmGGHOrHnau/6Deauizo26CD1n5c9m1IXR5jBkZDMbMgdChV6aI80HSnNTM3z+2Wfwxeefw5dffMHG9sErdoiz89GaTJj2ACbP/AWmfJACu5iNh3wYs3J5r62YiGhYsVQ9/bUw3iE6MgZOnzwF53rOQteZLmZrWGH9axBnZut5i7qJnA8fdiwH+8xiL82cPKe1Q5VmZPmylZyLr778Er7+6isoKiz6i9/C2XqoFfn32GTOxqSPvoB//GOs9Dzz3e3L+cBeQtgPAvsKYW7daMSpYH2vHdu9wVJq4bFAl/suwcXzF6G+th42bfj4tfO/4RwTa5UgM/TsxdpWWPcNcx2xfnRkWOSIrx22Pr+1tRW++forePHNN/Dtixcwb+4CiXGqF6HmuiauCPKAXCAfb71z4C//f/e/42Hrx9sgOz0LqixWqKusgSb2PMBeRNFsXcHnyEjlYc1metLBA4egprqG70ndvX2Hx/8gH4YsA6xSaX0RJXUu1EnIh0zHA/cHQj7josBo4vXZP5o+0yNsyBmZO2c+vHjB2Pj2BXz33bdwiq3nov/OHX+v6u7BxHLOxvgPrjpf+xcsgcPM7q20VPC6eidb23lti7NdPcwmbuS+8eCgEFiyaCl4LVnm8hjen/ohn+t+zMY+Ep8ALS2t8BnTbT9lNuCTx0/4XhTy0dzYBP5++7h+9TpzIfdZiTV7p0+bwbkozC8Ac0ERxEQ6r6s7kmtIsbkYvv/+O/jhh+/hxx9/gG1b/8znxVryWr72//q/hZwNlDfeWjuk9y5l8z84MBiKC82cD8y/RJ0HY6Bv37zF4xAesXn99MkT6L/XD61szne0d8BpxlNXZxfcuHEd/vjjd/jt11/h559/gh9/+IE/g7755mumV3zJ+bh39y6UlpTBAfa8nDLZszW4aW9c9DFRLWXxdXRM3vdPKcGa6WLsRkJcApiZnovXvdRcIvXP9BQbckamvvchPH/+DH766Ud+HwcGBviepWTXsrFrsZYDyripXZwNXEOG+1m4z7DXx5f3uysvK4duxgDx8dmz59yOQx0VOfj11184GyIfyM3JjpN8/dj88VapD/FoibgXQXt7YqwQHkedR+yLpHSunDymad2a9bz2EOq2luJSKdd1NPlASUo8Br/8/DO/r7/99isYjXnS/7AWkCs136nngVrYeHPMTskm/+c/R9bexrm+YvkqWLliNdejVq9aC2tWqzvOXuSD+sTS/yh2St73xpUYuqH4/kX9BPdy8nLyeK1ojAkoMhVK+zueZsMWIw/Ys/B39oyg596C+Yte4dwRI7j2oo9rKGsw1X6XH1MqJoX8uei7+rvo8u7yITJAuaNyPlyNMSX/raN9AFu9YsNCwsDCdE2ssVNZXsGey6ulOTqafNB34/MOufjf//7gcuP6del1aKfb44Pq0g91XwRfL/YyRFEqZ4T8ucgI+XN1+fMZhLaGyAdec5zXeJziJNzlgz4PdTN7+gTOJbFXLOquFaUWsFoqoKqiEhITEkdNr3K0huTl5Uvrx++//wbJx1JeOSd5rrrYS8vdeyVecyVi4p35c//uQntb1NuIrjX9TfXL6XmFf1NcNq0rQ7m/8j4f8jjYl70Wingv2WprFdRW1cC4sRNVwYacEbTLHz16xNlAXQttkfnzFkrnRbFj+JwRcz3cFfkaogQf5M9F21znwT4jYp8jetZRXqA8H1Se2zMUof4ypBfIY2B5L1lr5f+3d97PUV1XHD//SX7ITIrjhBkbsA0GbMDGVNsYMAiEGkiiBUyMbNMkod4L6r2gtpJQ76hLCFEMJiHGjmOTmZCYjBMy8eTXTO73Sme5+/R29Z60KwT7fjgjWJbV2/fu5556zxFc1FJ9rY2CD4QsGt2hZ2ft2LFLcoG4C/x1bTxL+33doe9Ve3c+Z0YQw51rPNcSz4mz/XSfj6/sm15fW0eNtnpKVOyVxcKG3vVkZ+fQvx8/pseP/yVjk42Nlx38L3cwoZ2B4g7/3J3xXEs84/vwn5EzhT/eUFdPl+txJrpKztN92j65UTvrmtCpYAN5kX/+8AMdPfqk57de36ynLfA1Fiqea8lPTdkPiFWp/vgvf/EryhSs4JxFE2ZkXm6SuY/Fqjv07Cz4HQ8efCdz6sh5Ib/O9VlzsXc9WRMPn9yK5y6cwB5G3tAoI9p47qdhnwkuGmU9TWtzM509fXbRs6F3fdAZ4AL1J/949Iju3L4jdMuTOK+R+hM+nwnxVP7QiucurC/Btd1GGMEaUf1xzBpvFvZ6a1MztbW0Un5unjwX+SywocdISUmprBt69P33sn5iZHjE4b2uZlGpbJiNDRoV2FIcz0XO3FvXLNf3cR2DKryG4Tvq1ViZFXzObIzo5QDXr3ubWsBFcwt1tKKfX7247tWL2ucwwsjoyAj9XbCBOvi/PXxIhQVPzopgb9DrDeQJNtSe2fiJv3M81yfoocPr3ub3qj1k+DyFOq8e94XnLvNPTzKi9TlWrlgte6O3t7ZSZ3s7dXd00p7dPs+MXeXKF3lR6Iivv/qKHgo2cJYKtXjavI/qr3tKbyBGyL1m8LOl/YE9nvvpZ0XydZ5Z7618YJ3ivmtjf9p8ubv6G+oxgrWg1lvAfiovLaPOtnbq6uignq4uOqbEe541NvQYwVmR+19+KWuzce4Q53JDlfpK1iGetKnUZ4yfoR/9KNmIjP+v/T0L2YtuMfIBARvYP1Q94c7+bbMxovIBNuBjdLULLjq7qLe7myLDI595NvSu/1DoEcnFXyAPHsjeDqEhhxzWpif9DT6TiWedV/StPZ77nx//55V84H5wX1fmA36IygqfAfUUH1pG1HsPNgry8qm7s1NygVmxZSUl9vOYz5rPYYQR6Axw8R3k229lHxT0Q1Fjf3Nhw4jPyD2QtfHcp9XL9GkLr0swoGdfcV0V3sd2KV7jfcYVd3O5Fv5d/Fr4uXBpS/X19FB/X5+wsUqfOzb0GAk/Hym5+PM3kG/ozu3bsqefM99sNlFnvxvxP3b6tNrjuXide11yvaN6lsEbGMF3Vu+fWjfF3DAj2horPcG/af1LVwJ7SnsWO+J8hDybfKW3lwauXJE++dKXlz+XbOgxkpOdK3vM/enrr+UZ6s9v3bIzwrE92KCzna3ieVVG41fRMcV2n5zjuWxTeGv8yhOCZzJbLRGeM0Qb44d/wVwM9vdLnxznyp8Xn8OIvw7JzsqWca2v7t8Xvvt9eWbkQFCww77iqg6FzwmYuYYly5us+twFEjwbV3uN1k5An8cLEZHSlgIXw4MD0vdQ+4M/r2w4Y+RiZpbsd40eHH+8d4/u/eGeYMRxpizuoZ4ewf0301dLrc9F74W5+Dh69druqOOer42kp0PVPZz79WntJk8Kno0zX1I7+xh+BXzvwf4rNDQwQCNDmC/cZe/N4w1sOGMEfW8wMwGzE9Cn5vd371JQ4AGHfQb6V7VR2Vc083vRo2c+9bnOZvlwDz+8jvWwkLMYXMUU1JgT1/vzGSb45XPl2MyexPfK1bMEG/C9p7gYpNHhYeGTd3slG84YyRD3EH1u7n5xl+7e+UL2OktNSZuhR/TuuRFZ/07SjB6Ic12LvMZ4TZqNf/F5VL3PVV9Xe+a4slOM8KHNcczWC93ZdYN/9RyzEVH3Mm0/HvgVDTabsKXAxRCNj45I38Ob2XDGyG+PHacv7tyRdYy3P78t+0Tl5uTJ3pnaZ2TK51iy2l5jNZ/6XNYNfCZrrnxo36PXB4djr+qcPr01yfVS6ufx+9zNBwTXgu9rNsan54ughwd87xHBxdjICF0dG6Xa6mpatvQVr2fDGSOBAUGSC/TJxLzcm0LqbfUzegJqz+i7kg1bqhziuXMVbf7dXXzo9cHRrme9Xq2cn9D2ouAYtSf4UHO4Ruwzjt3KWjeFj+CDIdLHGBsZpnHBxcT4ONXV1oi98NcWGz9xHfvdvGmruHfDctY6+g2in+xg/4DsC6XGBjkG7KqP6Zo1u912ZhbrS63R4/Wm9kXDPj9b7N8VH/xvRtcz1+No9Qfv8yrPWn00n7iU9nfOiIVMx23xjFR7Cr5GTHSM9DFgS02Mj9G1iauUmJBgZ+N5zW+4k5E31qwlW52NJicm5VnEa1cnZH9OzMzT6hHsUfw8tJ+5an2/W+O5XONtxH/Q+79gx5188Odqfy/bXc56gM4nx4PPYR3iLE+IXhza2Dx8jUuVlTQmuLgKLq6Oi71vgiLCI5zaE5Y4ZwT7CeK/4OLq2LjYb8aFPh6jwvxCWqqZQayXK3lz/Um77jB6Zhb7sadmMfC+rvbghOj1wQFHarwJ+sqTMyK0dVdGdCnP31Bfh67Qxm4hIcGhsoYKPsaE4GJScDE0OED+fgEWG/P0SaAzxkfHBBujQi+PSNurq6NL9uPU/l/0M92yaap38rYP/yrZePGlHFO2gye/G+c0Vf9WL3/yNPIVZnxunkHLszRh4/r5+s54H+ypjLR08fxGpS01OYEe3ddkzAo2gsWGexjZ+M5m6u7spuHBYRoaGKKh/kHZFz05MUV3vsZc4rlce+et9xycmvn+7PtwbE17DhS9hJHHYB/j+uSE8CknKTcnxyEmaXHhHkbAQV5OnvTVBwQb/X39cnZYa1OLnEPjoM9DTlFK5iPZl0TvfOJ890+uiVzstVqcFzTa68ho7Jx9PdZvqu0ndUZ6hrClnvgYNwQXiOMG+AdaOsPDnBwMCqa25la60tNHfd291NvVI+dPZqZnChaWOdgAU+8PcnimzuxvM3WO7J8u9rlx+E5m8hXg3sh3gi2FfUe7P+A8T19vz5SPMW1L3bpxnRobGmj5slctNhaIkZdfWk5ZGVnUI9iA3QV/pLO9kzraOuhw6BF7TwtVPg2bin3p9YPgvstG7RA+72bUbvOELeSJa8V6d8US9hq9eDrs3+qqKruPcV1wcfPGJH1+6wZ9EvaJ0xiMJZ6Lb0Ewk7JR2ASdgouO1nZqb2kTuqWN6qrraJfSM0yVk8ePz+DEjG1ldk828z5tX1tX8SOzus6oLajXTx9c6Nmpy15+heJi46biteDi2pSPcevmDaqsqLB0xqLQJcsoNjpOctHa1Eotwh9pvtxMzY1NVFxQTFs2b3PJCWx0M71IOfdm9P8YXcs8t9iIvsE1G60v5M816nurcQr0n9LjAj7GuTPnZLz22nS89sZ1YUvdvC5z4qiDcPXMLFlYRmTMat0GKi0qlVyg7yRmYjbaGqmhroHiYxNo88atLtcv7IbZZsGpuTEj+zHWsNF1aYYPM32oOFdhxPdmFpy9F1yc/Oh3M3yMm8LHgC0VFXlhRmzK4mJxcbJ/nz9dKr8kuaivrSdbjY1swt6qq6qVM7j08iYQngWH3K+reT6z1VbMdR2b4QOcGj3DyjVTrs6Mc25VL7cHQT42NiZWngWf4WNM21JvvrHO4uIZ4QT+eXBQCJWXlMse+LWCjZpLNVRdWU1VFVWUlZ5FAX5B9hl1qoAP7KP4yTNLWLCvck7M6N5t1O43w4cZuw3C/UFUmwx7AHKprmo9N27YJLkY19SETPkY1yUXWzZvtWypZ4gRB07E+j8QeJBKCkskF9ArlWWVVFFaQRWCnfLiMjpx7CPBwVpdW4Pru3j9cM7YqO1vZg2b5cNMTIFrCqFz8H3ABWxJLf9sQ/nu3U+XGxrtdecOPoawpSrLyy0uniObC3oi0D+ICnMLprkop7KiMiotLKWSghIqzi+m5IQU2vXBh7TkNy85jQVx3zSsLdhj7lzDntAf3GsNXCCuAPvQWS3n9vc/oOio6Bl156qPUWFx8dxz8t627ZSWnGbnoiivSHBTSAU5BZSfnU95WXkUeS6Sdry/k5Y4sY1UPsLPnpa+Pf7OvguvP0/ywT40r3e2l/iaoP9wTa7q/zFXOkqwg/45U2f4HOvOuSYkOSlJfLbFhbfYXZANb22kUyfDpE4pyMkXbOQJNnIp92IO5WTmUHZGtvRTzp0+T/6+AfT6itUufw/7Lao9xns8x0nxb8wQ+8TMmcoHn9Pm8xPq+3kuBH82mIBfrfoRzmpqkFf12bNX9glBr+epPiFTZ1tl3blSEwJmwk6FOeQwLC68jxPYUzu376L4mHgHLi6mXaTM1EzKSMmg9OR0SktKo7ioODoSepTe3fo+rXzN+JwptS8Bz7tmLjhmpPLB+TisfbaRmA/+aSTfj9wQ+lOGfRxGxYVF9l6Eap8Q9jG47jwxIZF27fjQkD62xHtsL8jypa9SwP5Aio6IduAiNTGVUoR/khyfTElxSZQYm0gJMQkUHx1PH5/4mPbs2ivW8jZ67ZWVs+ZQPCUrV6yirVvepUOhh+UM8MryCnu/c3DBPdfsfULgY0zXnWdlXiT//f4O51td7SmWeLdOgaB2YvfOPfTZqdOUEi/YiBNsxAo2YgQb0YKNqHiKuxBHsZGxFBMRQ9Hh0RR1PoounLtAZ8LO0KGDh+mA/0Ha/t4O2irYWfHq61LnaM92GRH4TcgvrH1jPW3euEXWaAYfCKaEuATKyrgoZyq1TM9U6mhrk/3O7X2d7Vz0232M3p5uyszIID8dJixdYYlZVn7+sxfonbc3UaBfEJ355IxTLiLPRkrBn/F6TGSMtMnAU5LQOdA/0EXpyWmUKfQTbLjsjCzp88D/KRC+UFF+IZUUFFNZUSmVl5RRZVkFVVVcoprKKqqtqiFbTR011Nnk3Namxqn5lDxTSc6OARdd6Hfe49CLEL3QT544KWsJzX5/Sywxs1bgD6xZtVbql8PBRxy4ACvgBgzB/oItBt2TKuwz2GoZkotMyQX8HcQEEB8oyiuk4oIiKi0qkXmZytJyulReSdWSi2rBBWZ926jR1iDnU7bI+ZQtUzOV2qZmKrEthVlLKUnJUsegj85cv6cllphhxdU6wpws+B8fCHsqwDeQjh85QedPn5d+S1pSquAiXfr78P1zMrMlF/mCC8TPivMFF4UlVFZcKud6Sy6gMy5Vy/x/fW2d4KJe5ux4PmW7sKXSU9Pk+dWjh4+Rz+69cm6wO76LJZZ4mhetfbZq5Rop8OP3+fjKHPX+fX7kt89fxo8D9gvxCyTkMYMCDsi8P/sZIQdDaP3at+SMyrfWve3Ra7XEEk8zs9Br8Wn/fksscde6dadY99gSSyyxxBJLFpf8H1BLAQIXCxQAAgAIANqIPluS+xwVM0AAAABxAgAEAAkAAAAAAAAAAAAAgAAAAABkYXRhVVQFAAclDtxoUEsFBgAAAAABAAEAOwAAAGZAAAAAAA==</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #17</Name>
|
|
<Index>17</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPlvHKbsaEEAAAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J33W5TH2se/f8l7zvWe6z0nlphmYmKLSYydqMSCit1YjhpAEQuoCCgiSpHem3RYdqlL71XBgqjYY4stMSbn9/POPTDr7AMoC7u4C88P98Wy9Xlm5jN3mfue+fvf/oG/q/Le5G//87+DFrW9VBkL494Wvl8VVSw1TtVrUkXlYXDjbuHCxVzc9rvDzc0d4RExSExKY5KKouIytJ6/iNa2i2hp7UBzSzuXpuYLaGw6j8bGNjQ0tqK+gUl9C6Ki4pnEITIyDocOHoGT016sWbMec+cuxOTPpph07WpfqmIJJgZ6zzfffI9Nm7bCy/skUs5lop6N7Y5LXWi/eBUXOjqZXMH5diYXLqPtwiXGxaU3XLQquGgiLtoMXNTVN6O2jkltE2pqGlFd04Dq6npUVdWjsrIOFRW1TGpQXl6NuLgk+Pmdwa6dzpjz/XyM++BDlRdVRpSHCeMnYaWDI3x8/HAuLRuXrlzncvHyNXRc7jJw0c656JS4YCK4aOsw6Azioqn5PGeDuGggLhqICyaCi9pGxgZx0WDgorJScFGDsrJqlJVWoVRfCb2+AvqScpQUl6O4qAwpyWk4cdwPG9dvwfSpX6usqDIsLvp7zc5uKQ4eOgJdfgkuX+3G5c4buNT5hgvOhuBC6Aziot2Yi4LCUsQnpCAuniQZe/fu57JnD4kbFxcXkn1wcd4HZ2dXLj5ML0Uw2yw8nElYNNcZxEU5cVHGuCit7GGjpMLARXFRKYoK9SgsKEEBu+4CXTHytUXIYEx7e53AimWr8Oknn6usqDIkXeHgsBZBweFoZuP6Slc3rhi4uNGHiw6Ji6TkdPifDsI+t0NYvnwVFiz4gescS1z/jOmzmB21AJuZbbdrpxOCg8KYvkhnXJQyLhgbggtdEXTaQujyCqDV5CMvNx+aHB1ys7U4yz6z1nEDPvl4ssqKKm/VFYKJFsZEZ9dNxsXNHi6u3uhhg7gQthTjIpeNt2Nevti48SfMmjXbau5v3AcT8f3sedixfRfTPb5cZ2g1BT1c5OoYG1rGRh5ysjTIzsxFdkYustJzEHgmGGtWr+vDisrJ2NUVU76YiuMn/FHJ7PvOa7cUXHQbuCDRMPuEfPBFC5fY3P2TLbV8mQOOHfVBSlIacjI1PVxk5CAzPZsxlIWM1Eykn8tAWko63A8ehv2SZSbZoaqMHi4cVq1FLPMBrl6/3cMFkz5cMImKTuCxKUvZSO9Lpn41A7t3OSMyLKqXi0zGRQZSmX2Wynz6c0mpSEk8h2jm92xctwkff/SZyskY4GLLlh2oqmnkXFzt5cJIZxATMcTEtlHHxEBC9tRmZiOGMttScJGckIJkNn8kxSUjMTYJCTGJcGI8kb5VORldXEyY8BHc3T3ReuHygFxomS+7afPYYWIg+WrKNLg47UVUeDQS4xgXsYmMjQTER8cjLioOsZGx8GC219czvlE5sXG/m3PhIXEhbKleLppbOxAYFMbX99T2M5YP/jUBS36wxwnm3wsuYiNiERMeg+iwaEQxu+yQ2yHMnD5L5cQG41FkR7VJXMg6o6Kqnq9njHVdMVghXbHPxQ3R4T1cRIZGIjIkAhFnwxEeHIYDrgfw0YefqJzYABd2dvaoqm1C1wBcbGY2lNp2Q5OPJn2Kndt3GbgICwpFWGAoQgNCEBJwFttY2/7rn+NVRqyQDfIbM7I0KhcjwQnTFTu2/huhgT1cnD0TjODTQQj2D4Qfs8eW2C1VdYkV6QzyMbpu3DH2Ma4x/6Ktg3GxXW03C8kkxgnpDOIi6FQAAv3OIODkaZzx9cdBZnNNnzpTZeQ9siFsKaWPQTkhqn8xckIc7P15D2eDi99pBDJegvwDsMFxg2pzjRAb4jHFpU74nu7XloqJTcIXihi9KiMj8+cswElmX5EuCT4dyOyuIGZ/BePEMR/MmPa1ysgI6Ixvv52DgqKyXp1h7GPYKexer2Pe3AZQ29Fy4rrXDdOlsU+6gnRGCPNJQplvEhYUwnz5UObTh8Fx1doB5zxVhs+Gk7OrwsfoyQnxOX6qjy1VWlqG//73v4iLS1Db0oL+x+vXr3k7O6xcbfQa6QtfrxOICA5DZEg4okIjEB0WCR9Pb3w86VNVl5jZnhK5Usq4lN0iY52xa8cO/pf6i/qNRJ7fVDGfZGfn8vZtbm7h/69auRKffTrZSJds2bAF0aGRiAmLQmxENOIiY7g+mTdnvsqImewpni+lyAmhdW9ZZ6xfu7bPd1G/yf2nivlkwfxFhvlH6I4P2Tz2z/8bhzmz5/DH4r20vniG+e1xkbGIj45DQkw8kmITsGPrDpWRYbCxZct2XqutzAlxcHA0vEfMV1992dcnJ72h7ENVzCNi7iEdonxN8CH3CeWr7Hfdj8ReNpLjE5GSkAxvZm/Ra6pPYhobVJOhzDunHEJlbGrRgkVv/d6gwGDejw8fPlLb2Yw+ObUp+R5vs1370+mrVqxGSnwSzjE2UpNSkJZ8DuHMd5/65XSVkUGwMWH8R7yGT5lfGxgUamRPkZ/Rn854mw9JrKjtPXyfnOYaU9pzj5OT0f+UIxwXFYv05FRkpKQhMzUdSXGJ+E7KE1UZ6Z8NXaG+Tw3f7p/39NEJQ53v1DYfnsj62NTYuWzjkk0V6B+ArNQMZKdlIicjC7mZ2Vj+4wrVJ+kvRsV0g65Ab8RFU0s7Vq5842sIfUG+oalxW7KT6XPqGB+ebP1pO2eD/pryOeov4oP8RfLh6blxvT5JTkY2YyMHmqxc5OVosGKZw5hnxChGxfQqxWrl2tbG5gt96jIofijrBBJ1zL4fG8tUpmitVvShHAMmcd7tjLxsDbQ5edDlapGfp4PHQY8xy4h8r8QAxaREbStJnq7IyNeQuVDOSUPRCSL2IuyE0b4+Iq8FyfE8um/hS8hxcGFDCZvUVF0hC/1GfzEusU4lhHRGvkaLAsZGoTYfRboCHHE/MuYY6Y8NeZ+QPO0bNkQ8/W3zGLW9KfMZ8dTVdc3wP62zj3a/XcS5le1Ec7qwU4XfTdwQE+K99J6hrh/Rd1D79tc/ZCtT38q6ZOXyVZyL4vxClBQUQV9YDM/DnmOGEfn+iA3yL+S9CDVaY71BbSivMw003k3xRaj/5f4mNsZCXIvaiMY93bu4X+W902tC1wzUXqb+5tv0O7GhtA0cVqzmXJQWlaCsWI/yklIcO3ps1Me1jONUk1BeWWe0F6FGW2hgo792G6x9q/LR/zwuYkfCpqJxa0k+TPEPaT2RxGBPO6xBGeOiXF+GitJyVJZVwIn5KKOVESUbebpio70INXlv2KC+HErO7WA/Q/0t21dknw2WrdFiX9H9UzsQG7J9Rc+LvBHxXhrjZCOZ2hemzDlkI5DIfuCaVY6ci6rySlRXVKGmshpr16wbdYz0ZaPIaL/zXAUb1EcklsxLH2v+ubB1lH74SPjnpugb+j1Z5ziuXsu4qEJtVQ3qqmtRX1OHdY7rRxUj8j0EBIYY7eucqykw8jdo7hJr3ZZmRBXrEcFGf/lcpDPqa2rRUFuHxrp6lDNd9vXMb0cFI/K10761hv3OL11FXUOrERvHvTxVRlQ2+HM/bd5sFNfavnUHmuob0NzQiJbGJlRVVOLzyV/adExLvuaNm7b2ctFzRgad/SL2O6d2UK4XqYyoekMZ+z3p64eWpma0MhuwraUV2ZnZhvnV1vgwiuMyDui8sZ6zY3rOVKIz+cR7KYbbX56hysjYZUPMm8oYZmJ8As63tuFC23m0n7+AyPBIm7SzZH9cX1pldKbSzp1v4nTviuHKjKg1TmOHDVnkWqsJ4z9EblYOOi6042J7By51XMTuXU42xYh8jRGRsUbnU/r7B/WZI971fcSIiNfLz1N8Us4HpTYX8Xy1Fso2+HgXG2KMyDkU38z6Do3MF7l88SKuXLqEzstXYLdosU34IvK17dzlbHQ+ZVa21mAv/rjUflC1G28TeW2L4o9kg4l4vlpzbv1iyhxG+kPO11q5YhXj4jKuXrmCrs5OtLW2Wr0vIrNLvrd8PmV1TSM+//wr/pq5/AiZj4HWgdVxaBmR80bE+joJrSOK52nO6u95c8lxnxPounoV17q6cP3aNSRIOUbWyIjsc2Tn6N6c23r+Ij+nUp43TM0pVPmwLpHbV+RzifV4sdYuakREf5u6Bj9Qn8t2QVFBIW5cu47uGzdws7sbe1z2WiUj8rV4eh5nbFzi+yrQmcZ+pwKM9KTwKYZaryRYUPmwDj5kX1DoDHrOXDmOwuag8aLsU9qTvKO9Hbe6b+L2rVu4zPyRL6dMtSo+ZLuKzjIWZ323tHWgoFA/YM4h3TPpaVNrnEQOCsW1BBP0HbL/Iednq2I+EW0q8yF0A7U9PTY3HzSH0vcLvUH7cZD/Kl4nnXGHsXH39h3cu3MX2jytVekQ+RoKi8r42cgtrR1obmln92bHn39bnjqNbVNrZUX+mxq/Gnm9QX2ltK/EY5kDc/Ah16coRY7vpCSn4N7du7h/7x4e3L+Pfa5uVsGI/NuurgcNXJAcPuJleE25X9i75ghVrFd/kJ6W9xOj+Yh8DRr/9FfodPqf3kt/SZ+bkiMt7KmB8iJpLMl7B01k/5Ov/uCXX/DwwQPcuH6dP2ctfFAuTHMvG03NF6DLL8b4cW9iuYNtE3X/BNtghNiQ7VfqN3puoDUqU/pV1OMO5jOzZs4yrI3sc92PRw8f4vGjR3jy+DEyMzLfqw6RfzMuPplz0dR8Ho1N5zG/164yhY+xJIuYn0ZrWh6HPHDE4wg8jx7rsSVi41CqL0VYaBhO+fnDz+8UTp70w+7dTvjRfjmzKaaPKT/nXUJ2ibx2WFhYiF+fPMHTX3/Fs6dPYW+/7L3wIfvky5Y5cDaIi8bGNgQHhxl0oMrGPzD3+/m89i3oTBDytTqeP0S5EbTue+PaNdy+eRP3797jcx/168sXL/DHH6/w119/cnn9xx/4/fff+PPPnj3FkyePkZ9fgNP+Z7Bt644+55GPNZHz976fPY9z8fzZM7x4/hxNjY3vRYfIv6XTFTM22tDA2Cgtq8Lk3rxjZf7lWJFxH0zAih9X4riXD99joJzpA6p/o9qe5sYmzkdpiR5pqWkICT5rpD/2ux3AhvUbea6qrD/Ky8q5XhF8PGQs3Wd+6J07d3Cz+yZqqmv4ehnlXoxFPuRxdjY4BC9ePMfLly/w228vue5VzukjpTu2b9/FuWhoaEV9QwtcXPYZ3tdfvHo0y9LF9jh80IPvBZjH7p32qSE+0s+lwZuN/W3M11wwb5EZxsM0rHVcz5nS5Go4H7R+fLWzE5cvXoK+uASeR44xn3DKmLHFKCYg1gk+nPgxmzvucZ376tXvbC55wJ8bKR0ifmP8uA+ZvqjmXFA9h15fyZ8TcTmRnzma41J0vsXa1ev42Ui05zLtJ0t8hAaFYMO6jey+Z1r8GiZOmMT3M6Ax0tjQyHNbqT6CdFV0ZAzsly4btWwQE6I+WF7zcmd+Hdmor1//gT//fM118UjoEPn7XVzcUM+4qKtrRm1dExwdN/SJz8k1zNR/o2XNbhKbj7Zt2cbPAKdzXxKi43A2IBibN2zBJx+/X5tyxXIHhIWEcT7qa+tRU1WNTMYsMTRauBDrKfIeAspY8PXr17n/9p///IVff30yIjpE1h2kL2qJjdom5OToDO+h2kg5j0R5H7a8JyjpC4dlq/gZrXT2JPHhsd8di+2WWN21kn3lcegwigqLUFFWgdJiPaIiojD7u7k22/4i9qucd+WxJx47OblwNkiIE/LlLOmrG+kO532ci5qaRlTXNMBxzZs9JfpbBxR7Gov7ssUzASkme9rXH0GnAjkf+1xcjc5ktVahueznXU583+ei/CLomF/kddTrves5U4VsdlErJ2pHlPaIsmaiu/sGZ4NsrMePH1lUh8i6o7i4vIeN6gZkZ+UZ3qM850EpxDrdoy2tA9JZku4HPJiPEY6QgLPwOnwM3/bWzttWXG0iDrsf4Xxo2NhKYv4S7TFlK9cv9hx6V+4prauLeJbTz86cDfJDSCgWaCk/RHyf45oNnIuq6npUVdVhzeo3uuNte+XKvomt9Mm8OQsQFhyO6PBozsfqFauNzrq3RZk2dQZCgkKQlZ6FtJQ0rkvk880sNbaFHUT9L9vc9JieIxtD1g/K/eXoPYOxzZVrCtevX+O+OsmDBw8sYmPJ35Wdnce4qEdlZR0yM9/URx5wcx3Sd4t8NyHC9rJ0fc27ZI+zKxLjkhAXFQ9vTx980VvfNVrkp81bOR90BmBESAQ/Q3Mk+FDuXyn2cqQ+Fj622MNxqL8nn6Hw824nvHr1isd6KeYr6tUtwcfSpcs5F5WVtaioqGG/7WKS7uhPqF3EWomcq2OJ+ppB2SFsLj3DfIxzSamcj61bto8qLozs9SnTcJbZjAkxCYiJiIGdtK+MpfgQezaK/hb7VyrtpuHwodz3n/IWiQ1aL+zs7DSrDpG/IzwsmnFRi/LyGuh0RYb1jqHqDqEnSK+KfXCF/WXO+prBytSvZiApIQXp5zIQExXH7avRyoaQnnNlD3A+SI9s/2mH2b6b5jqxfifbV6JWh0TYV+bkg4Rym4QO8T1xEr+9fMnX1F+8eMFz2czNx+TPpqCCcVFeXo2ysip4HvV5a8zKFBE5oUKXvA8+pk2diXPJacjKyEF4SOSYyQUUsnbNes5HSGAIs722meU7yV+guU8+Y2Ug+4r6V9hXpE+Ge1akvO8Jxa0of43yTp4/f4Z4M9aqi8/vd3NnXDA2SqtQqq/EjOmzDHME+QxDXSNXtp0l6jMHw0Z6aiZymW8VxOyNcRb2V61VKIZNfAT6B/K1TnMxIvvbQ/XPhyKyPkqIT+B5i5TD9vTpU0ycOPz6EPmz6WlZbCxXQq+vQEy08foFsSFqW03d61u0iznra0wRuvasjFxoNQUICQ7jcdCxyIaQhfPtOB/+vv7YsG6TzV0/sUZjhewQOd5FeTaU20s50rSeTrmg5uJjyeIfuc7Ql1SgpLgcqxx64uaUf081Ksr5QulLDGaMmqu+xhQhHZibo0VBfjHCQiPHPBtC5s9dyPnw9fbFOmnt15pF2DE09oQtQ/aVPD4vdnTw+hCqn6qpqRmWjSV/5ugRL5SUlDM2ylBcVGoYR2TjDeR7iFwAa80nodhCXl4Bu58yRIbHqGwohGITxIf3EW8ssbPOOh6xJiLGmXI+Jj7kc6m8vXw4G1RjSPU2X06ZZhY+cnN0fBwVFZbixPFTBjaUusOWJD4+hevElOR0lY0BZM7seZwPr8NemDt7vtVdHzHxrhoKmr9F3gnVBjx69JCzQXXqZ04HDJuPxT/Ycy6KCvUoLCjBD3ZLbZ4Pby9fvn5D+kPdE+Idca3V6zgfXsyG+Pwz26spITZoTyDxf1VVFR48+IWvibS2tAzJxpLfe9jDk3GhZzZ6Cfdj+9NbtiT29it4fgzxQX6VysC7xXmXC/x8/HBov7tN5tfI64W0988v9+/zvYBIZn83Z1h8ZGVquP+aryuCD7NHBR/y/iq2IlT7W6Kv4Hwc2O+hjv1BCvU36Y+g04HYtH6zzV2/vB86+RzEBe2XdffOHezd4zpkPqjenbjI11JedCFW9O6jO9z1wPclMTGJvGYlKSlNHfcmyjdff8f5iAgJt2iuliUZF4+bm5o4G3du3+Z1/abaWOJ9e1z2cS60zE7XavINfqzyfDhbkHXrNvFaeeJjpg32rzUI1UwSHwGnztjctcs5UFRvS/v13r55C7du3uQ1yoPlQ34PrQkQF3m5+Qg9G2543tbqZGkP4IrKOs6HvIeEKqYJ+R6kQ+Kj45idZXtrh0IW/7CUc0F7vnff6Mbq3joYU/ggXUFcaHJ10ORosa03b02cNS/va2/t7eG67yDf21HL7ER1nA9P/p+9826LIlsaeH2V+9z7brp7n6trWndX15wxIqY1s4iAqAgoQYIiCAgIAwMDDGFgYMgZA8EE5oyY1tXNbo73A7ynjlTvsXcSQzN0u/1HPUAz4XR3/fpUnVMBY3yRj2JTkepzEMX9EYzNEGPAHz98xPsiYC1SjF8cLh9L2HVALjAmqb62CWbPeuHni73jxDxg/G7cM1fbein25cFeC8jHqlVrdB1XQOJj48FaXgH7w/erbmwYr4T76FQnWBRkhF5XW1MLD+4/gAfsde2t7W77IPT/3aFhnIv6mkaoq3m5TxwyIHIpH8dwY7BGU9KPHed8YA1UXbeVkRnTZ3E+6pmOvTN+5HOIPPbUXm1qV/lyYk0pUSiWXm7nYA0g7D01eG8Q7g3cc6s/m/i/1JR0zgXGe6cceZG3a6/nLgqOFceH47bXe0M8NzGvnuL/5ceVEsz5w96gyMeihUt13VZQkhKTOB8xUTEj/ix5rgfVtRKPucqXI7sGX0dxsnJ9wn1C2tPG+seDjIt7dwdg4O5diR93+aizMTaq66Gmqg52Be+W1sg8WbfCcVMsgGiHiXlkyLnSMbr798dyPkrLrLpOKyxYowL5aGtuGXF8jr1cKHktKFf5DsiCK9teXot0gLFx985duHv7DhzYH+02H7NmzoWa6jqwVdWCzVoj9blB/jzZ+xBj+ZFt5EB+jvIeaUrIhf6rnI8tCuUy6PKy5LD7hXyEBO3y2H92xId8DlEqH0ismY69prAm6+1bt6DSUum2b/7R+k2Mi1qorqyBqgqbtE7hqs+Nq2tBOR3UL2I0+di2bQfcvD0InSd7dF0eJVm9ag3no6rS6pE+0BzhKJdWrIuoFB9i3EdmRhbcvnmL19PHWpOufHQ6HhIUys7ZxtioBqulSrKtPI1HFPsBiz3QRpMPU2Ep5yNyf4yuy6MotdU2OH3iJCyYN/z4XtQJyhkUdYV8UnFNVql8OXy+0zM+JDiU1yu+weT6teu8z5M7a1hJh5I5F1jDA2vbOPPN3RFa56JzI9+J8gYp31KpPKjJk9+DOwMPOR+vWl0etUlsTCznI+mQZ/pKuXEiM+STynPjlMiXQx2meN7Fi3zgBuPi+tVrvO/E4iE/wh4f4rFikxkqmU9bUVYJe3fvk7jztIaPeN6iD0V1GeTHRyrbt+/gfDQ2tes6PMqy1Gc556OzXXvXGtd0kYurTK5cviKtB7jiA7mwlFZAeYlFykHGmCsxjl7NUlRczvkIEepz6TJ60tzYCOfO9MLCBYtVP1Zcw4qPjZb+xl4QV5j9cvniJYg7GO+SD4zTtJQwNswWKGN6hntBWrtfA4OPOR+6beUdSYxP5HzsC9unifGKdlBJcQlc6r8EF/suQnGh2eXa1YJ5i3ndwNLiMl5Xj/hAGwh9J6pTgj9pv0ZN8Yo+Pis4H13d53Td9ZKsX7eB82EuLlbtGMnPQRtK7EVjyDYwNvqh/0IfmwebHK5h0d9bNm7lXJQUloDZZHb6neQ7EDNqiL2KjonnfGQdz9V110sy8Z3JnI/LF/vHfCzo54rPcPpJe25y3z5sbzj0ne/j67vYI9IVH5sZH+YhNooLXjwPcO1KtNnULMXMZ0I+doWG6brrRWmoq+N84JrQWM8Trl6Da1iUTxi2Zx9j4zycP3uOMX7OJR9x0XGcC6zHmpTwZw1RreRD9Z7t53wsWbJC11svSlZGJucjOChE9WMVa48umL+Yc3G29yyc7Tkj1Vx2tAdyMOogFBkLoTCvEGKG9tZwX1ArvcwHHzzhfOg6613ZuyeM85GYkKj6seLcQXvdC+Yv4j0az/T0Qm93D8wf2ud0xAf2SjLlmaAgtwCiI6Ml3rRQy8fHZyXno7v3gq6zXpZVK305H5bycm3xweaL3u5e6Onq4X0a7fEh/p6dkQ0FhnzeLyloR7D0eVqwr4iPKluDrrNeFtz7QD4a6utUP1YxDh3raPYwLrpPdUHXydOwKzjUKR/5OflgzDby3qzr17zoCYz7glqodxUTm8D5OJKcpuuslwX1DPm4eeO6JvwPsddtF2PjNGPj1IlTPCbLGR/IRd7xXMjNMkh8jDS2xNt8REfH6zo7BqIVPuRymnGB/a9PdpyQYvUd8YFcYJ9WA7Oz1vm9iBvTSmyJzofOh7vzh7hfcbLjJJxoPwGd7Z0QvDPEKR/IRg5jI/vYcVg7VA9OCaEYZsobFPujKPUdhlwT5yN0tzbiHF41qamu5nz4LFk6Yj1BoZ7OlDdLextifx3x+HB9EPoduehs64CO1nYICgx27p8zLrLTs+B4Wias9V3Lj+Geo9hj1p7I+xjI34PnQrmD1KOWcmSUqhFU19DC+fDx0fc+xkJKzGZF+cDfKQ6E9sFRr8T+bGL/MRJ5T2R7YhZ6rCEX7S1t0NbcBjt3BDnlA7nISs2AzKPHYM1QPRzUX3u1IUSRj5F6yBHbdN7yPChX/d51Pv7efFCMH9UtcCevTpxfHIn4GchFa1MrtDS1QGCAcz4yh9jgfAzNH2KehiOxN8fh+RDr3uRj7VB/K120wwfpgJwPeX0bd/iQ51jZEzEOq5Vx0dLYDM0NTYyPnU75yEhJ52zgHEL+x0j2B5F7nMtEPkT7ivLRlbg/KWzcun8+dtLT3cX5mDVz9rDeR3qADMj5IG7wWUs1cET7inr5Def7xBxblOaGZmiqb4LGukbYMZTv7ogP5AJtLPRB1vm94GMk8SWUR+sN/1xfv9Lu+hUx4sw/p+foSP1z3MsT9/OQi8baBmioqYcA/x3O/XPGRQ7z0XF9d/3Q+i76+lroaaDzoa/veiINtfVQz9ios9XBx9sDnPKBa7u4xpuXZYANwv65uN+oVtm9J4Lzgfm1ur56VyZOmML5uHBe/XlpaAuJdX6Qi9rqWqipqgH/bX/lQ5S46IOQd9wAxuxciIqI0tQ90uOvxk4o/koL8YmivPfuB1DLuKix2sBWWQ0b1m10ykdU+AHIz8mDAoMRYoZqLmpl/pgy+T3Ox6Wrt3Sd9bLsCAjkfOQbjaofK/oe5E/PmjkHbIyNasZGVUUVzJwxxykf0ZFRYMrNh8K8Aog9EKMp/wOF8j+oHrcuXvL9omI4H5ER6ut5IBdcj6X4XawjjFxYLVaoLK/k9Uns8SHVTgwMgaI8ExTnF3I7C48hG1rJj2rrOKXnD46BmPILOB9+q9XfYwXzNSi/duVyX7AyLirLKqCi1ML7dzrjY9OGTZwNc0ExlAzVZ0A+HMW3014MrsWpoT5Ddo6R8xEVFafrrReF6jNMHqrROVaCOuiqng7qMu3nbduyHSoYGxbGRnlJ+V94kP+Ne+YlpmIoLTRDWVEJjPvvBH5crFMi/qQ9G7X0jfL3D+R8WKvUn6fzqgjm3CEfPV1dYz4W1MPh1C/BeCvkosxcBmXFpS75wHpXyEU5e62FvWfmhy/qX2mlJyf66FQfTtdd70hoSCjnw5Cdo9oxyutf0fGEuETGxYtab3ExjvfNiI93mX4hFxWMqUo256xctkry0bVSwwTzz5GPNUP7N7qMruTmGDgfmzZuVv1Y5WtNWbwf74t6VpGyGHR7fKCgn2JlNhn6LduHesugveZp/XbRT/FGfeqkI2mcj4xMg66/oyzYOwrrUyMfkyZOUf145XsVZt6LtxiKCopg44bNdm0r+bFjR9OhymKF6gorJB9OHvGY5L0bKOZM3t9AqThejN9FPrB/lK7Doytr/dZxPixl2otZQFu8mHGBtd4KjYWwdPEyh3yIcjD6INgqq6DGWg2mvALp+JFDCR6NQ1zbctQfh/wopc69/9J13v/Dz0/9/dm1LJnHMjkfAf4BHn+GGJOI+R4Uv0q9YugZO9KcQZSQnTslP2HenAWcC6pnNf2DGU75oOP+2z6GWqsN6qproN5WO+JriD4RrRsQB6PdP+pw0lHOx7GMbF2PR0mwtzP2V0M+Jk6YrAgfqB+Ui0p9j93JGXRXRB964/pNnIt8Qz4Yc4x2bSl7fGAfnfrqWmiw1UFjbT3MmTWXH0f/w5M6P9Szmn66m+cyEpk5cy7nA/tzTtL7HIyK7N61h/ORmnJ0RJ8j8oHzAs0NpCNK6Qr65aLvgfUP8w1GxkYexAtrV674eGfcRB4LjzHxTXWNsHnjFok9T+JM7OUI4jNB7O9sL4d9pGKptHE+IiK0UVtbS/LG6/+GijIL52PZUs9iFezlDKLek69K/TuV4gPXrsQ6PJnpmZCXnQe5x3Mh8OOdLn0P8X/onzfXN0JLQ7PUAx7ZcFbnB7mn3ubicXm+vNirU54/qeQ93Lo1gPNx5my/Ho+lsGzf6s/7n5eVlHr0fkc5g/Z0352cQeQI9Yz8FXuCa7BkX/2XfT9yYcgyQE5mjrSP4co3J0li39/a2AxtTS1QXlJmlw88RxwP9d8k/0npeWAk0nmyG65cuw3h4Qd0vVZw7jCbijgfI4m3cpQzSL1cRZvClX+Odru8/gLVO6HXYAwhxZWgDyHWsvrgvelu8SH1ydm0FdqbW6GjpQ06W9sZd5OkOQI5pfOSC47TGcPeli1b/Dkf3T3n4a039TlEkWvK7G1reQUU5ptUMybUOdRL8TlNgutgqJfic3uHfyCvNX2csZGVnuXS95D/H3nCukBYN+tEeyfzzddL4xC/Gzmh9Si13s/2jtNw6fINOHhQ/bX3VT93vPYWGA15nA/flatVOUZ8hiMLaNdQ7QPSVXrNobhDnIvMtEwIC903bD5QcO0Ka5JibdKEuARpTsTvpR7mWrinixYt5Xz09V+F6RrsN6omCQ4MgZJCM99D1sqY0cai+idch98ex7nISM1g53EM/IbqvLnje4ivSU1J5WvbXSdPQU2V7aV1Mi3Uq355jcDC+TCZSnQ9H8FzGddDkQ/KI9KKiOuuC+cvhoyjjI2UY5CenM77Jw7HNxf3CbuZ3dZzugt6u7ql/UX0c7QSq0gyaeK7cPr0GTh3/hKb+4J0fR+mvM7sKrRJkI/QoR4AWpIDkeHS79jXJj0lHdKOpLFzOuy2bSV/HXLVe7obznT3wNmeXtgTuld6jdbmD5RAdl2Qjw7mj0ybNlPX+2HIts3bmS+bxeNd33j9LU2fS1J8EqQeSYWjSUdh68Ztw36/yFF5aTnvW3iu9yxUMp/MHo9aEpPJDGfO9EFpSQXv6aLrvmuZO3s+pCalcj6mqSQPbjiCe+Zk76BdmMq4SDmcAimHknkM1nDmDjkjuDd4/sw53hu679wFmDRB/THMzgTrNHW0n4Lu7rOQEH9Y138X8s74SRB7IJbzsWmD+vM7XAnOFymHUiA5MRmOJByR7CBP+fiQ2SF9585D//kLcPFCn1T/HfPbtVDzx55gT1/k49TJHti29WOdAweCuhMZFgmHDh6CiL0RmjwHjBcU97QTYhI4F2hj+Qv33lM+ULC29aW+frjcfxFqqm1uvR/XfnFNTcmYQyXFf3sg56OT+SJr9Bj4v/rjjI19e8LhMPNfY/fHqs7fRP3C/UBX+27iWuuMabMgKSGJnxMyP3fWfI/YkDMSHhYBly9egiuXLsPVy1dgxlBOurzOLwquNeO4cY9ELTUbHEk8s6+Qj7bWTvBZslznQpCdAUHcRo89cBDeGTdJlWNERmgfEH/K9+PQxhHnDrQPiY3E2ESPbSs5H7g2ilxcu3IVrl+9BokJh17i09U41SxxBxM5H9XWWnh/6jSdDfRntwXw9U/kY8J4dbIhF5xH8LmMQs9lsWYC/k5coGDuh6e2lb334TrWjWvX4eb1G9DHfBE6TnEvnsaX4PspBkDMFxNr24vHlRbMn843FkJzYxs01DWB7yr11zcbNZvqtbdgd/BuHneBfMyfu1CRz3UUjy7GrYt6YK8f2XDmFHwvxXhIds2CJZwLZOQwsxs+HFrf95QNOSNbt2yHWzduwO2bN+HOrVs8vlmJa4fXh86D8sXwd7xWNA+hH6NknxB7jBxLy+R81NrqYdUKdcYVjaZgXFUCm0sx3hv5WDBvkWKfLfKB9gXF5mI8FN5nPCbGtaKNLsb0eipi7G7E3khuW6FvHiXkAynFB0p/Xx/cvX0bBu7cYfZIlXQcY4Y97S9FcchUfw6vEx4Xr488P2a05EBkNOejutIGQYEhfxs2sKYTzheYZ5p+9Jjia/hyPihOULyv8hy6kfCBNr+oj1OnvM/Xq3BN9yizGX1X+inCBn0GfU7S4SOMjbtwb2AABu/d47WvaTyexpuItU2QDWJ+LPhA2RWyh/NRWW7lz1PMdXiV2VixbCXnAmt44LyhZH1QvJdk74j2EvXc8xYfAdt2cF8K93DSk9P42pxSfIifM2XSVBgcuAf37w3Cg/v3wZBjeGkOoZq/nswfoo9F14fsK5p/vaUzK5ev5nyUmcshL9so2aqvkrzJuN+3N5zXOsPagbjuiTaWkt+B941yL0Q+qK835ZXK7WzqfawEG/95exyPI0ljXGA84kj2PNyxsXKyDfDw/gN49OAhPH74iNcQonF5wofcP6cYZG/55w5tDjYnH8/IBrOphNeAwTp5r7+m7bgjktmz5kJBnonX9Uc+dgzlXo+G4P20529Tz3B3/XN310TltdQxbgxtR4xlz0rPlGxHpdiQM7LUZznj4iF88ugRPHn8CRjz/qyLItaNd7a2oKb8Qqc+K3vGhgbv5nzk5xiZb5cEs2fO1e6c8cbbPF6osa6B9xPD2oEY662FseN6lKte4LiGK84dmOeRgb2Y0zJ5nmBEWKTic4e9z2uoq4cnn3wCT588gWeffsqetS+YQB/EER9i3S/8qaU9EozrR78O85WPp2VBWGiYlK+sBXnrzbchJGgX1NXUQUtTC+cjMny/ZnwrsrdobnG09yyfO9asXsdjKnlPzSyDFFupNBtyRrCey1PGxbOnT+GzZ8/AVGByOEb00eS59Wqq3+CuoG21zm895wP7w+dkHIcD4QeknBh1cvEfnpPQ2tzKc0A7WjvAmGuEObPmae76U96qaHOjLULPWfmzGe8X+hyGrBzmQ+bCAaGX5mjzgdLc1Ayff/YZfPH55/DlF1+wsb3/kh/i6ny0Kjhnf8x8POTDmJ3He23Fx8TBiqXq6a+F8Q5xsfFw6sRJONt7BrpPdzNfwwprX4E4M3vPW7RN5HwEsmO52GcWe2nm5rusHao0I8uXreRcfPXll/D1V19BcVHxX9YtXM2HmuaEcR4UEMT5wF5C2A8C+wphbt1YxKlgfa9tW/3BUmbhsUCX+i/ChXMXoL62Hjas++iVW39DHRNrlSAz9OzF2lZY9w1zHbF+dGxU7KjPHfY+v62tDb75+it4/s038O3z5zBv7gKJcaoXoea6JkrItNktELTrIntWlUC1xQp1VTXQxJ4H2Isojs0r+BwZrTys2cxO2rtnH9TYavie1J1bt3n8D/JhyDbAKpXWF1HyGYU2Ca0h0/Gw3WFQwLgoNJp4ffYPp8/0ChtyRubOmQ/PnzM2vn0O3333LZxk87m4fufJeq+W5F//txAmz/yFyz/+MY7H+Oxnfm+VpZLX1TvR1sFrW5zp7mU+cSNfG48Ij4Qli5aCz5Jlbn/Pe1M/4LoezHzsw4eSoLW1DT5jtu2nzAd8/Ogx34tCPpobmyAkeBe3r17l6y5fsxJr9k6fNoNzUVRQCObCYoiPdV1XdzTnkBJzCXz//Xfwww/fw48//gBbNv+Zz4u15F/p59fECs4G/pT/bynT/4iwCCgpMnM+MP8SbR6Mgb514yaPQ3jI9PrJ48cwcHcA2pjOd3Z0winGU3dXN1y/fg3++ON3+O3XX+Hnn3+CH3/4gT+Dvvnma2ZXfMn5uHvnDpSVlsMe9rycMtm7Nbhpb1xcY6JayuLr6Ji8759SgjXTxdiNpMQkMDM7F697mblU6p/pLTbkjEx99wN49uwp/PTTj/w+Dg4O8j1Leh2OXYu1HFwJzheTPvyC8/HaG34uX4/7DDsDg3i/u4ryCuhhDBAfnz19xv04tFGRg19//YWzIfKB3JzoPMHnj40fbZb6EI+ViHsRtLcnxgrhcbR5xL5ISufKyWOa1qxey2sPoW1rKSmTcl3Hkg+UlOSj8MvPP/P7+ttvv4LRmC/9D2sBuVPznXoeaIWPN97ew9mYMO3+iD8LdX3F8lWwcoUvt6N8V/nBal91x9mLfFCfWPofxU7J+964E0M3nLV/0T7BvZz83HxeKxpjAopNRdL+jrfZsMfIffYs/J09I+i5t2D+opc4d8YIzr24xjWcOZhqv8uPeSsmBblAPpCTv4ut74gPkQHKHZXz4W6MKa3fOtsHsNcrNioyCizM1sQaO1UVley57Cvp6FjyQd+Nzzvk4n//+4PL9WvXpNehn+6ID6pLP9x9EXy92MsQxVs5I2hPIRtoX6Gd9XfignrliXzgNUe9xuMUJ+EpH/R5aJs5sidQl8ResWi7VpZZwGqphOrKKkhOSh4zu8rZHJKfXyDNH7///hukHk176ZzkuepiLy1P75V4zb0VE+/ML3/Vhfa2qLcRXWv6m+qX0/MK/6a4bJpXhnN/5X0+5HGwL3otFPNesjZrNdRW18D4cRNVwYacEfTLHz58yNlAWwt9kfnzFkrnRbFj+JwRcz081lPZHOINPv75z2nSmi7+/ne0rSgHULx/Yg8keT6oPLdnOEL9ZcgukMfA8l6y1irGhQ3qbLUQ4L9DNXOHPTvL19ePc4HrLuivy9ez5OerxHwv2rujnTPy73GpnI3xU/+/vfNsj+K64vj5JnkXJ45jPw8GbINbKLZpLmBjmlADIVrABMs2TRLqvSCteu8rCfWOuoQQxWASYuw4NnnhxM7jhHyE3P+VznJ3NLM7I3ZBZV6cR2JZSbMz93fv+Z977jlXliUbT8OM5tN9ewJk3fTG+gZqdjZSsuKvLBQ29K4nN9dB/3v4kB4+/K+MTTY3X3bTX75gQtsD5Unp8+Wuy5+29uHvsWcKPd7U0EiXG3Emukb2033amtysn3VNrKlgA/si//nlFzp27FHNb726WYvBfBnTXe5mxX9ArErV47/9ze8oW7CCcxYt6JF5uUXufSzUtUPPz4LuePDgB7mnjj0v7K9zftZ8/N2FkBMPnwp8wMeyx/j8Df4w9g3NMqKN534e8YXgolnm07S3ttK5M+cWPBt614c1A1wg/+TfP/9Md27fEWvLozivmfwTPp8Je5r7h7Yu952W4NxuM4xgjKh6HL3GW4W/3t7SSh1t7VSQly/PRS4GNvQYKS0tk3lDP//0k8yfGBsdc3uvp15UKhtWY4O+tudWOCQbL6xuWZJjlvP7OI9BNR7D0I56OVZWDb/HGyN6e4Ab1r9FbeCitY262lHPr1Fc9+sLWnOYYWR8bIz+JdhAHvw/f/yRigofnRXB3KBXG8gfbKg1s/GVnwvGBtegUV9ns5prtRh1r1pDhs9TqP3qcV+47zJ/9ScjWs2xds3rsjZ6Z3s7dXd2Um9XN+3etWfR+FWetMhzYo349ptv6EfBBs5SIRdPu++j6nV/rRuIEXKtGf4er+P5IH6P17ln/XLS5SofGKe479rYn3a/3Ff1DfUYwVhQ8y3gP1WUlVN3Ryf1dHVRX08PHVfiPYuNDT1GcFbk/tdfy9xsnDvEudxwJb+S1xB/+lTqM1b3D73tK65YOy35ePb5c0ueDxjYwNyhrhO+rN/mjRGVD7ABjdHTKbjo7qH+3l6Kjoxe9GzoXf/h8KOSi3/AHjyQtR3CDx12G5v+1Bt8JpPzsDkm5omPpZxrhc/PdV2ZD/Y1+T18BtRffGgZUe892CjML6De7m7JBXrFlpeWus5jLjbNYYYRrBng4gfY99/LOiioh6LG/ubDhhnNqNZA5jnSGx9LOdeKxyUY0POvOK8K72O/FK/xPOOJu/lcC/8tfi3yfKT0pQb6+mhwYED4WGVLjg09RiIvREsu/v4d7Du6c/u2rOlnpM28mdr7fT76g2tdcr4jn2XAesExXZylXYq+FeeTq/dPzZtibpgRbY6VnuH/tPrSk8Gf0p7FjroQJc8mX+nvp6ErV6QmX/ni6iXJhh4jjtw8WWPub99+K89Qf3nrlosRju3BB/V2tor7VfkjfmXnWs3f8Ey85RLhOcO0MX7oC+ZieHBQanKcK18qmsOMXofl5uTKuNY39+8L7X5fnhk5EBrmNq94ykPhcwL+ul471+rx44We9v+0fgLqPF6Mipa+FLgYHR6S2kOtD75U2TBi5FJ2jqx3jRocf713j+795Z5gxL2nLO6h3jqC+++vulrPPBvq0uVabaLN1/ZFHvfj+kh6a6g6h3O9Pq3f5E/DszHSktrex9AV0N7Dg1doZGiIxkbQX7jHVZtnObBhxAjq3qBnAnonoE7Nn+/epdCQA27zDNZf1Udlreiva8Q+OfjAvjm/ZtTLh2v44XWMhyfZi0EvpqBeL98jzvfnM0zQ5fPl2MqcxPfK07MEG9DeM1wM0/joqNDkvcuSDSNGssQ9RJ2bu1/dpbt3vpK1ztLTMuasI3r33KyGN/sznnKtOL9CrTdg9VwWn0fV+73q62rNHE9+ihk+tHsc3mqhG103+FfPMZsxdS7T1uOBrmhyOoUvBS5GaHJ8TGqP5cyGESN/PH6CvrpzR+Yx3v7ytqwTlefIl7Uztc/I6nzH8XUzcS6jXCteG/hM1nz50L5Hrw4Ox17VPn16Y5Lzpdxi0rPv8zUfMFwLPq/ZmIgnLYIaHtDeY4KLibExujoxTvW1tbRq5UvLng0jRkKCQyUXqJOJfrk3hTU6G+fUBNSe0fdkXCfbbM4Q51pBgxjNx1b2373xoVcHRzue9Wq18v6EthYFx6j9wYe6h2vGP+PYLdhQ+Qg7eEhqjImxUZoUXExNTlJDfZ2YC39vs/Erz7HfLZu3iXs3Knuto94g6skODw7JulBqbJBjwJ7qmFp9np5yrTC+1Bw9Hm9qXTTM895i/5744P8zO545H0e7fvA8r/KsXY8eJy7lbb7huC2ekepPQWvExcZJjQFfampygq5NXaXkpCQXG0t1f8OXjLz5xjpyNjhpempankW8dnVK1udEzzztOoI5ip+Hng9uJV/FW64V53ib0Q96Pwt2fMkH/17t32W/y6gG6OOc/8fv4TnHaJ8QtTi0sXlojeqqKpoQXFwFF1cnxdw3RVGRUYb+hG3GjGA+QfwXXFydmBTzzaRYjyeoqKCIVmp6EOvtlfDcalZPautN+/qz8byu1uCE6dXBAUdqvAnrlT97RGjzrsxobu6/ob6OtUIbu4UdCguXOVTQGFOCi2nBxcjwEAUFBttsPKYmwZoxOT4h2BgX6/KY9L16unpkPU7tz6Ke6dbNW121f/R6PRqO3yeQa8V7mqq+1ds/eRr7FVY0N/eg5fsLHzcwIGDO++BPZWVkiuc3Ln2p6SnU6L4mY1bwEWw2fMPIpne2UG93L40Oj9LI0AiNDA7LuuipyWm6/TWM5jcjU89ALdVcK28GTq3kFmrXZ+05UNQSxj4Ga4zr01NCU05TnsPhFpO0ufANI+Ag35EvtfqQYGNwYFD2DmtvaZN9aLTPjv0WvfOJc+Y5oTfABvSHmWvjnMiF3i+O9wXN1joyq9NY6/H6pvp+cs3IzBK+1CONcUNwgThucFCIvWb4mZODoWHU0dpOV/oGaKC3n/p7+mT/yezMbMHCKjcfYOb9oW7PVM+s5FpxDjhsofeNg89kZb8C3Jv5TPClMO9o5wec5xno75vRGLO+1K0b16m5qYlWr3rZZuMJMfLiitWUk5VDfYIN+F3QI92d3dTV0UVHwo+6alqo9nnEaVfs0S0WafEMFNeYhc42c+3+yIMxux5YvVaMd08sYa7Ri6fD/62tqXFpjOuCi5s3punLWzfos4jPDGMwtvkvvgVDT8pm4RN0Cy662jups61DrC0d1FDbQDuVmmGqnTpxwo0TvVwrX87JVt6nrWvrKX5kdrzzWmfWF9Srpw8u9PzUVS++RAnxCTPxWnBxbUZj3Lp5g6oqK+01Y0GsJasoPjZBctHe0k5tQo+0Xm6l1uYWKiksoa1b3jXkZD51rXjvzewcbnYs816NmfUGusJsfiH/XrPam88I4nvUn9LjAhrj/NnzMl57bTZee+O68KVuXpd74siD8PTMbHuyjMA2rH+byorLJBeoO4memM3OZmpqaKLE+CTasmmbbtxqx65aGdOF3+CtF5y6N2ZmPsYYNjsurfBhpQ4Vx/LMaG9mwei94OLUJ3+aozFuCo0BXyom+uKc2JTNxcLiZP++IKquqJZcNNY3krPOSU7hbzXU1MseXHr7JjDuBYe9X0/9fKzkclkZx1b4AKdmz7Byjo2nWDfvrert7cGwHxsfFy/Pgs/RGLO+1B/eXG9zsUg4gT4PCz1EFaUVsgZ+vWCjrrqOaqtqqaayhnIycyg4MNTVo0418IF5FF+5Zwkb5zqa9ZnwPrN+vxU+rPhtMN4rVX0yzAHYS/WU67np7c2Si0lNTsiMxrguudi6ZZvtSy0iRtw4EeP/QMhBKi0qlVxgXakqr6LKskqqFOxUlJTTyeOfCA7W6foanN/F44f3jM36/lbGsFU+rOx3c04h1hx8HnABX1LLP/tQAXv30+WmZlfeuZvGEL5UVUWFzcUS8rmwToQEhVJRXuEsFxVUXlxOZUVlVFpYSiUFJZSalEY7d3xMLzy/wjAWxHXTMLbgj/lyDPtj/eBaa+CCa34Z5XJu/2AHxcbEzsk7VzVGpc3Fkufk/Xe3U0ZqhouL4vxiwU0RFToKqSC3gPJz8in6fDR9+MFH9IKBb6TyEXnujNT2+DdrFx5//uSDNTSPd/aX+Jqw/uGaPOX/o690jGAH9XNmzvC5551zTkhqSor43TYXy8Xvgr29cRN9eipCrimFjgLBRr5gI4/yLjnIke2g3KxcqVPOn7lAQQHB9Oqa1z3+HdYtqj/GczzHSfF/zBBrYuZM5YPPafP5CfX93BeCfzeYgK5WdYRRTg32Vffs3ivrhKDW80ydkJmzrTLvXMkJATMRn0a47WHYXCw/TuBPfbR9JyXGJbpxcSnjEmWnZ1NWWhZlpmZSRkoGJcQk0NHwY/Tetg9o7Svm+4CodQm43zVzwTEjlQ/ej8PYZx+J+eCvZvJAsDeE+pQRpyOopKjYVYtQrRPCGoPzzpOTkmnnhx+bWo9tWz6+F2z1ypcpeH8IxUbFunGRnpxOaUKfpCamUkpCCiXHJ1NSXBIlxibS6ZOnaffOvWIsv0uvvLTW6x6Kv2ztmtdo29b36HD4EdkDvKqi0lXvHFxwzTVXnRBojNm885zsSxS0P8jtfKunOcW25b2mwJA7seuj3fTFp2coLVGwkSDYiBdsxAk2YgUbMYmUcDGB4qPjKS4qjmIjYynmQgxdPH+RzkacpcMHj9CBoIO0/f0PaZtgZ83Lr8o1R3u2y4xBN2F/Yd2bG2jLpq0yRzPsQBglJSRRTtYl2VOpbbanUldHh6x37qrr7OJi0KUx+vt6KTsriwJ1mLDXCtussvLMr5+ld97aTCGBoXT2s7OGXESfi5aG7/F6XHSc9MnAU4pYc7D+YC3KTM2gbLE+wYfLzcqRmgf6p1BooeKCIiotLKHy4jKqKC2nqvJKqqmsprqqGqqvqSNnXQM1NThl39aW5pn+lNxTSfaOARc9qHfe51aLELXQT508JXMJrX5+22yzMlagB954bZ1cX46EHXXjAqyAGzAE/wu+GNaedOGfwVfLklxkSy6gdxATQHygOL+ISgqLqay4VO7LVJVVUHVFFdVKLmoFF+j17aRmZ5PsT9km+1O2zfRU6pjpqcS+FHotpaWkyjUGdXTm+zlts80KK57GEfpkQX/sEP5UcEAInTh6ki6cuSB1S0ZKuuAiU+p9aH9Hdq7kokBwgfhZSYHgoqiUykvKZF9vyQXWjOpauf/fWN8guGiUe3bcn7JT+FKZ6Rny/OqxI8dpz669sm+wLz6Lbbb5mxetf/ba2jekQcfv2xMg96j37wukwH1BMn4cvF9YYAhhHzM0+IDc92edcejgIdqwbqPsUblx/Vt+vVbbbPM3M096LD7tv2+bbb4at740+x7bZpttttlm28Ky/wNQSwECFwsUAAIACADaiD5bxym7GhBAAAAAcQIABAAJAAAAAAAAAAAAAIAAAAAAZGF0YVVUBQAHJQ7caFBLBQYAAAAAAQABADsAAABDQAAAAAA=</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #18</Name>
|
|
<Index>18</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPlvYbTm/J0AAAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J33W5TH2se/f8l7zvWe6z0nlphmYmKLSYydqMSCit1YjhpAEQuoCCgiSpHem3RYdqlL71XBgqjYY4stMSbn9/POPTDr7AMoC7u4C88P98Wy9Xlm5jN3mfue+fvf/oG/q/Le5G//87+DFrW9VBkL494Wvl8VVSw1TtVrUkXlYXDjbuHCxVzc9rvDzc0d4RExSExKY5KKouIytJ6/iNa2i2hp7UBzSzuXpuYLaGw6j8bGNjQ0tqK+gUl9C6Ki4pnEITIyDocOHoGT016sWbMec+cuxOTPpph07WpfqmIJJgZ6zzfffI9Nm7bCy/skUs5lop6N7Y5LXWi/eBUXOjqZXMH5diYXLqPtwiXGxaU3XLQquGgiLtoMXNTVN6O2jkltE2pqGlFd04Dq6npUVdWjsrIOFRW1TGpQXl6NuLgk+Pmdwa6dzpjz/XyM++BDlRdVRpSHCeMnYaWDI3x8/HAuLRuXrlzncvHyNXRc7jJw0c656JS4YCK4aOsw6Azioqn5PGeDuGggLhqICyaCi9pGxgZx0WDgorJScFGDsrJqlJVWoVRfCb2+AvqScpQUl6O4qAwpyWk4cdwPG9dvwfSpX6usqDIsLvp7zc5uKQ4eOgJdfgkuX+3G5c4buNT5hgvOhuBC6Aziot2Yi4LCUsQnpCAuniQZe/fu57JnD4kbFxcXkn1wcd4HZ2dXLj5ML0Uw2yw8nElYNNcZxEU5cVHGuCit7GGjpMLARXFRKYoK9SgsKEEBu+4CXTHytUXIYEx7e53AimWr8Oknn6usqDIkXeHgsBZBweFoZuP6Slc3rhi4uNGHiw6Ji6TkdPifDsI+t0NYvnwVFiz4gescS1z/jOmzmB21AJuZbbdrpxOCg8KYvkhnXJQyLhgbggtdEXTaQujyCqDV5CMvNx+aHB1ys7U4yz6z1nEDPvl4ssqKKm/VFYKJFsZEZ9dNxsXNHi6u3uhhg7gQthTjIpeNt2Nevti48SfMmjXbau5v3AcT8f3sedixfRfTPb5cZ2g1BT1c5OoYG1rGRh5ysjTIzsxFdkYustJzEHgmGGtWr+vDisrJ2NUVU76YiuMn/FHJ7PvOa7cUXHQbuCDRMPuEfPBFC5fY3P2TLbV8mQOOHfVBSlIacjI1PVxk5CAzPZsxlIWM1Eykn8tAWko63A8ehv2SZSbZoaqMHi4cVq1FLPMBrl6/3cMFkz5cMImKTuCxKUvZSO9Lpn41A7t3OSMyLKqXi0zGRQZSmX2Wynz6c0mpSEk8h2jm92xctwkff/SZyskY4GLLlh2oqmnkXFzt5cJIZxATMcTEtlHHxEBC9tRmZiOGMttScJGckIJkNn8kxSUjMTYJCTGJcGI8kb5VORldXEyY8BHc3T3ReuHygFxomS+7afPYYWIg+WrKNLg47UVUeDQS4xgXsYmMjQTER8cjLioOsZGx8GC219czvlE5sXG/m3PhIXEhbKleLppbOxAYFMbX99T2M5YP/jUBS36wxwnm3wsuYiNiERMeg+iwaEQxu+yQ2yHMnD5L5cQG41FkR7VJXMg6o6Kqnq9njHVdMVghXbHPxQ3R4T1cRIZGIjIkAhFnwxEeHIYDrgfw0YefqJzYABd2dvaoqm1C1wBcbGY2lNp2Q5OPJn2Kndt3GbgICwpFWGAoQgNCEBJwFttY2/7rn+NVRqyQDfIbM7I0KhcjwQnTFTu2/huhgT1cnD0TjODTQQj2D4Qfs8eW2C1VdYkV6QzyMbpu3DH2Ma4x/6Ktg3GxXW03C8kkxgnpDOIi6FQAAv3OIODkaZzx9cdBZnNNnzpTZeQ9siFsKaWPQTkhqn8xckIc7P15D2eDi99pBDJegvwDsMFxg2pzjRAb4jHFpU74nu7XloqJTcIXihi9KiMj8+cswElmX5EuCT4dyOyuIGZ/BePEMR/MmPa1ysgI6Ixvv52DgqKyXp1h7GPYKexer2Pe3AZQ29Fy4rrXDdOlsU+6gnRGCPNJQplvEhYUwnz5UObTh8Fx1doB5zxVhs+Gk7OrwsfoyQnxOX6qjy1VWlqG//73v4iLS1Db0oL+x+vXr3k7O6xcbfQa6QtfrxOICA5DZEg4okIjEB0WCR9Pb3w86VNVl5jZnhK5Usq4lN0iY52xa8cO/pf6i/qNRJ7fVDGfZGfn8vZtbm7h/69auRKffTrZSJds2bAF0aGRiAmLQmxENOIiY7g+mTdnvsqImewpni+lyAmhdW9ZZ6xfu7bPd1G/yf2nivlkwfxFhvlH6I4P2Tz2z/8bhzmz5/DH4r20vniG+e1xkbGIj45DQkw8kmITsGPrDpWRYbCxZct2XqutzAlxcHA0vEfMV1992dcnJ72h7ENVzCNi7iEdonxN8CH3CeWr7Hfdj8ReNpLjE5GSkAxvZm/Ra6pPYhobVJOhzDunHEJlbGrRgkVv/d6gwGDejw8fPlLb2Yw+ObUp+R5vs1370+mrVqxGSnwSzjE2UpNSkJZ8DuHMd5/65XSVkUGwMWH8R7yGT5lfGxgUamRPkZ/Rn854mw9JrKjtPXyfnOYaU9pzj5OT0f+UIxwXFYv05FRkpKQhMzUdSXGJ+E7KE1UZ6Z8NXaG+Tw3f7p/39NEJQ53v1DYfnsj62NTYuWzjkk0V6B+ArNQMZKdlIicjC7mZ2Vj+4wrVJ+kvRsV0g65Ab8RFU0s7Vq5842sIfUG+oalxW7KT6XPqGB+ebP1pO2eD/pryOeov4oP8RfLh6blxvT5JTkY2YyMHmqxc5OVosGKZw5hnxChGxfQqxWrl2tbG5gt96jIofijrBBJ1zL4fG8tUpmitVvShHAMmcd7tjLxsDbQ5edDlapGfp4PHQY8xy4h8r8QAxaREbStJnq7IyNeQuVDOSUPRCSL2IuyE0b4+Iq8FyfE8um/hS8hxcGFDCZvUVF0hC/1GfzEusU4lhHRGvkaLAsZGoTYfRboCHHE/MuYY6Y8NeZ+QPO0bNkQ8/W3zGLW9KfMZ8dTVdc3wP62zj3a/XcS5le1Ec7qwU4XfTdwQE+K99J6hrh/Rd1D79tc/ZCtT38q6ZOXyVZyL4vxClBQUQV9YDM/DnmOGEfn+iA3yL+S9CDVaY71BbSivMw003k3xRaj/5f4mNsZCXIvaiMY93bu4X+W902tC1wzUXqb+5tv0O7GhtA0cVqzmXJQWlaCsWI/yklIcO3ps1Me1jONUk1BeWWe0F6FGW2hgo792G6x9q/LR/zwuYkfCpqJxa0k+TPEPaT2RxGBPO6xBGeOiXF+GitJyVJZVwIn5KKOVESUbebpio70INXlv2KC+HErO7WA/Q/0t21dknw2WrdFiX9H9UzsQG7J9Rc+LvBHxXhrjZCOZ2hemzDlkI5DIfuCaVY6ci6rySlRXVKGmshpr16wbdYz0ZaPIaL/zXAUb1EcklsxLH2v+ubB1lH74SPjnpugb+j1Z5ziuXsu4qEJtVQ3qqmtRX1OHdY7rRxUj8j0EBIYY7eucqykw8jdo7hJr3ZZmRBXrEcFGf/lcpDPqa2rRUFuHxrp6lDNd9vXMb0cFI/K10761hv3OL11FXUOrERvHvTxVRlQ2+HM/bd5sFNfavnUHmuob0NzQiJbGJlRVVOLzyV/adExLvuaNm7b2ctFzRgad/SL2O6d2UK4XqYyoekMZ+z3p64eWpma0MhuwraUV2ZnZhvnV1vgwiuMyDui8sZ6zY3rOVKIz+cR7KYbbX56hysjYZUPMm8oYZmJ8As63tuFC23m0n7+AyPBIm7SzZH9cX1pldKbSzp1v4nTviuHKjKg1TmOHDVnkWqsJ4z9EblYOOi6042J7By51XMTuXU42xYh8jRGRsUbnU/r7B/WZI971fcSIiNfLz1N8Us4HpTYX8Xy1Fso2+HgXG2KMyDkU38z6Do3MF7l88SKuXLqEzstXYLdosU34IvK17dzlbHQ+ZVa21mAv/rjUflC1G28TeW2L4o9kg4l4vlpzbv1iyhxG+kPO11q5YhXj4jKuXrmCrs5OtLW2Wr0vIrNLvrd8PmV1TSM+//wr/pq5/AiZj4HWgdVxaBmR80bE+joJrSOK52nO6u95c8lxnxPounoV17q6cP3aNSRIOUbWyIjsc2Tn6N6c23r+Ij+nUp43TM0pVPmwLpHbV+RzifV4sdYuakREf5u6Bj9Qn8t2QVFBIW5cu47uGzdws7sbe1z2WiUj8rV4eh5nbFzi+yrQmcZ+pwKM9KTwKYZaryRYUPmwDj5kX1DoDHrOXDmOwuag8aLsU9qTvKO9Hbe6b+L2rVu4zPyRL6dMtSo+ZLuKzjIWZ323tHWgoFA/YM4h3TPpaVNrnEQOCsW1BBP0HbL/Iednq2I+EW0q8yF0A7U9PTY3HzSH0vcLvUH7cZD/Kl4nnXGHsXH39h3cu3MX2jytVekQ+RoKi8r42cgtrR1obmln92bHn39bnjqNbVNrZUX+mxq/Gnm9QX2ltK/EY5kDc/Ah16coRY7vpCSn4N7du7h/7x4e3L+Pfa5uVsGI/NuurgcNXJAcPuJleE25X9i75ghVrFd/kJ6W9xOj+Yh8DRr/9FfodPqf3kt/SZ+bkiMt7KmB8iJpLMl7B01k/5Ov/uCXX/DwwQPcuH6dP2ctfFAuTHMvG03NF6DLL8b4cW9iuYNtE3X/BNtghNiQ7VfqN3puoDUqU/pV1OMO5jOzZs4yrI3sc92PRw8f4vGjR3jy+DEyMzLfqw6RfzMuPplz0dR8Ho1N5zG/164yhY+xJIuYn0ZrWh6HPHDE4wg8jx7rsSVi41CqL0VYaBhO+fnDz+8UTp70w+7dTvjRfjmzKaaPKT/nXUJ2ibx2WFhYiF+fPMHTX3/Fs6dPYW+/7L3wIfvky5Y5cDaIi8bGNgQHhxl0oMrGPzD3+/m89i3oTBDytTqeP0S5EbTue+PaNdy+eRP3797jcx/168sXL/DHH6/w119/cnn9xx/4/fff+PPPnj3FkyePkZ9fgNP+Z7Bt644+55GPNZHz976fPY9z8fzZM7x4/hxNjY3vRYfIv6XTFTM22tDA2Cgtq8Lk3rxjZf7lWJFxH0zAih9X4riXD99joJzpA6p/o9qe5sYmzkdpiR5pqWkICT5rpD/2ux3AhvUbea6qrD/Ky8q5XhF8PGQs3Wd+6J07d3Cz+yZqqmv4ehnlXoxFPuRxdjY4BC9ePMfLly/w228vue5VzukjpTu2b9/FuWhoaEV9QwtcXPYZ3tdfvHo0y9LF9jh80IPvBZjH7p32qSE+0s+lwZuN/W3M11wwb5EZxsM0rHVcz5nS5Go4H7R+fLWzE5cvXoK+uASeR44xn3DKmLHFKCYg1gk+nPgxmzvucZ376tXvbC55wJ8bKR0ifmP8uA+ZvqjmXFA9h15fyZ8TcTmRnzma41J0vsXa1ev42Ui05zLtJ0t8hAaFYMO6jey+Z1r8GiZOmMT3M6Ax0tjQyHNbqT6CdFV0ZAzsly4btWwQE6I+WF7zcmd+Hdmor1//gT//fM118UjoEPn7XVzcUM+4qKtrRm1dExwdN/SJz8k1zNR/o2XNbhKbj7Zt2cbPAKdzXxKi43A2IBibN2zBJx+/X5tyxXIHhIWEcT7qa+tRU1WNTMYsMTRauBDrKfIeAspY8PXr17n/9p///IVff30yIjpE1h2kL2qJjdom5OToDO+h2kg5j0R5H7a8JyjpC4dlq/gZrXT2JPHhsd8di+2WWN21kn3lcegwigqLUFFWgdJiPaIiojD7u7k22/4i9qucd+WxJx47OblwNkiIE/LlLOmrG+kO532ci5qaRlTXNMBxzZs9JfpbBxR7Gov7ssUzASkme9rXH0GnAjkf+1xcjc5ktVahueznXU583+ei/CLomF/kddTrves5U4VsdlErJ2pHlPaIsmaiu/sGZ4NsrMePH1lUh8i6o7i4vIeN6gZkZ+UZ3qM850EpxDrdoy2tA9JZku4HPJiPEY6QgLPwOnwM3/bWzttWXG0iDrsf4Xxo2NhKYv4S7TFlK9cv9hx6V+4prauLeJbTz86cDfJDSCgWaCk/RHyf45oNnIuq6npUVdVhzeo3uuNte+XKvomt9Mm8OQsQFhyO6PBozsfqFauNzrq3RZk2dQZCgkKQlZ6FtJQ0rkvk880sNbaFHUT9L9vc9JieIxtD1g/K/eXoPYOxzZVrCtevX+O+OsmDBw8sYmPJ35Wdnce4qEdlZR0yM9/URx5wcx3Sd4t8NyHC9rJ0fc27ZI+zKxLjkhAXFQ9vTx980VvfNVrkp81bOR90BmBESAQ/Q3Mk+FDuXyn2cqQ+Fj622MNxqL8nn6Hw824nvHr1isd6KeYr6tUtwcfSpcs5F5WVtaioqGG/7WKS7uhPqF3EWomcq2OJ+ppB2SFsLj3DfIxzSamcj61bto8qLozs9SnTcJbZjAkxCYiJiIGdtK+MpfgQezaK/hb7VyrtpuHwodz3n/IWiQ1aL+zs7DSrDpG/IzwsmnFRi/LyGuh0RYb1jqHqDqEnSK+KfXCF/WXO+prBytSvZiApIQXp5zIQExXH7avRyoaQnnNlD3A+SI9s/2mH2b6b5jqxfifbV6JWh0TYV+bkg4Rym4QO8T1xEr+9fMnX1F+8eMFz2czNx+TPpqCCcVFeXo2ysip4HvV5a8zKFBE5oUKXvA8+pk2diXPJacjKyEF4SOSYyQUUsnbNes5HSGAIs722meU7yV+guU8+Y2Ug+4r6V9hXpE+Ge1akvO8Jxa0of43yTp4/f4Z4M9aqi8/vd3NnXDA2SqtQqq/EjOmzDHME+QxDXSNXtp0l6jMHw0Z6aiZymW8VxOyNcRb2V61VKIZNfAT6B/K1TnMxIvvbQ/XPhyKyPkqIT+B5i5TD9vTpU0ycOPz6EPmz6WlZbCxXQq+vQEy08foFsSFqW03d61u0iznra0wRuvasjFxoNQUICQ7jcdCxyIaQhfPtOB/+vv7YsG6TzV0/sUZjhewQOd5FeTaU20s50rSeTrmg5uJjyeIfuc7Ql1SgpLgcqxx64uaUf081Ksr5QulLDGaMmqu+xhQhHZibo0VBfjHCQiPHPBtC5s9dyPnw9fbFOmnt15pF2DE09oQtQ/aVPD4vdnTw+hCqn6qpqRmWjSV/5ugRL5SUlDM2ylBcVGoYR2TjDeR7iFwAa80nodhCXl4Bu58yRIbHqGwohGITxIf3EW8ssbPOOh6xJiLGmXI+Jj7kc6m8vXw4G1RjSPU2X06ZZhY+cnN0fBwVFZbixPFTBjaUusOWJD4+hevElOR0lY0BZM7seZwPr8NemDt7vtVdHzHxrhoKmr9F3gnVBjx69JCzQXXqZ04HDJuPxT/Ycy6KCvUoLCjBD3ZLbZ4Pby9fvn5D+kPdE+Idca3V6zgfXsyG+Pwz26spITZoTyDxf1VVFR48+IWvibS2tAzJxpLfe9jDk3GhZzZ6Cfdj+9NbtiT29it4fgzxQX6VysC7xXmXC/x8/HBov7tN5tfI64W0988v9+/zvYBIZn83Z1h8ZGVquP+aryuCD7NHBR/y/iq2IlT7W6Kv4Hwc2O+hjv1BCvU36Y+g04HYtH6zzV2/vB86+RzEBe2XdffOHezd4zpkPqjenbjI11JedCFW9O6jO9z1wPclMTGJvGYlKSlNHfcmyjdff8f5iAgJt2iuliUZF4+bm5o4G3du3+Z1/abaWOJ9e1z2cS60zE7XavINfqzyfDhbkHXrNvFaeeJjpg32rzUI1UwSHwGnztjctcs5UFRvS/v13r55C7du3uQ1yoPlQ34PrQkQF3m5+Qg9G2543tbqZGkP4IrKOs6HvIeEKqYJ+R6kQ+Kj45idZXtrh0IW/7CUc0F7vnff6Mbq3joYU/ggXUFcaHJ10ORosa03b02cNS/va2/t7eG67yDf21HL7ER1nA9P/p+98/6L4uoa+PlfnvdN8c3zxFjTNLEbFStii50gAqIiohRpIggICAsLCyxlYWHpSLNQbGDviC1G002vzx/w3nPhTK6TbSzDMkPmh/MBhi13Zs537jn3noIxvshHsalI9TmI4v4IxmaIMeBPHj3mfRGwFinGLw6XjyXsOiAXGJNUX9sEc2YP+vli7zgxDxi/G/fM1bZein15sNcC8rFq1RpdxxWQuJg4sJZXwIHwA6obG8Yr4T461QkWBRmh19XW1MLDBw/hIXtdW0ub2z4I/X93aBjnor6mEepqXu4ThwyIXMrHMdwYrNGU9GPHOR9YA1XXbWXkw5mzOR/1TMcmvTXyOUQee2qvNrWrfDmxppQoFEsvt3OwBhD2nhq4PwD3+++71Z9N/F9qSjrnAuO9U44M5u3a67mLgmPF8eG47fXeEM9NzKun+H/5caUEc/6wNyjyseijpbpuKyhJCUmcj+jI6BF/ljzXg+paicdc5cuRXYOvozhZuT7hPiHtaWP94wHGxf17/dB/757Ej7t81NkYG9X1UFNVB7uCd0trZJ6sW+G4KRZAtMPEPDLkXOkY3QMHYjgfpWVWXacVFqxRgXy0Np8YcXyOvVwoeS0oV/kOyIIr215ei7SfsXHv7j24d+cuHDwQ5TYfs2fNg5rqOrBV1YLNWiP1uUH+PNn7EGP5kW3kQH6O8h5pSsjFvmucjy0K5TLo8rLksPuFfIQE7fLYf3bEh3wOUSofSKyZjr2msCbrndu3odJS6bZv/vH6TYyLWqiurIGqCpu0TuGqz42ra0E5HdQvYjT52LZtB9y6MwAdp7p1XR4lWb1qDeejqtLqkT7QHOEol1asi6gUH2LcR2ZGFty5dZvX08dak658dDoeEhTKztnG2KgGq6VKsq08jUcU+wGLPdBGkw9TYSnnI+JAtK7Loyi11TY4c/IULJw//Phe1AnKGRR1hXxScU1WqXw5fL7TMz4kOJTXK77J5Mb1G7zPkztrWEmJyZwLrOGBtW2c+ebuCK1z0bmR70R5g5RvqVQe1LRp78Ld/kecj/FWl0dtEhMdw/lISvRMXyk3TmSGfFJ5bpwS+XKowxTPu3iRD9xkXNy4dp33nVg85EfY40M8VmwyQyXzaSvKKmHv7n0Sd57W8BHPW/ShqC6D/PhIZfv2HZyPxqY2XYdHWZb6LOd8dLRp71rjmi5ycY3J1StXpfUAV3wgF5bSCigvsUg5yBhzJcbRq1mKiss5HyFCfS5dRk+aGxvh/Nke+GjhYtWPFdew4mKipL+xF8RVZr9cuXQZYg/FueQD4zQtJYwNswXKmJ7hXpDW7lf/wBPOh25beUcS4hI4H/vC9mlivKIdVFJcApf7LsOl3ktQXGh2uXa1cP5iXjewtLiM19UjPtAGQt+J6pTgT9qvUVO8oo/PCs5HZ9d5XXe9JOvXbeB8mIuLVTtG8nPQhhJ70RiyDYyNPui72MvmwSaHa1j095aNWzkXJYUlYDaZnX4n+Q7EjBpir6Ki4zgfWcdzdd31kkyZNI3zceVS35iPBf1c8RlOP2nPTe7bh+0Nh94LvXx9F3tEuuJjM+PDPMRGccHg8wDXrkSbTc1SzHwm5GNXaJiuu16Uhro6zgeuCY31POHqNbiGRfmEYXv2MTYuwIVz5xnj513yERsVy7nAeqxJ8X/VENVKPlTPuT7Ox5IlK3S99aJkZWRyPoKDQlQ/VrH26MIFizkX53rOwbnus1LNZUd7IIciD0GRsRAK8wohemhvDfcFtdLLfODhU86HrrPelb17wjgfCfEJqh8rzh20171wwSLeo/Fsdw/0dHXDgqF9Tkd8YK8kU54JCnILICoiSuJNC7V8fHxWcj66ei7qOutlWbXSl/NhKS/XFh9svujp6oHuzm7ep9EeH+Lv2RnZUGDI5/2SgnYES5+nBfuK+KiyNeg662XBvQ/ko6G+TvVjFePQsY5mN+Oi63QndJ46A7uCQ53ykZ+TD8ZsI+/Nun7NYE9g3BfUQr2r6Jh4zseR5DRdZ70sqGfIx62bNzThf4i9bjsZG2cYG6dPnuYxWc74QC7yjudCbpZB4mOksSXe5iMqKk7X2TEQrfAhlzOMC+x/far9pBSr74gP5AL7tBqYnbXObzBuTCuxJTofOh/uzh/ifsWp9lNwsu0kdLR1QPDOEKd8IBs5jI3sY8dh7VA9OCWEYpgpb1Dsj6LUdxhyTZyP0N3aiHMYb1JTXc358FmydMR6gkI9nSlvlvY2xP464vHh+iD0O3LR0doO7S1tEBQY7Nw/Z1xkp2fB8bRMWOu7lh/DPUexx6w9kfcxkL8Hz4VyB6lHLeXIKFUjqK7hBOfDx0ff+xgLKTGbFeUDf6c4ENoHR70S+7OJ/cdI5D2R7YlZ6LGGXLSdaIXW5lbYuSPIKR/IRVZqBmQePQZrhurhoP7aqw0hinyM1EOO2KbzludBuer3rvPxz+aDYvyoboE7eXXi/OJIxM9ALlqaWuBE0wkIDHDOR+YQG5yPoflDzNNwJPbmODwfYt2bfKwd6m+li3b4IB2Q8yGvb+MOH/IcK3sixmG1MC5ONDZDc0MT42OnUz4yUtI5GziHkP8xkv1B5B7nMpEP0b6ifHQl7k8KG7fun4+ddHd1cj5mz5ozrPeRHiADcj6IG3zWUg0c0b6iXn7D+T4xxxaluaEZmuqboLGuEXYM5bs74gO5QBsLfZB1foN8jCS+hPJoveGf6+tX2l2/Ikac+ef0HB2pf457eeJ+HnLRWNsADTX1EOC/w7l/zrjIYT46ru+uH1rfRV9fCz0NdD709V1PpKG2HuoZG3W2Ovhke4BTPnBtF9d487IMsEHYPxf3G9Uqu/fs53xgfq2ur96VKZOncz4uXlB/XhraQmKdH+SitroWaqpqwH/b3/kQJTbqEOQdN4AxOxci90dq6h7p8VdjJxR/pYX4RFHefft9qGVc1FhtYKushg3rNjrlIzL8IOTn5EGBwQjRQzUXtTJ/TJ/2Lufj8rXbus56WXYEBHI+8o1G1Y8VfQ/yp2fPmgs2xkY1Y6OqogpmfTjXKR9REZFgys2HwrwCiDkYrSn/A4XyP6gety5e8v0iozkfEfvV1/NALrgeS/G7WEcYubBarFBZXsnrk9jjQ6qdGBgCRXkmKM4v5HYWHkM2tJIf1dp+Ws8fHAMx5RdwPvxWq7/HCuZrUH7tyuW+YGVcVJZVQEWphffvdMbHpg2bOBvmgmIoGarPgHw4im+nvRhci1NDfYbsHCPnIzIyVtdbLwrVZ5g2VKNzrAR10FU9HdRl2s/btmU7VDA2LIyN8pLyv/Eg/xv3zEtMxVBaaIayohKY+OZkflysUyL+pD0btfSN8vcP5HxYq9SfpzNeBHPukI/uzs4xHwvq4XDql2C8FXJRZi6DsuJSl3xgvSvkopy91sLeM+uDwfpXWunJiT461YfTddc7EhoSyvkwZOeodozy+ld0PD42gXExWOstNtrxvhnx8TbTL+SigjFVyeaclctWST66VmqYYP458rFmaP9Gl9GV3BwD52PTxs2qH6t8rSmL9+MdrGcVIYtBt8cHCvopVmaTod+yfai3DNprntZvF/0Ub9SnTjqSxvnIyDTo+jvKgr2jsD418jF1ynTVj1e+V2HmvXiLoaigCDZu2GzXtpIfO3Y0HaosVqiusELy4eQRj0neu4FizuT9DZSK48X4XeQD+0fpOjy6stZvHefDUqa9mAW0xYsZF1jrrdBYCEsXL3PIhyiHog6BrbIKaqzVYMorkI4fSYz3aBzi2paj/jjkRyl17n2Xb/D+H35+6u/PrmXJPJbJ+QjwD/D4M8SYRMz3oPhV6hVDz9iR5gyihOzcKfkJ8+cu5FxQPauZ73/olA867r/tE6i12qCuugbqbbUjvoboE9G6AXEw2v2jDicd5Xwcy8jW9XiUBHs7Y3815GPK5GmK8IH6Qbmo1PfYnZxBd0X0oTeu38S5yDfkgzHHaNeWsscH9tGpr66FBlsdNNbWw9zZ8/hx9D88qfNDPavpp7t5LiORWbPmcT6wP+dUvc/BqMjuXXs4H6kpR0f0OSIfOC/Q3EA6opSuoF8u+h5Y/zDfYGRs5EGcsHblio9JE6fwWHiMiW+qa4TNG7dI7HkSZ2IvRxCfCWJ/Z3s57CMVS6WN87F/vzZqa2tJXnv1/6CizML5WLbUs1gFezmDqPfkq1L/TqX4wLUrsQ5PZnom5GXnQe7xXAj8ZKdL30P8H/rnzfWNcKKhWeoBj2w4q/OD3FNvc/G4PF9e7NUpz59U8h5u3RrA+Th7rk+Px1JYtm/15/3Py0pKPXq/o5xBe7rvTs4gcoR6Rv6KPcE1WLKv3mTfj1wYsgyQk5kj7WO48s1Jktj3tzQ2Q2vTCSgvKbPLB54jjof6b5L/pPQ8MBLpONUFV6/fgfDwg7peKzh3mE1FnI+RxFs5yhmkXq6iTeHKP0e7XV5/geqd0GswhpDiStCHEGtZvf/uTLf4kPrkbNoKbc0t0H6iFTpa2hh3U6U5Ajml85ILjtMZw96WLVv8OR9d3Rdgwuv6HKLINWX2trW8AgrzTaoZE+oc6qX4nCbBdTDUS/G5vcM/kNeaPs7YyErPcul7yP+PPGFdIKybdbKtg/nm66VxiN+NnNB6lFrvZ1v7Gbh85SYcOqT+2vuqnztemQBGQx7nw3flalWOEZ/hyALaNVT7gHSVXpMYm8i5yEzLhLDQfcPmAwXXrrAmKdYmjY+Nl+ZE/F7qYa6Fe7po0VLOR2/fNZipwX6japLgwBAoKTTzPWStjBltLKp/wnX4jYmci4zUDHYex8BvqM6bO76H+JrUlFS+tt156jTUVNleWifTQr3ql9cILJwPk6lE1/MRPJdxPRT5oDwirYi47vrRgsWQcZSxkXIM0pPTef/E4fjm4j5hF7Pbus90Qk9nl7S/iH6OVmIVSaZOeRvOnDkL5y9cZnNfkK7vw5RXmV2FNgnyETrUA0BLcjAiXPod+9qkp6RD2pE0dk6H3bat5K9DrnrOdMHZrm44190De0L3Sq/R2vyBEsiuC/LRzvyRGTNm6Xo/DNm2eTvzZbN4vOtrr07Q9LkkxSVB6pFUOJp0FLZu3Dbs94sclZeW876F53vOQSXzyezxqCUxmcxw9mwvlJZU8J4uuu67lnlzFkBqUirnY4ZK8uCGI7hnTvYO2oWpjIuUwymQkpjMY7CGM3fIGcG9wQtnz/Pe0L3nL8LUyeqPYXYmWKepve00dHWdg/i4w7r+u5BJb02FmIMxnI9NG9Sf3+FKcL5ISUyB5IRkOBJ/RLKDPOXjA2aH9J6/AH0XLsKli71S/XfMb9dCzR97gj19kY/Tp7ph29ZPdA4cCOpORFgEJB5KhP1792vyHDBeUNzTjo+O51ygjeUv3HtP+UDB2taXe/vgSt8lqKm2ufV+XPvFNTUlYw6VFP/tgZyPDuaLrNFj4P/ujzM29u0Jh8PMf405EKM6fxP1C/cDXe27iWutH86YDUnxSfyckPl5sxd4xIackfCw/XDl0mW4evkKXLtyFT4cykmX1/lFwbVmHDfukailZoMjiWP2FfLR2tIBPkuW61wIsjMgiNvoMQcPwaSJU1U5RmSE9gHxp3w/Dm0cce5A+5DYSIhJ8Ni2kvOBa6PIxfWr1+DGteuQEJ/4Ep+uxqlmiT2UwPmottbCe+/M0NlAf3ZbAF//RD4mv6VONuSC8wg+l1HouSzWTMDfiQsUzP3w1Lay9z5cx7p5/QbcunETepkvQscp7sXT+BJ8P8UAiPliYm178bjSgvnT+cZCaG5shYa6JvBdpf76ZqNmU70yAXYH7+ZxF8jHgnkfKfK5juLRxbh1UQ/s9SMbzpyC76UYD8muWbiEc4GMHGZ2wwdD6/uesiFnZOuW7XD75k24c+sW3L19m8c3K3Ht8PrQeVC+GP6O14rmIfRjlOwTYo+RY2mZnI9aWz2sWqHOuKLRFIyrimdzKcZ7Ix8L5y9S7LNFPtC+oNhcjIfC+4zHxLhWtNHFmF5PRYzd3b83gttW6JtHCvlASvGB0tfbC/fu3IH+u3eZPVIlHceYYU/7S1EcMtWfw+uEx8XrI8+PGS05GBHF+aiutEFQYMg/hg2s6YTzBeaZph89pvgavpwPihMU76s8h24kfKDNL+rjO9Pf4+tVuKZ7lNmMviv9FGGDPoM+J+nwEcbGPbjf3w8D9+/z2tc0Hk/jTcTaJsgGMT8WfKDsCtnD+agst/LnKeY6jGc2VixbybnAGh44byhZHxTvJdk7or1EPfe8xUfAth3cl8I9nPTkNL42pxQf4udMn/oODPTfhwf3B+DhgwdgyDG8NIdQzV9P5g/Rx6LrQ/YVzb/e0pmVy1dzPsrM5ZCXbZRs1fEkrzPu9+0N57XOsHYgrnuijaXkd+B9o9wLkQ/q6015pXI7m3ofK8HGv9+YyONI0hgXGI84kj0Pd2ysnGwDPHrwEB4/fARPHj3mNYRoXJ7wIffPKQbZW/65Q5uDzcnHM7LBbCrhNWCwTt6rr2g77ohkzux5UJBn4nX9kY8dQ7nXoyF4P+3529Qz3F3/3N01UXktdYwbQ9sRY9mz0jMl21EpNuSMLPVZzrh4BJ8+fgxPn3wKxry/6qKIdeOdrS2oKb/Qqc/KnrGhwbs5H/k5RubbJcGcWfO0O2e89gaPF2qsa+D9xLB2IMZ6a2HsuB7lqhc4ruGKcwfmeWRgL+a0TJ4nuD8sQvG5w97nNdTVw9NPP4VnT5/C888+Y8/aQSbQB3HEh1j3C39qaY8E4/rRr8N85eNpWRAWGiblK2tBJrz+BoQE7YK6mjo40XSC8xERfkAzvhXZWzS3ONp7ls8da1av4zGVvKdmlkGKrVSaDTkjWM/lGePi+bNn8Pnz52AqMDkcI/po8tx6NdVvcFfQtlrnt57zgf3hczKOw8Hwg1JOjDq5+DfPSWhpbuE5oO0t7WDMNcLc2fM1d/0pb1W0udEWoees/NmM9wt9DkNWDvMhc+Gg0EtztPlAaW5qhi8+/xy+/OIL+OrLL9nY3nvJD3F1PloVnLM/YT4e8mHMzuO9tuKiY2HFUvX018J4h9iYODh98hSc6zkLXWe6mK9hhbXjIM7M3vMWbRM5H4HsWC72mcVemrn5LmuHKs3I8mUrORdff/UVfPP111BcVPy3dQtX86GmOWGcBwUEcT6wlxD2g8C+QphbNxZxKljfa9tWf7CUWXgs0OW+S3Dx/EWor62HDes+Hnfrb6hjYq0SZIaevVjbCuu+Ya4j1o+OiYwZ9bnD3ue3trbCt998DS++/Ra+e/EC5s9bKDFO9SLUXNdECXnzP5Ng88dbICczG6otVqirqoEm9jzAXkSxbF7B58ho5WHNYXbS3j37oMZWw/ek7t6+w+N/kA9DtgFWqbS+iJLPKLRJaA2ZjoftDoMCxkWh0cTrs38wc5ZX2JAzMm/uAnjxgrHx3Qv4/vvv4BSbz8X1O0/WezU99y9cAgeY31tlqeR19U62tvPaFme7ephP3MjXxveHR8CSRUvBZ8kytz/33Xfe57oezHzsw4lJ0NLSCp8z2/Yz5gM+efyE70UhH82NTRASvIvbV/+Ua45rVmLN3pkzPuRcFBUUgrmwGOJiXNfVHc05pMRcAj/88D38+OMP8NNPP8KWzX/l82It+X8SH6Ks8k2E2ITbUFZ6kvOB+Zdo82AM9O2bt3gcwiOm10+fPIH+e/3QynS+o70DTjOeujq74MaN6/Dnn3/A77/9Br/88jP89OOP/Bn07bffMLviK87Hvbt32eeXwx72vJw+zbs1uGlvXFxjolrK4uvomLzvn1KCNdPF2I2khCQwMzu3pMgMZeZSqX+mt9iQM/LO2+/D8+fP4Oeff+L3cWBggO9Z0utw7Fqs5TBiu2taE0yb9StM+M+g7Yv7DDsDg3i/u4ryCuhmDBAfnz97zv04tFGRg99++5WzIfKB3JzsOMnnj40fb5b6EI+ViHsRtLcnxgrhcbR5xL5ISufKyWOa1qxey2sPoW1rKSmTcl3Hkg+UlOSj8Osvv/D7+vvvv4HRmP/Xc3TFSrdqvlPPg/HCx9QPvuR8/M//uo4RR11fsXwVrFzhy+0o31V+sNpX3XH2Ih/UJ5b+R7FT8r437sTQDWftX7RPcC8nPzef14rGmIBiU5G0v+NtNuwx8oA9C/9gzwh67i1csOglzp0xgnMvrnENZw6m2u/yY2MZk0KCTCAbyMh4nR/t7WVTLhDeSzkf7saY0vqts30Ae71iIyMiwcJsTayxU1VRyZ7LvpKOjiUf9N34vEMu/vvfP7ncuH5deh366Y74oLr0w90XwdeLvQxRvJkz4kzQpkI+0MYab1xQrzyRD7zmqNd4nOIkPOWDPg9tM0f2BOqS2CsWbdfKMgtYLZVQXVkFyUnJY2ZXOZtD8vMLpPnjjz9+h9SjaS+dkzxXXeyl5em9Eq/5WMXEu/I9xpPQ3hb1NqJrTX9T/XJ6XuHfFJdN88pw7q+8z4c8Dnaw10Ix7yVrs1ZDbXUNvDVxiirYkDOCfvmjR484G2hroS+yYP5H0nlR7Bg+Z8RcD09FPoeohQ9kA+Vf/xqf+eyUAyjeP7EHkjwfVJ7bMxyh/jJkF8hjYHkvWWsV48IGdbZaCPDfoZq5w56d5evrx7nAdRf01+XrWfLzVWK+F+3dscoZkWzj1/w4G5NnPPjHrdmNljh6nn68fuP/t3ed7VFcV/j8kzz+EtfYDgZsg1sotqm2sY0tmnqhBUywbNMkod4L6r13od5RlxCiGIxDjIkL+eDEzuOEJL8g973iLHdHs7szYldopflwnhWrYTU79773nPdU2Te9qb6BWhqbKEmxVxYLNvTuJycnl/5z7x7du/dv6ZtsaTlvx7/cgQntDJTFws+ffj5R4uPZlVXW3vYA9+GfETMFH29uaKLzTaiJrpHzdB81JzdqZ10SOhXYQFzkX7/+SocOPej5rdc3a6nI71++IPHxxDNHrT3twjY2ei18VSoff/KJpylLYAV1Fq2YkXm+VcY+Fqvu0LOzwDvu3v1RxtQR80J8nfOz5mPvekNO/GOPPb/kuYc7BPYw4oZGMaL1534e/oXARYvMp+loa6NTJ04temzo3R90BnCB/JN//vIL3bh+Q+iWB35eI/knXJ8JWezxw8efCpTYWLF2xsKBEy7Bud1GMII9ovJxzBpvE/Z6R2sbdbZ3UEFevqyL9AZs6GGktLRM5g398vPPMn9ifGzc7lpns6hUbJj1DT4KeWZFrsQHXr1tz3J+H+cxqMJ7GNxRL8fKrOBzXGFELwa4Yf2b1A5ctLVTdwf6+TWJ+35tUXMOIxiZGB+nfwhsIA/+7z/9REWFD2pFcDbo9QbyBDbUntl45XXB3uAeNOr7ZgV6A/iAHvE23qv2kOF6CnVePZ4Lz13mV09iRMs51q55TfZG7+rooJ6uLurr7iGfj3d5jV3ljIs8I3TEnW+/pZ8ENlBLhVw8bdxH5eue0hvwEXKvGf4Z72N94L/H+zyz/mG4B372Vnxgn+K5a31/2ni5u/ob6mEEe0HNt4D9VFFWTj2dXdTb3U39vb10WPH3eBs29DCCWpHb33wjc7NRd4i63DAlv5J1iCdtKnWN1fihO+KK3sw9tP3bgA2cHaqecGf/NlcYUfEBbIBj9HYJXPT00kBfH0VFRHk9NvTuf3/YQYmLv0Hu3pW9HcJC99vtTU/yDa7J5Dxs9om5Ax+IdwAfiH94y9rg+3NfV8YH25p8DdeAegofWoyozx7YKMwvoL6eHokLzIotLy211WN6G+cwghHoDODiR8gPP8g+KOiHovr+5oMNI5xR7YHMZ6S78IF4OfCB+Lm3rAvvS2BAz77ivCpcx3Yp3uNzxhnu5nMv/Lf4vYjTEdKWGuzvp6HBQWFjlS05bOhhJOJMlMTF999BvqMb16/Lnn6OuJkrUWe/z4d/cK9LzndUaxmMCGIdzD28bV04n1x9fmreFOOGMaLNsdIT/E7LL50J7CltLXbkmUhZm3xhYICGL1yQnHzlC6uXJDb0MJKbkyd7zP31zh1ZQ/3ltWs2jLBvDzaoq9oqnlf1KP1XiJUDG4idL7U1m69gTVzlEmGdIVofP/gF42JkaEhyctSVLxXOYYSvQ3Kyc6Rf69vbtwV3vy1rRoICQ+zOFWd5KFwn8Ki/lzdyj4UQrI2zs0ZrJ6DP49nIKGlLARdjI8OSe6j9wZcqNhxh5FxWtux3jR4cf7l1i279+ZbAiP1MWTxDPT2C57+QfbWYm2jztbmWtq39a7fk7c/HRtLToeoZzv36tHaTJwVr44hLamcfg1eAe48MXaDR4WEaH8V84V5bb57lgA1HGEHfG8xMwOwE9Kn5+uZNCgwIsjtnoH9VG5W54kLet94sH7WWFu9jPyy0TnPkU1B9TpzvzzVM4OXzxbGZM4mflbO1BDbAvWdxMUITY2OCk/ctS2w4wkimeIboc3Pzq5t088ZXstdZWmr6HD2i98yNcnh3nJmcX8EcVltLa8T/xfWoep+rvq/2zHFmpxjBhzbG4aoXuqP7Bv7VOmYjop5l2n484BXNjY3ClgIuRmlqYlxyj+WMDUcY+ePhI/TVjRsyj/H6l9dln6i83HzZO1O7RmbPO/avP0weMOsGrsnCHtPW0hrBh/YavT447HtV5/Tp7UnOl1I/j69zNz4guBc8R7M+Pj0ugh4e4N7jAheT4+N0cXKC6mtradXKF5c9NhxhJMA/UOICfTIxL/eqkKbGpjk9AbU1+q72tTb2NF/7Sht/1/bxmQ8+9PrgaPezXq9Wjk9oe1Gwj9oT+FBjuEbsM/bdAhsqPkKCQyXHmBwfoymBi+mpKWqorxNn4e8sbPzGue93y+Zt4tmNyVnr6DeIfrIjQ8OyL5TqG2QfsLM+pmbX05WdoObo5eRPSmy84/Nfu/Pfle/fGT74d0b3M+fjaPUHn/MqnrX66GH8Uq7OG/bbYo1UewpcIzYmVnIM2FLTU5N0afoiJSUm2rCxVOMb7sTIG6+vo8aGRpqZnpG1iJcuTsv+nJiZp9UjOKN4PfTOfHfmq3CON17VWlojfTQ5D9ad+ODP1f5dtrsc9QB9mPp/fA6fOY7ihOjFofXNg2tUV1XRpMDFReDi4pQ4+6YpMiLSoT1hiWOM4DyB/xe4uDg5Jc6bKaGPJ6mooIhWamYQ68VK+Gw1wyfxf4z6Z8zW0vK5rvbghOj1wQGOVH8T9JUnfdnavCsjupTnb6jvQ1dofbeQ0JAwmUMFjjEtcDEjcDE6Mkx+vv4WNh6Sk0BnTE1MCmxMCL08Lm2v3u5e2Y9T+3/Rz3Tr5q223j96sx5d2Q5Gr51PLS3HNFV+q9cH51HEK8xwbp5By88XNq7v3r1zroM9lZmeIdZvQtpSM9Po0X1J+qxgI1jYcA9GNr29hfp6+mhsZIxGh0dpdGhE9kVPSUrVna/h6HxzxQuM+reWYh8f4NSMf0+rn7V1oOgljDgGc4zLM9OCU85QXm6unU/SwoV7MAIc5OfmS64+LLAxNDgkZ4d1tLbLOTTatWO7Ra8+8WHPz7e3t3tFLS3HBY32OjLK05jrsX5TbT+pMzIyhS31gGNcEbiAH9ffL8DSGR7GSXBgCHW2ddCF/kEa7Buggd5+OX8yKyNLYGGVnQ0we32g3Zo6sr/N5DnuCf6fV9TS4juZiVeA9xjhObClcO5oeR3qeQYH+mc5xn1b6tqVy9TS3EyrV71kYWOBMPLCitWUnZlN/QIbsLvAR3q6eqi7s5sOhB209bRQ5fPw4zbfo549ZpT/+viEmqql9UQejFF9wP1w4RMwin1nWMJZo+dPh/1bW1Nj4xiXBS6uXpmhL69doc/CP3Pog7HEc/4tCGZStgiboEfgoruji7raO4Vu6aSG2gbaqfQMU+XYkSNzcGLGtvINKDRVS2v0szmmZyROY5Svc72T2nvVyH1orwUu9OzUVS+8SPFx8bP+WuDi0izHuHb1ClVVVlo6Y1HoklUUFxMvcdHR2kHtgo+0nW+jtpZWKiksoa1btjvFCWx0M71Igw5cM8U9jO5ljtUY0Te4Z6PxTv5co9xb9VOg/5QeLsAxTp88Lf21l+77a69cFrbU1csyJo48CGdrZsnCYgSyYf1bVFZcJnGBvpOYidnS2ELNDc2UEJdIWzZtc7p/YTe4mgUHGwzxcqO1tNjDRvelGXyY6UPFvjwj3Jux4Oha4OLYJ3+awzGuCo4BWyo66uwc35SFi8WFk317/Ki6olrioqm+iRrrGqlR2FsNNfVyBpde3ATCs+AQ+3XE5XfvPm6qltbMPjaDD+DUaA0r59g483VzbFUvtgdBPDYuNk7Wgs/hGPdtqT+8sd7ChZfgBPw8JDCUKkorZA/8eoGNuuo6qq2qpZrKGsrOyCZ/30DbjDpVgA+co3jlmSUsfkF1pmppcXYbtfvN4MOM3QbhWKlqk+EMQCzVWa7nprc2S1xMaXJCZjnGZYmLrVu2WbaUF2HEDidi/wcFBFNpUanEBfRKVXkVVZZVUqXATkVJOR09/InAwTpdW4Pzu3j/hBy6Y6qW1sweNosPMz4FzimEzsH3AS5gS2rxzzbU3t376Hxziy3v3I5jCFuqqqLCwsUSsrmgJwL8Aqkor/A+LiqovLicyorKqLSwlEoKSiglMZV2vv8RPffsCoe+oOycXkrO+J6efHKdtMfcuYc9oT+41xpwwT2/HOVy7njvfYqJjpmTd65yjEoLF0seJ+9u30HpKek2XBTnFwvcFFFhbiEV5BRQfnY+RZ2Oog/e+5Cec2AbYY8xPiJOnZDcHv9m7sL7z5P4YA7N+53tJb4n6D/ck7P8f8yVjhbYQf+c2Ro++7xzzglJSU4Wn23hYrnYXZC3Nm6iT4+FS51SmFsgsJEvsJFHeedyKTcrl3IycyRPOX3iDPnt9adX1rzm9O8wb1HtMT7j2U+K3zGGmBMzzlR8cJ0210+o1/NcCP5sYAK8WuURjnJqEFfd5bNb9glBr+fZPiGzta0y71zJCQFmwj8Nt4thWLhYfjiBPfXhjp2UEJtgh4tz6ecoKy2LMlMzKSMlg9KT0yk+Op4Ohh2id7a9R2tfNp63q/Yl4HnXjAv2Gan44Hgc9j7bSIwPfjUS70dsCP0pw4+HU0lRsa0XodonhDkG550nJSbRzg8+MqSPLVk+thdk9cqXyH9fAMVExtjhIi0pjVIFP0lJSKHk+GRKikuixNhESohJoONHj5PPzt1iL2+nl19c6zKG4ilZu+ZV2rb1HdofdkDOAK+qqLT1OwcuuOearU8IOMb9vPPsrHPkt8/Prr7V2ZliyfLWKRDkTnz8oQ998ekJSk0Q2IgX2IgT2IgV2IgR2IhOoPiz8RQXFUexkbEUExFD0Wei6ezps3Qy/CTtDz5AQX7BtOPdD2ibwM6al16ROkdb22VEwJsQX1j3xgbasmmrzNEMCQqhxPhEys48J2cqtd+fqdTd2Sn7ndv6OttwMWTjGAP9fZSVmUm+OpiwdIUlZrHy+G+forff3EwBvoF08rOTDnERdSpKCn7G+7FRsdImA56Shc6B/oEuykhJpyyhn2DD5WRmS84D/lMouFBxQRGVFpZQeXEZVZSWU1V5JdVUVlNdVQ3V19RRY10DNTc0yrmtrS2z8yl5ppKcHQNc9KLfeb9dL0L0Qj929JjMJTT7/S2xxMxeAR94/dV1Ur8cCDlohwtgBbgBhmB/wRaD7kkT9hlstUyJiyyJC/Ad+ATgHyjOL6KSwmIqKy6VcZmqsgqqrqiiWomLWoELzPpupJbGZjmfsl3Op2yfnanUOTtTiW0pzFpKTU6ROgZ9dOb7PS2xxAxWnO0jzMkC/3hf2FP+ewPoyMGjdObEGclb0pPTBC4yJN8H98/NypG4KBC4gP+spEDgoqiUykvK5FxviQvojOpaGf9vqm8QuGiSMTueT9klbKmMtHRZv3rowGHa9fFuOTfYHd/FEks8jRetffbq2telgMfv2bVXxqj37fEl3z1+0n/sv0+IbwAhjhnoHyTj/swzQoNDacO6jXJG5cb1b3r0Xi2xxNOYWei9+Kj/viWWuGvfulOsZ2yJJZZYYokli0v+D1BLAQIXCxQAAgAIANqIPlvYbTm/J0AAAABxAgAEAAkAAAAAAAAAAAAAgAAAAABkYXRhVVQFAAclDtxoUEsFBgAAAAABAAEAOwAAAFpAAAAAAA==</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #19</Name>
|
|
<Index>19</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPlvNW3BPFEAAAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J33W5TH2se/f8l7zvWe6z0nlphmYmKLSYydqMSCit1YjhpAEQuoCCgiSpHem3RYdqlL71XBgqjYY4stMSbn9/POPTDr7AMoC7u4C88P98Wy9Xlm5jN3mfue+fvf/oG/q/Le5G//87+DFrW9VBkL494Wvl8VVSw1TtVrUkXlYXDjbuHCxVzc9rvDzc0d4RExSExKY5KKouIytJ6/iNa2i2hp7UBzSzuXpuYLaGw6j8bGNjQ0tqK+gUl9C6Ki4pnEITIyDocOHoGT016sWbMec+cuxOTPpph07WpfqmIJJgZ6zzfffI9Nm7bCy/skUs5lop6N7Y5LXWi/eBUXOjqZXMH5diYXLqPtwiXGxaU3XLQquGgiLtoMXNTVN6O2jkltE2pqGlFd04Dq6npUVdWjsrIOFRW1TGpQXl6NuLgk+Pmdwa6dzpjz/XyM++BDlRdVRpSHCeMnYaWDI3x8/HAuLRuXrlzncvHyNXRc7jJw0c656JS4YCK4aOsw6Azioqn5PGeDuGggLhqICyaCi9pGxgZx0WDgorJScFGDsrJqlJVWoVRfCb2+AvqScpQUl6O4qAwpyWk4cdwPG9dvwfSpX6usqDIsLvp7zc5uKQ4eOgJdfgkuX+3G5c4buNT5hgvOhuBC6Aziot2Yi4LCUsQnpCAuniQZe/fu57JnD4kbFxcXkn1wcd4HZ2dXLj5ML0Uw2yw8nElYNNcZxEU5cVHGuCit7GGjpMLARXFRKYoK9SgsKEEBu+4CXTHytUXIYEx7e53AimWr8Oknn6usqDIkXeHgsBZBweFoZuP6Slc3rhi4uNGHiw6Ji6TkdPifDsI+t0NYvnwVFiz4gescS1z/jOmzmB21AJuZbbdrpxOCg8KYvkhnXJQyLhgbggtdEXTaQujyCqDV5CMvNx+aHB1ys7U4yz6z1nEDPvl4ssqKKm/VFYKJFsZEZ9dNxsXNHi6u3uhhg7gQthTjIpeNt2Nevti48SfMmjXbau5v3AcT8f3sedixfRfTPb5cZ2g1BT1c5OoYG1rGRh5ysjTIzsxFdkYustJzEHgmGGtWr+vDisrJ2NUVU76YiuMn/FHJ7PvOa7cUXHQbuCDRMPuEfPBFC5fY3P2TLbV8mQOOHfVBSlIacjI1PVxk5CAzPZsxlIWM1Eykn8tAWko63A8ehv2SZSbZoaqMHi4cVq1FLPMBrl6/3cMFkz5cMImKTuCxKUvZSO9Lpn41A7t3OSMyLKqXi0zGRQZSmX2Wynz6c0mpSEk8h2jm92xctwkff/SZyskY4GLLlh2oqmnkXFzt5cJIZxATMcTEtlHHxEBC9tRmZiOGMttScJGckIJkNn8kxSUjMTYJCTGJcGI8kb5VORldXEyY8BHc3T3ReuHygFxomS+7afPYYWIg+WrKNLg47UVUeDQS4xgXsYmMjQTER8cjLioOsZGx8GC219czvlE5sXG/m3PhIXEhbKleLppbOxAYFMbX99T2M5YP/jUBS36wxwnm3wsuYiNiERMeg+iwaEQxu+yQ2yHMnD5L5cQG41FkR7VJXMg6o6Kqnq9njHVdMVghXbHPxQ3R4T1cRIZGIjIkAhFnwxEeHIYDrgfw0YefqJzYABd2dvaoqm1C1wBcbGY2lNp2Q5OPJn2Kndt3GbgICwpFWGAoQgNCEBJwFttY2/7rn+NVRqyQDfIbM7I0KhcjwQnTFTu2/huhgT1cnD0TjODTQQj2D4Qfs8eW2C1VdYkV6QzyMbpu3DH2Ma4x/6Ktg3GxXW03C8kkxgnpDOIi6FQAAv3OIODkaZzx9cdBZnNNnzpTZeQ9siFsKaWPQTkhqn8xckIc7P15D2eDi99pBDJegvwDsMFxg2pzjRAb4jHFpU74nu7XloqJTcIXihi9KiMj8+cswElmX5EuCT4dyOyuIGZ/BePEMR/MmPa1ysgI6Ixvv52DgqKyXp1h7GPYKexer2Pe3AZQ29Fy4rrXDdOlsU+6gnRGCPNJQplvEhYUwnz5UObTh8Fx1doB5zxVhs+Gk7OrwsfoyQnxOX6qjy1VWlqG//73v4iLS1Db0oL+x+vXr3k7O6xcbfQa6QtfrxOICA5DZEg4okIjEB0WCR9Pb3w86VNVl5jZnhK5Usq4lN0iY52xa8cO/pf6i/qNRJ7fVDGfZGfn8vZtbm7h/69auRKffTrZSJds2bAF0aGRiAmLQmxENOIiY7g+mTdnvsqImewpni+lyAmhdW9ZZ6xfu7bPd1G/yf2nivlkwfxFhvlH6I4P2Tz2z/8bhzmz5/DH4r20vniG+e1xkbGIj45DQkw8kmITsGPrDpWRYbCxZct2XqutzAlxcHA0vEfMV1992dcnJ72h7ENVzCNi7iEdonxN8CH3CeWr7Hfdj8ReNpLjE5GSkAxvZm/Ra6pPYhobVJOhzDunHEJlbGrRgkVv/d6gwGDejw8fPlLb2Yw+ObUp+R5vs1370+mrVqxGSnwSzjE2UpNSkJZ8DuHMd5/65XSVkUGwMWH8R7yGT5lfGxgUamRPkZ/Rn854mw9JrKjtPXyfnOYaU9pzj5OT0f+UIxwXFYv05FRkpKQhMzUdSXGJ+E7KE1UZ6Z8NXaG+Tw3f7p/39NEJQ53v1DYfnsj62NTYuWzjkk0V6B+ArNQMZKdlIicjC7mZ2Vj+4wrVJ+kvRsV0g65Ab8RFU0s7Vq5842sIfUG+oalxW7KT6XPqGB+ebP1pO2eD/pryOeov4oP8RfLh6blxvT5JTkY2YyMHmqxc5OVosGKZw5hnxChGxfQqxWrl2tbG5gt96jIofijrBBJ1zL4fG8tUpmitVvShHAMmcd7tjLxsDbQ5edDlapGfp4PHQY8xy4h8r8QAxaREbStJnq7IyNeQuVDOSUPRCSL2IuyE0b4+Iq8FyfE8um/hS8hxcGFDCZvUVF0hC/1GfzEusU4lhHRGvkaLAsZGoTYfRboCHHE/MuYY6Y8NeZ+QPO0bNkQ8/W3zGLW9KfMZ8dTVdc3wP62zj3a/XcS5le1Ec7qwU4XfTdwQE+K99J6hrh/Rd1D79tc/ZCtT38q6ZOXyVZyL4vxClBQUQV9YDM/DnmOGEfn+iA3yL+S9CDVaY71BbSivMw003k3xRaj/5f4mNsZCXIvaiMY93bu4X+W902tC1wzUXqb+5tv0O7GhtA0cVqzmXJQWlaCsWI/yklIcO3ps1Me1jONUk1BeWWe0F6FGW2hgo792G6x9q/LR/zwuYkfCpqJxa0k+TPEPaT2RxGBPO6xBGeOiXF+GitJyVJZVwIn5KKOVESUbebpio70INXlv2KC+HErO7WA/Q/0t21dknw2WrdFiX9H9UzsQG7J9Rc+LvBHxXhrjZCOZ2hemzDlkI5DIfuCaVY6ci6rySlRXVKGmshpr16wbdYz0ZaPIaL/zXAUb1EcklsxLH2v+ubB1lH74SPjnpugb+j1Z5ziuXsu4qEJtVQ3qqmtRX1OHdY7rRxUj8j0EBIYY7eucqykw8jdo7hJr3ZZmRBXrEcFGf/lcpDPqa2rRUFuHxrp6lDNd9vXMb0cFI/K10761hv3OL11FXUOrERvHvTxVRlQ2+HM/bd5sFNfavnUHmuob0NzQiJbGJlRVVOLzyV/adExLvuaNm7b2ctFzRgad/SL2O6d2UK4XqYyoekMZ+z3p64eWpma0MhuwraUV2ZnZhvnV1vgwiuMyDui8sZ6zY3rOVKIz+cR7KYbbX56hysjYZUPMm8oYZmJ8As63tuFC23m0n7+AyPBIm7SzZH9cX1pldKbSzp1v4nTviuHKjKg1TmOHDVnkWqsJ4z9EblYOOi6042J7By51XMTuXU42xYh8jRGRsUbnU/r7B/WZI971fcSIiNfLz1N8Us4HpTYX8Xy1Fso2+HgXG2KMyDkU38z6Do3MF7l88SKuXLqEzstXYLdosU34IvK17dzlbHQ+ZVa21mAv/rjUflC1G28TeW2L4o9kg4l4vlpzbv1iyhxG+kPO11q5YhXj4jKuXrmCrs5OtLW2Wr0vIrNLvrd8PmV1TSM+//wr/pq5/AiZj4HWgdVxaBmR80bE+joJrSOK52nO6u95c8lxnxPounoV17q6cP3aNSRIOUbWyIjsc2Tn6N6c23r+Ij+nUp43TM0pVPmwLpHbV+RzifV4sdYuakREf5u6Bj9Qn8t2QVFBIW5cu47uGzdws7sbe1z2WiUj8rV4eh5nbFzi+yrQmcZ+pwKM9KTwKYZaryRYUPmwDj5kX1DoDHrOXDmOwuag8aLsU9qTvKO9Hbe6b+L2rVu4zPyRL6dMtSo+ZLuKzjIWZ323tHWgoFA/YM4h3TPpaVNrnEQOCsW1BBP0HbL/Iednq2I+EW0q8yF0A7U9PTY3HzSH0vcLvUH7cZD/Kl4nnXGHsXH39h3cu3MX2jytVekQ+RoKi8r42cgtrR1obmln92bHn39bnjqNbVNrZUX+mxq/Gnm9QX2ltK/EY5kDc/Ah16coRY7vpCSn4N7du7h/7x4e3L+Pfa5uVsGI/NuurgcNXJAcPuJleE25X9i75ghVrFd/kJ6W9xOj+Yh8DRr/9FfodPqf3kt/SZ+bkiMt7KmB8iJpLMl7B01k/5Ov/uCXX/DwwQPcuH6dP2ctfFAuTHMvG03NF6DLL8b4cW9iuYNtE3X/BNtghNiQ7VfqN3puoDUqU/pV1OMO5jOzZs4yrI3sc92PRw8f4vGjR3jy+DEyMzLfqw6RfzMuPplz0dR8Ho1N5zG/164yhY+xJIuYn0ZrWh6HPHDE4wg8jx7rsSVi41CqL0VYaBhO+fnDz+8UTp70w+7dTvjRfjmzKaaPKT/nXUJ2ibx2WFhYiF+fPMHTX3/Fs6dPYW+/7L3wIfvky5Y5cDaIi8bGNgQHhxl0oMrGPzD3+/m89i3oTBDytTqeP0S5EbTue+PaNdy+eRP3797jcx/168sXL/DHH6/w119/cnn9xx/4/fff+PPPnj3FkyePkZ9fgNP+Z7Bt644+55GPNZHz976fPY9z8fzZM7x4/hxNjY3vRYfIv6XTFTM22tDA2Cgtq8Lk3rxjZf7lWJFxH0zAih9X4riXD99joJzpA6p/o9qe5sYmzkdpiR5pqWkICT5rpD/2ux3AhvUbea6qrD/Ky8q5XhF8PGQs3Wd+6J07d3Cz+yZqqmv4ehnlXoxFPuRxdjY4BC9ePMfLly/w228vue5VzukjpTu2b9/FuWhoaEV9QwtcXPYZ3tdfvHo0y9LF9jh80IPvBZjH7p32qSE+0s+lwZuN/W3M11wwb5EZxsM0rHVcz5nS5Go4H7R+fLWzE5cvXoK+uASeR44xn3DKmLHFKCYg1gk+nPgxmzvucZ376tXvbC55wJ8bKR0ifmP8uA+ZvqjmXFA9h15fyZ8TcTmRnzma41J0vsXa1ev42Ui05zLtJ0t8hAaFYMO6jey+Z1r8GiZOmMT3M6Ax0tjQyHNbqT6CdFV0ZAzsly4btWwQE6I+WF7zcmd+Hdmor1//gT//fM118UjoEPn7XVzcUM+4qKtrRm1dExwdN/SJz8k1zNR/o2XNbhKbj7Zt2cbPAKdzXxKi43A2IBibN2zBJx+/X5tyxXIHhIWEcT7qa+tRU1WNTMYsMTRauBDrKfIeAspY8PXr17n/9p///IVff30yIjpE1h2kL2qJjdom5OToDO+h2kg5j0R5H7a8JyjpC4dlq/gZrXT2JPHhsd8di+2WWN21kn3lcegwigqLUFFWgdJiPaIiojD7u7k22/4i9qucd+WxJx47OblwNkiIE/LlLOmrG+kO532ci5qaRlTXNMBxzZs9JfpbBxR7Gov7ssUzASkme9rXH0GnAjkf+1xcjc5ktVahueznXU583+ei/CLomF/kddTrves5U4VsdlErJ2pHlPaIsmaiu/sGZ4NsrMePH1lUh8i6o7i4vIeN6gZkZ+UZ3qM850EpxDrdoy2tA9JZku4HPJiPEY6QgLPwOnwM3/bWzttWXG0iDrsf4Xxo2NhKYv4S7TFlK9cv9hx6V+4prauLeJbTz86cDfJDSCgWaCk/RHyf45oNnIuq6npUVdVhzeo3uuNte+XKvomt9Mm8OQsQFhyO6PBozsfqFauNzrq3RZk2dQZCgkKQlZ6FtJQ0rkvk880sNbaFHUT9L9vc9JieIxtD1g/K/eXoPYOxzZVrCtevX+O+OsmDBw8sYmPJ35Wdnce4qEdlZR0yM9/URx5wcx3Sd4t8NyHC9rJ0fc27ZI+zKxLjkhAXFQ9vTx980VvfNVrkp81bOR90BmBESAQ/Q3Mk+FDuXyn2cqQ+Fj622MNxqL8nn6Hw824nvHr1isd6KeYr6tUtwcfSpcs5F5WVtaioqGG/7WKS7uhPqF3EWomcq2OJ+ppB2SFsLj3DfIxzSamcj61bto8qLozs9SnTcJbZjAkxCYiJiIGdtK+MpfgQezaK/hb7VyrtpuHwodz3n/IWiQ1aL+zs7DSrDpG/IzwsmnFRi/LyGuh0RYb1jqHqDqEnSK+KfXCF/WXO+prBytSvZiApIQXp5zIQExXH7avRyoaQnnNlD3A+SI9s/2mH2b6b5jqxfifbV6JWh0TYV+bkg4Rym4QO8T1xEr+9fMnX1F+8eMFz2czNx+TPpqCCcVFeXo2ysip4HvV5a8zKFBE5oUKXvA8+pk2diXPJacjKyEF4SOSYyQUUsnbNes5HSGAIs722meU7yV+guU8+Y2Ug+4r6V9hXpE+Ge1akvO8Jxa0of43yTp4/f4Z4M9aqi8/vd3NnXDA2SqtQqq/EjOmzDHME+QxDXSNXtp0l6jMHw0Z6aiZymW8VxOyNcRb2V61VKIZNfAT6B/K1TnMxIvvbQ/XPhyKyPkqIT+B5i5TD9vTpU0ycOPz6EPmz6WlZbCxXQq+vQEy08foFsSFqW03d61u0iznra0wRuvasjFxoNQUICQ7jcdCxyIaQhfPtOB/+vv7YsG6TzV0/sUZjhewQOd5FeTaU20s50rSeTrmg5uJjyeIfuc7Ql1SgpLgcqxx64uaUf081Ksr5QulLDGaMmqu+xhQhHZibo0VBfjHCQiPHPBtC5s9dyPnw9fbFOmnt15pF2DE09oQtQ/aVPD4vdnTw+hCqn6qpqRmWjSV/5ugRL5SUlDM2ylBcVGoYR2TjDeR7iFwAa80nodhCXl4Bu58yRIbHqGwohGITxIf3EW8ssbPOOh6xJiLGmXI+Jj7kc6m8vXw4G1RjSPU2X06ZZhY+cnN0fBwVFZbixPFTBjaUusOWJD4+hevElOR0lY0BZM7seZwPr8NemDt7vtVdHzHxrhoKmr9F3gnVBjx69JCzQXXqZ04HDJuPxT/Ycy6KCvUoLCjBD3ZLbZ4Pby9fvn5D+kPdE+Idca3V6zgfXsyG+Pwz26spITZoTyDxf1VVFR48+IWvibS2tAzJxpLfe9jDk3GhZzZ6Cfdj+9NbtiT29it4fgzxQX6VysC7xXmXC/x8/HBov7tN5tfI64W0988v9+/zvYBIZn83Z1h8ZGVquP+aryuCD7NHBR/y/iq2IlT7W6Kv4Hwc2O+hjv1BCvU36Y+g04HYtH6zzV2/vB86+RzEBe2XdffOHezd4zpkPqjenbjI11JedCFW9O6jO9z1wPclMTGJvGYlKSlNHfcmyjdff8f5iAgJt2iuliUZF4+bm5o4G3du3+Z1/abaWOJ9e1z2cS60zE7XavINfqzyfDhbkHXrNvFaeeJjpg32rzUI1UwSHwGnztjctcs5UFRvS/v13r55C7du3uQ1yoPlQ34PrQkQF3m5+Qg9G2543tbqZGkP4IrKOs6HvIeEKqYJ+R6kQ+Kj45idZXtrh0IW/7CUc0F7vnff6Mbq3joYU/ggXUFcaHJ10ORosa03b02cNS/va2/t7eG67yDf21HL7ER1nA9P/p+98/6L4uoa+PljnjftyfPEWGMSjb1jRWyxE0RAVASUIkURBASEhYUFlrKwsHSkWWgWsHfEFqPpptfnD3jvuXIm18k2lmGZMfPD+QDDljsz9zv3nHNPwRhf5KPYVKT6HERxfwRjM8QY8McPH/G+CFiLFOMXh8vHEnYdkAuMSaqvbYLZs17Y+WLvODEPGL8b98zV5i/FvjzYawH5WLVqjT7HFZD42HiwllfA/vD9qhsbxivhPjrVCRYFGaHX1dbUwoP7D+ABe11bS5vbNgj9f3doGOeivqYR6mpe7hOHDIhcyscx3Bis0ZT0Y8c5H1gDVZ/bysiM6bM4H/Vsjo1/d+RriDz21F5talf5cmJNKVEoll6u52ANIOw9NXhvEO4N3HOrP5v4v9SUdM4FxnunHHmRt2uv5y4KjhXHh+O213tDPDcxr57i/+XHlRLM+cPeoMjHooVL9bmtoCQlJnE+YqJiRvxZ8lwPqmslHnOVL0d6Db6O4mTl8wn3CWlPG+sfDzIu7t0dgIG7dyV+3OWjzsbYqK6Hmqo62BW8W/KReeK3wnFTLICoh4l5ZMi50jG6+/fHcj5Ky6z6nFZYsEYF8tHafGLE8Tn2cqHktaBc5TsgC650e3kt0gHGxt07d+Hu7TtwYH+023zMmjkXaqrrwFZVCzZrjdTnBvnzZO9DjOVHtpED+TnKe6QpIRf6r3I+tiiUy6DLy5LD7hfyERK0y2P72REf8jVEqXwgsWY69prCmqy3b92CSkul27b5x+s3MS5qobqyBqoqbJKfwlWfG1fXgnI6qF/EaPKxbdsOuHl7EDpOdetzeZRk9ao1nI+qSqtH84HWCEe5tGJdRKX4EOM+MjOy4PbNW7yePtaadGWj0/GQoFB2zjbGRjVYLVWSbuVpPKLYD1jsgTaafJgKSzkfkftj9Lk8ilJbbYMzJ0/BgnnDj+/FOUE5g+JcIZtU9MkqlS+Hz3d6xocEh/J6xTeYXL92nfd5cseHlXQomXOBNTywto0z29wdIT8XnRvZTpQ3SPmWSuVBTZ78PtwZeMj5eNXq8qhNYmNiOR9Jhzybr5QbJzJDNqk8N06JfDmcwxTPu3iRD9xgXFy/eo33nVg8ZEfY40M8VmwyQyWzaSvKKmHv7n0Sd57W8BHPW7ShqC6D/PhIZfv2HZyPxqY2fQ6Psiz1Wc756GjT3rVGny5ycZXJlctXJH+AKz6QC0tpBZSXWKQcZIy5EuPo1SxFxeWcjxChPpcuoyfNjY1wrrcHFi5YrPqxog8rPjZa+ht7QVxh+svli5cg7mC8Sz4wTtNSwtgwW6CMzTPcC9La/RoYfMz50HUr70hifCLnY1/YPk2MV9SDSopL4FL/JbjYdxGKC80ufVcL5i3mdQNLi8t4XT3iA3UgtJ2oTgn+pP0aNcUr+vis4Hx0dp3T566XZP26DZwPc3GxasdIdg7qUGIvGkO2gbHRD/0X+tg62OTQh0V/b9m4lXNRUlgCZpPZ6XeS7UDMqCH2KjomnvORdTxXn7tekonjJ3M+Ll/sH/OxoJ0rPsPpJ+25yW37sL3h0He+j/t3sUekKz42Mz7MQ2wUF7x4HqDvStTZ1CzFzGZCPnaFhulz14vSUFfH+UCf0FivE65egz4syicM27OPsXEezp89xxg/55KPuOg4zgXWY01K+KuGqFbyoXrO9nM+lixZoc9bL0pWRibnIzgoRPVjFWuPLpi/mHNxtucsnO3ulWouO9oDORh1EIqMhVCYVwgxQ3truC+olV7mgw+ecD70Oetd2bsnjPORmJCo+rHi2kF73QvmL+I9Gnu7e6CnqxvmD+1zOuIDeyWZ8kxQkFsA0ZHREm9aqOXj47OS89HVc0Gfs16WVSt9OR+W8nJt8cHWi56uHuju7OZ9Gu3xIf6enZENBYZ83i8paEew9Hla0K+Ijypbgz5nvSy494F8NNTXqX6sYhw61tHsZlx0ne6EzlNnYFdwqFM+8nPywZht5L1Z16950RMY9wW1UO8qJjaB83EkOU2fs14WnGfIx80b1zVhf4i9bjsZG2cYG6dPnuYxWc74QC7yjudCbpZB4mOksSXe5iM6Ol6fs2MgWuFDLmcYF9j/+lT7SSlW3xEfyAX2aTUwPWud34u4Ma3Eluh86Hy4u36I+xWn2k/BybaT0NHWAcE7Q5zygWzkMDayjx2HtUP14JQQimGmvEGxP4pS32HINXE+QndrI87hVZOa6mrOh8+SpSOeJyjU05nyZmlvQ+yvIx4frg1CvyMXHa3t0N7SBkGBwc7tc8ZFdnoWHE/LhLW+a/kx3HMUe8zaE3kfA/l78Fwod5B61FKOjFI1guoaTnA+fHz0vY+xkBKzWVE+8HeKA6F9cJxXYn82sf8Yibwnsj0xCz3WkIu2E63Q2twKO3cEOeUDuchKzYDMo8dgzVA9HJy/9mpDiCIfI/WQI7bpvOV5UK76vet8/LP5oBg/qlvgTl6duL44EvEzkIuWphY40XQCAgOc85E5xAbnY2j9EPM0HIm9NQ7Ph1j3Jh9rh/pb6aIdPmgOyPmQ17dxhw95jpU9EeOwWhgXJxqbobmhifGx0ykfGSnpnA1cQ8j+GMn+IHKPa5nIh6hfUT66EvcnhY1bt8/HTrq7Ojkfs2bOHtb7aB4gA3I+iBt81lINHFG/ol5+w/k+MccWpbmhGZrqm6CxrhF2DOW7O+IDuUAdC22QdX4v+BhJfAnl0XrDPtf9V9r1XxEjzuxzeo6O1D7HvTxxPw+5aKxtgIaaegjw3+HcPmdc5DAbHf2764f8u2jra6Gngc6H7t/1RBpq66GesVFnq4NPtgc45QN9u+jjzcsywAZh/1zcb1Sr7N4TwfnA/Fp9vnpXJk6Ywvm4cF79eWmoC4l1fpCL2upaqKmqAf9tf+dDlLjog5B33ADG7FyIiojS1D3S46/GTij+SgvxiaK8/96HUMu4qLHawFZZDRvWbXTKR1T4AcjPyYMCgxFihmouamX9mDL5fc7Hpau39DnrZdkREMj5yDcaVT9WtD3Inp41cw7YGBvVjI2qiiqYOWOOUz6iI6PAlJsPhXkFEHsgRlP2Bwrlf1A9bl28ZPtFxXA+IiPU1/NALuiPpfhdrCOMXFgtVqgsr+T1SezxIdVODAyBojwTFOcXcj0LjyEbWsmPam0/recPjoGY8gs4H36r1d9jBfM1KL925XJfsDIuKssqoKLUwvt3OuNj04ZNnA1zQTGUDNVnQD4cxbfTXgz64tRQnyE7x8j5iIqK0+etF4XqM0weqtE5VoJz0FU9HZzLtJ+3bct2qGBsWBgb5SXlf+NB/jfumZeYiqG00AxlRSUw7p0J/LhYp0T8SXs2aukb5e8fyPmwVqk/T+dVEcy5Qz66OzvHfCw4D4dTvwTjrZCLMnMZlBWXuuQD610hF+XstRb2npkfvah/pZWenGijU304fe56R0JDQjkfhuwc1Y5RXv+KjifEJTIuXtR6i4txvG9GfLzH5hdyUcGYqmRrzsplqyQbXSs1TDD/HPlYM7R/o8voSm6OgfOxaeNm1Y9V7mvK4v14X9SzipTFoNvjAwXtFCvTydBu2T7UWwb1NU/rt4t2ijfqUycdSeN8ZGQa9Pk7yoK9o7A+NfIxaeIU1Y9Xvldh5r14i6GooAg2bthsV7eSHzt2NB2qLFaorrBC8uHkEY9J3ruBYs7k/Q2UiuPF+F3kA/tH6XN4dGWt3zrOh6VMezELqIsXMy6w1luhsRCWLl7mkA9RDkYfBFtlFdRYq8GUVyAdP3IowaNxiL4tR/1xyI5S6tz7L13n/T/8/NTfn13Lknksk/MR4B/g8WeIMYmY70Hxq9Qrhp6xI80ZRAnZuVOyE+bNWcC5oHpW0z+c4ZQPOu6/7ROotdqgrroG6m21I76GaBOR34A4GO3+UYeTjnI+jmVk6/N4lAR7O2N/NeRj4oTJivCB84NyUanvsTs5g+6KaENvXL+Jc5FvyAdjjtGuLmWPD+yjU19dCw22OmisrYc5s+by42h/eFLnh3pW009381xGIjNnzuV8YH/OSXqfg1GR3bv2cD5SU46O6HNEPnBdoLWB5ohScwXtctH2wPqH+QYjYyMP4gXflSs+xo+byGPhMSa+qa4RNm/cIrHnSZyJvRxBfCaI/Z3t5bCPVCyVNs5HRIQ2amtrSd54/d9QUWbhfCxb6lmsgr2cQZz3ZKtS/06l+EDflViHJzM9E/Ky8yD3eC4EfrLTpe0h/g/t8+b6RjjR0Cz1gEc2nNX5Qe6pt7l4XJ4vL/bqlOdPKnkPt24N4Hz0nu3X47EUlu1b/Xn/87KSUo/e7yhn0N7cdydnEDnCeUb2ij1BHyzpV++w70cuDFkGyMnMkfYxXNnmJEns+1sam6G16QSUl5TZ5QPPEcdD/TfJflJ6HRiJdJzqgivXbkN4+AF9Xiu4dphNRZyPkcRbOcoZpF6uok7hyj5HvV1ef4HqndBrMIaQ4krQhhBrWX34/nS3+JD65GzaCm3NLdB+ohU6WtoYd5OkNQI5pfOSC47TGcPeli1b/DkfXd3n4a039TVEkWvK9G1reQUU5ptUMyacczgvxec0CfrBcF6Kz+0d/oG81vRxxkZWepZL20P+f+QJ6wJh3ayTbR3MNl8vjUP8buSE/FFqvZ9t7Wfg0uUbcPCg+mvvq37teO0tMBryOB++K1ercoz4DEcWUK+h2gc0V+k1h+IOcS4y0zIhLHTfsPlAQd8V1iTF2qQJcQnSmojfSz3MtXBPFy1ayvno678K0zXYb1RNEhwYAiWFZr6HrJUxo45F9U/4HH57HOciIzWDnccx8Buq8+aO7SG+JjUllfu2O0+dhpoq20t+Mi3Uq37ZR2DhfJhMJfo8H8FzGf2hyAflEWlFRL/rwvmLIeMoYyPlGKQnp/P+icOxzcV9wi6mt3Wf6YSezi5pfxHtHK3EKpJMmvgenDnTC+fOX2JrX5A+34cprzO9CnUS5CN0qAeAluRAZLj0O/a1SU9Jh7QjaeycDrutW8lfh1z1nOmC3q5uONvdA3tC90qv0dr6gRLIrgvy0c7skWnTZurzfhiybfN2Zstm8XjXN15/S9PnkhSfBKlHUuFo0lHYunHbsN8vclReWs77Fp7rOQuVzCazx6OWxGQyQ29vH5SWVPCeLvrcdy1zZ8+H1KRUzsc0leTBDUdwz5z0HdQLUxkXKYdTIOVQMo/BGs7aIWcE9wbP957jvaH7zl2ASRPUH8PsTLBOU3vbaejqOgsJ8Yf1+e9Cxr87CWIPxHI+Nm1Qf36HK8H1IuVQCiQnJsORhCOSHuQpHx8xPaTv3HnoP38BLl7ok+q/Y367Fmr+2BPs6Yt8nD7VDdu2fqJz4EBw7kSGRcKhg4cgYm+EJs8B4wXFPe2EmATOBepY/sK995QPFKxtfamvHy73X4Saaptb70ffL/rUlIw5VFL8twdyPjqYLbJGj4H/uz3O2Ni3JxwOM/s1dn+s6uxNnF+4H+hq3030tc6YNguSEpL4OSHzc2fN94gNOSPhYRFw+eIluHLpMly9fAVmDOWky+v8oqCvGceNeyRqqdngSOKZfoV8tLZ0gM+S5ToXguwMCOI6euyBgzB+3CRVjhEZoX1A/Cnfj0MdR1w7UD8kNhJjEz3WreR8oG8Uubh25Spcv3oNEhMOvcSnq3GqWeIOJnI+qq218MHUaTobaM9uC+D+T+RjwrvqZEMuuI7gcxmFnstizQT8nbhAwdwPT3Ure+9DP9aNa9fh5vUb0MdsETpOcS+expfg+ykGQMwXE2vbi8eVFsyfzjcWQnNjKzTUNYHvKvXXNxs1neq1t2B38G4ed4F8zJ+7UJHPdRSPLsati/PAXj+y4awp+F6K8ZD0mgVLOBfIyGGmN3w05N/3lA05I1u3bIdbN27A7Zs34c6tWzy+WYlrh9eHzoPyxfB3vFa0DqEdo2SfEHuMHEvL5HzU2uph1Qp1xhWNpmBcVQJbSzHeG/lYMG+RYp8t8oH6BcXmYjwU3mc8Jsa1oo4uxvR6KmLsbsTeSK5boW0eJeQDKcUHSn9fH9y9fRsG7txh+kiVdBxjhj3tL0VxyFR/Dq8THhevjzw/ZrTkQGQ056O60gZBgSH/GDawphOuF5hnmn70mOI+fDkfFCco3ld5Dt1I+ECdX5yPU6d8wP1V6NM9ynRG35V+irBBn0Gfk3T4CGPjLtwbGIDBe/d47Wsaj6fxJmJtE2SDmB8LPlB2hezhfFSWW/nzFHMdXmU2VixbybnAGh64bihZHxTvJek7or5EPfe8xUfAth3clsI9nPTkNO6bU4oP8XOmTJoKgwP34P69QXhw/z4YcgwvrSFU89eT9UO0sej6kH5F66+35szK5as5H2XmcsjLNkq66qskbzLu9+0N57XOsHYg+j1Rx1LyO/C+Ue6FyAf19aa8UrmeTb2PlWDjP2+P43EkaYwLjEccyZ6HOzpWTrYBHt5/AI8ePITHDx/xGkI0Lk/4kNvnFIPsLfvcoc7B1uTjGdlgNpXwGjBYJ+/117Qdd0Qye9ZcKMgz8br+yMeOodzr0RC8n/bsbeoZ7q597q5PVF5LHePGUHfEWPas9ExJd1SKDTkjS32WMy4ewqePHsGTx5+CMe+vuihi3XhnvgU15Rc6tVnZMzY0eDfnIz/HyGy7JJg9c65214w33ubxQo11DbyfGNYOxFhvLYwd/VGueoGjD1dcOzDPIwN7Madl8jzBiLBIxdcOe5/XUFcPTz79FJ4+eQLPPvuMPWtfMIE2iCM+xLpf+FNLeyQY1492HeYrH0/LgrDQMClfWQvy1ptvQ0jQLqirqYMTTSc4H5Hh+zVjW5G+RWuLo71n+dqxZvU6HlPJe2pmGaTYSqXZkDOC9VyeMi6ePX0Knz97BqYCk8Mxoo0mz61XU/0GdwV1q3V+6zkf2B8+J+M4HAg/IOXEqJOL//CchJbmFp4D2t7SDsZcI8yZNU9z15/yVkWdG3URes7Kn814v9DmMGTlMBsyFw4IvTRHmw+U5qZm+OLzz+HLL76Ar778ko3tg5fsEFfno1XBNfsTZuMhH8bsPN5rKz4mDlYsVU9/LYx3iIuNh9MnT8HZnl7oOtPFbA0rrH0F4szsPW9RN5HzEciO5WKfWeylmZvvsnao0owsX7aSc/H1V1/BN19/DcVFxX/zW7haDzXNCeM8KCCI84G9hLAfBPYVwty6sYhTwfpe27b6g6XMwmOBLvVfhAvnLkB9bT1sWPfxK+d/wzkm1ipBZujZi7WtsO4b5jpi/ejYqNhRXzvsfX5rayt8+83X8Pzbb+G7589h3twFEuNUL0LNdU2UkHf+Ox42f7wFcjKzodpihbqqGmhizwPsRRTH1hV8joxWHtZspift3bMPamw1fE/qzq3bPP4H+TBkG2CVSuuLKPmMQp2EfMh0PGx3GBQwLgqNJl6f/aPpM73ChpyRuXPmw/PnjI3vnsP3338Hp9h6LvrvPPH3anrtX7AE9jO7t8pSyevqnWxt57Utert6mE3cyH3jEeGRsGTRUvBZssztz31/6od8rgczG/vwoSRoaWmFz5lu+xmzAR8/esz3opCP5sYmCAnexfWrf8o1R5+VWLN3+rQZnIuigkIwFxZDfKzrurqjuYaUmEvghx++hx9//AF++ulH2LL5r3xerCX/T+JDlKVs/keERUBJkZnzgfmXqPNgDPStGzd5HMJDNq+fPH4MA3cHoJXN+Y72DjjNeOrq7ILr16/Bn3/+Ab//9hv88svP8NOPP/Jn0LfffsP0iq84H3fv3IGy0nLYw56XUyZ7twY37Y2LPiaqpSy+jo7J+/4pJVgzXYzdSEpMAjPTc/G6l5lLpf6Z3mJDzsjU9z6EZ8+ews8//8Tv4+DgIN+zpNfh2LVYy0FpwX2GnYFBkJiYCTW19+Fs76DEx+dPn3E7DnVU5OC3337lbIh8IDcnO07y9WPjx5ulPsRjJeJeBO3tibFCeBx1HrEvktK5cvKYpjWr1/LaQ6jbWkrKpFzXseQDJSX5KPz6yy/8vv7++29gNOZL/8NaQO7UfKeeB686J2+8vQcmz/wV3p3aJR3Dub5i+SpYucKX61G+q/xgta+64+xFPqhPLP2PYqfkfW/ciaEbju9f1E9wLyc/N5/XisaYgGJTkbS/42027DFynz0L/2DPCHruLZi/6CXOnTGCay/6uIazBlPtd/mxsYxJccvPNC6V84E/tcy5vb1sygXCeynnw90YU/LfOtsHsNcrNioyCixM18QaO1UVley57CvN0bHkg74bn3fIxf/+9yeX69euSa9DO90RH1SXfrj7Ivh6sZchijdzRjz2uUys0DQf1CtP5AOvOc5rPE5xEp7yQZ+HupkjfQLnktgrFnXXyjILWC2VUF1ZBclJyWOmVzlbQ/LzC6T1448/fofUo2kvnZM8V13speXpvRKv+VjFxA9HUK9CPl57w0+TfNDeFvU2omtNf1P9cnpe4d8Ul03rynDur7zPhzwO9kWvhWLeS9ZmrYba6hp4d9xEVbAhZwTt8ocPH3I2UNdCW2T+vIXSeVHsGD5nxFwPj5/FsjVEC3xMmHaf8/Gv/1uoST6IEbHPET3rKC9Qng8qz+0ZjlB/GdIL5DGwvJestYpxYYM6Wy0E+O9QzdphT8/y9fXjXKDfBe11uT9Lfr5KrPeivjtWOSPuCrKB8k/35w1HHD1PP17//+2d93NU1xXHz3+S8XgmTohjZzDCGIxxABeaCzbYFKEGQrRQgmWbJgn1XlDvvawk1DvqEkIUg0mIsePYJDNO7IwT8ifkfq84y92nt7vviV2xkt4PZwSrlfT2vfu5p95z/GXf9Mb6Bmq2NVKSYq/4Cht615OTk0v/e/iQHj78r4xNNjdfdvC/PMGEdgbKQvDPn312rWTDb90/rHU/x+fO/0bOFP54U0MjXW7EmegaOU/3afvkRu2sa0Kngg3kRf7z88909Ojjnt96fbOWgsDn0MZ2l6qYsR8Qq1L98V//6jeUJVjBOYsWzMi83CJzH76qO/TsLPgdDx58L3PqyHkhv871WXOxdxdiTbxWlr1wTvLx4sqWJc0G7GHkDY0yoo3nfhb+ueCiWdbTtLe20rkz53yeDb3rg84AF6g/+fdPP9Gd23eEbnkc5zVSf8LnMyELPX+4WHIfT+pLcG23EUawRlR/HLPGW4W93t7SSh1t7VSQly/PRS4ENvQYKS0tk3VDP/34o6yfGBsdc3ivq1lUKhtmY4O+KNAb4AN6xNfWLNf3cR2DKryG4Tvq1ViZFfwed4zo5QA3bniT2sBFaxt1taOfX6O47td82ucwwsj42Bj9S7CBOvh//vADFRU+PiuCvUGvN5A32FB7ZuMrPxesDe5Bo77uafHV3Ifaf0ftm6DOq8d94bnL/NWbjGh9jjWrX5O90Tvb26m7s5N6u7pp18e7F4xd5coXeV7oiG++/pp+EGzgLBVq8bR5H9Vf95beQIyQe83wv/E6ng/i93idZ9Z7454gbgU+EMfyVT6wTnHftbE/bb7cU/0N9RjBWlDrLWA/VZSVU3dHJ/V0dVFfTw8dU+I9C40NPUZwVuT+V1/J2mycO8S53DClvpJ1iDdtKvUZq/nD+cor+mruQ9u/DWxg71D1hCf7t7ljROUDbMDH6OkUXHT3UH9vL0VFRC14NvSu/1DYEcnF3yEPHsjeDmEHDzmsTW/6G3wmk+uwOSY2H3wgXw42kD/3lWeDz899XZkPtjX5PXwG1Ft8aBlR7z3YKMwvoN7ubskFZsWWl5baz2MuNJ/DCCPQGeDie8h338k+KOiHosb+5sKGEZ9R7YHMe+R88eGLuQ9el2BAz77iuiq8j+1SvMb7jCvu5nIt/Lf4tYjzEdKWGujro8GBAWFjlS06NvQYibgQJbn427eQb+nO7duyp58z38ydqLPf5+J/cK9LrndUzzJ4Sji2i/pdX3ouXE+u3j+1boq5YUa0NVZ6gu9p/UtXAntKexY78kKkPJt8pb+fhq5ckT75ipdWLko29BjJzcmTPeb++s038gz1F7du2Rnh2B5sUHdnq3hela/Hr5Za7gPPxF0tEZ4zRBvjh3/BXAwPDkqfHOfKF4vPYcRfh+Rk58i41tf37wvf/b48M7I/JNRhX3FVh8LnBBbCZ+fYLs4PLgU+WF+72mu0dgL6PF6MjJK2FLgYHR6SvofaH3yxsuGMkUtZ2bLfNXpw/OXePbr353uCEceZsriHenoE938++2qxb6Kt1zZSx+3N3IczHaru4dyvT2s3eVPwbJz5ktrZx/Ar4HsPD16hkaEhGhvBfOEee2+epcCGM0bQ9wYzEzA7AX1q/nT3LoUE73fYZ6B/VRuVfcX5vG5ns3y4hx9ex3rQ02kc233mmd95jVu96+V7xPX+fIYJfvlca6nN7El8r1w9S7AB33uGi2EaHx0VPnnvkmTDGSOZ4h6iz83dL+/S3Ttfyl5naanps/SI3j036sN7Ys/k+gq134CR+Jea++DzqHq/V31d7Znjyk4xwoc2x+GuF7ozexb8q+eYjYi6l2n78cCvaLLZhC0FLkZocnxM+h5LmQ1njPzh2HH68s4dWcd4+4vbsk9UXm6+7J2pfUZm9zuOrz9JHTDrBj6TZZQPju0uXzOt+x69Pjgce1Xn9OmtSa6XUn8fv8/TfEBwLfi8ZmN8er4IenjA9x4TXEyMjdHViXGqr60lvxUvL3k2nDESHBQiuUCfTMzLvSmk0dY4qyeg9oy+u3WtzT3N1b6aS/79uWUhDrkP7Xv0+uBo17Ner1bOT2h7UXCM2ht8qDlcI/YZx27BhspH6IGD0seYGBulScHF1OQkNdTXib3wtxYbv3Ad+92yeZu4d6Ny1jr6DaKf7PDgkOwLpcYGOQbsqo+p2efpzk5Qa/R4val90bDPa2P/HNt9fnmuWz74e0bXM9fjaPUH7/Mqz1p99CRxKXf7Dcdt8YxUewq+RmxMrPQxYEtNTU7QtamrlJSYaGdjseY3PMnI6+vWk63BRtNT0/Is4rWrU7I/J2bmafUI9ih+Hnp7vifrVbjG24j/wAIuwMeO3e2SHU/ywdek/btsdznrAfokOR78Ht5znOUJ0YtDG5uHr1FdVUUTgour4OLqpNj7pigyItKpPWGJc0awnyD+Cy6uTkyK/WZS6OMJKiooohWaGcR6uRLeW834k/gZT8eMObbrt+qk3LvVHpwQvT444EiNN0FfeTOWra27MqJLef6G+jp0hTZ2CzkYGiZrqOBjTAkupgUXI8NDFBgQZLHxhD4JdMbk+IRgY1zo5TFpe/V09ch+nNqfRT/TrZu32nv/6M16dGc7ePrzwC/n3AfnNFX/Vi9/8jTyFWZ8bp5By/cXNm6Av/+s98GeykzPEM9vXNpS01Po0X1NxqxgI1hseIaRTW9vod7uXhodHqWRoREaGRyWfdFTklJ152s429/c+Z7eOOe+UHr6gFMzn1+rn7XnQNFLGHkM9jGuT08Jn3Ka8nJzHWKSFheeYQQc5OfmS199SLAxODAoZ4e1t7TJOTTaZ8d2i975xCfdP7km0p3dhnzg0+SD84JGex0Z9dPY12P9ptp+UmdkZApb6rGPcUNwgThuUGCwpTO8zMmBkFDqaG2nK30DNNDbT/09fXL+ZFZGlmDBz8EGmHl/iMMzdWZ/m6lzZP/UnU/wtOva8ZnM5CvAvRE/B7YU9h3t/oDzPAP9fTM+xiNb6taN69Tc1EQr/VZZbMwTIy8tX0nZmdnUJ9iA3QV/pLuzm7o6uuhw2BF7TwtVPgs/bY896tljRv1f7jELP9vde/XmGXjKFvL0tTL7rljCXqMXT4f9W1tTY/cxrgsubt6Ypi9u3aBPwz91GoOxxHvxLQhmUjYLm6BbcNHV3kmdbR1Ct3RQQ20D7VR6hqly6vjxWZyYsa3M7Mlm6to5p2ckT2PUX1d1ndEYnl4/fXChZ6f6vfQyxcfFz8RrwcW1GR/j1s0bVFVZaekMn9AlfhQXEy+5aG9ppzbhj7RebqXW5hYqKSyhrVvecckJbHQzvUg592bkZ8zMM+BcjZG8Nq7ZaL6Tf69R31uNU6D/lB4X8DHOnz0v47XXHsVrb1wXttTN6zInjjoIV8/MkvllBLJxw1tUVlwmuUDfSczEbLY1U1NDEyXEJdKWTdtc7sWwG9zNglNzY0b2YzN17Wb4MNOHimN5RnxvZsHZe8HFqZN/nOVj3BQ+Bmyp6KiLs2JTFhe+xcm+vYFUXVEtuWisbyRbnY1swt5qqKmXM7j08iYQngWH3K+reT5marnMzDMwwwc4NXqGlWtsXMW6Obeql9uDIB8bFxsnz4LP8jEe2VK/f32DxcUC4QT+eWjIQaoorZA98OsFG3XVdVRbVUs1lTWUnZFNQQEh9hl1qoAP7KP4yjNLWLjW0aj9bya2a4YPMz4IhHOlqk2GPQC5VFe1npve2iy5mNTUhMz4GNclF1u3bLNsqQXEiAMnYv3vDz5ApUWlkgvolaryKqosq6RKwU5FSTmdOHZScLBe19bg+i5eP5wzNmL7m51nYJYPMzEFrimEzsHnARewJbX8sw3lv2cfXW5qttedO/gYwpaqqqiwuFhENhf0RHBgCBXlFT7iooLKi8uprKiMSgtLqaSghFISU2nnBx/Riy8sdxoL4r5pWFuwx1xdh9nchzf0B/daAxfc88tZLef29z+gmOiYWXXnqo9RaXGx6Dl5753tlJ6SbueiOL9YcFNEhbmFVJBTQPnZ+RR1Poo+fH8HvejEB1f5iDh3Rvr2+D/7LhCz8wzM8sE+NK93tpf4mqD/cE2u6v8xVzpasIP+OTNn+BzrzrkmJCU5Wfxui4ulYndB3npjE31yKlzqlMLcAsFGvmAjj/Iu5VJuVi7lZOZIP+X8mQsU6B9Er65+zeXfYb+F7THoj5CwEZkj5DgpvscMsU/MnKl88DltPj+hvp/nQrD+ABPwq1U/wllNDfKqu3ftkX1C0Ot5pk/IzNlWWXeu1ISAmfBPwh1yGBYXS48T2FM7tu+khNgEBy4upV+irLQsykzNpIyUDEpPTqf46Hg6EnaU3t32Pq15xXifabUvAc+7Zi44ZqTywfk4rH22kZgP/mok34/cEPpThp8Op5KiYnsvQrVPCPsYXHeelJhEOz/8yJA+tmTp2F4y3rRiFQXtC6aYyBgHLtKS0ihV+CcpCSmUHJ9MSXFJlBibSAkxCXT6xGnatXOPWMvv0Csvr3GbQ/GWrFm9lrZtfZcOhR2WM8CrKirt/c7BBfdcs/cJgY/xqO48O+sSBe4LdDjf6mpPsWRp6xQIaic+3rGLPv/kDKUmCDbiBRtxgo1YwUaMYCM6geIvxlNcVBzFRsZSTEQMRV+IpovnL9LZ8LN06MBh2h94gLa/9yFtE+ysXvWq1Dnas11GBH4T8gvrX99IWzZtlTWaoftDKTE+kbIzL8mZSm2PZip1dXTIfuf2vs52LgbtPkZ/Xy9lZWZSgA4Tlq6wxCwrz/1yGb395mYKDgihs5+edcpF1LkoKfg3Xo+NipU2GXhKFjoH+ge6KCMlnbKEfoINl5OZLX0e+D+FwhcqLiii0sISKi8uo4rScqoqr6Saymqqq6qh+po6stU1UFODTc5tbWmemU/JM5Xk7Bhw0YN+530OvQjRC/3UiVOyltDs57fEEjNrBf7AurXrpX45HHrEgQuwAm7AEOwv2GLQPWnCPoOtlim5yJJcwN9BTADxgeL8IiopLKay4lKZl6kqq6DqiiqqlVzUCi4w69tGzbYmOZ+yTc6nbJuZqdQxM1OJbSnMWkpNTpE6Bn105vo5LbHEDCuu1hHmZMH/+EDYU0H+wXT8yAm6cOaC9FvSk9MEFxnS34fvn5uVI7koEFwgflZSILgoKqXykjI511tyAZ1RXSvz/431DYKLRpmz4/mUncKWykhLl+dXjx4+Rrs/3iPnBnvis1hiibd50dpna9eskwI/fu9uf5mj3rc3gAL2Bsr4cdA+IQHBhDxmSNB+mfdnP+PggYO0cf0bckblGxve9Oq1WmKJt5mZ77X4tP++JZZ4at16Uqx7bIklllhiiSW+Jf8HUEsBAhcLFAACAAgA2og+W81bcE8UQAAAAHECAAQACQAAAAAAAAAAAACAAAAAAGRhdGFVVAUAByUO3GhQSwUGAAAAAAEAAQA7AAAAR0AAAAAA</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #20</Name>
|
|
<Index>20</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPlsRhgfhcD8AAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J33W5TH2se/f8l7zvWe6z0nlphmYmKLSYydqMSCit1YjhpAEQuoCCgiSpHem3RYdqlL71XBgqjYY4stMSbn9/POPTDr7AMoC7u4C88P98Wy9Xlm5jN3mfue+fvf/oG/q/Le5G//87+DFrW9VBkL494Wvl8VVSw1TtVrUkXlYXDjbuHCxVzc9rvDzc0d4RExSExKY5KKouIytJ6/iNa2i2hp7UBzSzuXpuYLaGw6j8bGNjQ0tqK+gUl9C6Ki4pnEITIyDocOHoGT016sWbMec+cuxOTPpph07WpfqmIJJgZ6zzfffI9Nm7bCy/skUs5lop6N7Y5LXWi/eBUXOjqZXMH5diYXLqPtwiXGxaU3XLQquGgiLtoMXNTVN6O2jkltE2pqGlFd04Dq6npUVdWjsrIOFRW1TGpQXl6NuLgk+Pmdwa6dzpjz/XyM++BDlRdVRpSHCeMnYaWDI3x8/HAuLRuXrlzncvHyNXRc7jJw0c656JS4YCK4aOsw6Azioqn5PGeDuGggLhqICyaCi9pGxgZx0WDgorJScFGDsrJqlJVWoVRfCb2+AvqScpQUl6O4qAwpyWk4cdwPG9dvwfSpX6usqDIsLvp7zc5uKQ4eOgJdfgkuX+3G5c4buNT5hgvOhuBC6Aziot2Yi4LCUsQnpCAuniQZe/fu57JnD4kbFxcXkn1wcd4HZ2dXLj5ML0Uw2yw8nElYNNcZxEU5cVHGuCit7GGjpMLARXFRKYoK9SgsKEEBu+4CXTHytUXIYEx7e53AimWr8Oknn6usqDIkXeHgsBZBweFoZuP6Slc3rhi4uNGHiw6Ji6TkdPifDsI+t0NYvnwVFiz4gescS1z/jOmzmB21AJuZbbdrpxOCg8KYvkhnXJQyLhgbggtdEXTaQujyCqDV5CMvNx+aHB1ys7U4yz6z1nEDPvl4ssqKKm/VFYKJFsZEZ9dNxsXNHi6u3uhhg7gQthTjIpeNt2Nevti48SfMmjXbau5v3AcT8f3sedixfRfTPb5cZ2g1BT1c5OoYG1rGRh5ysjTIzsxFdkYustJzEHgmGGtWr+vDisrJ2NUVU76YiuMn/FHJ7PvOa7cUXHQbuCDRMPuEfPBFC5fY3P2TLbV8mQOOHfVBSlIacjI1PVxk5CAzPZsxlIWM1Eykn8tAWko63A8ehv2SZSbZoaqMHi4cVq1FLPMBrl6/3cMFkz5cMImKTuCxKUvZSO9Lpn41A7t3OSMyLKqXi0zGRQZSmX2Wynz6c0mpSEk8h2jm92xctwkff/SZyskY4GLLlh2oqmnkXFzt5cJIZxATMcTEtlHHxEBC9tRmZiOGMttScJGckIJkNn8kxSUjMTYJCTGJcGI8kb5VORldXEyY8BHc3T3ReuHygFxomS+7afPYYWIg+WrKNLg47UVUeDQS4xgXsYmMjQTER8cjLioOsZGx8GC219czvlE5sXG/m3PhIXEhbKleLppbOxAYFMbX99T2M5YP/jUBS36wxwnm3wsuYiNiERMeg+iwaEQxu+yQ2yHMnD5L5cQG41FkR7VJXMg6o6Kqnq9njHVdMVghXbHPxQ3R4T1cRIZGIjIkAhFnwxEeHIYDrgfw0YefqJzYABd2dvaoqm1C1wBcbGY2lNp2Q5OPJn2Kndt3GbgICwpFWGAoQgNCEBJwFttY2/7rn+NVRqyQDfIbM7I0KhcjwQnTFTu2/huhgT1cnD0TjODTQQj2D4Qfs8eW2C1VdYkV6QzyMbpu3DH2Ma4x/6Ktg3GxXW03C8kkxgnpDOIi6FQAAv3OIODkaZzx9cdBZnNNnzpTZeQ9siFsKaWPQTkhqn8xckIc7P15D2eDi99pBDJegvwDsMFxg2pzjRAb4jHFpU74nu7XloqJTcIXihi9KiMj8+cswElmX5EuCT4dyOyuIGZ/BePEMR/MmPa1ysgI6Ixvv52DgqKyXp1h7GPYKexer2Pe3AZQ29Fy4rrXDdOlsU+6gnRGCPNJQplvEhYUwnz5UObTh8Fx1doB5zxVhs+Gk7OrwsfoyQnxOX6qjy1VWlqG//73v4iLS1Db0oL+x+vXr3k7O6xcbfQa6QtfrxOICA5DZEg4okIjEB0WCR9Pb3w86VNVl5jZnhK5Usq4lN0iY52xa8cO/pf6i/qNRJ7fVDGfZGfn8vZtbm7h/69auRKffTrZSJds2bAF0aGRiAmLQmxENOIiY7g+mTdnvsqImewpni+lyAmhdW9ZZ6xfu7bPd1G/yf2nivlkwfxFhvlH6I4P2Tz2z/8bhzmz5/DH4r20vniG+e1xkbGIj45DQkw8kmITsGPrDpWRYbCxZct2XqutzAlxcHA0vEfMV1992dcnJ72h7ENVzCNi7iEdonxN8CH3CeWr7Hfdj8ReNpLjE5GSkAxvZm/Ra6pPYhobVJOhzDunHEJlbGrRgkVv/d6gwGDejw8fPlLb2Yw+ObUp+R5vs1370+mrVqxGSnwSzjE2UpNSkJZ8DuHMd5/65XSVkUGwMWH8R7yGT5lfGxgUamRPkZ/Rn854mw9JrKjtPXyfnOYaU9pzj5OT0f+UIxwXFYv05FRkpKQhMzUdSXGJ+E7KE1UZ6Z8NXaG+Tw3f7p/39NEJQ53v1DYfnsj62NTYuWzjkk0V6B+ArNQMZKdlIicjC7mZ2Vj+4wrVJ+kvRsV0g65Ab8RFU0s7Vq5842sIfUG+oalxW7KT6XPqGB+ebP1pO2eD/pryOeov4oP8RfLh6blxvT5JTkY2YyMHmqxc5OVosGKZw5hnxChGxfQqxWrl2tbG5gt96jIofijrBBJ1zL4fG8tUpmitVvShHAMmcd7tjLxsDbQ5edDlapGfp4PHQY8xy4h8r8QAxaREbStJnq7IyNeQuVDOSUPRCSL2IuyE0b4+Iq8FyfE8um/hS8hxcGFDCZvUVF0hC/1GfzEusU4lhHRGvkaLAsZGoTYfRboCHHE/MuYY6Y8NeZ+QPO0bNkQ8/W3zGLW9KfMZ8dTVdc3wP62zj3a/XcS5le1Ec7qwU4XfTdwQE+K99J6hrh/Rd1D79tc/ZCtT38q6ZOXyVZyL4vxClBQUQV9YDM/DnmOGEfn+iA3yL+S9CDVaY71BbSivMw003k3xRaj/5f4mNsZCXIvaiMY93bu4X+W902tC1wzUXqb+5tv0O7GhtA0cVqzmXJQWlaCsWI/yklIcO3ps1Me1jONUk1BeWWe0F6FGW2hgo792G6x9q/LR/zwuYkfCpqJxa0k+TPEPaT2RxGBPO6xBGeOiXF+GitJyVJZVwIn5KKOVESUbebpio70INXlv2KC+HErO7WA/Q/0t21dknw2WrdFiX9H9UzsQG7J9Rc+LvBHxXhrjZCOZ2hemzDlkI5DIfuCaVY6ci6rySlRXVKGmshpr16wbdYz0ZaPIaL/zXAUb1EcklsxLH2v+ubB1lH74SPjnpugb+j1Z5ziuXsu4qEJtVQ3qqmtRX1OHdY7rRxUj8j0EBIYY7eucqykw8jdo7hJr3ZZmRBXrEcFGf/lcpDPqa2rRUFuHxrp6lDNd9vXMb0cFI/K10761hv3OL11FXUOrERvHvTxVRlQ2+HM/bd5sFNfavnUHmuob0NzQiJbGJlRVVOLzyV/adExLvuaNm7b2ctFzRgad/SL2O6d2UK4XqYyoekMZ+z3p64eWpma0MhuwraUV2ZnZhvnV1vgwiuMyDui8sZ6zY3rOVKIz+cR7KYbbX56hysjYZUPMm8oYZmJ8As63tuFC23m0n7+AyPBIm7SzZH9cX1pldKbSzp1v4nTviuHKjKg1TmOHDVnkWqsJ4z9EblYOOi6042J7By51XMTuXU42xYh8jRGRsUbnU/r7B/WZI971fcSIiNfLz1N8Us4HpTYX8Xy1Fso2+HgXG2KMyDkU38z6Do3MF7l88SKuXLqEzstXYLdosU34IvK17dzlbHQ+ZVa21mAv/rjUflC1G28TeW2L4o9kg4l4vlpzbv1iyhxG+kPO11q5YhXj4jKuXrmCrs5OtLW2Wr0vIrNLvrd8PmV1TSM+//wr/pq5/AiZj4HWgdVxaBmR80bE+joJrSOK52nO6u95c8lxnxPounoV17q6cP3aNSRIOUbWyIjsc2Tn6N6c23r+Ij+nUp43TM0pVPmwLpHbV+RzifV4sdYuakREf5u6Bj9Qn8t2QVFBIW5cu47uGzdws7sbe1z2WiUj8rV4eh5nbFzi+yrQmcZ+pwKM9KTwKYZaryRYUPmwDj5kX1DoDHrOXDmOwuag8aLsU9qTvKO9Hbe6b+L2rVu4zPyRL6dMtSo+ZLuKzjIWZ323tHWgoFA/YM4h3TPpaVNrnEQOCsW1BBP0HbL/Iednq2I+EW0q8yF0A7U9PTY3HzSH0vcLvUH7cZD/Kl4nnXGHsXH39h3cu3MX2jytVekQ+RoKi8r42cgtrR1obmln92bHn39bnjqNbVNrZUX+mxq/Gnm9QX2ltK/EY5kDc/Ah16coRY7vpCSn4N7du7h/7x4e3L+Pfa5uVsGI/NuurgcNXJAcPuJleE25X9i75ghVrFd/kJ6W9xOj+Yh8DRr/9FfodPqf3kt/SZ+bkiMt7KmB8iJpLMl7B01k/5Ov/uCXX/DwwQPcuH6dP2ctfFAuTHMvG03NF6DLL8b4cW9iuYNtE3X/BNtghNiQ7VfqN3puoDUqU/pV1OMO5jOzZs4yrI3sc92PRw8f4vGjR3jy+DEyMzLfqw6RfzMuPplz0dR8Ho1N5zG/164yhY+xJIuYn0ZrWh6HPHDE4wg8jx7rsSVi41CqL0VYaBhO+fnDz+8UTp70w+7dTvjRfjmzKaaPKT/nXUJ2ibx2WFhYiF+fPMHTX3/Fs6dPYW+/7L3wIfvky5Y5cDaIi8bGNgQHhxl0oMrGPzD3+/m89i3oTBDytTqeP0S5EbTue+PaNdy+eRP3797jcx/168sXL/DHH6/w119/cnn9xx/4/fff+PPPnj3FkyePkZ9fgNP+Z7Bt644+55GPNZHz976fPY9z8fzZM7x4/hxNjY3vRYfIv6XTFTM22tDA2Cgtq8Lk3rxjZf7lWJFxH0zAih9X4riXD99joJzpA6p/o9qe5sYmzkdpiR5pqWkICT5rpD/2ux3AhvUbea6qrD/Ky8q5XhF8PGQs3Wd+6J07d3Cz+yZqqmv4ehnlXoxFPuRxdjY4BC9ePMfLly/w228vue5VzukjpTu2b9/FuWhoaEV9QwtcXPYZ3tdfvHo0y9LF9jh80IPvBZjH7p32qSE+0s+lwZuN/W3M11wwb5EZxsM0rHVcz5nS5Go4H7R+fLWzE5cvXoK+uASeR44xn3DKmLHFKCYg1gk+nPgxmzvucZ376tXvbC55wJ8bKR0ifmP8uA+ZvqjmXFA9h15fyZ8TcTmRnzma41J0vsXa1ev42Ui05zLtJ0t8hAaFYMO6jey+Z1r8GiZOmMT3M6Ax0tjQyHNbqT6CdFV0ZAzsly4btWwQE6I+WF7zcmd+Hdmor1//gT//fM118UjoEPn7XVzcUM+4qKtrRm1dExwdN/SJz8k1zNR/o2XNbhKbj7Zt2cbPAKdzXxKi43A2IBibN2zBJx+/X5tyxXIHhIWEcT7qa+tRU1WNTMYsMTRauBDrKfIeAspY8PXr17n/9p///IVff30yIjpE1h2kL2qJjdom5OToDO+h2kg5j0R5H7a8JyjpC4dlq/gZrXT2JPHhsd8di+2WWN21kn3lcegwigqLUFFWgdJiPaIiojD7u7k22/4i9qucd+WxJx47OblwNkiIE/LlLOmrG+kO532ci5qaRlTXNMBxzZs9JfpbBxR7Gov7ssUzASkme9rXH0GnAjkf+1xcjc5ktVahueznXU583+ei/CLomF/kddTrves5U4VsdlErJ2pHlPaIsmaiu/sGZ4NsrMePH1lUh8i6o7i4vIeN6gZkZ+UZ3qM850EpxDrdoy2tA9JZku4HPJiPEY6QgLPwOnwM3/bWzttWXG0iDrsf4Xxo2NhKYv4S7TFlK9cv9hx6V+4prauLeJbTz86cDfJDSCgWaCk/RHyf45oNnIuq6npUVdVhzeo3uuNte+XKvomt9Mm8OQsQFhyO6PBozsfqFauNzrq3RZk2dQZCgkKQlZ6FtJQ0rkvk880sNbaFHUT9L9vc9JieIxtD1g/K/eXoPYOxzZVrCtevX+O+OsmDBw8sYmPJ35Wdnce4qEdlZR0yM9/URx5wcx3Sd4t8NyHC9rJ0fc27ZI+zKxLjkhAXFQ9vTx980VvfNVrkp81bOR90BmBESAQ/Q3Mk+FDuXyn2cqQ+Fj622MNxqL8nn6Hw824nvHr1isd6KeYr6tUtwcfSpcs5F5WVtaioqGG/7WKS7uhPqF3EWomcq2OJ+ppB2SFsLj3DfIxzSamcj61bto8qLozs9SnTcJbZjAkxCYiJiIGdtK+MpfgQezaK/hb7VyrtpuHwodz3n/IWiQ1aL+zs7DSrDpG/IzwsmnFRi/LyGuh0RYb1jqHqDqEnSK+KfXCF/WXO+prBytSvZiApIQXp5zIQExXH7avRyoaQnnNlD3A+SI9s/2mH2b6b5jqxfifbV6JWh0TYV+bkg4Rym4QO8T1xEr+9fMnX1F+8eMFz2czNx+TPpqCCcVFeXo2ysip4HvV5a8zKFBE5oUKXvA8+pk2diXPJacjKyEF4SOSYyQUUsnbNes5HSGAIs722meU7yV+guU8+Y2Ug+4r6V9hXpE+Ge1akvO8Jxa0of43yTp4/f4Z4M9aqi8/vd3NnXDA2SqtQqq/EjOmzDHME+QxDXSNXtp0l6jMHw0Z6aiZymW8VxOyNcRb2V61VKIZNfAT6B/K1TnMxIvvbQ/XPhyKyPkqIT+B5i5TD9vTpU0ycOPz6EPmz6WlZbCxXQq+vQEy08foFsSFqW03d61u0iznra0wRuvasjFxoNQUICQ7jcdCxyIaQhfPtOB/+vv7YsG6TzV0/sUZjhewQOd5FeTaU20s50rSeTrmg5uJjyeIfuc7Ql1SgpLgcqxx64uaUf081Ksr5QulLDGaMmqu+xhQhHZibo0VBfjHCQiPHPBtC5s9dyPnw9fbFOmnt15pF2DE09oQtQ/aVPD4vdnTw+hCqn6qpqRmWjSV/5ugRL5SUlDM2ylBcVGoYR2TjDeR7iFwAa80nodhCXl4Bu58yRIbHqGwohGITxIf3EW8ssbPOOh6xJiLGmXI+Jj7kc6m8vXw4G1RjSPU2X06ZZhY+cnN0fBwVFZbixPFTBjaUusOWJD4+hevElOR0lY0BZM7seZwPr8NemDt7vtVdHzHxrhoKmr9F3gnVBjx69JCzQXXqZ04HDJuPxT/Ycy6KCvUoLCjBD3ZLbZ4Pby9fvn5D+kPdE+Idca3V6zgfXsyG+Pwz26spITZoTyDxf1VVFR48+IWvibS2tAzJxpLfe9jDk3GhZzZ6Cfdj+9NbtiT29it4fgzxQX6VysC7xXmXC/x8/HBov7tN5tfI64W0988v9+/zvYBIZn83Z1h8ZGVquP+aryuCD7NHBR/y/iq2IlT7W6Kv4Hwc2O+hjv1BCvU36Y+g04HYtH6zzV2/vB86+RzEBe2XdffOHezd4zpkPqjenbjI11JedCFW9O6jO9z1wPclMTGJvGYlKSlNHfcmyjdff8f5iAgJt2iuliUZF4+bm5o4G3du3+Z1/abaWOJ9e1z2cS60zE7XavINfqzyfDhbkHXrNvFaeeJjpg32rzUI1UwSHwGnztjctcs5UFRvS/v13r55C7du3uQ1yoPlQ34PrQkQF3m5+Qg9G2543tbqZGkP4IrKOs6HvIeEKqYJ+R6kQ+Kj45idZXtrh0IW/7CUc0F7vnff6Mbq3joYU/ggXUFcaHJ10ORosa03b02cNS/va2/t7eG67yDf21HL7ER1nA9P/p+98/6L4uoa+Plr0t48T4yxpGnsGhV7NzYkiICoCChFiiIICAgLCwssZWFhYWnSLBQb2Dtii9F0U9Ukzx/w3nPlTK6TbSzDMqPzw/kAw5Y7M+c795x7T8EYX+SjxFSs+hxEcX8EYzPEGPAH9+7zvghYixTjF4fKx3x2HZALjEmqr2uC6dNe+Pli7zgxDxi/G/fM1bZein15sNcC8rF06UpdxxWQhLgEsFZUwu6I3aobG8Yr4T461QkWBRmh19XV1sHdO3fhLntdW0ubxz4I/X97WDjnor62Eey1L/eJQwZELuXjGGoM1khKxqHDnA+sgarrtjIyZfI0zkc907Gx7w9/DpHHnjqqTe0uX06sKSUKxdLL7RysAYS9pwZuD8Dt/tse9WcT/5eWmsG5wHjv1AMv8nYd9dxFwbHi+HDcjnpviOcm5tVT/L/8uFKCOX/YGxT5mPv5Al23FZTkpGTOR2x07LA/S57rQXWtxGPu8uXIrsHXUZysXJ9wn5D2tLH+8QDj4vatfui/dUvix1M+7DbGRk091FbbYVvIdmmNzJt1Kxw3xQKIdpiYR4acKx2ju3t3HOejrNyq67TCgjUqkI/W5iPDjs9xlAslrwXlLt8BWXBn28trkfYzNm7dvAW3btyEPbtjPOZj2tSZUFtjB1t1HdistVKfG+TPm70PMZYf2UYO5Oco75GmhJztu8T52KhQLoMuL0suu1/IR2jwNq/9Z2d8yOcQpfKBxJrp2GsKa7LeuH4dqixVHvvmX6xZz7iog5qqWqiutEnrFO763Li7FpTTQf0iRpIPf/8tcO3GAHQc69Z1eYRk+dKVnI/qKqtX+kBzhLNcWrEuolJ8iHEfWZnZcOPadV5PH2tNuvPR6XhocBg7ZxtjowaslmrJtvI2HlHsByz2QBtJPkxFZZyPqN2xui6PoNTV2ODE0WMwZ9bQ43tRJyhnUNQV8knFNVml8uXw+U7P+NCQMF6v+CqTK5ev8D5PnqxhJe9L4VxgDQ+sbePKN/dEaJ2Lzo18J8obpHxLpfKgJkz4GG723+N8vGp1edQmcbFxnI/kfd7pK+XGicyQTyrPjVMiXw51mOJ55831g6uMiyuXLvO+E/MG/QhHfIjHSkxmqGI+bWV5FezcvkviztsaPuJ5iz4U1WWQHx+ubN68hfPR2NSm6/AIywK/RZyPjjbtXWtc00UuLjG5eOGitB7gjg/kwlJWCRWlFikHGWOuxDh6NUtxSQXnI1Soz6XLyElzYyOcPtkDn8+Zp/qx4hpWQlyM9Df2grjI7JcL585D/N4Et3xgnKallLFhtkA50zPcC9La/eofeMD50G0r30hSQhLnY1f4Lk2MV7SDSktK4XzfeTjXew5Kisxu167mzJrH6waWlZTzunrEB9pA6DtRnRL8Sfs1aopX9PNbzPno7Dqt666PZM3qtZwPc0mJasdIfg7aUGIvGkOOgbHRB31ne9k82OR0DYv+3rhuE+eitKgUzCazy+8k34GYUUPsVUxsAucj+3Cerrs+knFjJ3A+LpzrG/WxoJ8rPsPpJ+25yX378J0R0Huml6/vYo9Id3xsYHyYB9koKXzxPMC1K9FmU7OUMJ8J+dgWFq7rrg+lwW7nfOCa0GjPE+5eg2tYlE8YvmMXY+MMnDl1mjF+2i0f8THxnAusx5qc+E8NUa3kQ/Wc6uN8zJ+/WNdbH0p2ZhbnIyQ4VPVjFWuPzpk9j3NxqucUnOo+KdVcdrYHsjd6LxQbi6AovwhiB/fWcF9QK73MB+4+5HzoOutb2bkjnPORlJik+rHi3EF73XNmz+U9Gk9290BPVzfMHtzndMYH9koy5ZugMK8QYqJiJN60UMvHz28J56Or56yusz6WpUuWcT4sFRXa4oPNFz1dPdDd2c37NDriQ/w9JzMHCg0FvF9S8JYQ6fO0YF8RH9W2Bl1nfSy494F8NNTbVT9WMQ4d62h2My66jndC57ETsC0kzCUfBbkFYMwx8t6sa1a+6AmM+4JaqHcVG5fI+TiQkq7rrI8F9Qz5uHb1iib8D7HXbSdj4wRj4/jR4zwmyxUfyEX+4TzIyzZIfAw3tsTXfMTEJOg6OwqiFT7kcoJxgf2vj7UflWL1nfGBXGCfVgOzs1aveBE3ppXYEp0PnQ9P5w9xv+JY+zE42nYUOto6IGRrqEs+kI1cxkbOocOwarAenBJCMcyUNyj2R1HqOwx5Js5H2HZtxDm8alJbU8P58Ju/YNh6gkI9nSlvlvY2xP464vGh+iD0O3LR0doO7S1tEBwU4to/Z1zkZGTD4fQsWLVsFT+Ge45ij1lHIu9jIH8PngvlDlKPWsqRUapGkL3hCOfDz0/f+xgNKTWbFeUDf6c4ENoHR70S+7OJ/cdI5D2RHYlZ6LGGXLQdaYXW5lbYuiXYJR/IRXZaJmQdPAQrB+vhoP46qg0hinyM1EOO2KbzludBuev3rvPxevNBMX5Ut8CTvDpxfnEm4mcgFy1NLXCk6QgEBbrmI2uQDc7H4Pwh5mk4E0dzHJ4Pse5LPlYN9rfSRTt8kA7I+ZDXt/GED3mOlSMR47BaGBdHGpuhuaGJ8bHVJR+ZqRmcDZxDyP8Yzv4gco9zmciHaF9RProS9yeVjVv3z0dPurs6OR/Tpk4f0vtID5ABOR/EDT5rqQaOaF9RL7+hfJ+YY4vS3NAMTfVN0GhvhC2D+e7O+EAu0MZCH2T1ihd8DCe+hPJofeGf6+tX2l2/IkZc+ef0HB2uf457eeJ+HnLRWNcADbX1EBiwxbV/zrjIZT46ru+uGVzfRV9fCz0NdD709V1vpKGuHuoZG3abHb7cHOiSD1zbxTXe/GwDrBX2z8X9RrXK9h2RnA/Mr9X11bcy7oOJnI+zZ9Sfl4a2kFjnB7moq6mD2upaCPD/Nx+ixMfshfzDBjDm5EF0ZLSm7pEefzV6QvFXWohPFOXjDz+FOsZFrdUGtqoaWLt6nUs+oiP2QEFuPhQajBA7WHNRK/PHxAkfcz7OX7qu66yPZUtgEOejwGhU/VjR9yB/etrUGWBjbNQwNqorq2HqlBku+YiJigZTXgEU5RdC3J5YTfkfKJT/QfW4dfGR7xcdy/mIilRfzwO54Hosxe9iHWHkwmqxQlVFFa9P4ogPqXZiUCgU55ugpKCI21l4DNnQSn5Ua/txPX9wFMRUUMj5WLFc/T1WMF+D8muXLFoGVsZFVXklVJZZeP9OV3ysX7ues2EuLIHSwfoMyIez+Hbai8G1ODXUZ8jJNXI+oqPjdb31oVB9hgmDNTpHS1AH3dXTQV2m/Tz/jZuhkrFhYWxUlFb8iwf537hnXmoqgbIiM5QXl8KY9z7gx8U6JeJP2rNRS9+ogIAgzoe1Wv15Oq+KYM4d8tHd2TnqY0E9HEr9Eoy3Qi7KzeVQXlLmlg+sd4VcVLDXWth7pn72ov6VVnpyoo9O9eF03fWNhIWGcT4MObmqHaO8/hUdT4xPYly8qPUWH+t834z4+JDpF3JRyZiqYnPOkoVLJR9dKzVMMP8c+Vg5uH+jy8hKXq6B87F+3QbVj1W+1pTN+/G+qGcVJYtBd8QHCvopVmaTod+yebC3DNpr3tZvF/0UX9SnTj6QzvnIzDLo+jvCgr2jsD418jF+3ETVj1e+V2HmvXhLoLiwGNat3eDQtpIfO3QwA6otVqiptELK/pRhj0neu4FizuT9DZSK48X4XeQD+0fpOjyysmrFas6HpVx7MQtoi5cwLrDWW5GxCBbMW+iUD1H2xuwFW1U11FprwJRfKB0/sC/Rq3GIa1vO+uOQH6XUufedv8L7f6xYof7+7FqWrENZnI/AgECvP0OMScR8D4pfpV4x9Iwdbs4gSujWrZKfMGvGHM4F1bOa/OkUl3zQ8QD/L6HOagN7TS3U2+qGfQ3RJ6J1A+JgpPtH7U8+yPk4lJmj6/EICfZ2xv5qyMe4DyYowgfqB+WiUt9jT3IGPRXRh163Zj3nosBQAMZco0NbyhEf2EenvqYOGmx2aKyrhxnTZvLj6H94U+eHelbTT0/zXIYjU6fO5Hxgf87xep+DEZHt23ZwPtJSDw7rc0Q+cF6guYF0RCldQb9c9D2w/mGBwcjYyIcEYe3KHR9jx4zjsfAYE99kb4QN6zZK7HkTZ+IoRxCfCWJ/Z0c57MMVS5WN8xEZqY3a2lqSt978P6gst3A+Fi7wLlbBUc4g6j35qtS/Uyk+cO1KrMOTlZEF+Tn5kHc4D4K+3OrW9xD/h/55c30jHGlolnrAIxuu6vwg99TbXDwuz5cXe3XK8yeVvIebNgVyPk6e6tPjsRSWzZsCeP/z8tIyr97vLGfQke57kjOIHKGekb/iSHANluyr99j3IxeGbAPkZuVK+xjufHOSZPb9LY3N0Np0BCpKyx3ygeeI46H+m+Q/KT0PDEc6jnXBxcs3ICJij67XCs4dZlMx52M48VbOcgapl6toU7jzz9Ful9dfoHon9BqMIaS4EvQhxFpWn3482SM+pD456zdBW3MLtB9phY6WNsbdeGmOQE7pvOSC43TFsK9l48YAzkdX9xl45219DlHkmjJ721pRCUUFJtWMCXUO9VJ8TpPgOhjqpfjc3hIQxGtNH2ZsZGdku/U95P9HnrAuENbNOtrWwXzzNdI4xO9GTmg9Sq33s639BJy/cBX27lV/7X3Vzx1vvANGQz7nY9mS5aocIz7DkQW0a6j2AekqvWZf/D7ORVZ6FoSH7RoyHyi4doU1SbE2aWJ8ojQn4vdSD3Mt3NO5cxdwPnr7LsFkDfYbVZOEBIVCaZGZ7yFrZcxoY1H9E67D747hXGSmZbLzOAQrBuu8eeJ7iK9JS03ja9udx45DbbXtpXUyLdSrfnmNwML5MJlKdT0fxnMZ10ORD8oj0oqI666fz54HmQcZG6mHICMlg/dPHIpvLu4TdjG7rftEJ/R0dkn7i+jnaCVWkWT8uA/hxImTcPrMeTb3Bev6PkR5k9lVaJMgH2GDPQC0JHuiIqTfsa9NRmoGpB9IZ+e032PbSv465KrnRBec7OqGU909sCNsp/Qarc0fKEHsuiAf7cwfmTRpqq73QxD/DZuZL5vN413fevMdTZ9LckIypB1Ig4PJB2HTOv8hv1/kqKKsgvctPN1zCqqYT+aIRy2JyWSGkyd7oay0kvd00XXfvcycPhvSktM4H5NUkgc3FME9c7J30C5MY1yk7k+F1H0pPAZrKHOHnBHcGzxz8jTvDd17+iyM/0D9McyuBOs0tbcdh66uU5CYsF/Xfzcy9v3xELcnjvOxfq368zvcCc4XqftSISUpBQ4kHpDsIG/5+IzZIb2nz0DfmbNw7myvVP8d89u1UPPHkWBPX+Tj+LFu8N/0pc6BE0HdiQqPgn1790HkzkhNngPGC4p72omxiZwLtLEChHvvLR8oWNv6fG8fXOg7B7U1No/ej2u/uKamZMyhkhKwOYjz0cF8kZV6DPy//XHGxq4dEbCf+a9xu+NU52+ifuF+oLt9N3GtdcqkaZCcmMzPCZmfOW22V2zIGYkIj4QL587DxfMX4NKFizBlMCddXucXBdeacdy4R6KWmg3OJIHZV8hHa0sH+M1fpHMhyNbAYG6jx+3ZC2PHjFflGJER2gfEn/L9OLRxxLkD7UNiIykuyWvbSs4Hro0iF5cvXoIrly5DUuK+l/h0N041S/zeJM5HjbUOPvloks4G+rP+gXz9E/n44H11siEXnEfwuYxCz2WxZgL+TlygYO6Ht7aVo/fhOtbVy1fg2pWr0Mt8ETpOcS/expfg+ykGQMwXE2vbi8eVFsyfLjAWQXNjKzTYm2DZUvXXNxsxm+qNd2B7yHYed4F8zJ75uSKf6yweXYxbF/XAUT+yocwp+F6K8ZDsmjnzORfIyH5mN3w2uL7vLRtyRjZt3AzXr16FG9euwc3r13l8sxLXDq8PnQfli+HveK1oHkI/Rsk+IY4YOZSexfmos9XD0sXqjCsaScG4qkQ2l2K8N/IxZ9ZcxT5b5APtC4rNxXgovM94TIxrRRtdjOn1VsTY3cidUdy2Qt88WsgHUooPlL7eXrh14wb037zJ7JFq6TjGDHvbX4rikKn+HF4nPC5eH3l+zEjJnqgYzkdNlQ2Cg0JfGzawphPOF5hnmnHwkOJr+HI+KE5QvK/yHLrh8IE2v6iPH038hK9X4ZruQWYzLluyQhE26DPoc5L3H2Bs3ILb/f0wcPs2r31N4/E23kSsbYJsEPOjwQfKttAdnI+qCit/nmKuw6vMxuKFSzgXWMMD5w0l64PivSR7R7SXqOeer/gI9N/CfSncw8lISedrc0rxIX7OxPEfwUD/bbhzewDu3rkDhlzDS3MI1fz1Zv4QfSy6PmRf0fzrK51Zsmg556PcXAH5OUbJVn2V5G3G/a6dEbzWGdYOxHVPtLGU/A68b5R7IfJBfb0pr1RuZ1PvYyXY+M+7Y3gcSTrjAuMRh7Pn4YmNlZtjgHt37sL9u/fgwb37vIYQjcsbPuT+OcUg+8o/d2pzsDn5cGYOmE2lvAYM1sl78w1txx2RTJ82EwrzTbyuP/KxZTD3eiQE76cjf5t6hnvqn3u6JiqvpY5xY2g7Yix7dkaWZDsqxYackQV+ixgX9+Cr+/fh4YOvwJj/T10UsW68q7UFNeUXuvRZ2TM2LGQ756Mg18h8u2SYPnWmdueMt97l8UKN9gbeTwxrB2KstxbGjutR7nqB4xquOHdgnkcm9mJOz+J5gpHhUYrPHY4+r8FeDw+/+goePXwIj7/+mj1rXzCBPogzPsS6X/hTS3skGNePfh3mKx9Oz4bwsHApX1kL8s7b70Jo8Daw19rhSNMRzkdUxG7N+FZkb9Hc4mzvWT53rFy+msdU8p6a2QYptlJpNuSMYD2XR4yLx48ewTePH4Op0OR0jOijyXPr1VS/wVNB22r1ijWcD+wPn5t5GPZE7JFyYtTJxX94TkJLcwvPAW1vaQdjnhFmTJuluetPeauizY22CD1n5c9mvF/ocxiyc5kPmQd7hF6aI80HSnNTM3z7zTfw3bffwvfffcfG9slLfoi789Gq4Jz9JfPxkA9jTj7vtZUQGw+LF6invxbGO8THJcDxo8fgVM9J6DrRxXwNK6x6BeLMHD1v0TaR8xHEjuVhn1nspZlX4LZ2qNKMLFq4hHPxw/ffw48//AAlxSX/WrdwNx9qmhPGeXBgMOcDewlhPwjsK4S5daMRp4L1vfw3BYCl3MJjgc73nYOzp89CfV09rF39xSu3/oY6JtYqQWbo2Yu1rbDuG+Y6Yv3ouOi4EZ87HH1+a2sr/PTjD/Dkp5/g5ydPYNbMORLjVC9CzXVNlJD3/jsWNnyxEXKzcqDGYgV7dS00secB9iKKZ/MKPkdGKg9rOrOTdu7YBbW2Wr4ndfP6DR7/g3wYcgywVKX1RZR8RqFNQmvIdDx8ezgUMi6KjCZen/2zyVN9woackZkzZsOTJ4yNn5/AL7/8DMfYfC6u33mz3qvpuX/OfNjN/N5qSxWvq3e0tZ3XtjjZ1cN84ka+Nh4ZEQXz5y4Av/kLPf7cjz/6lOt6CPOx9+9LhpaWVviG2bZfMx/wwf0HfC8K+WhubILQkG3cvnpdrjmuWYk1eydPmsK5KC4sAnNRCSTEua+rO5JzSKm5FH799Rf47bdf4ffff4ONG/7J58Va8q8TH6IsYPofGR4JpcVmzgfmX6LNgzHQ169e43EI95heP3zwAPpv9UMr0/mO9g44znjq6uyCK1cuw99//wV/Pn8OT5/+Ab//9ht/Bv3004/Mrvie83Hr5k0oL6uAHex5OXGCb2tw0964uMZEtZTF19Exed8/pQRrpouxG8lJyWBmdi5e93JzmdQ/01dsyBn56MNP4fHjR/DHH7/z+zgwMMD3LOl1OHYt1nJQWnCfYWtQMO93V1lRCd2MAeLjm0ePuR+HNipy8Pz5M86GyAdyc7TjKJ8/1n2xQepDPFoi7kXQ3p4YK4TH0eYR+yIpnSsnj2lauXwVrz2Etq2ltFzKdR1NPlBSUw7Cs6dP+X3988/nYDQWSP/DWkCe1HynngevIzuo64sXLQX/4D9gc+hTWLZ0BSxfpu44e5EP6hNL/6PYKXnfG09i6Iay9i/aJ7iXU5BXwGtFY0xAialY2t/xNRuOGLnDnoV/sWcEPffmzJ77EueuGMG5F9e4hjIHU+13+bHRjEkZrkyY+oyLFsbqaC+bcoHwXsr58DTGlNZvXe0DOOoVGx0VDRZma2KNnerKKvZcXibp6GjyQd+Nzzvk4n//+5vLlcuXpdehn+6MD6pLP9R9EXy92MsQxZc5I68rH9QrT+QDrznqNR6nOAlv+aDPQ9vMmT2BuiT2ikXbtarcAlZLFdRUVUNKcsqo2VWu5pCCgkJp/vjrrz8h7WD6S+ckz1UXe2l5e6/Eaz5aMfGvEx+0t0W9jeha099Uv5yeV/g3xWXTvDKU+yvv8yGPg33Ra6GE95K1WWugrqYW3h8zThVsyBlBv/zevXucDbS10BeZPetz6bwodgyfM2Kuh7cin0N0PnzHiNjniJ51lBcozweV5/YMRai/DNkF8hhY3kvWWs24sIHdVgeBAVtUM3c4srOWLVvBucB1F/TX5etZ8vNVYr4X7d3Ryhl53fwPX4qz5+kXa9bxuul2Wy001NkhXbBX1MKGo/Hk5xvh+bNn8OzZU7422dDQ+JL/pQQT8h4oun/+/+2dZ3sU1xXHzzfJuzQn8fPY4ALGdgAXmgu2salqIEQLmGDZpklCvRfUy6qs6kpCvaMuIUQxMgkxdhybvHBi53E+Qd7k/q90lrujmd0ZsQuSdl6cR7Asq9mZ+7un3nNWv6jxYeRM4Y+3NDXTlWacia6T83SftE9u1s66LnQq2EBe5L8//0zHjz/s+a3XN8uW4OLDiv2AWJXqj//m109RnmAF5yzaMCPzSpvMfSxX3aFnZ8HvePDge5lTR84L+XWuz1qKvbsSa+JtPvQF9jDyhmYZ0cZzP4v+XHDRKutpOtvb6fzZ88ueDb3rg84AF6g/+c9PP9HcnTmhWx7Gec3Un/D5TMhqzx8GAx/qWSczjGCNqP44Zo23C3u9s62dujo6qaSoWJ6LXAls6DHicFTKuqGffvxR1k9MjE94vNfbLCqVDauxQZsPa2uW6/u4jkEVXsPwHfVqrKwKPscXI3o5wM2bXqcOcNHeQT2d6OfXLK775WXtc5hhZHJigv4t2EAd/L9++IHKSh+eFcHeoNcbKBBsqD2z8ZOfC9YG96BRXw8WPtT+O2rfBHVePe4Lz13mn4FkROtzrF/3suyN3t3ZSb3d3dTf00u7P9qzYuwqb77I74SO+Obrr+kHwQbOUqEWT5v3Uf31QOkNxAi51wz/Ga/j+SB+j9d5Zn2w8oF1ivuujf1p8+X+6m+oxwjWglpvAfupurKKeru6qa+nhwb6+uiEEu9ZaWzoMYKzIve/+krWZuPcIc7lRin1laxDAmlTqc9YzR8ul7zicuADAjawd6h6wp/923wxovIBNuBj9HULLnr7aLC/n+Ji4lY8G3rXfyTqmOTin5AHD2Rvh6jDRzzWZiD9DT6TyXXYHBMLVj7w/bmvK/PBtia/h8+ABooPLSPqvQcbpcUl1N/bK7nArNgqh8N9HnOl+RxmGIHOABffQ777TvZBQT8UNfa3FDbM+IxqD2TeI4OZD16XYEDPvuK6KryP7VK8xvuMN+6Wci38u/i1mAsx0pYaGhig4aEhYWNVrjo29BiJuRgnufjHt5Bvae7OHdnTz8g38yXq7Pel+B/c65LrHdWzDKvdvuJ6cvX+qXVTzA0zoq2x0hP8m9a/9Cawp7RnsWMvxsqzyVcHB2nk6lXpk6959rlVyYYeI4UFRbLH3N+/+Uaeof7i9m03Ixzbgw3q62wVz6uy41fLS/BMfNUS4TlDtDF++BfMxejwsPTJca58tfgcZvx1SEF+gYxrfX3/vvDd78szIwcjIj32FW91KHxOYLXcn9WWH8Sz8bbXaO0E9Hm8FBsnbSlwMT46In0PtT/4amXDiJHLefmy3zV6cPzt3j2699d7ghHPmbK4h3p6BPf/cfbVYt9EW6/tjzruR+HDSIeqezj369PaTYEUPBsjX1I7+xh+BXzv0eGrNDYyQhNjmC/c5+7NEwxsGDGCvjeYmYDZCehT85e7dyki/KDHPgP9q9qo7Cs+zus2muXDPfzwOtbDUnXaUvkwiimoMSeu9+czTPDLl8qxlT2J75W3Zwk24HvPczFKk+PjwifvD0o2jBjJFfcQfW7ufnmX7s59KXudZWVmL9IjevfcrA/vjz2T6yvUfgNW4198HlX7uVo+1J453uwUM3xocxy+eqEbXTf4V88xmxF1L9P244Ff0eJyCVsKXIzR9OSE9D2CmQ0jRv504iR9OTcn6xjvfHFH9okqKiyWvTO1z8jqfsfx9UepA2bdwGeylsqH9j3cB4f5wOdz7FWd06e3JrleSv08fp+/+YDgWvB9rcb49HwR9PCA7z0huJiamKBrU5PUWF9Pa9c8H/RsGDESHhYhuUCfTMzLvSWk2dW8qCeg9oy+r3WtzT0t1b7yR/5d+x7+/8wH23F6eTrt58C20/ai4Bh1IPhQc7hm7DOO3YINlY/IQ4eljzE1MU7TgouZ6WlqamwQe+HvbTZ+4T32u23rDnHvxuWsdfQbRD/Z0eER2RdKjQ1yDNhbH1Orz9OXnaDW6PF6U/uiYZ/3FftfCh9G65nrcbT6g/d5lWetPnqUuJSv/YbjtnhGqj0FXyMxIVH6GLClZqan6PrMNUpLTXWzsVrzG/5k5NVXNpKryUWzM7PyLOL1azOyPydm5mn1CPYofh56e74/61W4xlvPf/DVR5PrYP3JB3+u9vey3WXUA/RRcjz4HN5zjPKE6MWhjc3D16h1OmlKcHENXFybFnvfDMXGxBraE7YYM4L9BPFfcHFtalrsN9NCH09RWUkZrdHMINbLlfDeasWfxP8JVMyY93W1ByeEz8ozH2AZHKnxJuirQMaytXVXZnQpz99QX4eu0MZuIYcjo2QNFXyMGcHFrOBibHSEQkPCbDYe0SeBzpienBJsTAq9PCFtr76ePtq50CNPFfQz3b51u7v3j96sR1+2QyC/G+c0Vf+WY2HMB/d+ftz5Cis+N8+g5fsLGzdk//5F74M9lZudI57fpLSlZmfQo/u6jFnBRrDZ8A8jW97cRv29/TQ+Ok5jI2M0Njwq+6JnpGXqztcw2t98+QVP8pz7k86fg1Mr31+rn7XnQDGTAXkM9jFuzM4In3KWigoLPWKSNhf+YQQcFBcWS199RLAxPDQsZ4d1tnXIOTTaZ8d2i975xEfdP7km0p+1WoHgg/OCZnsdmfXT2Ndj/abaflJn5OQKW+qhj3FTcIE4blhouK0zAszJoYhI6mrvpKsDQzTUP0iDfQNy/mReTp5gYa2HDTD//giPZ2pkf1upc2T/1J8+QSD4wHeykq8A92a+E2wp7Dva/QHneYYGB+Z9jAVb6vbNG9Ta0kLPrX3BZuMxMfLsM89Rfm4+DQg2YHfBH+nt7qWerh46GnXM3dNClc+iz7hjj3r2mNm1zj1m4Webtdv8zYdZfWD1WrHevbGEvUYvng77t76uzu1j3BBc3Lo5S1/cvkmfRn9qGIOxJXDxLQhmUrYKm6BXcNHT2U3dHV1Ct3RRU30T7VJ6hqly+uTJRZxYsa2s7slm36f652biR1Z1nVlbUK+fPrjQs1PXPvs8JSclz8drwcX1eR/j9q2b5KypsXXGstAlaykpIVly0dnWSR3CH2m/0k7trW1UUVpB27e95ZUT2OhWepFy7s3s/zG7lpkPM/oG12w238k5ILO+txqnQP8pPS7gY1w4d0HGa68vxGtv3hC21K0bMieOOghvz8yWx8sIZPOmN6iyvFJygb6TmInZ6mqllqYWSklKpW1bdnhdv7AbfM2CU3NjZvZjrGGz69IKH1b6UHEsz4zvzSwYvRdcnP74z4t8jFvCx4AtFR93aVFsyuZieXFyYF8o1VbXSi6aG5vJ1eAil7C3muoa5QwuvbwJhGfBIffrbZ6PlVouK+vYCh/g1OwZVq6x8Rbr5tyqXm4PgnxsUmKSPAu+yMdYsKX++Oomm4sVwgn888iIw1TtqJY98BsFGw21DVTvrKe6mjrKz8mnsJAI94w6VcAH9lH85JklLFzraNZmwvvM2v1W+LBit0E4V6raZNgDkEv1Vuu55Y2tkotpTU3IvI9xQ3KxfdsO25ZaQYx4cCLW/8HwQ+Qoc0guoFecVU6qqayhGsFOdUUVnTrxseBgo66twfVdvH44Z2zW9reyhq3yYSWmwDWF0Dn4PuACtqSWf7ah9u89QFdaWt115x4+hrClnNXVNheryOaCnggPjaCyotIFLqqpqryKKssqyVHqoIqSCspIzaRd731IT//hGcNYEPdNw9qCPebPNRwI/cG91sAF9/wyquXc+e57lBCfsKjuXPUxamwuVj0n77y1k7Izst1clBeXC27KqLSwlEoKSqg4v5jiLsTR++9+QE8b2EYqHzHnz0rfHn9n34XXXyD5YB+a1zvbS3xN0H+4Jm/1/5grHS/YQf+c+TN8nnXnXBOSkZ4uPtvmIljsLsgbr22hT05HS51SWlgi2CgWbBRR0eVCKswrpILcAumnXDh7kUL3h9FL6172+nvYb1HtMd7jOU6Kf2OG2CdmzlQ++Jw2n59Q389zIfizwQT8atWPMKqpQV51z+69sk8Iej3P9wmZP9sq686VmhAwE/1JtEcOw+Yi+DiBPfXBzl2UkpjiwcXl7MuUl5VHuZm5lJORQ9np2ZQcn0zHoo7T2zvepfUvbjD9u9W+BDzvmrngmJGz/i7dnvuf5IPzcVj7bCMxH/zTTL4fuSH0p4w+E00VZeXuXoRqnxD2MbjuPC01jXa9/6EpfWxL8Nhecg9f8wKFHQinhNgEDy6y0rIoU/gnGSkZlJ6cTmlJaZSamEopCSl05tQZ2r1rr1jLb9GLz6/3mUMJlKxft4F2bH+bjkQdlTPAndU17n7n4IJ7rrn7hMDHWKg7z8+7TKEHQj3Ot3rbU2wJbp0CQe3ERx/sps8/OUuZKYKNZMFGkmAjUbCRINiIT6HkS8mUFJdEibGJlBCTQPEX4+nShUt0LvocHTl0lA6GHqKd77xPOwQ76154Seoc7dkuMwK/CfmFja9upm1btssazciDkZSanEr5uZflTKWOhZlKPV1dst+5u6+zm4tht48xONBPebm5FKLDhK0rbLHKyq9++Vt68/WtFB4SQec+PWfIRdz5OCn4M15PjEuUNhl4Shc6B/oHuignI5vyhH6CDVeQmy99Hvg/pcIXKi8pI0dpBVWVV1K1o4qcVTVUV1NLDc46aqxrIFdDE7U0ueTc1rbW+fmUPFNJzo4BF33odz7g0YsQvdBPnzotawmtfn9bbLGyVuAPvLJho9QvRyOPeXABVsANGIL9BVsMuidL2Gew1XIlF3mSC/g7iAkgPlBeXEYVpeVUWe6QeRlnZTXVVjupXnJRL7jArG8Xtbpa5HzKDjmfsmN+plLX/EwltqUwaykzPUPqGPTRWer3tMUWK6x4W0eYkwX/4z1hT4XtD6eTx07RxbMXpd+SnZ4luMiR/j58/8K8AslFieAC8bOKEsFFmYOqKirlXG/JBXRGbb3M/zc3NgkummXOjudTdgtbKicrW55fPX70BO35aK+cG+yP72KLLYHmRWufbVj/ihT48fv27Jc56gP7QihkX6iMH4cdEBISTshjRoQdlHl/9jMOHzpMmze+JmdUvrbp9YBeqy22BJqZx70Wn/Tvt8UWf61bf4p9j22xxRZbbLFlecn/AVBLAQIXCxQAAgAIANqIPlsRhgfhcD8AAABxAgAEAAkAAAAAAAAAAAAAgAAAAABkYXRhVVQFAAclDtxoUEsFBgAAAAABAAEAOwAAAKM/AAAAAA==</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #21</Name>
|
|
<Index>21</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPlu5PcbsEkAAAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J33W5TH2se/f8l7zvWe6z0nlphmYmKLSYydqMSCit1YjhpAEQuoCCgiSpHem3RYdqlL71XBgqjYY4stMSbn9/POPTDr7AMoC7u4C88P98Wy9Xlm5jN3mfue+fvf/oG/q/Le5G//87+DFrW9VBkL494Wvl8VVSw1TtVrUkXlYXDjbuHCxVzc9rvDzc0d4RExSExKY5KKouIytJ6/iNa2i2hp7UBzSzuXpuYLaGw6j8bGNjQ0tqK+gUl9C6Ki4pnEITIyDocOHoGT016sWbMec+cuxOTPpph07WpfqmIJJgZ6zzfffI9Nm7bCy/skUs5lop6N7Y5LXWi/eBUXOjqZXMH5diYXLqPtwiXGxaU3XLQquGgiLtoMXNTVN6O2jkltE2pqGlFd04Dq6npUVdWjsrIOFRW1TGpQXl6NuLgk+Pmdwa6dzpjz/XyM++BDlRdVRpSHCeMnYaWDI3x8/HAuLRuXrlzncvHyNXRc7jJw0c656JS4YCK4aOsw6Azioqn5PGeDuGggLhqICyaCi9pGxgZx0WDgorJScFGDsrJqlJVWoVRfCb2+AvqScpQUl6O4qAwpyWk4cdwPG9dvwfSpX6usqDIsLvp7zc5uKQ4eOgJdfgkuX+3G5c4buNT5hgvOhuBC6Aziot2Yi4LCUsQnpCAuniQZe/fu57JnD4kbFxcXkn1wcd4HZ2dXLj5ML0Uw2yw8nElYNNcZxEU5cVHGuCit7GGjpMLARXFRKYoK9SgsKEEBu+4CXTHytUXIYEx7e53AimWr8Oknn6usqDIkXeHgsBZBweFoZuP6Slc3rhi4uNGHiw6Ji6TkdPifDsI+t0NYvnwVFiz4gescS1z/jOmzmB21AJuZbbdrpxOCg8KYvkhnXJQyLhgbggtdEXTaQujyCqDV5CMvNx+aHB1ys7U4yz6z1nEDPvl4ssqKKm/VFYKJFsZEZ9dNxsXNHi6u3uhhg7gQthTjIpeNt2Nevti48SfMmjXbau5v3AcT8f3sedixfRfTPb5cZ2g1BT1c5OoYG1rGRh5ysjTIzsxFdkYustJzEHgmGGtWr+vDisrJ2NUVU76YiuMn/FHJ7PvOa7cUXHQbuCDRMPuEfPBFC5fY3P2TLbV8mQOOHfVBSlIacjI1PVxk5CAzPZsxlIWM1Eykn8tAWko63A8ehv2SZSbZoaqMHi4cVq1FLPMBrl6/3cMFkz5cMImKTuCxKUvZSO9Lpn41A7t3OSMyLKqXi0zGRQZSmX2Wynz6c0mpSEk8h2jm92xctwkff/SZyskY4GLLlh2oqmnkXFzt5cJIZxATMcTEtlHHxEBC9tRmZiOGMttScJGckIJkNn8kxSUjMTYJCTGJcGI8kb5VORldXEyY8BHc3T3ReuHygFxomS+7afPYYWIg+WrKNLg47UVUeDQS4xgXsYmMjQTER8cjLioOsZGx8GC219czvlE5sXG/m3PhIXEhbKleLppbOxAYFMbX99T2M5YP/jUBS36wxwnm3wsuYiNiERMeg+iwaEQxu+yQ2yHMnD5L5cQG41FkR7VJXMg6o6Kqnq9njHVdMVghXbHPxQ3R4T1cRIZGIjIkAhFnwxEeHIYDrgfw0YefqJzYABd2dvaoqm1C1wBcbGY2lNp2Q5OPJn2Kndt3GbgICwpFWGAoQgNCEBJwFttY2/7rn+NVRqyQDfIbM7I0KhcjwQnTFTu2/huhgT1cnD0TjODTQQj2D4Qfs8eW2C1VdYkV6QzyMbpu3DH2Ma4x/6Ktg3GxXW03C8kkxgnpDOIi6FQAAv3OIODkaZzx9cdBZnNNnzpTZeQ9siFsKaWPQTkhqn8xckIc7P15D2eDi99pBDJegvwDsMFxg2pzjRAb4jHFpU74nu7XloqJTcIXihi9KiMj8+cswElmX5EuCT4dyOyuIGZ/BePEMR/MmPa1ysgI6Ixvv52DgqKyXp1h7GPYKexer2Pe3AZQ29Fy4rrXDdOlsU+6gnRGCPNJQplvEhYUwnz5UObTh8Fx1doB5zxVhs+Gk7OrwsfoyQnxOX6qjy1VWlqG//73v4iLS1Db0oL+x+vXr3k7O6xcbfQa6QtfrxOICA5DZEg4okIjEB0WCR9Pb3w86VNVl5jZnhK5Usq4lN0iY52xa8cO/pf6i/qNRJ7fVDGfZGfn8vZtbm7h/69auRKffTrZSJds2bAF0aGRiAmLQmxENOIiY7g+mTdnvsqImewpni+lyAmhdW9ZZ6xfu7bPd1G/yf2nivlkwfxFhvlH6I4P2Tz2z/8bhzmz5/DH4r20vniG+e1xkbGIj45DQkw8kmITsGPrDpWRYbCxZct2XqutzAlxcHA0vEfMV1992dcnJ72h7ENVzCNi7iEdonxN8CH3CeWr7Hfdj8ReNpLjE5GSkAxvZm/Ra6pPYhobVJOhzDunHEJlbGrRgkVv/d6gwGDejw8fPlLb2Yw+ObUp+R5vs1370+mrVqxGSnwSzjE2UpNSkJZ8DuHMd5/65XSVkUGwMWH8R7yGT5lfGxgUamRPkZ/Rn854mw9JrKjtPXyfnOYaU9pzj5OT0f+UIxwXFYv05FRkpKQhMzUdSXGJ+E7KE1UZ6Z8NXaG+Tw3f7p/39NEJQ53v1DYfnsj62NTYuWzjkk0V6B+ArNQMZKdlIicjC7mZ2Vj+4wrVJ+kvRsV0g65Ab8RFU0s7Vq5842sIfUG+oalxW7KT6XPqGB+ebP1pO2eD/pryOeov4oP8RfLh6blxvT5JTkY2YyMHmqxc5OVosGKZw5hnxChGxfQqxWrl2tbG5gt96jIofijrBBJ1zL4fG8tUpmitVvShHAMmcd7tjLxsDbQ5edDlapGfp4PHQY8xy4h8r8QAxaREbStJnq7IyNeQuVDOSUPRCSL2IuyE0b4+Iq8FyfE8um/hS8hxcGFDCZvUVF0hC/1GfzEusU4lhHRGvkaLAsZGoTYfRboCHHE/MuYY6Y8NeZ+QPO0bNkQ8/W3zGLW9KfMZ8dTVdc3wP62zj3a/XcS5le1Ec7qwU4XfTdwQE+K99J6hrh/Rd1D79tc/ZCtT38q6ZOXyVZyL4vxClBQUQV9YDM/DnmOGEfn+iA3yL+S9CDVaY71BbSivMw003k3xRaj/5f4mNsZCXIvaiMY93bu4X+W902tC1wzUXqb+5tv0O7GhtA0cVqzmXJQWlaCsWI/yklIcO3ps1Me1jONUk1BeWWe0F6FGW2hgo792G6x9q/LR/zwuYkfCpqJxa0k+TPEPaT2RxGBPO6xBGeOiXF+GitJyVJZVwIn5KKOVESUbebpio70INXlv2KC+HErO7WA/Q/0t21dknw2WrdFiX9H9UzsQG7J9Rc+LvBHxXhrjZCOZ2hemzDlkI5DIfuCaVY6ci6rySlRXVKGmshpr16wbdYz0ZaPIaL/zXAUb1EcklsxLH2v+ubB1lH74SPjnpugb+j1Z5ziuXsu4qEJtVQ3qqmtRX1OHdY7rRxUj8j0EBIYY7eucqykw8jdo7hJr3ZZmRBXrEcFGf/lcpDPqa2rRUFuHxrp6lDNd9vXMb0cFI/K10761hv3OL11FXUOrERvHvTxVRlQ2+HM/bd5sFNfavnUHmuob0NzQiJbGJlRVVOLzyV/adExLvuaNm7b2ctFzRgad/SL2O6d2UK4XqYyoekMZ+z3p64eWpma0MhuwraUV2ZnZhvnV1vgwiuMyDui8sZ6zY3rOVKIz+cR7KYbbX56hysjYZUPMm8oYZmJ8As63tuFC23m0n7+AyPBIm7SzZH9cX1pldKbSzp1v4nTviuHKjKg1TmOHDVnkWqsJ4z9EblYOOi6042J7By51XMTuXU42xYh8jRGRsUbnU/r7B/WZI971fcSIiNfLz1N8Us4HpTYX8Xy1Fso2+HgXG2KMyDkU38z6Do3MF7l88SKuXLqEzstXYLdosU34IvK17dzlbHQ+ZVa21mAv/rjUflC1G28TeW2L4o9kg4l4vlpzbv1iyhxG+kPO11q5YhXj4jKuXrmCrs5OtLW2Wr0vIrNLvrd8PmV1TSM+//wr/pq5/AiZj4HWgdVxaBmR80bE+joJrSOK52nO6u95c8lxnxPounoV17q6cP3aNSRIOUbWyIjsc2Tn6N6c23r+Ij+nUp43TM0pVPmwLpHbV+RzifV4sdYuakREf5u6Bj9Qn8t2QVFBIW5cu47uGzdws7sbe1z2WiUj8rV4eh5nbFzi+yrQmcZ+pwKM9KTwKYZaryRYUPmwDj5kX1DoDHrOXDmOwuag8aLsU9qTvKO9Hbe6b+L2rVu4zPyRL6dMtSo+ZLuKzjIWZ323tHWgoFA/YM4h3TPpaVNrnEQOCsW1BBP0HbL/Iednq2I+EW0q8yF0A7U9PTY3HzSH0vcLvUH7cZD/Kl4nnXGHsXH39h3cu3MX2jytVekQ+RoKi8r42cgtrR1obmln92bHn39bnjqNbVNrZUX+mxq/Gnm9QX2ltK/EY5kDc/Ah16coRY7vpCSn4N7du7h/7x4e3L+Pfa5uVsGI/NuurgcNXJAcPuJleE25X9i75ghVrFd/kJ6W9xOj+Yh8DRr/9FfodPqf3kt/SZ+bkiMt7KmB8iJpLMl7B01k/5Ov/uCXX/DwwQPcuH6dP2ctfFAuTHMvG03NF6DLL8b4cW9iuYNtE3X/BNtghNiQ7VfqN3puoDUqU/pV1OMO5jOzZs4yrI3sc92PRw8f4vGjR3jy+DEyMzLfqw6RfzMuPplz0dR8Ho1N5zG/164yhY+xJIuYn0ZrWh6HPHDE4wg8jx7rsSVi41CqL0VYaBhO+fnDz+8UTp70w+7dTvjRfjmzKaaPKT/nXUJ2ibx2WFhYiF+fPMHTX3/Fs6dPYW+/7L3wIfvky5Y5cDaIi8bGNgQHhxl0oMrGPzD3+/m89i3oTBDytTqeP0S5EbTue+PaNdy+eRP3797jcx/168sXL/DHH6/w119/cnn9xx/4/fff+PPPnj3FkyePkZ9fgNP+Z7Bt644+55GPNZHz976fPY9z8fzZM7x4/hxNjY3vRYfIv6XTFTM22tDA2Cgtq8Lk3rxjZf7lWJFxH0zAih9X4riXD99joJzpA6p/o9qe5sYmzkdpiR5pqWkICT5rpD/2ux3AhvUbea6qrD/Ky8q5XhF8PGQs3Wd+6J07d3Cz+yZqqmv4ehnlXoxFPuRxdjY4BC9ePMfLly/w228vue5VzukjpTu2b9/FuWhoaEV9QwtcXPYZ3tdfvHo0y9LF9jh80IPvBZjH7p32qSE+0s+lwZuN/W3M11wwb5EZxsM0rHVcz5nS5Go4H7R+fLWzE5cvXoK+uASeR44xn3DKmLHFKCYg1gk+nPgxmzvucZ376tXvbC55wJ8bKR0ifmP8uA+ZvqjmXFA9h15fyZ8TcTmRnzma41J0vsXa1ev42Ui05zLtJ0t8hAaFYMO6jey+Z1r8GiZOmMT3M6Ax0tjQyHNbqT6CdFV0ZAzsly4btWwQE6I+WF7zcmd+Hdmor1//gT//fM118UjoEPn7XVzcUM+4qKtrRm1dExwdN/SJz8k1zNR/o2XNbhKbj7Zt2cbPAKdzXxKi43A2IBibN2zBJx+/X5tyxXIHhIWEcT7qa+tRU1WNTMYsMTRauBDrKfIeAspY8PXr17n/9p///IVff30yIjpE1h2kL2qJjdom5OToDO+h2kg5j0R5H7a8JyjpC4dlq/gZrXT2JPHhsd8di+2WWN21kn3lcegwigqLUFFWgdJiPaIiojD7u7k22/4i9qucd+WxJx47OblwNkiIE/LlLOmrG+kO532ci5qaRlTXNMBxzZs9JfpbBxR7Gov7ssUzASkme9rXH0GnAjkf+1xcjc5ktVahueznXU583+ei/CLomF/kddTrves5U4VsdlErJ2pHlPaIsmaiu/sGZ4NsrMePH1lUh8i6o7i4vIeN6gZkZ+UZ3qM850EpxDrdoy2tA9JZku4HPJiPEY6QgLPwOnwM3/bWzttWXG0iDrsf4Xxo2NhKYv4S7TFlK9cv9hx6V+4prauLeJbTz86cDfJDSCgWaCk/RHyf45oNnIuq6npUVdVhzeo3uuNte+XKvomt9Mm8OQsQFhyO6PBozsfqFauNzrq3RZk2dQZCgkKQlZ6FtJQ0rkvk880sNbaFHUT9L9vc9JieIxtD1g/K/eXoPYOxzZVrCtevX+O+OsmDBw8sYmPJ35Wdnce4qEdlZR0yM9/URx5wcx3Sd4t8NyHC9rJ0fc27ZI+zKxLjkhAXFQ9vTx980VvfNVrkp81bOR90BmBESAQ/Q3Mk+FDuXyn2cqQ+Fj622MNxqL8nn6Hw824nvHr1isd6KeYr6tUtwcfSpcs5F5WVtaioqGG/7WKS7uhPqF3EWomcq2OJ+ppB2SFsLj3DfIxzSamcj61bto8qLozs9SnTcJbZjAkxCYiJiIGdtK+MpfgQezaK/hb7VyrtpuHwodz3n/IWiQ1aL+zs7DSrDpG/IzwsmnFRi/LyGuh0RYb1jqHqDqEnSK+KfXCF/WXO+prBytSvZiApIQXp5zIQExXH7avRyoaQnnNlD3A+SI9s/2mH2b6b5jqxfifbV6JWh0TYV+bkg4Rym4QO8T1xEr+9fMnX1F+8eMFz2czNx+TPpqCCcVFeXo2ysip4HvV5a8zKFBE5oUKXvA8+pk2diXPJacjKyEF4SOSYyQUUsnbNes5HSGAIs722meU7yV+guU8+Y2Ug+4r6V9hXpE+Ge1akvO8Jxa0of43yTp4/f4Z4M9aqi8/vd3NnXDA2SqtQqq/EjOmzDHME+QxDXSNXtp0l6jMHw0Z6aiZymW8VxOyNcRb2V61VKIZNfAT6B/K1TnMxIvvbQ/XPhyKyPkqIT+B5i5TD9vTpU0ycOPz6EPmz6WlZbCxXQq+vQEy08foFsSFqW03d61u0iznra0wRuvasjFxoNQUICQ7jcdCxyIaQhfPtOB/+vv7YsG6TzV0/sUZjhewQOd5FeTaU20s50rSeTrmg5uJjyeIfuc7Ql1SgpLgcqxx64uaUf081Ksr5QulLDGaMmqu+xhQhHZibo0VBfjHCQiPHPBtC5s9dyPnw9fbFOmnt15pF2DE09oQtQ/aVPD4vdnTw+hCqn6qpqRmWjSV/5ugRL5SUlDM2ylBcVGoYR2TjDeR7iFwAa80nodhCXl4Bu58yRIbHqGwohGITxIf3EW8ssbPOOh6xJiLGmXI+Jj7kc6m8vXw4G1RjSPU2X06ZZhY+cnN0fBwVFZbixPFTBjaUusOWJD4+hevElOR0lY0BZM7seZwPr8NemDt7vtVdHzHxrhoKmr9F3gnVBjx69JCzQXXqZ04HDJuPxT/Ycy6KCvUoLCjBD3ZLbZ4Pby9fvn5D+kPdE+Idca3V6zgfXsyG+Pwz26spITZoTyDxf1VVFR48+IWvibS2tAzJxpLfe9jDk3GhZzZ6Cfdj+9NbtiT29it4fgzxQX6VysC7xXmXC/x8/HBov7tN5tfI64W0988v9+/zvYBIZn83Z1h8ZGVquP+aryuCD7NHBR/y/iq2IlT7W6Kv4Hwc2O+hjv1BCvU36Y+g04HYtH6zzV2/vB86+RzEBe2XdffOHezd4zpkPqjenbjI11JedCFW9O6jO9z1wPclMTGJvGYlKSlNHfcmyjdff8f5iAgJt2iuliUZF4+bm5o4G3du3+Z1/abaWOJ9e1z2cS60zE7XavINfqzyfDhbkHXrNvFaeeJjpg32rzUI1UwSHwGnztjctcs5UFRvS/v13r55C7du3uQ1yoPlQ34PrQkQF3m5+Qg9G2543tbqZGkP4IrKOs6HvIeEKqYJ+R6kQ+Kj45idZXtrh0IW/7CUc0F7vnff6Mbq3joYU/ggXUFcaHJ10ORosa03b02cNS/va2/t7eG67yDf21HL7ER1nA9P/p+98/6L4toC+PlX3i8pvrwXYywxicauUbEittgJIiAqAkqRoggCAsLCwgJLWdrSkSZKsYG9I7YYTTe9vj/g3XPlTK6TbSyzy4zOD+cDDFvuzNzv3HPOPQVjfJGPYlOR6nMQxf0RjM0QY8AfPXjI+yJgLVKMXxwpH4vZdUAuMCapoa4ZZs96bueLvePEPGD8btwzV5u/FPvyYK8F5GPlytX6HFdA4mPjoaq8AvaF71Pd2DBeCffRqU6wKMgIva6utg7u37sP99nr2lvbXbZB6P+7QsM4Fw21TVBf+2KfOGRA5FI+jpHGYHlS0o8e43xgDVR9bisjM6bP4nw0sDk24Z3RryHy2FNbtamd5cuJNaVEoVh6uZ6DNYCw99TQ3SG4O3jXpf5s4v9SU9I5FxjvnXL4ed6urZ67KDhWHB+O21bvDfHcxLx6iv+XH1dKMOcPe4MiHws/XqLPbQUlKTGJ8xETFTPqz5LnelBdK/GYs3w50mvwdRQnK59PuE9Ie9pY/3iIcXH3ziAM3rkj8eMqH/VWxkZNA9RW18PO4F2Sj8wdvxWOm2IBRD1MzCNDzpWO0d23L5bzUVpWpc9phQVrVCAfbS3HRx2fYysXSl4Lylm+A7LgTLeX1yIdZGzcuX0H7ty6Dfv3RbvMx6yZc6G2ph6s1XVgraqV+twgf+7sfYix/Mg2ciA/R3mPNCXk/MAVzsdmhXIZdHlRctj9Qj5Cgna6bT/b40O+hiiVDyTWTMdeU1iT9dbNm1BpqXTZNv9k3UbGRR3UVNZCdYVV8lM463Pj7FpQTgf1i/AkH1u3bocbt4ags6tXn8seklUrV3M+qiur3JoPtEbYy6UV6yIqxYcY95GZkQW3btzk9fSx1qQzG52OhwSFsnO2MjZqoMpSLelW7sYjiv2AxR5onuTDVFjK+YjcF6PPZQ9KXY0VTp3oggXzRh7fi3OCcgbFuUI2qeiTVSpfDp/v9IwPCQ7l9YqvM7l29Rrv8+SKDyvpYDLnAmt4YG0bR7a5K0J+Ljo3sp0ob5DyLZXKg5o8+X24PfiA8/Gy1eVRm8TGxHI+kg66N18pN05khmxSeW6cEvlyOIcpnnfRQh+4zri4duUq7zuxaNiOsMWHeKzYZIZKZtNWlFXCnl17Je7creEjnrdoQ1FdBvnx0cq2bds5H03N7foc9rAs8VnG+ehs1961Rp8ucnGFyeVLlyV/gDM+kAtLaQWUl1ikHGSMuRLj6NUsRcXlnI8QoT6XLp6TlqYmOHu6Dz5esEj1Y0UfVnxstPQ39oK4zPSXSxcuQtyBeKd8YJympYSxYbZAGZtnuBektfs1OPSI86HrVt6RxPhEzsfesL2aGK+oB5UUl8DFgYtwof8CFBeanfquFsxbxOsGlhaX8bp6xAfqQGg7UZ0S/En7NWqKV/TxWc756O45q89dL8m6tes5H+biYtWOkewc1KHEXjSGbANjYwAGzvezdbDZrg+L/t68YQvnoqSwBMwms8PvJNuBmFFD7FV0TDznI+tYrj53vSQTJ0zmfFy6MDDmY0E7V3yG00/ac5Pb9mF7wqH/XD/372KPSGd8bGJ8mIfZKC54/jxA35Wos6lZipnNhHzsDA3T564XpbG+nvOBPqGxXiecvQZ9WJRPGLZ7L2PjHJw7c5YxftYpH3HRcZwLrMealPB3DVGt5EP1nRngfCxevFyft16UrIxMzkdwUIjqxyrWHl0wfxHn4kzfGTjTe1qquWxvD+RA1AEoMhZCYV4hxAzvreG+oFZ6mQ/df8z50Oesd2XP7jDOR2JCourHimsH7XUvmL+Q92g83dsHfT29MH94n9MeH9gryZRngoLcAoiOjJZ400ItHx+fFZyPnr7z+pz1sqxc4cv5sJSXa4sPtl709fRBb3cv79Noiw/x9+yMbCgw5PN+SUHbg6XP04J+RXxUWxv1Oetlwb0P5KOxoV71YxXj0LGOZi/joudkN3R3nYKdwaEO+cjPyQdjtpH3Zl23+nlPYNwX1EK9q5jYBM7H4eQ0fc56WXCeIR83rl/ThP0h9rrtZmycYmycPHGSx2Q54gO5yDuWC7lZBomP0caWeJuP6Oh4fc6OgWiFD7mcYlxg/+uujhNSrL49PpAL7NNqYHrWWr/ncWNaiS3R+dD5cHX9EPcrujq64ET7Cehs74TgHSEO+UA2chgb2UePwZrhenBKCMUwU96g2B9Fqe8w5Jo4H6G7tBHn8LJJbU0N58Nn8ZJRzxMU6ulMebO0tyH21xGPj9QGod+Ri862DuhobYegwGDH9jnjIjs9C46lZcIa3zX8GO45ij1mbYm8j4H8PXgulDtIPWopR0apGkH1jcc5Hz4++t7HWEiJ2awoH/g7xYHQPjjOK7E/m9h/jETeE9mWmIUea8hF+/E2aGtpgx3bgxzygVxkpWZA5pGjsHq4Hg7OX1u1IUSRj5F6yBHbdN7yPChn/d51Pl5tPijGj+oWuJJXJ64v9kT8DOSitbkVjjcfh8AAx3xkDrPB+RheP8Q8DXtia43D8yHWvcnHmuH+Vrpohw+aA3I+5PVtXOFDnmNlS8Q4rFbGxfGmFmhpbGZ87HDIR0ZKOmcD1xCyP0azP4jc41om8iHqV5SPrsT9SWHj1u3zsZPenm7Ox6yZs0f0PpoHyICcD+IGn7VUA0fUr6iX30i+T8yxRWlpbIHmhmZoqm+C7cP57vb4QC5Qx0IbZK3fcz5GE19CebTesM91/5V2/VfEiCP7nJ6jo7XPcS9P3M9DLprqGqGxtgEC/Lc7ts8ZFznMRkf/7rph/y7a+lroaaDzoft33ZHGugZoYGzUW+vh020BDvlA3y76ePOyDLBe2D8X9xvVKrt2R3A+ML9Wn6/elYnvTuF8nD+n/rw01IXEOj/IRV1NHdRW14L/1n/yIUpc9AHIO2YAY3YuREVEaeoe6fFXYycUf6WF+ERR3n/vQ6hjXNRWWcFaWQPr125wyEdU+H7Iz8mDAoMRYoZrLmpl/Zgy+X3Ox8UrN/U562XZHhDI+cg3GlU/VrQ9yJ6eNXMOWBkbNYyN6opqmDljjkM+oiOjwJSbD4V5BRC7P0ZT9gcK5X9QPW5dvGT7RcVwPiIj1NfzQC7oj6X4XawjjFxUWaqgsryS1yexxYdUOzEwBIryTFCcX8j1LDyGbGglP6qt46SePzgGYsov4Hz4rVJ/jxXM16D82hXLfKGKcVFZVgEVpRbev9MRHxvXb+RsmAuKoWS4PgPyYS++nfZi0BenhvoM2TlGzkdUVJw+b70oVJ9h8nCNzrESnIPO6ungXKb9vK2bt0EFY8PC2CgvKf8HD/K/cc+8xFQMpYVmKCsqgfFvv8uPi3VKxJ+0Z6OWvlH+/oGcj6pq9efpvCyCOXfIR29395iPBefhSOqXYLwVclFmLoOy4lKnfGC9K+SinL3Wwt4z86Pn9a+00pMTbXSqD6fPXe9IaEgo58OQnaPaMcrrX9HxhLhExsXzWm9xMfb3zYiP99j8Qi4qGFOVbM1ZsXSlZKNrpYYJ5p8jH6uH92908azk5hg4Hxs3bFL9WOW+pizej/d5PatIWQy6LT5Q0E6pYjoZ2i3bhnvLoL7mbv120U7xRn3qpMNpnI+MTIM+fz0s2DsK61MjH5MmTlH9eOV7FWbei7cYigqKYMP6TTZ1K/mxo0fSodpSBTUVVZB8KHnUY5L3bqCYM3l/A6XieDF+F/nA/lH6HPasrPFby/mwlGkvZgF18WLGBdZ6KzQWwpJFS+3yIcqB6ANgrayG2qoaMOUVSMcPH0xwaxyib8tefxyyo5Q694GL13j/Dz8/9fdn17JkHs3kfAT4B7j9GWJMIuZ7UPwq9YqhZ+xocwZRQnbskOyEeXMWcC6ontX0D2c45IOO+2/9FOqqrFBfUwsN1rpRX0O0ichvQBx4un/UoaQjnI+jGdn6PPaQYG9n7K+GfEx8d7IifOD8oFxU6nvsSs6gqyLa0BvWbeRc5BvywZhjtKlL2eID++g01NRBo7UemuoaYM6sufw42h/u1PmhntX009U8l9HIzJlzOR/Yn3OS3ufAI7Jr527OR2rKkVF9jsgHrgu0NtAcUWquoF0u2h5Y/zDfYGRs5EG84LtyxseE8RN5LDzGxDfXN8GmDZsl9tyJM7GVI4jPBLG/s60c9tGKpdLK+YiI0EZtbS3JG6//GyrKLJyPpUvci1WwlTOI855sVerfqRQf6LsS6/BkpmdCXnYe5B7LhcBPdzi1PcT/oX3e0tAExxtbpB7wyIajOj/IPfU2F4/L8+XFXp3y/Ekl7+GWLQGcj9NnBvR4LIVl2xZ/3v+8rKTUrffbyxm0NfddyRlEjnCekb1iS9AHS/rV2+z7kQtDlgFyMnOkfQxntjlJEvv+1qYWaGs+DuUlZTb5wHPE8VD/TbKflF4HRiOdXT1w+eotCA/fr89rBdcOs6mI8zGaeCt7OYPUy1XUKZzZ56i3y+svUL0Teg3GEFJcCdoQYi2rD9+f7hIfUp+cjVugvaUVOo63QWdrO+NukrRGIKd0XnLBcTpi2NuyebM/56On9xyMe1NfQxS5pkzfriqvgMJ8k2rGhHMO56X4nCZBPxjOS/G5vd0/kNeaPsbYyErPcmp7yP+PPGFdIKybdaK9k9nm66RxiN+NnJA/Sq33s73jFFy8dB0OHFB/7X3Vrx2vjQOjIY/z4btilSrHiM9wZAH1Gqp9QHOVXnMw7iDnIjMtE8JC946YDxT0XWFNUqxNmhCXIK2J+L3Uw1wL93ThwiWcj/6BKzBdg/1G1STBgSFQUmjme8haGTPqWFT/hM/ht8ZzLjJSM9h5HAW/4Tpvrtge4mtSU1K5b7u76yTUVltf8JNpoV71iz4CC+fDZCrR5/konsvoD0U+KI9IKyL6XT+evwgyjjA2Uo5CenI67584Ettc3CfsYXpb76lu6OvukfYX0c7RSqwiyaSJ78GpU6fh7LmLbO0L0uf7COV1plehToJ8hA73ANCS7I8Ml37HvjbpKemQdjiNndMhl3Ur+euQq75TPXC6pxfO9PbB7tA90mu0tn6gBLLrgnx0MHtk2rSZ+rwfgWzdtI3Zslk83vWN18dp+lyS4pMg9XAqHEk6Als2bB3x+0WOykvLed/Cs31noJLZZLZ41JKYTGY4fbofSksqeE8Xfe47l7mz50NqUirnY5pK8uBGIrhnTvoO6oWpjIuUQymQcjCZx2CNZO2QM4J7g+dOn+W9ofvPnodJ76o/htmRYJ2mjvaT0NNzBhLiD+nz34lMeGcSxO6P5XxsXK/+/A5ngutFysEUSE5MhsMJhyU9yF0+PmJ6SP/ZczBw7jxcON8v1X/H/HYt1PyxJdjTF/k42dULW7d8qnNgR3DuRIZFwsEDByFiT4QmzwHjBcU97YSYBM4F6lj+wr13lw8UrG19sX8ALg1cgNoaq0vvR98v+tSUjDlUUvy3BXI+OpktslqPgf+nPc7Y2Ls7HA4x+zV2X6zq7E2cX7gf6GzfTfS1zpg2C5ISkvg5IfNzZ813iw05I+FhEXDpwkW4fPESXLl0GWYM56TL6/yioK8Zx417JGqp2WBP4pl+hXy0tXaCz+JlOheC7AgI4jp67P4DMGH8JFWOERmhfUD8Kd+PQx1HXDtQPyQ2EmMT3dat5HygbxS5uHr5Cly7chUSEw6+wKezcapZ4g4kcj5qqurgg6nTdDbQnt0awP2fyMe776iTDbngOoLPZRR6Los1E/B34gIFcz/c1a1svQ/9WNevXoMb165DP7NF6DjFvbgbX4LvpxgAMV9MrG0vHldaMH8631gILU1t0FjfDL4r1V/fzGM61WvjYFfwLh53gXzMn/uxIp9rLx5djFsX54GtfmQjWVPwvRTjIek1CxZzLpCRQ0xv+GjYv+8uG3JGtmzeBjevX4dbN27A7Zs3eXyzEtcOrw+dB+WL4e94rWgdQjtGyT4hthg5mpbJ+aizNsDK5eqMK/KkYFxVAltLMd4b+Vgwb6Finy3ygfoFxeZiPBTeZzwmxrWiji7G9LorYuxuxJ5IrluhbR4l5AMpxQfKQH8/3Ll1CwZv32b6SLV0HGOG3e0vRXHIVH8OrxMeF6+PPD/GU7I/MprzUVNphaDAkFeGDazphOsF5pmmHzmquA9fzgfFCYr3VZ5DNxo+UOcX5+PUKR9wfxX6dI8wndF3hZ8ibNBn0OckHTrM2LgDdwcHYejuXV77msbjbryJWNsE2SDmx4IPlJ0huzkfleVV/HmKuQ4vMxvLl67gXGAND1w3lKwPiveS9B1RX6Kee97iI2Drdm5L4R5OenIa980pxYf4OVMmTYWhwbtw7+4Q3L93Dww5hhfWEKr56876IdpYdH1Iv6L111tzZsWyVZyPMnM55GUbJV31ZZI3Gfd794TzWmdYOxD9nqhjKfkdeN8o90Lkg/p6U16pXM+m3sdKsPGft8bzOJI0xgXGI45mz8MVHSsn2wAP7t2Hh/cfwKMHD3kNIRqXO3zI7XOKQfaWfW5X52Br8rGMbDCbSngNGKyT9/pr2o47Ipk9ay4U5Jl4XX/kY/tw7rUnBO+nLXubeoa7ap+76hOV11LHuDHUHTGWPSs9U9IdlWJDzsgSn2WMiwfw2cOH8PjRZ2DM+7suilg33pFvQU35hQ5tVvaMDQ3exfnIzzEy2y4JZs+cq9014423eLxQU30j7yeGtQMx1lsLY0d/lLNe4OjDFdcOzPPIwF7MaZk8TzAiLFLxtcPW5zXWN8Djzz6DJ48fw9PPP2fP2udMoA1ijw+x7hf+1NIeCcb1o12H+crH0rIgLDRMylfWgox78y0ICdoJ9bX1cLz5OOcjMnyfZmwr0rdobbG39yxfO1avWstjKnlPzSyDFFupNBtyRrCeyxPGxdMnT+CLp0/BVGCyO0a00eS59Wqq3+CqoG611m8d5wP7w+dkHIP94fulnBh1cvEfnpPQ2tLKc0A7WjvAmGuEObPmae76U96qqHOjLkLPWfmzGe8X2hyGrBxmQ+bCfqGXpqf5QGlpboEvv/gCvvryS/j6q6/Y2D54wQ5xdj5aFVyzP2U2HvJhzM7jvbbiY+Jg+RL19NfCeIe42Hg4eaILzvSdhp5TPczWqII1L0Gcma3nLeomcj4C2bFc7DOLvTRz853WDlWakWVLV3Auvvn6a/j2m2+guKj4H34LZ+uhpjlhnAcFBHE+sJcQ9oPAvkKYWzcWcSpY32vrFn+wlFl4LNDFgQtw/ux5aKhrgPVrP3np/G84x8RaJcgMPXuxthXWfcNcR6wfHRsV6/G1w9bnt7W1wXfffgPPvvsOvn/2DObNXSAxTvUi1FzXRAl5+78TYNMnmyEnMxtqLFVQX10Lzex5gL2I4ti6gs8RT+VhzWZ60p7de6HWWsv3pG7fvMXjf5APQ7YBVqq0voiSzyjUSciHTMfDdoVBAeOi0Gji9dk/mj7TK2zIGZk7Zz48e8bY+P4Z/PDD99DF1nPRf+eOv1fTa/+CxbCP2b3VlkpeV+9EWwevbXG6p4/ZxE3cNx4RHgmLFy4Bn8VLXf7c96d+yOd6MLOxDx1MgtbWNviC6bafMxvw0cNHfC8K+WhpaoaQ4J1cv3pVrjn6rMSavdOnzeBcFBUUgrmwGOJjndfV9eQaUmIugR9//AF++ulH+Pnnn2Dzpr/zebGW/KvEhyhL2PyPCIuAkiIz5wPzL1HnwRjom9dv8DiEB2xeP370CAbvDEIbm/OdHZ1wkvHU090D165dhb/++hP++P13+PXXX+Dnn37iz6DvvvuW6RVfcz7u3L4NZaXlsJs9L6dM9m4NbtobF31MVEtZfB0dk/f9U0qwZroYu5GUmARmpufidS8zl0r9M73FhpyRqe99CE+fPoFffvmZ38ehoSG+Z0mvw7FrsZaD0oL7DDsCg3i/u4ryCuhlDBAfXzx5yu041FGRg99//42zIfLRd/Zn6Orq5+vHhk82SX2Ix0rEvQja2xNjhfA46jxiXySlc+XkMU2rV63htYdQt7WUlEm5rmPJB0pK8hH47ddf+X3944/fwWjMl/6HtYBcqflOPQ9eRXZwri9fthJWLPflepTvSj9Y5ft3nP1bE4wweeZv8O/xqaoZs8gH9Yml/1HslLzvjSsxdCPx/Yv6Ce7l5Ofm81rRGBNQbCqS9ne8zYYtRu6xZ+Gf7BlBz70F8xe+wLkjRnDtRR/XSNZgqv0uPzaWMSke800xLtTMh8gA5Y7K+XA1xpT8t472AWz1io2KjAIL0zWxxk51RSV7LvtKc3Qs+aDvxucdcvG///3F5drVq9Lr0E63xwfVpR/pvgi+XuxliOLNnBFvyuvjtnE+3pnaM+ZjoV55Ih94zXFe43GKk3CXD/o81M3s6RM4l8Resai7VpZZoMpSCTWV1ZCclDxmepWjNSQ/v0BaP/788w9IPZL2wjnJc9XFXlru3ivxmo9VTLzHfTRv+HE+JnxweczHQntb1NuIrjX9TfXL6XmFf1NcNq0rI7m/8j4f8jjY570WinkvWWtVDdTV1MI74yeqgg05I2iXP3jwgLOBuhbaIvPnfSydF8WO4XNGzPVwV+RryMvKx7/+NZ7zgaKG8VAOoHj/xB5I8nxQeW7PSIT6y5BeII+B5b1kq6oZF1aot9ZBgP921awdtvQsX18/zgX6XdBel/uz5OerxHov6rtjlTPiaSE+kJVXzX9h73n6yboNvG56vfX/7Z33dxTXFcfvf5IfnOI4jn2OKbbBGAewMc0F29hUNRCiBUxAtmmSUO8F9bIqq7qSUO+oSwhRDCbBxo5jk5zjxM5xQv6EvO8Td3k7mt2dEbugleaHewTLapmdeZ9367u3gZodjZSi2CvzhQ2968nLy6f/3b9P9+//V8Ymm5svuvhfvmBCOwNlIfvnEPge4AO21mLjQ33u/GfkTOGPNzU00sVGnImukfN0n7RPbtTOuiJ0KthAXuQ/P/9Mhw8/7Pmt1zfLEmN8PP3ssQXxfczYD4hVqf74b5/+HeUIVnDOogUzMi+2yNzHfNUdenYW/I57976XOXXkvJBf5/qsudi7gVgT70uZjzHeuQrsYeQNjTKijed+GvmZ4KJZ1tO0t7bSmVNn5j0betcHnQEuUH/y759+ols3bwnd8jDOa6T+hM9nQhZr/hDyzHNnJB/PLbUHvC/Btd1GGMEaUf1xzBpvFfZ6e0srdbS1U1FBoTwXGQhs6DFis5XLuqGffvxR1k+MjY65vNfTLCqVDbOxwYUmHOP1Rw5Ere/jOgZVeA3Dd9SrsTIr+BxvjOjlANetfYPawEVrG3W1o59fo7juV+e1z2GEkfGxMfqXYAN18P/84QcqKX54VgR7g15vIH+wofbMxk9+Llgb3INGfX0+yS9/tUHysWTVl37xe9UeMnyeQp1Xj/vCc5f5pz8Z0focK1e8Knujd7a3U3dnJ/V2ddP2j3YEjF3lyRd5VuiIb77+mn4QbOAsFWrxtHkf1V/3l95AjJB7zfCf8TqeD+L3eJ1n1s/He+qvHIjKB9Yp7rs29qfNl/uqv6EeI1gLar0F7KfK8grq7uiknq4u6uvpoSNKvCfQ2NBjBGdF7n71lazNxrlDnMuNUOorWYf406ZSn7GaPwyUvOKy1f+QfECX+IsPCNjA3qHqCV/2b/PGiMoH2ICP0dMpuOjuof7eXoqJigl4NvSu/0DEIcnF3yH37sneDhH7D7isTX/6G3wmk+uwOSYWKHz4OgeC7899XZkPtjX5PXwG1F98aBlR7z3YKC4sot7ubskFZsVW2GzO85iB5nMYYQQ6A1x8D/nuO9kHBf1Q1NjfXNgw4jOqPZB5jwwkPhC7Ah+IZflyXYIBPfuK66rwPrZL8RrvM564m8u18P/Fr0WdjZK21EBfHw0ODAgbq3zBsaHHSNS5GMnF376FfEu3bt6UPf3c+WbeRJ39Phf/g3tdcr2jepZhPok/ciBcT67eP7VuirlhRrQ1VnqCf9P6l54E9pT2LHb0uWh5NvlSfz8NXbokffKlS5YvSDb0GMnPK5A95v76zTfyDPXnN244GeHYHmxQb2ereF7VQo9fQZA7ny917t4Ez8RbLRGeM0Qb44d/wVwMDw5KnxznyheKz2HEX4fk5ebJuNbXd+8K3/2uPDOyNyzcZV/xVIfC5wQW4r3SXU9+zIH4Q/BsPO01WjsBfR7PR8dIWwpcjA4PSd9D7Q++UNlwx8iFnFzZ7xo9OL68c4fu/OWOYMR1pizuoZ4ewf1/nH212DfR1mv7oo7biLirc3enQ9U9nPv1ae0mfwqejTtfUjv7GH4FfO/hwUs0MjREYyOYL9zj7M2zGNhwxwj63mBmAmYnoE/Nn2/fprDQvS77DPSvaqOyr/g4r9vdLB/u4YfXsR78qdP06tzdxRTUmBPX+/MZJvjlc+XYzJ7E98rTswQb8L1nuBim8dFR4ZP3Lko23DGSLe4h+tzc/uI23b71hex1lpGeOUuP6N1zoz68L/ZMrq9Q+w2YjX/xeVS9z1VfV3vmsJ2CM4TaGK8RPrQ5Dm+90N1dN/hXzzEbEXUv0/bjgV/R5HAIWwpcjNDk+Jj0PRYzG+4Y+eORo/TFrVuyjvHm5zdln6iC/ELZO1P7jMzudxxff5Q6YNYNfCZrrnxo36PXB4djr+qcPnx3zoHgTDrfD+3n8dr1NR8QXAu+r9kYn54vgh4e8L3HBBcTY2N0eWKc6mtradnSFxc9G+4YCQ0Jk1ygTybm5V4X0uhonNUTUHtG39u61uae5mpf+SL/rn2PXh8c7XrmPJ0a4+X8hLYXBceo/cGHmsM1Yp9x7BZsqHyE79svfYyJsVGaFFxMTU5SQ32d2At/b7HxC8+x300bt4h7NypnraPfIPrJDg8Oyb5QamyQY8Ce+piafZ7e7AS1Ro/Xm9oXDfu8t9i/Jz7439ytZ+YDPbHYr9Cyj3XI+7zKs1YfPUpcytt+w3FbPCPVnoKvER8XL30M2FJTkxN0ZeoypSQnO9lYqPkNXzLy2uo15Ghw0PTUtDyLeOXylOzPiZl5Wj2CPYqfh96e78t6Fa7xNuI/6P0u2HkUPvRivPhc7f/Ldpe7HqCPkuPB5/Ce4y5PiF4c2tg8fI1qu50mBBeXwcXlSbH3TVF0VLRbe8IS94xgP0H8F1xcnpgU+82k0McTVFJUQks1M4j1ciW8t5rxJ/E7/ooZ876u9uCE6PXBAUdqvAn6CtfFfPi6zl1bd2VEl/L8DfV16Apt7BayPzxC1lDBx5gSXEwLLkaGhyg4KMRi4xF9EuiMyfEJwca40Mtj0vbq6eqR/Ti1v4t+pps3bnb2/tGb9ejNdvDnd+Ocpurf6uVPPOUr/FXnbsbn5hm0fH9h4wbt3j3rfbCnsjOzxPMbl7bU9BR6dF+RMSvYCBYbvmFkw5ubqLe7l0aHR2lkaIRGBodlX/S0lHTd+Rru9jdvfkEgnHPnOvennvLtHB5waub7a/Wz9hwoegkjj8E+xtXpKeFTTlNBfr5LTNLiwjeMgIPC/ELpqw8JNgYHBuXssPaWNjmHRvvs2G7RO5/4qPsn10Q+iVotM3XunBc02uvIqJ/Gvh7rN9UmlTojK1vYUg99jGuCC8RxQ4JDLZ3hZ072hYVTR2s7XeoboIHefurv6ZPzJ3OycgQLy1xsgJn3h7k8U3f2t5k6R/ZPn8TcuOeXtxiuc8d3MpOvAPdGvhNsKew72v0B53kG+vtmfIwHttSNa1epuamJli97yWLjMTGy5IXllJudS32CDdhd8Ee6O7upq6OLDkYccva0UOXTyBPO2KOePWZ0rXOPWfjZRu02X94LM3XuZq8V690TS9hr9OLpsH9ra2qcPsZVwcX1a9P0+Y1r9EnkJ25jMJb4L74FwUzKZmETdAsuuto7qbOtQ+iWDmqobaBtSs8wVY4fPTqLEzO2ldk92cz7tH1t9YTr3KFHzOg6o7agXj99cKFnpy5b8iIlJiTOxGvBxZUZH+PG9Wtkr6qydMa80CXLKCEuUXLR3tJObcIfab3YSq3NLVRWXEabN73lkRPY6GZ6kXLuzejvGI2fca7Gm74xW+fOn2vU91bjFOg/pccFfIyzp8/KeO2VB/Haa1eFLXX9qsyJow7C0zOz5PEyAlm3dj2Vl5ZLLtB3EjMxmx3N1NTQREkJybRpwxaP6xd2g7dZcGpuzMh+DF1gdF0a5QNxK/CBOJZRPo3mSJkFd+8FF8c//tMsH+O68DFgS8XGnJ8Vm7K4mF+c7NkVTNWV1ZKLxvpGctQ5yCHsrYaaejmDSy9vAuFZcMj9eprnY6aWy0w/NaN8QMzkQLjGxlOsm3Orerk9CPKxCfEJ8iz4LB/jgS31h9fWWlwECCfwz8PD9lOlrVL2wK8XbNRV11GtvZZqqmooNyuXQoLCnDPqVAEf2Efxk2eWsHCto1GbCe8zaveb4QP5czO9TDhXqvo22AOQS/VU67lh/UbJxaSmJmTGx7gqudi8aYtlSwUQIy6ciPW/N3Qf2UpskgvoFXuFnarKq6hKsFNZVkHHjnwsOFija2twfRevH84ZG611NJO7N8OH2V4/XFOI+C2+D7iALanln22o3Tv30MWmZmfduYuPIWwpe2WlxcUCsrmgJ0KDw6ikoPgBF5VUUVpB5SXlZCu2UVlRGaUlp9O29z6k5597wW0siPumYW3BHvNV7MosH0Zn2nKvNXDBPb/c1XJuffc9iouNm1V3rvoYVRYXC56Td97aSplpmU4uSgtLBTclVJxfTEV5RVSYW0gxZ2Po/Xc/oOfd2EYqH1FnTknfHn9n34XXn7/4UOvceb2zvcTXBP2Ha/JU/4+50rGCHfTPmTnD51p3zjUhaamp4rMtLhaL3QVZ//oGOnk8UuqU4vwiwUahYKOACi7kU35OPuVl50k/5eypcxS8O4ReWfGqx/+H/RbVHmP7iuOk+DdmiH1i5kzlg89p8/kJ9f34LNhVYREjMhcCJuBXq36Eu5oa5FV3bN8p+4Sg1/NMn5CZs62y7lypCQEzkScjXXIYFheLjxPYUx9s3UZJ8UkuXFzIvEA5GTmUnZ5NWWlZlJmaSYmxiXQo4jC9veVdWvmy8fpAtS8Bz7tmLjhmpPLB+TisfbaRmA/+aSTfj9wQ+lNGnoikspJSZy9CtU8I+xhcd56SnELb3v/QkD62ZPHYXpDlS1+ikD2hFBcd58JFRkoGpQv/JC0pjVITUyklIYWS45MpKS6JThw7Qdu37RRr+S16+cWVXnMo/pKVK1bRls1v04GIg3IGuL2yytnvHFxwzzVnnxD4GA/qznNzLlDwnmCX862e9hRLFrdOgaB24qMPttNnJ09RepJgI1GwkSDYiBdsxAk2YpMo8XwiJcQkUHx0PMVFxVHsuVg6f/Y8nY48TQf2HaS9wfto6zvv0xbBzoqXXpE6R3u2y4jAb0J+Yc1r62jThs2yRjN8bzglJyZTbvYFOVOp7cFMpa6ODtnv3NnX2cnFoNPH6O/rpZzsbArSYcLSFZaYZeU3v36G3nxjI4UGhdHpT0675SLmTIwU/Bmvx8fES5sMPKUKnQP9A12UlZZJOUI/wYbLy86VPg/8n2LhC5UWlZCtuIwqSsup0lZB9ooqqqmqpjp7DdXX1JGjroGaGhxybmtL88x8Sp6pJGfHgIse9Dvvc+lFiF7ox48dl7WEZr+/JZaYWSvwB1avWiP1y8HwQy5cgBVwA4Zgf8EWg+7JEPYZbLVsyUWO5AL+DmICiA+UFpZQWXEplZfaZF7GXl5J1ZV2qpVc1AouMOvbQc2OJjmfsk3Op2ybmanUMTNTiW0pzFpKT02TOgZ9dOb6PS2xxAwrntYR5mTB/3hP2FMhu0Pp6KFjdO7UOem3ZKZmCC6ypL8P3z8/J09yUSS4QPysrEhwUWKjirJyOddbcgGdUV0r8/+N9Q2Ci0aZs+P5lJ3ClsrKyJTnVw8fPEI7Ptop5wb74rtYYom/edHaZ6tWrpYCP37Xjt0yR71nVxAF7QqW8eOQPUKCQgl5zLCQvTLvz37G/n37ad2a1+WMytfXvuHXa7XEEn8z87jX4pP+/y2xxFfr1pdi3WNLLLHEEkssmV/yf1BLAQIXCxQAAgAIANqIPlu5PcbsEkAAAABxAgAEAAkAAAAAAAAAAAAAgAAAAABkYXRhVVQFAAclDtxoUEsFBgAAAAABAAEAOwAAAEVAAAAAAA==</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #22</Name>
|
|
<Index>22</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPluJa2j1LUAAAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J33W5TH2se/f8l7zvWe6z0nlphmYmKLSYydqMSCit1YjhpAEQuoCCgiSpHem3RYdqlL71XBgqjYY4stMSbn9/POPTDr7AMoC7u4C88P98Wy9Xlm5jN3mfue+fvf/oG/q/Le5G//87+DFrW9VBkL494Wvl8VVSw1TtVrUkXlYXDjbuHCxVzc9rvDzc0d4RExSExKY5KKouIytJ6/iNa2i2hp7UBzSzuXpuYLaGw6j8bGNjQ0tqK+gUl9C6Ki4pnEITIyDocOHoGT016sWbMec+cuxOTPpph07WpfqmIJJgZ6zzfffI9Nm7bCy/skUs5lop6N7Y5LXWi/eBUXOjqZXMH5diYXLqPtwiXGxaU3XLQquGgiLtoMXNTVN6O2jkltE2pqGlFd04Dq6npUVdWjsrIOFRW1TGpQXl6NuLgk+Pmdwa6dzpjz/XyM++BDlRdVRpSHCeMnYaWDI3x8/HAuLRuXrlzncvHyNXRc7jJw0c656JS4YCK4aOsw6Azioqn5PGeDuGggLhqICyaCi9pGxgZx0WDgorJScFGDsrJqlJVWoVRfCb2+AvqScpQUl6O4qAwpyWk4cdwPG9dvwfSpX6usqDIsLvp7zc5uKQ4eOgJdfgkuX+3G5c4buNT5hgvOhuBC6Aziot2Yi4LCUsQnpCAuniQZe/fu57JnD4kbFxcXkn1wcd4HZ2dXLj5ML0Uw2yw8nElYNNcZxEU5cVHGuCit7GGjpMLARXFRKYoK9SgsKEEBu+4CXTHytUXIYEx7e53AimWr8Oknn6usqDIkXeHgsBZBweFoZuP6Slc3rhi4uNGHiw6Ji6TkdPifDsI+t0NYvnwVFiz4gescS1z/jOmzmB21AJuZbbdrpxOCg8KYvkhnXJQyLhgbggtdEXTaQujyCqDV5CMvNx+aHB1ys7U4yz6z1nEDPvl4ssqKKm/VFYKJFsZEZ9dNxsXNHi6u3uhhg7gQthTjIpeNt2Nevti48SfMmjXbau5v3AcT8f3sedixfRfTPb5cZ2g1BT1c5OoYG1rGRh5ysjTIzsxFdkYustJzEHgmGGtWr+vDisrJ2NUVU76YiuMn/FHJ7PvOa7cUXHQbuCDRMPuEfPBFC5fY3P2TLbV8mQOOHfVBSlIacjI1PVxk5CAzPZsxlIWM1Eykn8tAWko63A8ehv2SZSbZoaqMHi4cVq1FLPMBrl6/3cMFkz5cMImKTuCxKUvZSO9Lpn41A7t3OSMyLKqXi0zGRQZSmX2Wynz6c0mpSEk8h2jm92xctwkff/SZyskY4GLLlh2oqmnkXFzt5cJIZxATMcTEtlHHxEBC9tRmZiOGMttScJGckIJkNn8kxSUjMTYJCTGJcGI8kb5VORldXEyY8BHc3T3ReuHygFxomS+7afPYYWIg+WrKNLg47UVUeDQS4xgXsYmMjQTER8cjLioOsZGx8GC219czvlE5sXG/m3PhIXEhbKleLppbOxAYFMbX99T2M5YP/jUBS36wxwnm3wsuYiNiERMeg+iwaEQxu+yQ2yHMnD5L5cQG41FkR7VJXMg6o6Kqnq9njHVdMVghXbHPxQ3R4T1cRIZGIjIkAhFnwxEeHIYDrgfw0YefqJzYABd2dvaoqm1C1wBcbGY2lNp2Q5OPJn2Kndt3GbgICwpFWGAoQgNCEBJwFttY2/7rn+NVRqyQDfIbM7I0KhcjwQnTFTu2/huhgT1cnD0TjODTQQj2D4Qfs8eW2C1VdYkV6QzyMbpu3DH2Ma4x/6Ktg3GxXW03C8kkxgnpDOIi6FQAAv3OIODkaZzx9cdBZnNNnzpTZeQ9siFsKaWPQTkhqn8xckIc7P15D2eDi99pBDJegvwDsMFxg2pzjRAb4jHFpU74nu7XloqJTcIXihi9KiMj8+cswElmX5EuCT4dyOyuIGZ/BePEMR/MmPa1ysgI6Ixvv52DgqKyXp1h7GPYKexer2Pe3AZQ29Fy4rrXDdOlsU+6gnRGCPNJQplvEhYUwnz5UObTh8Fx1doB5zxVhs+Gk7OrwsfoyQnxOX6qjy1VWlqG//73v4iLS1Db0oL+x+vXr3k7O6xcbfQa6QtfrxOICA5DZEg4okIjEB0WCR9Pb3w86VNVl5jZnhK5Usq4lN0iY52xa8cO/pf6i/qNRJ7fVDGfZGfn8vZtbm7h/69auRKffTrZSJds2bAF0aGRiAmLQmxENOIiY7g+mTdnvsqImewpni+lyAmhdW9ZZ6xfu7bPd1G/yf2nivlkwfxFhvlH6I4P2Tz2z/8bhzmz5/DH4r20vniG+e1xkbGIj45DQkw8kmITsGPrDpWRYbCxZct2XqutzAlxcHA0vEfMV1992dcnJ72h7ENVzCNi7iEdonxN8CH3CeWr7Hfdj8ReNpLjE5GSkAxvZm/Ra6pPYhobVJOhzDunHEJlbGrRgkVv/d6gwGDejw8fPlLb2Yw+ObUp+R5vs1370+mrVqxGSnwSzjE2UpNSkJZ8DuHMd5/65XSVkUGwMWH8R7yGT5lfGxgUamRPkZ/Rn854mw9JrKjtPXyfnOYaU9pzj5OT0f+UIxwXFYv05FRkpKQhMzUdSXGJ+E7KE1UZ6Z8NXaG+Tw3f7p/39NEJQ53v1DYfnsj62NTYuWzjkk0V6B+ArNQMZKdlIicjC7mZ2Vj+4wrVJ+kvRsV0g65Ab8RFU0s7Vq5842sIfUG+oalxW7KT6XPqGB+ebP1pO2eD/pryOeov4oP8RfLh6blxvT5JTkY2YyMHmqxc5OVosGKZw5hnxChGxfQqxWrl2tbG5gt96jIofijrBBJ1zL4fG8tUpmitVvShHAMmcd7tjLxsDbQ5edDlapGfp4PHQY8xy4h8r8QAxaREbStJnq7IyNeQuVDOSUPRCSL2IuyE0b4+Iq8FyfE8um/hS8hxcGFDCZvUVF0hC/1GfzEusU4lhHRGvkaLAsZGoTYfRboCHHE/MuYY6Y8NeZ+QPO0bNkQ8/W3zGLW9KfMZ8dTVdc3wP62zj3a/XcS5le1Ec7qwU4XfTdwQE+K99J6hrh/Rd1D79tc/ZCtT38q6ZOXyVZyL4vxClBQUQV9YDM/DnmOGEfn+iA3yL+S9CDVaY71BbSivMw003k3xRaj/5f4mNsZCXIvaiMY93bu4X+W902tC1wzUXqb+5tv0O7GhtA0cVqzmXJQWlaCsWI/yklIcO3ps1Me1jONUk1BeWWe0F6FGW2hgo792G6x9q/LR/zwuYkfCpqJxa0k+TPEPaT2RxGBPO6xBGeOiXF+GitJyVJZVwIn5KKOVESUbebpio70INXlv2KC+HErO7WA/Q/0t21dknw2WrdFiX9H9UzsQG7J9Rc+LvBHxXhrjZCOZ2hemzDlkI5DIfuCaVY6ci6rySlRXVKGmshpr16wbdYz0ZaPIaL/zXAUb1EcklsxLH2v+ubB1lH74SPjnpugb+j1Z5ziuXsu4qEJtVQ3qqmtRX1OHdY7rRxUj8j0EBIYY7eucqykw8jdo7hJr3ZZmRBXrEcFGf/lcpDPqa2rRUFuHxrp6lDNd9vXMb0cFI/K10761hv3OL11FXUOrERvHvTxVRlQ2+HM/bd5sFNfavnUHmuob0NzQiJbGJlRVVOLzyV/adExLvuaNm7b2ctFzRgad/SL2O6d2UK4XqYyoekMZ+z3p64eWpma0MhuwraUV2ZnZhvnV1vgwiuMyDui8sZ6zY3rOVKIz+cR7KYbbX56hysjYZUPMm8oYZmJ8As63tuFC23m0n7+AyPBIm7SzZH9cX1pldKbSzp1v4nTviuHKjKg1TmOHDVnkWqsJ4z9EblYOOi6042J7By51XMTuXU42xYh8jRGRsUbnU/r7B/WZI971fcSIiNfLz1N8Us4HpTYX8Xy1Fso2+HgXG2KMyDkU38z6Do3MF7l88SKuXLqEzstXYLdosU34IvK17dzlbHQ+ZVa21mAv/rjUflC1G28TeW2L4o9kg4l4vlpzbv1iyhxG+kPO11q5YhXj4jKuXrmCrs5OtLW2Wr0vIrNLvrd8PmV1TSM+//wr/pq5/AiZj4HWgdVxaBmR80bE+joJrSOK52nO6u95c8lxnxPounoV17q6cP3aNSRIOUbWyIjsc2Tn6N6c23r+Ij+nUp43TM0pVPmwLpHbV+RzifV4sdYuakREf5u6Bj9Qn8t2QVFBIW5cu47uGzdws7sbe1z2WiUj8rV4eh5nbFzi+yrQmcZ+pwKM9KTwKYZaryRYUPmwDj5kX1DoDHrOXDmOwuag8aLsU9qTvKO9Hbe6b+L2rVu4zPyRL6dMtSo+ZLuKzjIWZ323tHWgoFA/YM4h3TPpaVNrnEQOCsW1BBP0HbL/Iednq2I+EW0q8yF0A7U9PTY3HzSH0vcLvUH7cZD/Kl4nnXGHsXH39h3cu3MX2jytVekQ+RoKi8r42cgtrR1obmln92bHn39bnjqNbVNrZUX+mxq/Gnm9QX2ltK/EY5kDc/Ah16coRY7vpCSn4N7du7h/7x4e3L+Pfa5uVsGI/NuurgcNXJAcPuJleE25X9i75ghVrFd/kJ6W9xOj+Yh8DRr/9FfodPqf3kt/SZ+bkiMt7KmB8iJpLMl7B01k/5Ov/uCXX/DwwQPcuH6dP2ctfFAuTHMvG03NF6DLL8b4cW9iuYNtE3X/BNtghNiQ7VfqN3puoDUqU/pV1OMO5jOzZs4yrI3sc92PRw8f4vGjR3jy+DEyMzLfqw6RfzMuPplz0dR8Ho1N5zG/164yhY+xJIuYn0ZrWh6HPHDE4wg8jx7rsSVi41CqL0VYaBhO+fnDz+8UTp70w+7dTvjRfjmzKaaPKT/nXUJ2ibx2WFhYiF+fPMHTX3/Fs6dPYW+/7L3wIfvky5Y5cDaIi8bGNgQHhxl0oMrGPzD3+/m89i3oTBDytTqeP0S5EbTue+PaNdy+eRP3797jcx/168sXL/DHH6/w119/cnn9xx/4/fff+PPPnj3FkyePkZ9fgNP+Z7Bt644+55GPNZHz976fPY9z8fzZM7x4/hxNjY3vRYfIv6XTFTM22tDA2Cgtq8Lk3rxjZf7lWJFxH0zAih9X4riXD99joJzpA6p/o9qe5sYmzkdpiR5pqWkICT5rpD/2ux3AhvUbea6qrD/Ky8q5XhF8PGQs3Wd+6J07d3Cz+yZqqmv4ehnlXoxFPuRxdjY4BC9ePMfLly/w228vue5VzukjpTu2b9/FuWhoaEV9QwtcXPYZ3tdfvHo0y9LF9jh80IPvBZjH7p32qSE+0s+lwZuN/W3M11wwb5EZxsM0rHVcz5nS5Go4H7R+fLWzE5cvXoK+uASeR44xn3DKmLHFKCYg1gk+nPgxmzvucZ376tXvbC55wJ8bKR0ifmP8uA+ZvqjmXFA9h15fyZ8TcTmRnzma41J0vsXa1ev42Ui05zLtJ0t8hAaFYMO6jey+Z1r8GiZOmMT3M6Ax0tjQyHNbqT6CdFV0ZAzsly4btWwQE6I+WF7zcmd+Hdmor1//gT//fM118UjoEPn7XVzcUM+4qKtrRm1dExwdN/SJz8k1zNR/o2XNbhKbj7Zt2cbPAKdzXxKi43A2IBibN2zBJx+/X5tyxXIHhIWEcT7qa+tRU1WNTMYsMTRauBDrKfIeAspY8PXr17n/9p///IVff30yIjpE1h2kL2qJjdom5OToDO+h2kg5j0R5H7a8JyjpC4dlq/gZrXT2JPHhsd8di+2WWN21kn3lcegwigqLUFFWgdJiPaIiojD7u7k22/4i9qucd+WxJx47OblwNkiIE/LlLOmrG+kO532ci5qaRlTXNMBxzZs9JfpbBxR7Gov7ssUzASkme9rXH0GnAjkf+1xcjc5ktVahueznXU583+ei/CLomF/kddTrves5U4VsdlErJ2pHlPaIsmaiu/sGZ4NsrMePH1lUh8i6o7i4vIeN6gZkZ+UZ3qM850EpxDrdoy2tA9JZku4HPJiPEY6QgLPwOnwM3/bWzttWXG0iDrsf4Xxo2NhKYv4S7TFlK9cv9hx6V+4prauLeJbTz86cDfJDSCgWaCk/RHyf45oNnIuq6npUVdVhzeo3uuNte+XKvomt9Mm8OQsQFhyO6PBozsfqFauNzrq3RZk2dQZCgkKQlZ6FtJQ0rkvk880sNbaFHUT9L9vc9JieIxtD1g/K/eXoPYOxzZVrCtevX+O+OsmDBw8sYmPJ35Wdnce4qEdlZR0yM9/URx5wcx3Sd4t8NyHC9rJ0fc27ZI+zKxLjkhAXFQ9vTx980VvfNVrkp81bOR90BmBESAQ/Q3Mk+FDuXyn2cqQ+Fj622MNxqL8nn6Hw824nvHr1isd6KeYr6tUtwcfSpcs5F5WVtaioqGG/7WKS7uhPqF3EWomcq2OJ+ppB2SFsLj3DfIxzSamcj61bto8qLozs9SnTcJbZjAkxCYiJiIGdtK+MpfgQezaK/hb7VyrtpuHwodz3n/IWiQ1aL+zs7DSrDpG/IzwsmnFRi/LyGuh0RYb1jqHqDqEnSK+KfXCF/WXO+prBytSvZiApIQXp5zIQExXH7avRyoaQnnNlD3A+SI9s/2mH2b6b5jqxfifbV6JWh0TYV+bkg4Rym4QO8T1xEr+9fMnX1F+8eMFz2czNx+TPpqCCcVFeXo2ysip4HvV5a8zKFBE5oUKXvA8+pk2diXPJacjKyEF4SOSYyQUUsnbNes5HSGAIs722meU7yV+guU8+Y2Ug+4r6V9hXpE+Ge1akvO8Jxa0of43yTp4/f4Z4M9aqi8/vd3NnXDA2SqtQqq/EjOmzDHME+QxDXSNXtp0l6jMHw0Z6aiZymW8VxOyNcRb2V61VKIZNfAT6B/K1TnMxIvvbQ/XPhyKyPkqIT+B5i5TD9vTpU0ycOPz6EPmz6WlZbCxXQq+vQEy08foFsSFqW03d61u0iznra0wRuvasjFxoNQUICQ7jcdCxyIaQhfPtOB/+vv7YsG6TzV0/sUZjhewQOd5FeTaU20s50rSeTrmg5uJjyeIfuc7Ql1SgpLgcqxx64uaUf081Ksr5QulLDGaMmqu+xhQhHZibo0VBfjHCQiPHPBtC5s9dyPnw9fbFOmnt15pF2DE09oQtQ/aVPD4vdnTw+hCqn6qpqRmWjSV/5ugRL5SUlDM2ylBcVGoYR2TjDeR7iFwAa80nodhCXl4Bu58yRIbHqGwohGITxIf3EW8ssbPOOh6xJiLGmXI+Jj7kc6m8vXw4G1RjSPU2X06ZZhY+cnN0fBwVFZbixPFTBjaUusOWJD4+hevElOR0lY0BZM7seZwPr8NemDt7vtVdHzHxrhoKmr9F3gnVBjx69JCzQXXqZ04HDJuPxT/Ycy6KCvUoLCjBD3ZLbZ4Pby9fvn5D+kPdE+Idca3V6zgfXsyG+Pwz26spITZoTyDxf1VVFR48+IWvibS2tAzJxpLfe9jDk3GhZzZ6Cfdj+9NbtiT29it4fgzxQX6VysC7xXmXC/x8/HBov7tN5tfI64W0988v9+/zvYBIZn83Z1h8ZGVquP+aryuCD7NHBR/y/iq2IlT7W6Kv4Hwc2O+hjv1BCvU36Y+g04HYtH6zzV2/vB86+RzEBe2XdffOHezd4zpkPqjenbjI11JedCFW9O6jO9z1wPclMTGJvGYlKSlNHfcmyjdff8f5iAgJt2iuliUZF4+bm5o4G3du3+Z1/abaWOJ9e1z2cS60zE7XavINfqzyfDhbkHXrNvFaeeJjpg32rzUI1UwSHwGnztjctcs5UFRvS/v13r55C7du3uQ1yoPlQ34PrQkQF3m5+Qg9G2543tbqZGkP4IrKOs6HvIeEKqYJ+R6kQ+Kj45idZXtrh0IW/7CUc0F7vnff6Mbq3joYU/ggXUFcaHJ10ORosa03b02cNS/va2/t7eG67yDf21HL7ER1nA9P/p+9826LIlsaeH2V+zzv3eD13usaN+muOWJETGtmEQFREVByEEFAQBgYGGAIQxoykgwEE5gzYlpX3ejmeD/Ae+pI9R57JzE0Q7f2H/UAzYTT3fXrU3VOBYzxRT6KTUWqz0EU90cwNkOMAX/04CHvi4C1SDF+cbh8LGHXAbnAmKSGumaYPeuFny/2jhPzgPG7cc9cbeul2JcHey0gH6tWrdF1XAGJi46DqvIK2B+6X3Vjw3gl3EenOsGiICP0urraOrh/7z7cZ69rb2132Qeh/+8ODuFcNNQ2QX3ty33ikAGRS/k4hhuDNZqSfuQo5wNroOq6rYx8PGMW56OB6djEd0Y+h8hjT23VpnaWLyfWlBKFYunldg7WAMLeU4N3B+HuwF2X+rOJ/0tNSedcYLx3yqEXebu2eu6i4FhxfDhuW703xHMT8+op/l9+XCnBnD/sDYp8LFq4VNdtBSUpIYnzERURNeLPkud6UF0r8ZizfDmya/B1FCcr1yfcJ6Q9bax/PMi4uHtnAAbu3JH4cZWPeitjo6YBaqvrYVfgbmmNzJ11Kxw3xQKIdpiYR4acKx2ju39/NOejtKxK12mFBWtUIB9tLcdGHJ9jKxdKXgvKWb4DsuDMtpfXIh1gbNy5fQfu3LoNB/ZHuszHrJlzobamHqzVdWCtqpX63CB/7ux9iLH8yDZyID9HeY80JeR8/xXOxxaFchl0eVly2P1CPoICdrntP9vjQz6HKJUPJNZMx15TWJP11s2bUGmpdNk3/2T9JsZFHdRU1kJ1hVVap3DW58bZtaCcDuoXMZp8bNu2A27cGoTOEz26Lo+SrF61hvNRXVnllj7QHGEvl1asi6gUH2LcR2ZGFty6cZPX08dak858dDoeFBDMztnK2KiBKku1ZFu5G48o9gMWe6CNJh+mwlLOR/j+KF2XR1Hqaqxw6vgJWDBv+PG9qBOUMyjqCvmk4pqsUvly+HynZ3xQYDCvV3ydybWr13ifJ1fWsJISkzkXWMMDa9s48s1dEVrnonMj34nyBinfUqk8qKlT34fbAw84H69aXR61SXRUNOcjKdE9faXcOJEZ8knluXFK5MuhDlM87+JFXnCdcXHtylXed2LxkB9hiw/xWLHJDJXMp60oq4S9u/dJ3Llbw0c8b9GHoroM8uMjle3bd3A+mprbdR0eZVnqtZzz0dmuvWuNa7rIxRUmly9dltYDnPGBXFhKK6C8xCLlIGPMlRhHr2YpKi7nfAQJ9bl0GT1paWqCs6d7YeGCxaofK65hxUVHSn9jL4jLzH65dOEixMbEOeUD4zQtJYwNswXKmJ7hXpDW7tfA4CPOh25beUYS4hI4H/tC9mlivKIdVFJcAhf7L8KFvgtQXGh2una1YN5iXjewtLiM19UjPtAGQt+J6pTgT9qvUVO8opfXCs5HV/dZXXc9JOvXbeB8mIuLVTtG8nPQhhJ70RiyDYyNfug/38fmwWa7a1j095aNWzkXJYUlYDaZHX4n+Q7EjBpiryKj4jgfWUdzdd31kEyeOJXzcelC/5iPBf1c8RlOP2nPTe7bh+wNhb5zfXx9F3tEOuNjM+PDPMRGccGL5wGuXYk2m5qlmPlMyMeu4BBddz0ojfX1nA9cExrrecLZa3ANi/IJQ/bsY2ycg3NnzjLGzzrlIzYylnOB9ViT4v+qIaqVfKjeM/2cjyVLVuh660HJysjkfAQGBKl+rGLt0QXzF3MuzvSegTM9p6Way/b2QGIiYqDIWAiFeYUQNbS3hvuCWullPnj/MedD11nPyt49IZyPhPgE1Y8V5w7a614wfxHv0Xi6pxd6u3tg/tA+pz0+sFeSKc8EBbkFEBkeKfGmhVo+Xl4rOR/dved1nfWwrFrpzfmwlJdriw82X/R290JPVw/v02iLD/H37IxsKDDk835JATsCpc/Tgn1FfFRbG3Wd9bDg3gfy0dhQr/qxinHoWEezh3HRfbILuk6cgl2BwQ75yM/JB2O2kfdmXb/mRU9g3BfUQr2rqOh4zseh5DRdZz0sqGfIx43r1zThf4i9brsYG6cYGyePn+QxWY74QC7yjuZCbpZB4mOksSWe5iMyMk7X2TEQrfAhl1OMC+x/faLjuBSrb48P5AL7tBqYnbXO50XcmFZiS3Q+dD5cnT/E/YoTHSfgePtx6GzvhMCdQQ75QDZyGBvZR47C2qF6cEoIxTBT3qDYH0Wp7zDkmjgfwbu1EefwqkltTQ3nw2vJ0hHrCQr1dKa8WdrbEPvriMeH64PQ78hFZ1sHdLS2Q4B/oGP/nHGRnZ4FR9MyYa33Wn4M9xzFHrO2RN7HQP4ePBfKHaQetZQjo1SNoPrGY5wPLy9972MspMRsVpQP/J3iQGgfHPVK7M8m9h8jkfdEtiVmoccactF+rA3aWtpg544Ah3wgF1mpGZB5+AisGaqHg/prqzaEKPIxUg85YpvOW54H5azfu87H680HxfhR3QJX8urE+cWeiJ+BXLQ2t8Kx5mPg7+eYj8whNjgfQ/OHmKdhT2zNcXg+xLon+Vg71N9KF+3wQTog50Ne38YVPuQ5VrZEjMNqZVwca2qBlsZmxsdOh3xkpKRzNnAOIf9jJPuDyD3OZSIfon1F+ehK3J8UNm7dPx876enu4nzMmjl7WO8jPUAG5HwQN/ispRo4on1FvfyG831iji1KS2MLNDc0Q1N9E+wYyne3xwdygTYW+iDrfF7wMZL4Esqj9YR/rq9faXf9ihhx5J/Tc3Sk/jnu5Yn7echFU10jNNY2gJ/vDsf+OeMih/nouL67fmh9F319LfQ00PnQ13fdkca6BmhgbNRb6+HT7X4O+cC1XVzjzcsywAZh/1zcb1Sr7N4TxvnA/FpdXz0rkydN43ycP6f+vDS0hcQ6P8hFXU0d1FbXgu+2v/MhSmxkDOQdNYAxOxciwiI0dY/0+KuxE4q/0kJ8oijvv/sh1DEuaqusYK2sgQ3rNjrkIyL0AOTn5EGBwQhRQzUXtTJ/TJv6Pufj4pWbus56WHb4+XM+8o1G1Y8VfQ/yp2fNnANWxkYNY6O6ohpmfjzHIR+R4RFgys2HwrwCiD4QpSn/A4XyP6gety4e8v0iojgf4WHq63kgF1yPpfhdrCOMXFRZqqCyvJLXJ7HFh1Q70T8IivJMUJxfyO0sPIZsaCU/qq3jpJ4/OAZiyi/gfPisVn+PFczXoPzalcu9oYpxUVlWARWlFt6/0xEfmzZs4myYC4qhZKg+A/JhL76d9mJwLU4N9Rmyc4ycj4iIWF1vPShUn2HqUI3OsRLUQWf1dFCXaT9v25btUMHYsDA2ykvK/8aD/G/cMy8xFUNpoRnKikpgwn8n8eNinRLxJ+3ZqKVvlK+vP+ejqlr9eTqvimDOHfLR09U15mNBPRxO/RKMt0IuysxlUFZc6pQPrHeFXJSz11rYe2Z+9KL+lVZ6cqKPTvXhdN31jAQHBXM+DNk5qh2jvP4VHY+PTWBcvKj1Fhtlf9+M+HiX6RdyUcGYqmRzzsplqyQfXSs1TDD/HPlYM7R/o8voSm6OgfOxaeNm1Y9VvtaUxfvxvqhnFS6LQbfFBwr6KVXMJkO/ZftQbxm019yt3y76KZ6oT510KI3zkZFp0PV3lAV7R2F9auRjyuRpqh+vfK/CzHvxFkNRQRFs3LDZpm0lP3bkcDpUW6qgpqIKkg8mj3hM8t4NFHMm72+gVBwvxu8iH9g/Stfh0ZW1Pus4H5Yy7cUsoC1ezLjAWm+FxkJYuniZXT5EiYmMAWtlNdRW1YApr0A6figx3q1xiGtb9vrjkB+l1Ln3X7zG+3/4+Ki/P7uWJfNIJufDz9fP7c8QYxIx34PiV6lXDD1jR5oziBK0c6fkJ8ybs4BzQfWsZnz4sUM+6Ljvtk+hrsoK9TW10GCtG/E1RJ+I1g2Ig9HuH3Uw6TDn40hGtq7HoyTY2xn7qyEfkydNVYQP1A/KRaW+x67kDLoqog+9cf0mzkW+IR+MOUabtpQtPrCPTkNNHTRa66GprgHmzJrLj6P/4U6dH+pZTT9dzXMZicycOZfzgf05p+h9DkZFdu/aw/lITTk8os8R+cB5geYG0hGldAX9ctH3wPqH+QYjYyMP4oS1K2d8TJwwmcfCY0x8c30TbN64RWLPnTgTWzmC+EwQ+zvbymEfqVgqrZyPsDBt1NbWkrz15r+goszC+Vi21L1YBVs5g6j35KtS/06l+MC1K7EOT2Z6JuRl50Hu0Vzw/3SnU99D/B/65y0NTXCssUXqAY9sOKrzg9xTb3PxuDxfXuzVKc+fVPIebt3qx/k4faZfj8dSWLZv9eX9z8tKSt16v72cQVu670rOIHKEekb+ii3BNViyr/7Lvh+5MGQZICczR9rHcOabkySx729taoG25mNQXlJmkw88RxwP9d8k/0npeWAk0nmiGy5fvQWhoQd0vVZw7jCbijgfI4m3spczSL1cRZvCmX+Odru8/gLVO6HXYAwhxZWgDyHWsvrw/Rku8SH1ydm0FdpbWqHjWBt0trYz7qZIcwRySuclFxynI4Y9LVu2+HI+unvOwbi39TlEkWvK7O2q8goozDepZkyoc6iX4nOaBNfBUC/F5/YOX39ea/ooYyMrPcup7yH/P/KEdYGwbtbx9k7mm6+XxiF+N3JC61FqvZ/tHafg4qXrEBOj/tr7qp873hgHRkMe58N75WpVjhGf4cgC2jVU+4B0lV6TGJvIuchMy4SQ4H3D5gMF166wJinWJo2PjZfmRPxe6mGuhXu6aNFSzkdf/xWYocF+o2qSQP8gKCk08z1krYwZbSyqf8J1ePwEzkVGagY7jyPgM1TnzRXfQ3xNakoqX9vuOnESaqutL62TaaFe9ctrBBbOh8lUouv5CJ7LuB6KfFAekVZEXHddOH8xZBxmbKQcgfTkdN4/cTi+ubhP2M3stp5TXdDb1S3tL6Kfo5VYRZIpk9+FU6dOw9lzF9ncF6Dr+zDlTWZXoU2CfAQP9QDQkhwID5V+x7426SnpkHYojZ3TQZdtK/nrkKveU91wursHzvT0wp7gvdJrtDZ/oPiz64J8dDB/ZPr0mbreD0O2bd7OfNksHu/61pvjNH0uSXFJkHooFQ4nHYatG7cN+/0iR+Wl5bxv4dneM1DJfDJbPGpJTCYznD7dB6UlFbyni677zmXu7PmQmpTK+Ziukjy44QjumZO9g3ZhKuMi5WAKpCQm8xis4cwdckZwb/Dc6bO8N3Tf2fMwZZL6Y5gdCdZp6mg/Cd3dZyA+7qCu/05k4jtTIPpANOdj0wb153c4E5wvUhJTIDkhGQ7FH5LsIHf5+IjZIX1nz0H/ufNw4XyfVP8d89u1UPPHlmBPX+Tj5Ike2Lb1U50DO4K6Ex4SDokxiRC2N0yT54DxguKednxUPOcCbSxf4d67ywcK1ra+2NcPl/ovQG2N1aX349ovrqkpGXOopPhu9+d8dDJfZI0eA/93f5yxsW9PKBxk/mv0/mjV+ZuoX7gf6GzfTVxr/Xj6LEiKT+LnhMzPnTXfLTbkjISGhMGlCxfh8sVLcOXSZfh4KCddXucXBdeacdy4R6KWmg32JI7ZV8hHW2sneC1ZrnMhyE6/AG6jRx+IgYkTpqhyjMgI7QPiT/l+HNo44tyB9iGxkRCd4LZtJecD10aRi6uXr8C1K1chIT7xJT6djVPNEhuTwPmoqaqDD96brrOB/uw2P77+iXxMekedbMgF5xF8LqPQc1msmYC/ExcomPvhrm1l6324jnX96jW4ce069DFfhI5T3Iu78SX4fooBEPPFxNr24nGlBfOn842F0NLUBo31zeC9Sv31zUbNpnpjHOwO3M3jLpCP+XMXKvK59uLRxbh1UQ9s9SMbzpyC76UYD8muWbCEc4GMHGR2w0dD6/vusiFnZOuW7XDz+nW4deMG3L55k8c3K3Ht8PrQeVC+GP6O14rmIfRjlOwTYouRI2mZnI86awOsWqHOuKLRFIyrimdzKcZ7Ix8L5i1S7LNFPtC+oNhcjIfC+4zHxLhWtNHFmF53RYzdDdsbzm0r9M0jhHwgpfhA6e/rgzu3bsHA7dvMHqmWjmPMsLv9pSgOmerP4XXC4+L1kefHjJYcCI/kfNRUWiHAP+i1YQNrOuF8gXmm6YePKL6GL+eD4gTF+yrPoRsJH2jzi/r43rQP+HoVrukeZjaj90ofRdigz6DPSTp4iLFxB+4ODMDg3bu89jWNx914E7G2CbJBzI8FHyi7gvZwPirLq/jzFHMdXmU2VixbybnAGh44byhZHxTvJdk7or1EPfc8xYffth3cl8I9nPTkNL42pxQf4udMm/IeDA7chXt3B+H+vXtgyDG8NIdQzV935g/Rx6LrQ/YVzb+e0pmVy1dzPsrM5ZCXbZRs1VdJ3mbc79sbymudYe1AXPdEG0vJ78D7RrkXIh/U15vySuV2NvU+VoKNf4+fwONI0hgXGI84kj0PV2ysnGwDPLh3Hx7efwCPHjzkNYRoXO7wIffPKQbZU/65XZuDzclHM7LBbCrhNWCwTt6bb2g77ohk9qy5UJBn4nX9kY8dQ7nXoyF4P23529Qz3FX/3NU1UXktdYwbQ9sRY9mz0jMl21EpNuSMLPVazrh4AJ89fAiPH30Gxry/6qKIdeMdrS2oKb/Qoc/KnrHBgbs5H/k5RubbJcHsmXO1O2e8NZ7HCzXVN/J+Ylg7EGO9tTB2XI9y1gsc13DFuQPzPDKwF3NaJs8TDAsJV3zusPV5jfUN8Pizz+DJ48fw9PPP2bP2BRPog9jjQ6z7hT+1tEeCcf3o12G+8tG0LAgJDpHylbUg494eD0EBu6C+th6ONR/jfISH7teMb0X2Fs0t9vae5XPHmtXreEwl76mZZZBiK5VmQ84I1nN5wrh4+uQJPHv6FEwFJrtjRB9NnluvpvoNrgraVut81nM+sD98TsZROBB6QMqJUScX/+Y5Ca0trTwHtKO1A4y5Rpgza57mrj/lrYo2N9oi9JyVP5vxfqHPYcjKYT5kLhwQemmONh8oLc0t8MWzZ/DlF1/AV19+ycb2wUt+iLPz0argnP0p8/GQD2N2Hu+1FRcVCyuWqqe/FsY7xEbHwcnjJ+BM72noPtXNfI0qWPsKxJnZet6ibSLnw58dy8U+s9hLMzffae1QpRlZvmwl5+Lrr76Cb77+GoqLiv+2buFsPtQ0J4zzAL8Azgf2EsJ+ENhXCHPrxiJOBet7bdvqC5YyC48Futh/Ac6fPQ8NdQ2wYd0nr9z6G+qYWKsEmaFnL9a2wrpvmOuI9aOjI6JHfe6w9fltbW3w7Tdfw/Nvv4Xvnj+HeXMXSIxTvQg11zVRQv77n4mw+ZMtkJOZDTWWKqivroVm9jzAXkSxbF7B58ho5WHNZnbS3j37oNZay/ekbt+8xeN/kA9DtgFWqbS+iJLPKLRJaA2ZjofsDoECxkWh0cTrs380Y6ZH2JAzMnfOfHj+nLHx3XP4/vvv4ASbz8X1O3fWezU99y9YAvuZ31ttqeR19Y63dfDaFqe7e5lP3MTXxsNCw2HJoqXgtWSZy5/7/nsfcl0PZD72wcQkaG1tg2fMtv2c+YCPHj7ie1HIR0tTMwQF7uL21etyzXHNSqzZO2P6x5yLooJCMBcWQ1y087q6ozmHlJhL4Icfvocff/wBfvrpR9iy+a98Xqwl/zrxIcpSpv9hIWFQUmTmfGD+Jdo8GAN98/oNHofwgOn140ePYODOALQxne/s6ISTjKfurm64du0q/PnnH/D7b7/BL7/8DD/9+CN/Bn377TfMrviK83EH43zqnkFM4tcwbapna3DT3ri4xkS1lMXX0TF53z+lBGumi7EbSQlJYGZ2Ll73MnOp1D/TU2zIGXnv3Q/h6dMn8PPPP/H7ODg4yPcs6XU4di3WclBacJ9hp38A73dXUV4BPYwB4uPZk6fcj0MbFTn47bdfORsiH8jN8c7jfP7Y+MlmqQ/xpOn3YOrMX+GNt3w8ej7iXgTt7YmxQngcbR6xL5LSuXLymKY1q9fy2kNo21pKyqRc17HkAyUl+TD8+ssv/L7+/vtvYDTmS//DWkCu1HynngevIzuo6yuWr4KVK7y5HeW9ygdWe7sWZ/+fyRWcj/ETjWPGB/WJpf9R7JS8740rMXTDWfsX7RPcy8nPzee1ojEmoNhUJO3veJoNW4zcY8/CP9gzgp57C+YveolzR4zg3ItrXMOZg6n2u/zYWMakjIW8OW4752PiB5fHjA+RAcodlfPhaowprd862gew1Ss2IjwCLKXlvMZOdUUley57Szo6lnzQd+PzDrn43//+5HLt6lXpdein2+OD6tIPd18EXy/2MkTxZM6IWuQf/5jA+UDB30f7+6hXnsgHXnPUazxOcRLu8kGfh7aZPXsCdUnsFYu2a2WZBaoslVBTWQ3JScljZlc5mkPy8wuk+eOPP36H1MNpL52TPFdd7KXl7r0Sr/lYxcSPteDcgXy8NX7PqH8X7W1RbyO61vQ31S+n5xX+TXHZNK8M5/7K+3zI42Bf9Foo5r1krVU1UFdTC+9MmKwKNuSMoF/+4MEDzgbaWuiLzJ+3UDovih3D54yY6+GuyOeQ15WPf01I5XygL+KJ76McQPH+iT2Q5Pmg8tye4Qj1lyG7QB4Dy3vJVlUzLqxQb60DP98dqpk7bNlZ3t4+nAtcd0F/Xb6eJT9fJeZ70d4dq5yRsZT/++fC/2/vzJ+jqrI4fv6T+cGqWXRGaxRQQcQBXCAEFRUNWzZIwibIQFS2JGTfF7Lv+9JJyL6TPSGERRCHER1HmanS0SlnsGr+gbnfG05z++V1572kOySd98OpQKeTvH7vfu4933PPPUfysXrDP73y8zmbT/fs2ivrpjfWN1CzrZGSFH9lqbChdz05Obn0y4MH9ODBf2Vssrn5koP+cgcT2h4oK1Wfs4ENMAJWvPUzqvFh7JlCjzc1NNKlRpyJrpH9dB+3JjfqZ10VayrYwL7If37+mY4ceVTzW69ulmULs2fWtEg+nnz67LK4XjP+A2JVqh7/3W+foizBCs5ZtKBH5qUWufexVNcOPT8LuuP+/e/knjr2vLC/zvlZ8/F3l2NO/GIatDn4+OOLl5f8tcIfxr6hUUa08dxPwj8VXDTLfJr21lY6e/rskmdD7/qwZoAL5J/8+6ef6Pat22JteRTnNZJ/wuczYSt1/9CIPfHEenucd6lrCc7tNsIIxoiqx9FrvFX46+0trdTR1k4FefnyXORyYEOPkdLSMpk39NOPP8r8ibHRMYf3uupFpbJhNja4Eo1zTbBnaHbMcn4f5zGoxmMY2lEvx8qs4ffMxYjeHuDmTa9RG7hobaOudtTzaxTX/fKS1hxGGBkfG6N/CTaQB//D999TUeGjsyKYG/RqA3mCDbVmNr7yc8HY4Bo06uvLzZBjMp9cE7X+jlo3Qe1Xj/vCfZf5qycZ0WqOdWtflrXRO9vbqbuzk3q7usnvg13Lxq9ypUV+L9aIr7/6ir4XbOAsFXLxtPs+ql731LqBGCHXmuF/43U8H8Tv8Tr3rF+OfHCuCdaR+fKBcYr7ro39affL3VXfUI8RjAU13wL+U0VZOXV3dFJPVxf19fTQUSXes9zY0GMEZ0XuffmlzM3GuUOcyw1T8it5DfGkT6U+Y3X/0Jv2FVmDQI/Mhw8Y2MDcoa4T7qzfNhcjKh9gAxqjp1Nw0d1D/b29FBURtezZ0Lv+g2GHJRf/gN2/L2s7hIUedBibntQbfCaT87A5JuZNfCB+ZTTXBJ+f67oyH+xr8nv4DKin+NAyot57sFGYX0C93d2SC/SKLS8ttZ/HXG6awwgjWDPAxXewb7+VdVBQD0WN/c2HDSOaUa2BzHOkt/GB/Q/wgf0Qo+MSDOj5V5xXhfexX4rXeJ5xxd18GOG/xa9FnIuQvtRAXx8NDgwIH6vM69jQYyTifJTk4u/fwL6h27duyZp+zrTZXKb2fp+P/uBal5zvqJ5lWG5mNteE88nV+6fmTTE3zIg2x0rP8D2tvnRl8Ke0Z7Ejz0fKs8mX+/tp6PJlqclXPbfGK9nQYyQ3J0/WmPvb11/LM9Sf3bxpZ4Rje/BB5zpbxf2qrPjV7Djv48w1wTOZK5cIzxmmjfFDXzAXw4ODUpPjXLm3aA4jeh2Wk50j41pf3bsntPs9eWZkf3CIw7ziKg+Fzwl4471aiPGZQuT1Ps7rwLNxNddo/QTUebwQGSV9KXAxOjwktYdaH9xb2XDGyMWsbFnvGjU4/nr3Lt39y13BiGNPWdxDvXUE938x62qxNtHma7sjj3uh+lZdQznXZPv7j/x5rten9Zs8aXg2zrSktvcxdAW09/DgZRoZGqKxEfQX7rHX5lkJbDhjBHVv0DMBvRNQp+aLO3coOGi/wzyD9Vf1UVkrLuZ1O+vlwzX88DrGw2KvadqYgnqm0MfHz66Z+Uwe11OYL8dm5iS+V66eJdiA9p7hYpjGR0eFJu9dkWw4YyRT3EPUubnz+R26c/tzWessLTV91jqid8+Nanh3zJmcX6HWGzAb/+LzqHq/V31drZnjyk/R+5t8ppBzTbR7HHPVQnd23eBfPcdsxNS5TFuPB7qiyWYTvhS4GKHJ8TGpPVYyG84Y+fDoMfr89m2Zx3jrs1uyTlRebr6snal9RmbnO46vLyQPmNcGPpM1Xz6079Grg8OxV7VPn96Y5Hwp9ffhNc414TOF7uADhmvB5zUb49PTIqjhAe09JriYGBujKxPjVF9bS6tXPb/i2XDGSFBgsOQCdTLRL/eGsEZb46yagNoz+nONa+3e03z9K3fsv2vfo1cHRzue9Wq18v6EthYF/p2TP+GQa+IuPtQ9XCP+GcduwYbKR8iBUKkxJsZGaVJwMTU5SQ31dWIu/IPFxq9cx359tvqKezcqe62j3iDqyQ4PDsm6UGpskGPAruqYmn2ec/kJao4ejze1Lhrm+bli/6744O8ZHc+cj6NdP3A9m3x/seea4Ge169FC4lJzzTcct8UzUv0paI3YmFipMeBLTU1O0NWpK5SUmGhnw1v3N9zJyCsbNpKtwUbTU9PyLOLVK1OyPid65mnXEcxR/Dz05nx35qtwjrcR/aD3s2DHnXzw79X+XTCyfvOgw5lCo3rGiL/Kc46zfULU4tDG5qE1qquqaEJwcQVcXJkUc98URUZEOvUnLHPOCOYTxH/BxZWJSTHfTIr1eIKKCopolaYHsd5eCc+tZvQkfsZTMWOe19UanDC9OjjgSI03Yb0ye11mck20eVdG1lLuv6G+jrVCG7uFhYaEyRwqaIwpwcW04GJkeIgC/AMtNhaoSbBmTI5PCDbGxbo8Jn2vnq4eWY9T+7OoZ7pt6zZ77R+9Xo9z+Q6e/Gy8p6nqW739E3fsV5g9U2hGc3MPWr6/8HH99+6dzajwpzLTM8TzG5e+1PQUanRflTEr+AgWG+5hZMsbPtTb3Uujw6M0MjRCI4PDsi56SlKqbn8NZ/PbXLrA2865m6lfDU7NfH7t+qw9B4pawtjHYI1xbXpKaMppysvNdYhJWly4hxFwkJ+bL7X6kGBjcGBQ9g5rb2mTfWi0z479Fr3ziQudPzkncqnnam19a8jUmUKjOo21Hq9vqu8n14yMTOFLPdIY1wUXiOMGBgRZa4aHOTkQHEIdre10uW+ABnr7qb+nT/afzMrIEiysdvABZt4f7PBMnfnfZvIcWZ8u9b5x/kGFpupXg3sjnwm+FOYd7fyA8zwD/X0zGuOhL3Xz+jVqbmqiNatfsNhYJEaee3YNZWdmU59gA34X9Eh3Zzd1dXTRobDD9poWqn0SftIee9Tzx4yOda4xC51t1G9z9/0wWvvOzy/U1JlCjHdX8wTmGr14Ovzf2poau8a4Jri4cX2aPrt5nT4O/9hpDMYyz8W3YOhJ2Sx8gm7BRVd7J3W2dYi1pYMaahtop1IzTLUTx47N4sSMb4X3mtlDNvM+bV1bV/Ejo2td2Ef/M1W/Wq+ePrjQ81NXP/c8xcfFz8RrwcXVGY1x88Z1qqqstNaMJbGWrKa4mHjJRXtLO7UJPdJ6qZVam1uopLCEtvlsd8kJdISZWqScY2H0Z4yOZd6rMbLe4JqN7ncGh42Yql+txilQf0qPC2iMc2fOyXjt1Yfx2uvXhC9145rcE0cehKtnZtniMgLbvOl1Kisuk1yg7iR6YjbbmqmpoYkS4hLJZ4uvy/ELv2GuXnDq3pgRbY4xbDQmZIYPM3WoDh1OM3ymkFlwptPBxYmP/jxLY9wQGgO+VHTUhVmxKYuLpcXJvj0BVF1RLblorG8kW52NbMLfaqiplz249PZNYNwLDnu/rvr5mMnlMjOOzfABTo2eYcXv41wTZ2cKeW9Vb28Phv3YuNg4eRZ8lsZ46Ev96ZVNFhfLhBPo85DgUKoorZA18OsFG3XVdVRbVUs1lTWUnZFNgf7B9h51qoEPzKP4yj1L2DjX0ajPhPcZjQGb4cOM3wYL/fCHWfWrMQdgL9VVrueW17dKLiY1OSEzGuOa5GKbj6/lSy0jRhw4EeN/f9ABKi0qlVxgXakqr6LKskqqFOxUlJTT8aMfCQ426voanN/F44f3jI36/mbGsFk+zMQUPjzRac81wecBF/AltfyzD7V39z661NRszzt30BjCl6qqqLC48CKfC+tEUEAwFeUVPuSigsqLy6msqIxKC0uppKCEUhJTaec779MzTz/rNBbEddMwtuCPuXMMe2L94Fprp05doNa2L6R/6CyXc8fb71BMdMysvHNVY1RaXHg9J29t30HpKel2LorziwU3RVSYW0gFOQWUn51PUeei6N2336NnnPhGKh8RZ09LbY//s3bh8edJPlhD83hnf4mvCesfrslV/j/6SkcLHYP6OTNn+BzzzjknJCU5Wfxui4uV4nfBXn91C506ES7XlMLcAsFGvmAjj/Iu5lJuVi7lZOZInXLu9HkK2BtIL6192eXfYd2i+mM8x3OcFN9jhlgTM2cqH3xOm89PqO/nvhD8u8EEdLWqI5zl1GBfdZffblknBLWeZ+qEzJxtlXnnSk4ImAk/Fe6wh2FxsfI4gT/13o6dlBCb4MDFxfSLlJWWRZmpmZSRkkHpyekUHx1Ph8OO0Ju+b9O6F43XuFXrEnC/a+aCY0YqH7wfh7HPPhLzwV+N7Pdjbwj1KcNPhlNJUbG9FqFaJ4Q1BuedJyUm0c533ze0Hlu2cnwv2JpVL1DgviCKiYxx4CItKY1ShT5JSUih5PhkSopLosTYREqISaCTx0+S387dYixvpxefXzfnHoqnbN3a9eS77U06GHZI9gCvqqi01zsHF1xzzV4nBBrjYd55dtZFCtgX4HC+1dWcYtnKXlNgyJ344D0/+vTUaUpNEGzECzbiBBuxgo0YwUZ0AsVfiKe4qDiKjYylmIgYij4fTRfOXaAz4Wfo4IFDtD/gAO14613yFeysfeElueZoz3YZMegm7C9sfGUz+WzZJnM0Q/aHUGJ8ImVnXpQ9ldoe9lTq6uiQ9c7tdZ3tXAzaNUZ/Xy9lZWaSvw4T1lphmVlWfvPrJ+mN17ZSkH8wnfn4jFMuos5GScO/8XpsVKz0ycBTslhzsP5gLcpISacssT7Bh8vJzJaaB/qnUGih4oIiKi0sofLiMqooLaeq8kqqqaymuqoaqq+pI1tdAzU12GTf1pbmmf6U3FNJ9o4BFz2od97nUIsQtdBPHD8hcwnNfn7LLDMzVqAHNqzfKNeXQyGHHbgAK+AGDMH/gi+GtSdN+Gfw1TIlF1mSC+gdxAQQHyjOL6KSwmIqKy6V+zJVZRVUXVFFtZKLWsEFen3bqNnWJPtTtsn+lG0zPZU6ZnoqsS+FXkupySlyjUEdnfl+TsssM8OKq3GEPlnQH+8IfypwbxAdO3yczp8+L3VLenKa4CJD6n1o/9ysHMlFgeAC8bOSAsFFUSmVl5TJvt6SC6wZ1bVy/7+xvkFw0Sj37Lg/ZafwpTLS0uX51SOHjtKuD3bLvsHu+CyWWeZpXrT+2fp1G6RBx+/ZtVfuUe/b40/+ewJk/DhwnzD/IMI+ZnDgfrnvzzoj9EAobd74quxR+eqm1zx6rZZZ5mlmFnssPu6/b5ll7hq37jTrHltmmWWWWWbZ0rL/A1BLAQIXCxQAAgAIANqIPluJa2j1LUAAAABxAgAEAAkAAAAAAAAAAAAAgAAAAABkYXRhVVQFAAclDtxoUEsFBgAAAAABAAEAOwAAAGBAAAAAAA==</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #23</Name>
|
|
<Index>23</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPlt8AtUID0AAAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J33W5TH2se/f8l7zvWe6z0nlphmYmKLSYydqMSCit1YjhpAEQuoCCgiSpHem3RYdqlL71XBgqjYY4stMSbn9/POPTDr7AMoC7u4C88P98Wy9Xlm5jN3mfue+fvf/oG/q/Le5G//87+DFrW9VBkL494Wvl8VVSw1TtVrUkXlYXDjbuHCxVzc9rvDzc0d4RExSExKY5KKouIytJ6/iNa2i2hp7UBzSzuXpuYLaGw6j8bGNjQ0tqK+gUl9C6Ki4pnEITIyDocOHoGT016sWbMec+cuxOTPpph07WpfqmIJJgZ6zzfffI9Nm7bCy/skUs5lop6N7Y5LXWi/eBUXOjqZXMH5diYXLqPtwiXGxaU3XLQquGgiLtoMXNTVN6O2jkltE2pqGlFd04Dq6npUVdWjsrIOFRW1TGpQXl6NuLgk+Pmdwa6dzpjz/XyM++BDlRdVRpSHCeMnYaWDI3x8/HAuLRuXrlzncvHyNXRc7jJw0c656JS4YCK4aOsw6Azioqn5PGeDuGggLhqICyaCi9pGxgZx0WDgorJScFGDsrJqlJVWoVRfCb2+AvqScpQUl6O4qAwpyWk4cdwPG9dvwfSpX6usqDIsLvp7zc5uKQ4eOgJdfgkuX+3G5c4buNT5hgvOhuBC6Aziot2Yi4LCUsQnpCAuniQZe/fu57JnD4kbFxcXkn1wcd4HZ2dXLj5ML0Uw2yw8nElYNNcZxEU5cVHGuCit7GGjpMLARXFRKYoK9SgsKEEBu+4CXTHytUXIYEx7e53AimWr8Oknn6usqDIkXeHgsBZBweFoZuP6Slc3rhi4uNGHiw6Ji6TkdPifDsI+t0NYvnwVFiz4gescS1z/jOmzmB21AJuZbbdrpxOCg8KYvkhnXJQyLhgbggtdEXTaQujyCqDV5CMvNx+aHB1ys7U4yz6z1nEDPvl4ssqKKm/VFYKJFsZEZ9dNxsXNHi6u3uhhg7gQthTjIpeNt2Nevti48SfMmjXbau5v3AcT8f3sedixfRfTPb5cZ2g1BT1c5OoYG1rGRh5ysjTIzsxFdkYustJzEHgmGGtWr+vDisrJ2NUVU76YiuMn/FHJ7PvOa7cUXHQbuCDRMPuEfPBFC5fY3P2TLbV8mQOOHfVBSlIacjI1PVxk5CAzPZsxlIWM1Eykn8tAWko63A8ehv2SZSbZoaqMHi4cVq1FLPMBrl6/3cMFkz5cMImKTuCxKUvZSO9Lpn41A7t3OSMyLKqXi0zGRQZSmX2Wynz6c0mpSEk8h2jm92xctwkff/SZyskY4GLLlh2oqmnkXFzt5cJIZxATMcTEtlHHxEBC9tRmZiOGMttScJGckIJkNn8kxSUjMTYJCTGJcGI8kb5VORldXEyY8BHc3T3ReuHygFxomS+7afPYYWIg+WrKNLg47UVUeDQS4xgXsYmMjQTER8cjLioOsZGx8GC219czvlE5sXG/m3PhIXEhbKleLppbOxAYFMbX99T2M5YP/jUBS36wxwnm3wsuYiNiERMeg+iwaEQxu+yQ2yHMnD5L5cQG41FkR7VJXMg6o6Kqnq9njHVdMVghXbHPxQ3R4T1cRIZGIjIkAhFnwxEeHIYDrgfw0YefqJzYABd2dvaoqm1C1wBcbGY2lNp2Q5OPJn2Kndt3GbgICwpFWGAoQgNCEBJwFttY2/7rn+NVRqyQDfIbM7I0KhcjwQnTFTu2/huhgT1cnD0TjODTQQj2D4Qfs8eW2C1VdYkV6QzyMbpu3DH2Ma4x/6Ktg3GxXW03C8kkxgnpDOIi6FQAAv3OIODkaZzx9cdBZnNNnzpTZeQ9siFsKaWPQTkhqn8xckIc7P15D2eDi99pBDJegvwDsMFxg2pzjRAb4jHFpU74nu7XloqJTcIXihi9KiMj8+cswElmX5EuCT4dyOyuIGZ/BePEMR/MmPa1ysgI6Ixvv52DgqKyXp1h7GPYKexer2Pe3AZQ29Fy4rrXDdOlsU+6gnRGCPNJQplvEhYUwnz5UObTh8Fx1doB5zxVhs+Gk7OrwsfoyQnxOX6qjy1VWlqG//73v4iLS1Db0oL+x+vXr3k7O6xcbfQa6QtfrxOICA5DZEg4okIjEB0WCR9Pb3w86VNVl5jZnhK5Usq4lN0iY52xa8cO/pf6i/qNRJ7fVDGfZGfn8vZtbm7h/69auRKffTrZSJds2bAF0aGRiAmLQmxENOIiY7g+mTdnvsqImewpni+lyAmhdW9ZZ6xfu7bPd1G/yf2nivlkwfxFhvlH6I4P2Tz2z/8bhzmz5/DH4r20vniG+e1xkbGIj45DQkw8kmITsGPrDpWRYbCxZct2XqutzAlxcHA0vEfMV1992dcnJ72h7ENVzCNi7iEdonxN8CH3CeWr7Hfdj8ReNpLjE5GSkAxvZm/Ra6pPYhobVJOhzDunHEJlbGrRgkVv/d6gwGDejw8fPlLb2Yw+ObUp+R5vs1370+mrVqxGSnwSzjE2UpNSkJZ8DuHMd5/65XSVkUGwMWH8R7yGT5lfGxgUamRPkZ/Rn854mw9JrKjtPXyfnOYaU9pzj5OT0f+UIxwXFYv05FRkpKQhMzUdSXGJ+E7KE1UZ6Z8NXaG+Tw3f7p/39NEJQ53v1DYfnsj62NTYuWzjkk0V6B+ArNQMZKdlIicjC7mZ2Vj+4wrVJ+kvRsV0g65Ab8RFU0s7Vq5842sIfUG+oalxW7KT6XPqGB+ebP1pO2eD/pryOeov4oP8RfLh6blxvT5JTkY2YyMHmqxc5OVosGKZw5hnxChGxfQqxWrl2tbG5gt96jIofijrBBJ1zL4fG8tUpmitVvShHAMmcd7tjLxsDbQ5edDlapGfp4PHQY8xy4h8r8QAxaREbStJnq7IyNeQuVDOSUPRCSL2IuyE0b4+Iq8FyfE8um/hS8hxcGFDCZvUVF0hC/1GfzEusU4lhHRGvkaLAsZGoTYfRboCHHE/MuYY6Y8NeZ+QPO0bNkQ8/W3zGLW9KfMZ8dTVdc3wP62zj3a/XcS5le1Ec7qwU4XfTdwQE+K99J6hrh/Rd1D79tc/ZCtT38q6ZOXyVZyL4vxClBQUQV9YDM/DnmOGEfn+iA3yL+S9CDVaY71BbSivMw003k3xRaj/5f4mNsZCXIvaiMY93bu4X+W902tC1wzUXqb+5tv0O7GhtA0cVqzmXJQWlaCsWI/yklIcO3ps1Me1jONUk1BeWWe0F6FGW2hgo792G6x9q/LR/zwuYkfCpqJxa0k+TPEPaT2RxGBPO6xBGeOiXF+GitJyVJZVwIn5KKOVESUbebpio70INXlv2KC+HErO7WA/Q/0t21dknw2WrdFiX9H9UzsQG7J9Rc+LvBHxXhrjZCOZ2hemzDlkI5DIfuCaVY6ci6rySlRXVKGmshpr16wbdYz0ZaPIaL/zXAUb1EcklsxLH2v+ubB1lH74SPjnpugb+j1Z5ziuXsu4qEJtVQ3qqmtRX1OHdY7rRxUj8j0EBIYY7eucqykw8jdo7hJr3ZZmRBXrEcFGf/lcpDPqa2rRUFuHxrp6lDNd9vXMb0cFI/K10761hv3OL11FXUOrERvHvTxVRlQ2+HM/bd5sFNfavnUHmuob0NzQiJbGJlRVVOLzyV/adExLvuaNm7b2ctFzRgad/SL2O6d2UK4XqYyoekMZ+z3p64eWpma0MhuwraUV2ZnZhvnV1vgwiuMyDui8sZ6zY3rOVKIz+cR7KYbbX56hysjYZUPMm8oYZmJ8As63tuFC23m0n7+AyPBIm7SzZH9cX1pldKbSzp1v4nTviuHKjKg1TmOHDVnkWqsJ4z9EblYOOi6042J7By51XMTuXU42xYh8jRGRsUbnU/r7B/WZI971fcSIiNfLz1N8Us4HpTYX8Xy1Fso2+HgXG2KMyDkU38z6Do3MF7l88SKuXLqEzstXYLdosU34IvK17dzlbHQ+ZVa21mAv/rjUflC1G28TeW2L4o9kg4l4vlpzbv1iyhxG+kPO11q5YhXj4jKuXrmCrs5OtLW2Wr0vIrNLvrd8PmV1TSM+//wr/pq5/AiZj4HWgdVxaBmR80bE+joJrSOK52nO6u95c8lxnxPounoV17q6cP3aNSRIOUbWyIjsc2Tn6N6c23r+Ij+nUp43TM0pVPmwLpHbV+RzifV4sdYuakREf5u6Bj9Qn8t2QVFBIW5cu47uGzdws7sbe1z2WiUj8rV4eh5nbFzi+yrQmcZ+pwKM9KTwKYZaryRYUPmwDj5kX1DoDHrOXDmOwuag8aLsU9qTvKO9Hbe6b+L2rVu4zPyRL6dMtSo+ZLuKzjIWZ323tHWgoFA/YM4h3TPpaVNrnEQOCsW1BBP0HbL/Iednq2I+EW0q8yF0A7U9PTY3HzSH0vcLvUH7cZD/Kl4nnXGHsXH39h3cu3MX2jytVekQ+RoKi8r42cgtrR1obmln92bHn39bnjqNbVNrZUX+mxq/Gnm9QX2ltK/EY5kDc/Ah16coRY7vpCSn4N7du7h/7x4e3L+Pfa5uVsGI/NuurgcNXJAcPuJleE25X9i75ghVrFd/kJ6W9xOj+Yh8DRr/9FfodPqf3kt/SZ+bkiMt7KmB8iJpLMl7B01k/5Ov/uCXX/DwwQPcuH6dP2ctfFAuTHMvG03NF6DLL8b4cW9iuYNtE3X/BNtghNiQ7VfqN3puoDUqU/pV1OMO5jOzZs4yrI3sc92PRw8f4vGjR3jy+DEyMzLfqw6RfzMuPplz0dR8Ho1N5zG/164yhY+xJIuYn0ZrWh6HPHDE4wg8jx7rsSVi41CqL0VYaBhO+fnDz+8UTp70w+7dTvjRfjmzKaaPKT/nXUJ2ibx2WFhYiF+fPMHTX3/Fs6dPYW+/7L3wIfvky5Y5cDaIi8bGNgQHhxl0oMrGPzD3+/m89i3oTBDytTqeP0S5EbTue+PaNdy+eRP3797jcx/168sXL/DHH6/w119/cnn9xx/4/fff+PPPnj3FkyePkZ9fgNP+Z7Bt644+55GPNZHz976fPY9z8fzZM7x4/hxNjY3vRYfIv6XTFTM22tDA2Cgtq8Lk3rxjZf7lWJFxH0zAih9X4riXD99joJzpA6p/o9qe5sYmzkdpiR5pqWkICT5rpD/2ux3AhvUbea6qrD/Ky8q5XhF8PGQs3Wd+6J07d3Cz+yZqqmv4ehnlXoxFPuRxdjY4BC9ePMfLly/w228vue5VzukjpTu2b9/FuWhoaEV9QwtcXPYZ3tdfvHo0y9LF9jh80IPvBZjH7p32qSE+0s+lwZuN/W3M11wwb5EZxsM0rHVcz5nS5Go4H7R+fLWzE5cvXoK+uASeR44xn3DKmLHFKCYg1gk+nPgxmzvucZ376tXvbC55wJ8bKR0ifmP8uA+ZvqjmXFA9h15fyZ8TcTmRnzma41J0vsXa1ev42Ui05zLtJ0t8hAaFYMO6jey+Z1r8GiZOmMT3M6Ax0tjQyHNbqT6CdFV0ZAzsly4btWwQE6I+WF7zcmd+Hdmor1//gT//fM118UjoEPn7XVzcUM+4qKtrRm1dExwdN/SJz8k1zNR/o2XNbhKbj7Zt2cbPAKdzXxKi43A2IBibN2zBJx+/X5tyxXIHhIWEcT7qa+tRU1WNTMYsMTRauBDrKfIeAspY8PXr17n/9p///IVff30yIjpE1h2kL2qJjdom5OToDO+h2kg5j0R5H7a8JyjpC4dlq/gZrXT2JPHhsd8di+2WWN21kn3lcegwigqLUFFWgdJiPaIiojD7u7k22/4i9qucd+WxJx47OblwNkiIE/LlLOmrG+kO532ci5qaRlTXNMBxzZs9JfpbBxR7Gov7ssUzASkme9rXH0GnAjkf+1xcjc5ktVahueznXU583+ei/CLomF/kddTrves5U4VsdlErJ2pHlPaIsmaiu/sGZ4NsrMePH1lUh8i6o7i4vIeN6gZkZ+UZ3qM850EpxDrdoy2tA9JZku4HPJiPEY6QgLPwOnwM3/bWzttWXG0iDrsf4Xxo2NhKYv4S7TFlK9cv9hx6V+4prauLeJbTz86cDfJDSCgWaCk/RHyf45oNnIuq6npUVdVhzeo3uuNte+XKvomt9Mm8OQsQFhyO6PBozsfqFauNzrq3RZk2dQZCgkKQlZ6FtJQ0rkvk880sNbaFHUT9L9vc9JieIxtD1g/K/eXoPYOxzZVrCtevX+O+OsmDBw8sYmPJ35Wdnce4qEdlZR0yM9/URx5wcx3Sd4t8NyHC9rJ0fc27ZI+zKxLjkhAXFQ9vTx980VvfNVrkp81bOR90BmBESAQ/Q3Mk+FDuXyn2cqQ+Fj622MNxqL8nn6Hw824nvHr1isd6KeYr6tUtwcfSpcs5F5WVtaioqGG/7WKS7uhPqF3EWomcq2OJ+ppB2SFsLj3DfIxzSamcj61bto8qLozs9SnTcJbZjAkxCYiJiIGdtK+MpfgQezaK/hb7VyrtpuHwodz3n/IWiQ1aL+zs7DSrDpG/IzwsmnFRi/LyGuh0RYb1jqHqDqEnSK+KfXCF/WXO+prBytSvZiApIQXp5zIQExXH7avRyoaQnnNlD3A+SI9s/2mH2b6b5jqxfifbV6JWh0TYV+bkg4Rym4QO8T1xEr+9fMnX1F+8eMFz2czNx+TPpqCCcVFeXo2ysip4HvV5a8zKFBE5oUKXvA8+pk2diXPJacjKyEF4SOSYyQUUsnbNes5HSGAIs722meU7yV+guU8+Y2Ug+4r6V9hXpE+Ge1akvO8Jxa0of43yTp4/f4Z4M9aqi8/vd3NnXDA2SqtQqq/EjOmzDHME+QxDXSNXtp0l6jMHw0Z6aiZymW8VxOyNcRb2V61VKIZNfAT6B/K1TnMxIvvbQ/XPhyKyPkqIT+B5i5TD9vTpU0ycOPz6EPmz6WlZbCxXQq+vQEy08foFsSFqW03d61u0iznra0wRuvasjFxoNQUICQ7jcdCxyIaQhfPtOB/+vv7YsG6TzV0/sUZjhewQOd5FeTaU20s50rSeTrmg5uJjyeIfuc7Ql1SgpLgcqxx64uaUf081Ksr5QulLDGaMmqu+xhQhHZibo0VBfjHCQiPHPBtC5s9dyPnw9fbFOmnt15pF2DE09oQtQ/aVPD4vdnTw+hCqn6qpqRmWjSV/5ugRL5SUlDM2ylBcVGoYR2TjDeR7iFwAa80nodhCXl4Bu58yRIbHqGwohGITxIf3EW8ssbPOOh6xJiLGmXI+Jj7kc6m8vXw4G1RjSPU2X06ZZhY+cnN0fBwVFZbixPFTBjaUusOWJD4+hevElOR0lY0BZM7seZwPr8NemDt7vtVdHzHxrhoKmr9F3gnVBjx69JCzQXXqZ04HDJuPxT/Ycy6KCvUoLCjBD3ZLbZ4Pby9fvn5D+kPdE+Idca3V6zgfXsyG+Pwz26spITZoTyDxf1VVFR48+IWvibS2tAzJxpLfe9jDk3GhZzZ6Cfdj+9NbtiT29it4fgzxQX6VysC7xXmXC/x8/HBov7tN5tfI64W0988v9+/zvYBIZn83Z1h8ZGVquP+aryuCD7NHBR/y/iq2IlT7W6Kv4Hwc2O+hjv1BCvU36Y+g04HYtH6zzV2/vB86+RzEBe2XdffOHezd4zpkPqjenbjI11JedCFW9O6jO9z1wPclMTGJvGYlKSlNHfcmyjdff8f5iAgJt2iuliUZF4+bm5o4G3du3+Z1/abaWOJ9e1z2cS60zE7XavINfqzyfDhbkHXrNvFaeeJjpg32rzUI1UwSHwGnztjctcs5UFRvS/v13r55C7du3uQ1yoPlQ34PrQkQF3m5+Qg9G2543tbqZGkP4IrKOs6HvIeEKqYJ+R6kQ+Kj45idZXtrh0IW/7CUc0F7vnff6Mbq3joYU/ggXUFcaHJ10ORosa03b02cNS/va2/t7eG67yDf21HL7ER1nA9P/p+9826LIlsaeH2V+9z33XV9vbuucZOuOWPOrhkRAVERUIIERRAQkDQwwBAGBoacMRBMYM6IaV3d7OZ4P8B76kj1HnsnMfQM3W7/UQ/QTDjdXb8+VedUwBhf5KPIWKj6HERxfwRjM8QY8CePHvO+CFiLFOMXh8rHInYdkAuMSaqraYSZM176+WLvODEPGL8b98zVtl6KfXmw1wLysWLFGl3HFZDY6FiwlJXDgdADqhsbxivhPjrVCRYFGaHX1VTXwMMHD+Ehe11bS5vLPgj9f09wCOeirroBaqtf7ROHDIhcyscx1BgsT0rq8ROcD6yBquu2MjJt6gzORx3TsXHvDn8Okcee2qpN7SxfTqwpJQrF0svtHKwBhL2nBu4PwP3++y71ZxP/l5yUyrnAeO+koy/zdm313EXBseL4cNy2em+I5ybm1VP8v/y4UoI5f9gbFPlYMH+xrtsKSkJ8AucjKiJq2J8lz/WgulbiMWf5cmTX4OsoTlauT7hPSHvaWP94gHFx/14/9N+7J/HjKh+1VsZGVR1UV9bC7sA90hqZO+tWOG6KBRDtMDGPDDlXOkb3wIFozkdJqUXXaYUFa1QgH61NzcOOz7GVCyWvBeUs3wFZcGbby2uR9jM27t29B/fu3IWDByJd5mPG9NlQXVUL1soasFqqpT43yJ87ex9iLD+yjRzIz1HeI00Judh3jfOxRaFcBl1elSx2v5CPoIDdbvvP9viQzyFK5QOJNdOx1xTWZL1z+zZUmCtc9s0/Wb+JcVEDVRXVUFluldYpnPW5cXYtKKeD+kV4ko9t23bCrTsD0HGqW9dlD8mqFWs4H5UVFrf0geYIe7m0Yl1EpfgQ4z7S0zLgzq3bvJ4+1pp05qPT8aCAYHbOVsZGFVjMlZJt5W48otgPWOyB5kk+jAUlnI/wA1G6LntQaqqscObkKZg3Z+jxvagTlDMo6gr5pOKarFL5cvh8p2d8UGAwr1d8k8mN6zd4nydX1rASDidyLrCGB9a2ceSbuyK0zkXnRr4T5Q1SvqVSeVCTJn0Ad/sfcT5et7o8apPoqGjOR8Jh9/SVcuNEZsgnlefGKZEvhzpM8bwLF/jATcbFjWvXed+JhYN+hC0+xGNFRhNUMJ+2vLQC9u3ZL3Hnbg0f8bxFH4rqMsiPD1e2b9/J+WhobNN12MOy2Gcp56OjTXvXGtd0kYtrTK5euSqtBzjjA7kwl5RDWbFZykHGmCsxjl7NUlhUxvkIEupz6eI5aWpogPNne2D+vIWqHyuuYcVGR0p/Yy+Iq8x+uXLpMsQcinXKB8ZpmosZGyYzlDI9w70grd2v/oEnnA/dtvKOxMfGcz72h+zXxHhFO6i4qBgu912GS72XoKjA5HTtat6chbxuYElRKa+rR3ygDYS+E9UpwZ+0X6OmeEUfn2Wcj86u87rueknWr9vA+TAVFal2jOTnoA0l9qLJzsxmbPRB38VeNg822l3Dor+3bNzKuSguKAaT0eTwO8l3IGbUEHsVGRXL+cg4kaPrrpdkwrhJnI8rl/pGfCzo54rPcPpJe25y3z5kXyj0Xujl67vYI9IZH5sZH6ZBNoryXz4PcO1KtNnULEXMZ0I+dgeH6LrrRamvreV84JrQSM8Tzl6Da1iUTxiydz9j4wJcOHeeMX7eKR8xkTGcC6zHmhD3Vw1RreRD9Zzr43wsWrRM11svSkZaOucjMCBI9WMVa4/Om7uQc3Gu5xyc6z4r1Vy2twdyKOIQFBoKoCC3AKIG99ZwX1ArvcwHHj7lfOg6613ZtzeE8xEfF6/6seLcQXvd8+Yu4D0az3b3QE9XN8wd3Oe0xwf2SjLmGiE/Jx8iwyMl3rRQy8fHZznno6vnoq6zXpYVy1dyPsxlZdrig80XPV090N3Zzfs02uJD/D0zLRPys/N4v6SAnYHS52nBviI+Kq31us56WXDvA/mor6tV/VjFOHSso9nNuOg63Qmdp87A7sBgh3zkZeWBIdPAe7OuX/OyJzDuC2qh3lVUdBzn42hiiq6zXhbUM+Tj1s0bmvA/xF63nYyNM4yN0ydP85gsR3wgF7knciAnI1viY7ixJd7mIzIyVtfZERCt8CGXM4wL7H99qv2kFKtvjw/kAvu0ZjM7a93ql3FjWokt0fnQ+XB1/hD3K061n4KTbSeho60DAncFOeQD2chibGQePwFrB+vBKSEUw0x5g2J/FKW+IzvHyPkI3qONOIfXTaqrqjgfPosWD1tPUKinM+XN0t6G2F9HPD5UH4R+Ry46WtuhvaUNAvwDHfvnjIvM1Aw4kZIOa1eu5cdwz1HsMWtL5H0M5O/Bc6HcQepRSzkyStUIqq1v5nz4+Oh7HyMhxSaTonzg7xQHQvvgqFdifzax/xiJvCeyLTEJPdaQi7bmVmhtaoVdOwMc8oFcZCSnQfqx47BmsB4O6q+t2hCiyMdIPeSIbTpveR6Us37vOh//bD4oxo/qFriSVyfOL/ZE/AzkoqWxBZobm8HfzzEf6YNscD4G5w8xT8Oe2Jrj8HyIdW/ysXawv5Uu2uGDdEDOh7y+jSt8yHOsbIkYh9XCuGhuaIKm+kbGxy6HfKQlpXI2cA4h/2M4+4PIPc5lIh+ifUX56ErcnyQ2bt0/Hznp7urkfMyYPnNI7yM9QAbkfBA3+KylGjiifUW9/IbyfWKOLUpTfRM01jVCQ20D7BzMd7fHB3KBNhb6IOtWv+RjOPEllEfrDf9cX7/S7voVMeLIP6fn6HD9c9zLE/fzkIuGmnqor64DP9+djv1zxkUW89FxfXf94Pou+vpa6Gmg86Gv77oj9TV1UMfYqLXWwo7tfg75wLVdXOPNzciGDcL+ubjfqFbZszeM84H5tbq+elcmjJ/M+bh4Qf15aWgLiXV+kIuaqhqorqwG321/50OUmMhDkHsiGwyZORARFqGpe6THX42cUPyVFuITRfngvY+ghnFRbbGCtaIKNqzb6JCPiNCDkJeVC/nZBogarLmolflj8qQPOB+Xr93WddbLstPPn/ORZzCofqzoe5A/PWP6LLAyNqoYG5XllTB92iyHfESGR4AxJw8KcvMh+mCUpvwPFMr/oHrcunjJ94uI4nyEh6mv54FccD2W4nexjjByYTFboKKsgtcnscWHVDvRPwgKc41QlFfA7Sw8hmxoJT+qtf20nj84AmLMy+d8rF6l/h4rmK9B+bXLl64EC+OiorQcykvMvH+nIz42bdjE2TDlF0HxYH0G5MNefDvtxeBanBrqM2RmGTgfERExut56Uag+w6TBGp0jJaiDzurpoC7Tft62LduhnLFhZmyUFZf9jQf537hnXmwsgpICE5QWFsPYd8bz42KdEvEn7dmopW+Ur68/58NSqf48nddFMOcO+eju7BzxsaAeDqV+CcZbIRelplIoLSpxygfWu0Iuythrzew90z9+Wf9KKz050Uen+nC67npHgoOCOR/ZmVmqHaO8/hUdj4uJZ1y8rPUWE2V/34z4eI/pF3JRzpiqYHPO8iUrJB9dKzVMMP8c+VgzuH+ji2clJyub87Fp42bVj1W+1pTB+/G+rGcVLotBt8UHCvopFmaTod+yfbC3DNpr7tZvF/0Ub9SnTjiawvlIS8/W9dfDgr2jsD418jFxwmTVj1e+V2HivXiLoDC/EDZu2GzTtpIfO34sFSrNFqgqt0DikcRhj0neu4FizuT9DZSK48X4XeQD+0fpOuxZWbt6HefDXKq9mAW0xYsYF1jrrcBQAIsXLrHLhyiHIg+BtaISqi1VYMzNl44fPRzn1jjEtS17/XHIj1Lq3Psu3+D9P1avVn9/di1L+vF0zoefr5/bnyHGJGK+B8WvUq8YesYON2cQJWjXLslPmDNrHueC6llN/WiaQz7ouO+2HVBjsUJtVTXUWWuGfQ3RJ6J1A+LA0/2jjiQc43wcT8vU9dhDgr2dsb8a8jFh/CRF+ED9oFxU6nvsSs6gqyL60BvXb+Jc5GXngSHLYNOWssUH9tGpq6qBemstNNTUwawZs/lx9D/cqfNDPavpp6t5LsOR6dNncz6wP+dEvc+BR2TP7r2cj+SkY8P6HJEPnBdobiAdUUpX0C8XfQ+sf5iXbWBs5EKssHbljI9xYyfwWHiMiW+sbYDNG7dI7LkTZ2IrRxCfCWJ/Z1s57MMVc4WV8xEWpo3a2lqSUW/+H5SXmjkfSxa7F6tgK2cQ9Z58VerfqRQfuHYl1uFJT02H3MxcyDmRA/47djn1PcT/oX/eVNcAzfVNUg94ZMNRnR/knnqbi8fl+fJir055/qSS93DrVj/Ox9lzfXo8lsKyfasv739eWlzi1vvt5Qza0n1XcgaRI9Qz8ldsCa7Bkn31Dvt+5CI7Ixuy0rOkfQxnvjlJAvv+loYmaG1shrLiUpt84DnieKj/JvlPSs8Dw5GOU11w9fodCA09qOu1gnOHyVjI+RhOvJW9nEHq5SraFM78c7Tb5fUXqN4JvQZjCCmuBH0IsZbVRx9MdYkPqU/Opq3Q1tQC7c2t0NHSxribKM0RyCmdl1xwnI4Y9rZs2eLL+ejqvgCj39LnEEWuKbO3LWXlUJBnVM2YUOdQL8XnNAmug6Feis/tnb7+vNb0CcZGRmqGU99D/n/kCesCYd2sk20dzDdfL41D/G7khNaj1Ho/29rPwOUrN+HQIfXX3lf93PHGaDBk53I+Vi5fpcox4jMcWUC7hmofkK7Saw7HHOZcpKekQ0jw/iHzgYJrV1iTFGuTxsXESXMifi/1MNfCPV2wYDHno7fvGkzVYL9RNUmgfxAUF5j4HrJWxow2FtU/4To8ZiznIi05jZ3HcVg9WOfNFd9DfE1yUjJf2+48dRqqK62vrJNpoV71q2sEZs6H0Vis6/kwnsu4Hop8UB6RVkRcd50/dyGkHWNsJB2H1MRU3j9xKL65uE/Yxey27jOd0NPZJe0vop+jlVhFkokT3oMzZ87C+QuX2dwXoOv7EOVNZlehTYJ8BA/2ANCSHAwPlX7HvjapSamQcjSFndMRl20r+euQq54zXXC2qxvOdffA3uB90mu0Nn+g+LPrgny0M39kypTput4PQbZt3s582Qwe7zrqzdGaPpeE2ARIPpoMxxKOwdaN24b8fpGjspIy3rfwfM85qGA+mS0etSRGownOnu2FkuJy3tNF133nMnvmXEhOSOZ8TFFJHtxQBPfMyd5BuzCZcZF0JAmSDifyGKyhzB1yRnBv8MLZ87w3dO/5izBxvPpjmB0J1mlqbzsNXV3nIC72iK7/TmTcuxMh+mA052PTBvXndzgTnC+SDidBYnwiHI07KtlB7vLxMbNDes9fgL4LF+HSxV6p/jvmt2uh5o8twZ6+yMfpU92wbesOnQM7groTHhIOhw8dhrB9YZo8B4wXFPe046LiOBdoY/kK995dPlCwtvXl3j640ncJqqusLr0f135xTU3JmEMlxXe7P+ejg/kia/QY+L/744yN/XtD4QjzX6MPRKvO30T9wv1AZ/tu4lrrtCkzICEugZ8TMj97xly32JAzEhoSBlcuXYarl6/AtStXYdpgTrq8zi8KrjXjuHGPRC01G+xJLLOvkI/Wlg7wWbRU50KQXX4B3EaPPngIxo2dqMoxIiO0D4g/5ftxaOOIcwfah8RGfHS827aVnA9cG0Uurl+9BjeuXYf4uMOv8OlsnGqWmEPxnI8qSw18+P4UnQ30Z7f58fVP5GP8u+pkQy44j+BzGYWey2LNBPyduEDB3A93bStb78N1rJvXb8CtGzehl/kidJziXtyNL8H3UwyAmC8m1rYXjystmD+dZyiApoZWqK9thJUr1F/fzGM21RujYU/gHh53gXzMnT1fkc+1F48uxq2LemCrH9lQ5hR8L8V4SHbNvEWcC2TkCLMbPh5c33eXDTkjW7dsh9s3b8KdW7fg7u3bPL5ZiWuH14fOg/LF8He8VjQPoR+jZJ8QW4wcT0nnfNRY62DFMnXGFXlSMK4qjs2lGO+NfMybs0Cxzxb5QPuCYnMxHgrvMx4T41rRRhdjet0VMXY3bF84t63QN48Q8oGU4gOlr7cX7t25A/137zJ7pFI6jjHD7vaXojhkqj+H1wmPi9dHnh/jKTkYHsn5qKqwQoB/0D+GDazphPMF5pmmHjuu+Bq+nA+KExTvqzyHbjh8oM0v6uP7kz/k61W4pnuM2Ywrl69WhA36DPqchCNHGRv34H5/Pwzcv89rX9N43I03EWubIBvE/EjwgbI7aC/no6LMwp+nmOvwOrOxbMlyzgXW8MB5Q8n6oHgvyd4R7SXquectPvy27eS+FO7hpCam8LU5pfgQP2fyxPdhoP8+PLg/AA8fPIDsrOxX5hCq+evO/CH6WHR9yL6i+ddbOrN86SrOR6mpDHIzDZKt+jrJW4z7/ftCea0zrB2I655oYyn5HXjfKPdC5IP6elNeqdzOpt7HSrDxnzFjeRxJCuMC4xGHs+fhio2VlZkNjx48hMcPH8GTR495DSEalzt8yP1zikH2ln9u1+Zgc/KJtEwwGYt5DRisk/fmG9qOOyKZOWM25OcaeV1/5GPnYO61JwTvpy1/m3qGu+qfu7omKq+ljnFjaDtiLHtGarpkOyrFhpyRxT5LGReP4NPHj+Hpk0/BkPtXXRSxbryjtQU15Rc69FnZMzY4cA/nIy/LwHy7BJg5fbZ254xRY3i8UENtPe8nhrUDMdZbC2PH9ShnvcBxDVecOzDPIw17Maek8zzBsJBwxecOW59XX1sHTz/9FJ49fQrPP/uMPWtfMoE+iD0+xLpf+FNLeyQY149+HeYrn0jJgJDgEClfWQsy+q0xEBSwG2qra6G5sZnzER56QDO+FdlbNLfY23uWzx1rVq3jMZW8p2ZGthRbqTQbckawnsszxsXzZ8/g8+fPwZhvtDtG9NHkufVqqt/gqqBttW71es4H9ofPSjsBB0MPSjkx6uTiPzwnoaWpheeAtre0gyHHALNmzNHc9ae8VdHmRluEnrPyZzPeL/Q5sjOymA+ZAweFXpqe5gOlqbEJvvj8c/jyiy/gqy+/ZGP78BU/xNn5aFVwzt7BfDzkw5CZy3ttxUbFwLLF6umvhfEOMdGxcPrkKTjXcxa6znQxX8MCa1+DODNbz1u0TeR8+LNjOdhnFntp5uQ5rR2qNCNLlyznXHz91VfwzddfQ1Fh0d/WLZzNh5rmhHEe4BfA+cBeQtgPAvsKYW7dSMSpYH2vbVt9wVxq5rFAl/suwcXzF6Gupg42rPvktVt/Qx0Ta5UgM/TsxdpWWPcNcx2xfnR0RLTH5w5bn9/a2grffvM1vPj2W/juxQuYM3uexDjVi1BzXRMl5J23x8HmT7ZAVnomVJktUFtZDY3seYC9iGLYvILPEU/lYc1kdtK+vfuh2lrN96Tu3r7D43+QD2NRP2zeceW1vva03kNryHQ8ZE8I5DMuCgxGXp/946nTvcKGnJHZs+bCixeMje9ewPfffwen2Hwurt+5s96r6bl/3iI4wPzeSnMFr6t3srWd17Y429XDfOIGvjYeFhoOixYsBp9FS1z+3A/e/whWLF8FgczHPnI4AVpaWuFzZtt+xnzAJ4+f8L0o5KOpoRGCAnfD5EmzYdL0X7n8z//Of62vOa5ZiTV7p06ZxrkozC8AU0ERxEY7r6vryTmk2FQMP/zwPfz44w/w008/wpbNf+XzYi35fxIfoixm+h8WEgbFhSbOB+Zfos2DMdC3b97icQiPmF4/ffIE+u/1QyvT+Y72DjjNeOrq7IIbN67Dn3/+Ab//9hv88svP8NOPP/Jn0LfffsPsiq84H/fu3oXSkjLYy56Xkye9WoP77QnlnA/86Sk/QPQlqX+Z3F6gY/K+f0oJ1kwXYzcS4hPAxOxcvO6lphKpf6a32JAz8v57H8Hz58/g559/4vdxYGCA71nS63DsWqzloLTgPsMu/wDe7668rBy6GQPEx+fPnnM/Dm1U5OC3337lbIh8IDcnO07y+WPjJ5ulPsT2BOcNmkP+9a+xip+PuBdBe3tirBAeR5tH7IukdK6cPKZpzaq1vPYQ2rbm4lIp13Uk+UBJSjwGv/7yC7+vv//+GxgMedL/sBaQKzXfqefBP5Ed1PVlS1fA8mUruR21csVqWLVy+HH24z68yvkY/Xa0R/mgPrH0P4qdkve9cSWGbihr/6J9gns5eTl5vFY0xgQUGQul/R1vs2GLkQfsWfgHe0bQc2/e3AWvcO6IEZx7cY1rKHMw1X6XHxvJmBS1yagxezkf46c88CgfIgOUOyrnw9UYU1q/dbQPYKtXbER4BJiZrYk1dirLK9hzeaWkoyPJB303Pu+Qi//+908uN65fl16Hfro9Pqgu/VD3RfD1Yi9DFG/mjGhB0K6a+PGXnJE3Rq1W5DOpV57IB15z1Gs8TnES7vJBn4e2mT17AnVJ7BWLtmtFqRks5gqoqqiExITEEbOrHM0heXn50vzxxx+/Q/KxlFfOSZ6rLvbScvdeidd8pGLi1Sxjxhk4H+9MalTk82hvi3ob0bWmv6l+OT2v8G+Ky6Z5ZSj3V97nQx4H+7LXQhHvJWu1VEFNVTW8O3aCKtiQM4J++aNHjzgbaGuhLzJ3znzpvCh2DJ8zYq6HuyKfQ3Q+/i7//vcUyU/H35ViROxzRM86yguU54PKc3uGItRfhuwCeQws7yVrqWRcWKHWWvP/7V1ne1TXEZ5/km9xYidxYoptcAvgQpELBmzRVJFEM5hg2aZJQr0X1HsvKwn1jrqEEMVgEmJwHJt8cGLncUJ+Qs57pFnOXt3dvVfeFSvpfphH9rJa3b33vGfmnZnzDoWFhvuM79CLs3bt2iNxgbwL+Lo2n6X9vp7w92q8+6TOjPiy/eHFKxIfz/w+eVlev7P9dP/eA1I3vbmxiVptzZSixCu+gg2968nLy6f/PXpEjx79V+YmW1svO/AvT2BCOwPF4ufO7amnQyQ+wEWW8/dQ88OomYKPtzQ10+VmnImuk/N0nzQnNxpnXRM+FdhAXeQ/P/1Ex4491vzW082yzLuGHBYwgpyWL1yPmfgBuSqVj//6V89QjsAKzlm0YUbm5TZZ+/BV36EXZ4F3PHz4naypo+aF+jr3Zy0m3l2OPfG+ZIitgA/EWk/6WhAPo25oFCPafO5nkZ8LXLTKfprO9nY6d+acz2ND7/rgM4AL9J/8+8cf6c7tO8K3PM7zGuk/4fOZsNVaP/SEIdfrCz1Z6lknIxjBGlH5OGaNt4t4vbOtnbo6OqmooFCei1wO2NDDSHl5hewb+vGHH2T/xMT4hMN7Xc2iUrFhNjdomU5M46QnS+3v4z4G1XgNgzvq9ViZNXyOO4zo1QC3bH6DOoCL9g7q6YSeX7O47ld8mnMYwcjkxAT9S2ADffD//P57Kil+fFYEe4OeNpA3sKFqZuMnPxesDdagUV9faYYaIfN0tSdL1d9RdRPUefW4Lzx3mX96EyNazrFxwytSG727s5N6u7upv6eX/D/cu2ziKldc5DfCR3z94AF9L7CBs1ToxdPWfVS+7i2/gRwha83wf+N1PB/k7/E6z6xfqT5ErydLxQfWKe67NvenrZd7St9QDyNYC2q/BeKnqopK6u3qpr6eHhro66PjSr5nuWFDDyM4K3L/q69kbzbOHeJcboTSX8k+xJsxlfqM1frhaqor6vVkafXbgA3sHaqf8KR+mzuMqPgANsAx+roFLnr7aLC/n2KiYpY9NvSu/3DEUYmLf8AePpTaDhHhhx3Wpjf5Bp/J5D5szomtJnyoPVlHPyqx67oyPjjW5PfzGVBv4UOLEfXeAxvFhUXU39srcYFZsZXl5fbzmMuNcxjBCHwGcPEd7NtvpQ4K9FDU3N9isGGEM6oayLxHrjZ8yHh3vifLP/CBXJfAgF58xX1VWL8cl+I13mdc7UOLwQj/LX4t6nyUjKWGBgZoeGhIxFgVKw4behiJuhAjcfH3b2Df0J3bt6WmnzNu5s7U2e+L4R+sdcn9jupZhpVoak+Wn1+Y/M7q/VP7phg3jBFtj5We4d+0/NKVIZ7SnsWOvhAtzyZfGRykkStXJCdfu2b9isSGHkby8wqkxtzfvv5anqH+4tYtO0Y4t4cY1N3ZKp5XZeWvzJm3e7LwTNz1EuE5w7Q5fvALxsXo8LDk5DhXvlI4hxG+DsvLzZN5rQf37wvufl+eGQkNCXPYV1z1ofA5gZW+lr1hS9GThWfjaq/RxgnQebwYHSNjKeBifHREcg9VH3ylYsMZRi7l5Eq9a2hw/PXePbr3l3sCI44zZXEP9fwI7v9S6moxN9H2a3uij/vn8ls9H6ru4azXp8ZN3u7JwrNxxiW1s4/BK8C9R4ev0NjICE2MYb5wn12bZzVgwxlGoHuDmQmYnQCdmj/fvUshwaEO+wz8rxqjMldcyut2NsuHNfzwOtbDUvs0ZzkFNefE/f58hgm8fPfezkX1ZJnZk/heuXqWwAa49xwuRmlyfFxw8v5ViQ1nGMkW9xA6N3e/vEt373wptc4y0jMX+BG9e26Uw3tCP4P7K1S9AbP5Lz6Pqve56uuqZo6rOMUIPrQ1Dvybv3+4qZ4s9kHqOWYjpu5lWj0e8IoWm03EUsDFGE1PTkjusZqx4QwjHx0/QV/euSP7GG9/cVvqRBXkF0rtTO0zMrvfcX795/QBs2/gM1mLxYf2PXo6OFwTUOf06a1J7pdSP4/f5w4fEncmdbJwLfi+ZnN8elwEGh7g3hMCF1MTE3R1apIa6+tp3drnVz02nGEkOChE4gI6mZiXe1NYs61Zai6rv6c9o+9uXWtrT4uNrzxRf9e+R08HR7ue9bRauT6h1aLgHLURfDjryXJ17VzDNcKzOHcLbKj4CDsULjnG1MQ4TQtczExPU1Njg9gLf2th4xeuc7/bt/mJezcuZ61DbxB6sqPDI1IXSs0Ncg7YlY6p2efpLk5Qe/R4vam6aNjn3eX+XeGD/83ZetZ+FvfjaP0H7/MqnrX+iN9vVicLvsDdfsN5WzwjNZ4C14iPi5ccA7HUzPQUXZu5SinJyXZsrNT6hicx8tqrm8jWZKPZmVl5FvHa1Rmpz4mZeVo/gj2Kn4fenu/JfhXu8TbCH/R+F9jxJD74c7V/l+MuZxqg6utmdbLwObznOKsTQotDm5sH16itqaEpgYurwMXVabH3zVB0VLTTeMIy5xjBfoL8L3BxdWpa7DfTwh9PUUlRCa3VzCDWq5Xw3mqGT+J3vJUz5n1d1eCE6engAEdqvgn+ylvXtRidLD7rr+0zga/Q5m5h4WERsocKHGNG4GJW4GJsdIQCA4IsbPxMTgKfMT05JbAxKfzyhIy9+nr6pB6n9nehZ7pj2w679o/erEd3sYM3vxvXNFV+q1c/0atXePO6zOpk8Qxavr+IcQMOHFjwPsRT2ZlZ4vlNylhqdgYa3ddkzgoxgoUNz2Bk61vbqb+3n8ZHx2lsZIzGhkelLnpaSrrufA1n+5s7XrBaz7kvRidL65+150ChJYw6BnOM67MzglPOUkF+vkNO0sKFZzACHBTmF0quPiKwMTw0LGeHdbZ1yDk02mfHcYve+UQ9M5Oz5J5IX+/V4rqgEa0jMz1ZzPXYv6mxn/QZWdkilnrMMW4IXCCPGxQYbPkML+PkUEgYdbV30pWBIRrqH6TBvgE5fzInK0dgYZ1DDDD3/hCHZ+qMc5rpc2R+6utz4/CdjNYrzPRkIZbCvqPdH3CeZ2hwYI5jzMdSt25cp9aWFlq/7gULG0uEkTXPrafc7FwaENhA3AU+0tvdSz1dPXQk4qhd00K1zyJP23OPevGY0bXOGrPg2UbjNk/fD6Pad2av1V1PFvYavXw64t/6ujo7x7gucHHzxix9cesGfRr5qdMcjGXey2/BMJOyVfDYXoGLns5u6u7oEr6li5rqm2iPohmm2qkTJxbgxExsZWZPNvPZXNMzUqcxytdVX2ckFnSmkwVc6MWp69Y8T4kJiXP5WuDi2hzHuHXzBtVUV1s+wyd8yTpKiEuUuOhs66QOwUfaL7dTe2sblRWX0Y7tb7vECWJ0M1qkXHsz+jtG1zLXaoz4G1yz0Xonf66R3INWJwv6U3q4AMc4f/a8zNdem8/X3rguYqmb12VNHH0Qrp6ZZUuLEdiWzW9SRWmFxAV0JzETs9XWSi1NLZSUkEzbt/q5XL+IG9zNglNrY0b2Y6xhozkxM/gwo0PFuTwjNVJgAT7kXPSEbr8JcHHq4z8t4Bg3BcdALBUbc3FBbsrChW/h5OD+QKqtqpW4aG5sJluDjWwi3mqqa5QzuPTqJjCeBYfar6t5PmZ6ucysYzP4AE6NnmHlHhtXuW6urerV9mCoxybEJ8iz4As4xnws9cfXNlu4WCY4AT8PCwmnqvIqqYHfKLDRUNtA9TX1VFddR7lZuRQUEGKfUaca8IF9FD95Zgkb9zoajZnwPqM5YDP4MBO3wbhWqsZk2ANQS3XV67n1zW0SF9OanpA5jnFd4mLHdj8rllpGGHHAiVj/ocGHqLykXOICfqWmsoaqK6qpWmCnqqySTh7/WOBgk26swf1dvH64Zmw09jezhs3iw0xOgXsK4XPwfYALxJJa/HMMdWDfQbrc0mrvO3fgGCKWqqmqsnCxgmIu+IngwBAqKSiex0UVVZZWUkVJBZUXl1NZURmlJafTnvc/oGd/95zTXBDrpmFtIR7z5Br2hv9grTXggjW/nPVy7nzvfYqLjVvQd65yjGoLFyseJ+++vZMy0zLtuCgtLBW4KaHi/GIqyiuiwtxCijkfQ7ve203POomNVHxEnTsjuT3+n7kLrz9v4oP5Nq93jpf4muD/cE2u+v8xVzpWYAf6OXNn+Bz7zrknJC01VXy2hYvVEnfB3nx9K31yKlL6lOL8IoGNQoGNAiq4lE/5OfmUl50necr5Mxco8EAQvbThFZd/h3mLGo/xHs95UvwbY4g5MeNMxQef0+bzE+r7eS4EfzYwAV6t8ghnPTWoq+713yd1QqD1PKcTMne2VfadKz0hwEzkJ5EONQwLF6sPJ4indu/cQ0nxSQ64uJR5iXIycig7PZuy0rIoMzWTEmMT6WjEMXrH7z3a+KLxeZeqLgHPu2ZccM5IxQfX47D2OUZifPBPI/V+1IagTxl5OpLKSkrtWoSqTghzDO47T0lOoT27PjDkjy1bPbEXbP3aFyjoYDDFRcc54CIjJYPSBT9JS0qj1MRUSklIoeT4ZEqKS6LTJ0+T/559Yi2/TS8+v9FtDcVbtnHDy+S34x06HHFEzgCvqaq2650DF6y5ZtcJAceY7zvPzblEgQcDHc63utpTLFvdPgWG3okPd/vT55+cofQkgY1EgY0EgY14gY04gY3YJEq8mEgJMQkUHx1PcVFxFHshli6ev0hnI8/S4UNHKDTwEO18dxf5CexseOEl6XO0Z7uMGHgT6gubXttC27fukD2aYaFhlJyYTLnZl+RMpY75mUo9XV1S79yu62zHxbCdYwwO9FNOdjYF6GDC8hWWmcXKU798mt56YxsFB4TQ2U/POsVFzLkYafhvvB4fEy9jMuApVfgc+B/4oqy0TMoR/gkxXF52ruQ84D/FgguVFpVQeXEZVZZWUFV5JdVUVlNddS011NRRY10D2RqaqKXJJue2trXOzafkmUpydgxw0Qe98wEHLUJooZ86eUr2Epr9/pZZZmatgA+8+vIm6V+OhB11wAWwAtwAQ4i/EIvB92SI+AyxWrbERY7EBfgOcgLID5QWllBZcSlVlJbLukxNRRXVVtVQvcRFvcAFZn3bqNXWIudTdsj5lB1zM5W65mYqcSyFWUvpqWnSx0BHZ7Hf0zLLzGDF1TrCnCzwj/dFPBV0IJhOHD1JF85ckLwlMzVD4CJL8n1w//ycPImLIoEL5M/KigQuSsqpsqxCzvWWuIDPqK2X9f/mxiaBi2ZZs+P5lN0ilsrKyJTnV48dOU57P9wn5wZ74rtYZpm38aKNz17e+Ko08Pj9ew/IGvXB/QEUsD9Q5o+DDgoLCCbUMUOCQmXdn3lG+KFw2rLpdTmj8vXNb3j1Wi2zzNuYWeq1+KT/vmWWeWrdetKse2yZZZZZZpllvmX/B1BLAQIXCxQAAgAIANqIPlt8AtUID0AAAABxAgAEAAkAAAAAAAAAAAAAgAAAAABkYXRhVVQFAAclDtxoUEsFBgAAAAABAAEAOwAAAEJAAAAAAA==</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #24</Name>
|
|
<Index>24</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPltuy0oXBkAAAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J33W5TH2se/f8l7zvWe6z0nlphmYmKLSYydqMSCit1YjhpAEQuoCCgiSpHem3RYdqlL71XBgqjYY4stMSbn9/POPTDr7AMoC7u4C88P98Wy9Xlm5jN3mfue+fvf/oG/q/Le5G//87+DFrW9VBkL494Wvl8VVSw1TtVrUkXlYXDjbuHCxVzc9rvDzc0d4RExSExKY5KKouIytJ6/iNa2i2hp7UBzSzuXpuYLaGw6j8bGNjQ0tqK+gUl9C6Ki4pnEITIyDocOHoGT016sWbMec+cuxOTPpph07WpfqmIJJgZ6zzfffI9Nm7bCy/skUs5lop6N7Y5LXWi/eBUXOjqZXMH5diYXLqPtwiXGxaU3XLQquGgiLtoMXNTVN6O2jkltE2pqGlFd04Dq6npUVdWjsrIOFRW1TGpQXl6NuLgk+Pmdwa6dzpjz/XyM++BDlRdVRpSHCeMnYaWDI3x8/HAuLRuXrlzncvHyNXRc7jJw0c656JS4YCK4aOsw6Azioqn5PGeDuGggLhqICyaCi9pGxgZx0WDgorJScFGDsrJqlJVWoVRfCb2+AvqScpQUl6O4qAwpyWk4cdwPG9dvwfSpX6usqDIsLvp7zc5uKQ4eOgJdfgkuX+3G5c4buNT5hgvOhuBC6Aziot2Yi4LCUsQnpCAuniQZe/fu57JnD4kbFxcXkn1wcd4HZ2dXLj5ML0Uw2yw8nElYNNcZxEU5cVHGuCit7GGjpMLARXFRKYoK9SgsKEEBu+4CXTHytUXIYEx7e53AimWr8Oknn6usqDIkXeHgsBZBweFoZuP6Slc3rhi4uNGHiw6Ji6TkdPifDsI+t0NYvnwVFiz4gescS1z/jOmzmB21AJuZbbdrpxOCg8KYvkhnXJQyLhgbggtdEXTaQujyCqDV5CMvNx+aHB1ys7U4yz6z1nEDPvl4ssqKKm/VFYKJFsZEZ9dNxsXNHi6u3uhhg7gQthTjIpeNt2Nevti48SfMmjXbau5v3AcT8f3sedixfRfTPb5cZ2g1BT1c5OoYG1rGRh5ysjTIzsxFdkYustJzEHgmGGtWr+vDisrJ2NUVU76YiuMn/FHJ7PvOa7cUXHQbuCDRMPuEfPBFC5fY3P2TLbV8mQOOHfVBSlIacjI1PVxk5CAzPZsxlIWM1Eykn8tAWko63A8ehv2SZSbZoaqMHi4cVq1FLPMBrl6/3cMFkz5cMImKTuCxKUvZSO9Lpn41A7t3OSMyLKqXi0zGRQZSmX2Wynz6c0mpSEk8h2jm92xctwkff/SZyskY4GLLlh2oqmnkXFzt5cJIZxATMcTEtlHHxEBC9tRmZiOGMttScJGckIJkNn8kxSUjMTYJCTGJcGI8kb5VORldXEyY8BHc3T3ReuHygFxomS+7afPYYWIg+WrKNLg47UVUeDQS4xgXsYmMjQTER8cjLioOsZGx8GC219czvlE5sXG/m3PhIXEhbKleLppbOxAYFMbX99T2M5YP/jUBS36wxwnm3wsuYiNiERMeg+iwaEQxu+yQ2yHMnD5L5cQG41FkR7VJXMg6o6Kqnq9njHVdMVghXbHPxQ3R4T1cRIZGIjIkAhFnwxEeHIYDrgfw0YefqJzYABd2dvaoqm1C1wBcbGY2lNp2Q5OPJn2Kndt3GbgICwpFWGAoQgNCEBJwFttY2/7rn+NVRqyQDfIbM7I0KhcjwQnTFTu2/huhgT1cnD0TjODTQQj2D4Qfs8eW2C1VdYkV6QzyMbpu3DH2Ma4x/6Ktg3GxXW03C8kkxgnpDOIi6FQAAv3OIODkaZzx9cdBZnNNnzpTZeQ9siFsKaWPQTkhqn8xckIc7P15D2eDi99pBDJegvwDsMFxg2pzjRAb4jHFpU74nu7XloqJTcIXihi9KiMj8+cswElmX5EuCT4dyOyuIGZ/BePEMR/MmPa1ysgI6Ixvv52DgqKyXp1h7GPYKexer2Pe3AZQ29Fy4rrXDdOlsU+6gnRGCPNJQplvEhYUwnz5UObTh8Fx1doB5zxVhs+Gk7OrwsfoyQnxOX6qjy1VWlqG//73v4iLS1Db0oL+x+vXr3k7O6xcbfQa6QtfrxOICA5DZEg4okIjEB0WCR9Pb3w86VNVl5jZnhK5Usq4lN0iY52xa8cO/pf6i/qNRJ7fVDGfZGfn8vZtbm7h/69auRKffTrZSJds2bAF0aGRiAmLQmxENOIiY7g+mTdnvsqImewpni+lyAmhdW9ZZ6xfu7bPd1G/yf2nivlkwfxFhvlH6I4P2Tz2z/8bhzmz5/DH4r20vniG+e1xkbGIj45DQkw8kmITsGPrDpWRYbCxZct2XqutzAlxcHA0vEfMV1992dcnJ72h7ENVzCNi7iEdonxN8CH3CeWr7Hfdj8ReNpLjE5GSkAxvZm/Ra6pPYhobVJOhzDunHEJlbGrRgkVv/d6gwGDejw8fPlLb2Yw+ObUp+R5vs1370+mrVqxGSnwSzjE2UpNSkJZ8DuHMd5/65XSVkUGwMWH8R7yGT5lfGxgUamRPkZ/Rn854mw9JrKjtPXyfnOYaU9pzj5OT0f+UIxwXFYv05FRkpKQhMzUdSXGJ+E7KE1UZ6Z8NXaG+Tw3f7p/39NEJQ53v1DYfnsj62NTYuWzjkk0V6B+ArNQMZKdlIicjC7mZ2Vj+4wrVJ+kvRsV0g65Ab8RFU0s7Vq5842sIfUG+oalxW7KT6XPqGB+ebP1pO2eD/pryOeov4oP8RfLh6blxvT5JTkY2YyMHmqxc5OVosGKZw5hnxChGxfQqxWrl2tbG5gt96jIofijrBBJ1zL4fG8tUpmitVvShHAMmcd7tjLxsDbQ5edDlapGfp4PHQY8xy4h8r8QAxaREbStJnq7IyNeQuVDOSUPRCSL2IuyE0b4+Iq8FyfE8um/hS8hxcGFDCZvUVF0hC/1GfzEusU4lhHRGvkaLAsZGoTYfRboCHHE/MuYY6Y8NeZ+QPO0bNkQ8/W3zGLW9KfMZ8dTVdc3wP62zj3a/XcS5le1Ec7qwU4XfTdwQE+K99J6hrh/Rd1D79tc/ZCtT38q6ZOXyVZyL4vxClBQUQV9YDM/DnmOGEfn+iA3yL+S9CDVaY71BbSivMw003k3xRaj/5f4mNsZCXIvaiMY93bu4X+W902tC1wzUXqb+5tv0O7GhtA0cVqzmXJQWlaCsWI/yklIcO3ps1Me1jONUk1BeWWe0F6FGW2hgo792G6x9q/LR/zwuYkfCpqJxa0k+TPEPaT2RxGBPO6xBGeOiXF+GitJyVJZVwIn5KKOVESUbebpio70INXlv2KC+HErO7WA/Q/0t21dknw2WrdFiX9H9UzsQG7J9Rc+LvBHxXhrjZCOZ2hemzDlkI5DIfuCaVY6ci6rySlRXVKGmshpr16wbdYz0ZaPIaL/zXAUb1EcklsxLH2v+ubB1lH74SPjnpugb+j1Z5ziuXsu4qEJtVQ3qqmtRX1OHdY7rRxUj8j0EBIYY7eucqykw8jdo7hJr3ZZmRBXrEcFGf/lcpDPqa2rRUFuHxrp6lDNd9vXMb0cFI/K10761hv3OL11FXUOrERvHvTxVRlQ2+HM/bd5sFNfavnUHmuob0NzQiJbGJlRVVOLzyV/adExLvuaNm7b2ctFzRgad/SL2O6d2UK4XqYyoekMZ+z3p64eWpma0MhuwraUV2ZnZhvnV1vgwiuMyDui8sZ6zY3rOVKIz+cR7KYbbX56hysjYZUPMm8oYZmJ8As63tuFC23m0n7+AyPBIm7SzZH9cX1pldKbSzp1v4nTviuHKjKg1TmOHDVnkWqsJ4z9EblYOOi6042J7By51XMTuXU42xYh8jRGRsUbnU/r7B/WZI971fcSIiNfLz1N8Us4HpTYX8Xy1Fso2+HgXG2KMyDkU38z6Do3MF7l88SKuXLqEzstXYLdosU34IvK17dzlbHQ+ZVa21mAv/rjUflC1G28TeW2L4o9kg4l4vlpzbv1iyhxG+kPO11q5YhXj4jKuXrmCrs5OtLW2Wr0vIrNLvrd8PmV1TSM+//wr/pq5/AiZj4HWgdVxaBmR80bE+joJrSOK52nO6u95c8lxnxPounoV17q6cP3aNSRIOUbWyIjsc2Tn6N6c23r+Ij+nUp43TM0pVPmwLpHbV+RzifV4sdYuakREf5u6Bj9Qn8t2QVFBIW5cu47uGzdws7sbe1z2WiUj8rV4eh5nbFzi+yrQmcZ+pwKM9KTwKYZaryRYUPmwDj5kX1DoDHrOXDmOwuag8aLsU9qTvKO9Hbe6b+L2rVu4zPyRL6dMtSo+ZLuKzjIWZ323tHWgoFA/YM4h3TPpaVNrnEQOCsW1BBP0HbL/Iednq2I+EW0q8yF0A7U9PTY3HzSH0vcLvUH7cZD/Kl4nnXGHsXH39h3cu3MX2jytVekQ+RoKi8r42cgtrR1obmln92bHn39bnjqNbVNrZUX+mxq/Gnm9QX2ltK/EY5kDc/Ah16coRY7vpCSn4N7du7h/7x4e3L+Pfa5uVsGI/NuurgcNXJAcPuJleE25X9i75ghVrFd/kJ6W9xOj+Yh8DRr/9FfodPqf3kt/SZ+bkiMt7KmB8iJpLMl7B01k/5Ov/uCXX/DwwQPcuH6dP2ctfFAuTHMvG03NF6DLL8b4cW9iuYNtE3X/BNtghNiQ7VfqN3puoDUqU/pV1OMO5jOzZs4yrI3sc92PRw8f4vGjR3jy+DEyMzLfqw6RfzMuPplz0dR8Ho1N5zG/164yhY+xJIuYn0ZrWh6HPHDE4wg8jx7rsSVi41CqL0VYaBhO+fnDz+8UTp70w+7dTvjRfjmzKaaPKT/nXUJ2ibx2WFhYiF+fPMHTX3/Fs6dPYW+/7L3wIfvky5Y5cDaIi8bGNgQHhxl0oMrGPzD3+/m89i3oTBDytTqeP0S5EbTue+PaNdy+eRP3797jcx/168sXL/DHH6/w119/cnn9xx/4/fff+PPPnj3FkyePkZ9fgNP+Z7Bt644+55GPNZHz976fPY9z8fzZM7x4/hxNjY3vRYfIv6XTFTM22tDA2Cgtq8Lk3rxjZf7lWJFxH0zAih9X4riXD99joJzpA6p/o9qe5sYmzkdpiR5pqWkICT5rpD/2ux3AhvUbea6qrD/Ky8q5XhF8PGQs3Wd+6J07d3Cz+yZqqmv4ehnlXoxFPuRxdjY4BC9ePMfLly/w228vue5VzukjpTu2b9/FuWhoaEV9QwtcXPYZ3tdfvHo0y9LF9jh80IPvBZjH7p32qSE+0s+lwZuN/W3M11wwb5EZxsM0rHVcz5nS5Go4H7R+fLWzE5cvXoK+uASeR44xn3DKmLHFKCYg1gk+nPgxmzvucZ376tXvbC55wJ8bKR0ifmP8uA+ZvqjmXFA9h15fyZ8TcTmRnzma41J0vsXa1ev42Ui05zLtJ0t8hAaFYMO6jey+Z1r8GiZOmMT3M6Ax0tjQyHNbqT6CdFV0ZAzsly4btWwQE6I+WF7zcmd+Hdmor1//gT//fM118UjoEPn7XVzcUM+4qKtrRm1dExwdN/SJz8k1zNR/o2XNbhKbj7Zt2cbPAKdzXxKi43A2IBibN2zBJx+/X5tyxXIHhIWEcT7qa+tRU1WNTMYsMTRauBDrKfIeAspY8PXr17n/9p///IVff30yIjpE1h2kL2qJjdom5OToDO+h2kg5j0R5H7a8JyjpC4dlq/gZrXT2JPHhsd8di+2WWN21kn3lcegwigqLUFFWgdJiPaIiojD7u7k22/4i9qucd+WxJx47OblwNkiIE/LlLOmrG+kO532ci5qaRlTXNMBxzZs9JfpbBxR7Gov7ssUzASkme9rXH0GnAjkf+1xcjc5ktVahueznXU583+ei/CLomF/kddTrves5U4VsdlErJ2pHlPaIsmaiu/sGZ4NsrMePH1lUh8i6o7i4vIeN6gZkZ+UZ3qM850EpxDrdoy2tA9JZku4HPJiPEY6QgLPwOnwM3/bWzttWXG0iDrsf4Xxo2NhKYv4S7TFlK9cv9hx6V+4prauLeJbTz86cDfJDSCgWaCk/RHyf45oNnIuq6npUVdVhzeo3uuNte+XKvomt9Mm8OQsQFhyO6PBozsfqFauNzrq3RZk2dQZCgkKQlZ6FtJQ0rkvk880sNbaFHUT9L9vc9JieIxtD1g/K/eXoPYOxzZVrCtevX+O+OsmDBw8sYmPJ35Wdnce4qEdlZR0yM9/URx5wcx3Sd4t8NyHC9rJ0fc27ZI+zKxLjkhAXFQ9vTx980VvfNVrkp81bOR90BmBESAQ/Q3Mk+FDuXyn2cqQ+Fj622MNxqL8nn6Hw824nvHr1isd6KeYr6tUtwcfSpcs5F5WVtaioqGG/7WKS7uhPqF3EWomcq2OJ+ppB2SFsLj3DfIxzSamcj61bto8qLozs9SnTcJbZjAkxCYiJiIGdtK+MpfgQezaK/hb7VyrtpuHwodz3n/IWiQ1aL+zs7DSrDpG/IzwsmnFRi/LyGuh0RYb1jqHqDqEnSK+KfXCF/WXO+prBytSvZiApIQXp5zIQExXH7avRyoaQnnNlD3A+SI9s/2mH2b6b5jqxfifbV6JWh0TYV+bkg4Rym4QO8T1xEr+9fMnX1F+8eMFz2czNx+TPpqCCcVFeXo2ysip4HvV5a8zKFBE5oUKXvA8+pk2diXPJacjKyEF4SOSYyQUUsnbNes5HSGAIs722meU7yV+guU8+Y2Ug+4r6V9hXpE+Ge1akvO8Jxa0of43yTp4/f4Z4M9aqi8/vd3NnXDA2SqtQqq/EjOmzDHME+QxDXSNXtp0l6jMHw0Z6aiZymW8VxOyNcRb2V61VKIZNfAT6B/K1TnMxIvvbQ/XPhyKyPkqIT+B5i5TD9vTpU0ycOPz6EPmz6WlZbCxXQq+vQEy08foFsSFqW03d61u0iznra0wRuvasjFxoNQUICQ7jcdCxyIaQhfPtOB/+vv7YsG6TzV0/sUZjhewQOd5FeTaU20s50rSeTrmg5uJjyeIfuc7Ql1SgpLgcqxx64uaUf081Ksr5QulLDGaMmqu+xhQhHZibo0VBfjHCQiPHPBtC5s9dyPnw9fbFOmnt15pF2DE09oQtQ/aVPD4vdnTw+hCqn6qpqRmWjSV/5ugRL5SUlDM2ylBcVGoYR2TjDeR7iFwAa80nodhCXl4Bu58yRIbHqGwohGITxIf3EW8ssbPOOh6xJiLGmXI+Jj7kc6m8vXw4G1RjSPU2X06ZZhY+cnN0fBwVFZbixPFTBjaUusOWJD4+hevElOR0lY0BZM7seZwPr8NemDt7vtVdHzHxrhoKmr9F3gnVBjx69JCzQXXqZ04HDJuPxT/Ycy6KCvUoLCjBD3ZLbZ4Pby9fvn5D+kPdE+Idca3V6zgfXsyG+Pwz26spITZoTyDxf1VVFR48+IWvibS2tAzJxpLfe9jDk3GhZzZ6Cfdj+9NbtiT29it4fgzxQX6VysC7xXmXC/x8/HBov7tN5tfI64W0988v9+/zvYBIZn83Z1h8ZGVquP+aryuCD7NHBR/y/iq2IlT7W6Kv4Hwc2O+hjv1BCvU36Y+g04HYtH6zzV2/vB86+RzEBe2XdffOHezd4zpkPqjenbjI11JedCFW9O6jO9z1wPclMTGJvGYlKSlNHfcmyjdff8f5iAgJt2iuliUZF4+bm5o4G3du3+Z1/abaWOJ9e1z2cS60zE7XavINfqzyfDhbkHXrNvFaeeJjpg32rzUI1UwSHwGnztjctcs5UFRvS/v13r55C7du3uQ1yoPlQ34PrQkQF3m5+Qg9G2543tbqZGkP4IrKOs6HvIeEKqYJ+R6kQ+Kj45idZXtrh0IW/7CUc0F7vnff6Mbq3joYU/ggXUFcaHJ10ORosa03b02cNS/va2/t7eG67yDf21HL7ER1nA9P/p+9826r4toa+Poq97nPk3Zz3xhrTKKxxBIVK2KLnSACoiKgFCmKICAgHNoBDuXAgUNHmoVmAbE3xBaj6abX+wHevbasyXZyOsNhxswf6wGGU/bMrN/stfZeBWN8kY8SY7HqcxDF/RGMzRBjwB89eMj7ImAtUoxfdJePJew6IBcYk9RQ1wxz5zz388XecWIeMH437pmrbb0U+/JgrwXkY9WqNbqOKyDxsfFgqaiE/eH7VTc2jFfCfXSqEywKMkKvq6utg/v37sN99rr21naXfRD6/+7QMM5FQ20T1Ne+2CcOGRC5lI/D3RissZT0Y8c5H1gDVddtZWTWzDmcjwamYxPfHv0cIo89tVWb2lm+nFhTShSKpZfbOVgDCHtPDd8dhrtDd13qzyb+LzUlnXOB8d4pR57n7drquYuCY8Xx4bht9d4Qz03Mq6f4f/lxpQRz/rA3KPKx6KOlum4rKEmJSZyPmKiYUX+WPNeD6lqJx5zly5Fdg6+jOFm5PuE+Ie1pY/3jYcbF3TtDMHTnjsSPq3zUWxkbNQ1QW10Pu4J3S2tknqxb4bgpFkC0w8Q8MuRc6Rjd/ftjOR9l5RZdpxUWrFGBfLS1nBh1fI6tXCh5LShn+Q7IgjPbXl6LdIixcef2Hbhz6zYc2B/tMh9zZs+D2pp6sFbXgdVSK/W5Qf482fsQY/mRbeRAfo7yHmlKyIWBK5yPLQrlMujyouSw+4V8hATt8th/tseHfA5RKh9IrJmOvaawJuutmzehylzlsm/+8fpNjIs6qKmqhepKq7RO4azPjbNrQTkd1C9iLPnYtm0H3Lg1DJ2nenRdHiNZvWoN56O6yuKRPtAcYS+XVqyLqBQfYtxHZkYW3Lpxk9fTx1qTznx0Oh4SFMrO2crYqAGLuVqyrTyNRxT7AYs90MaSD2NRGecjcn+MrstjKHU1Vjhz8hQsnO9+fC/qBOUMirpCPqm4JqtUvhw+3+kZHxIcyusVX2dy7eo13ufJlTWspEPJnAus4YG1bRz55q4IrXPRuZHvRHmDlG+pVB7U1Knvwu2hB5yPl60uj9okNiaW85F0yDN9pdw4kRnySeW5cUrky6EOUzzv4kU+cJ1xce3KVd53YvGIH2GLD/FYidEEVcynrSyvgr2790nceVrDRzxv0Yeiugzy46OV7dt3cD6amtt1HR5jWeqznPPR2a69a41rusjFFSaXL12W1gOc8YFcmMsqoaLULOUgY8yVGEevZikuqeB8hAj1uXQZO2lpaoJzfb3w0cLFqh8rrmHFx0ZLf2MviMvMfrl0cRDiDsY75QPjNM2ljA2TGcqZnuFekNbu19DwI86Hblt5RxLjEzkf+8L2aWK8oh1UWlIKgwODcLH/IpQUmZyuXS2cv5jXDSwrKed19YgPtIHQd6I6JfiT9mvUFK/o47OC89HVfU7XXS/J+nUbOB+mkhLVjpH8HLShxF40hmwDY2MABi70s3mw2e4aFv29ZeNWzkVpUSmYjCaH30m+AzGjhtir6Jh4zkfW8Vxdd70kkydO5Xxcujgw7mNBP1d8htNP2nOT+/Zhe8Oh/3w/X9/FHpHO+NjM+DCNsFFS+Px5gGtXos2mZilhPhPysSs0TNddL0pjfT3nA9eExnuecPYaXMOifMKwPfsYG+fh/NlzjPFzTvmIi47jXGA91qSEv2qIaiUfqvfsAOdjyZIVut56UbIyMjkfwUEhqh+rWHt04YLFnIuzvWfhbE+fVHPZ3h7IwaiDUJxfBEV5RRAzsreG+4Ja6WU+fP8x50PXWe/K3j1hnI/EhETVjxXnDtrrXrhgEe/R2NfTC73dPbBgZJ/THh/YK8mYZ4TC3EKIjoyWeNNCLR8fn5Wcj+7eC7rOellWrfTlfJgrKrTFB5svert7oaerh/dptMWH+Ht2RjYUGgp4v6SgHcHS52nBviI+qq2Nus56WXDvA/lobKhX/VjFOHSso9nDuOg+3QVdp87AruBQh3wU5BRAfnY+7826fs3znsC4L6iFelcxsQmcjyPJabrOellQz5CPG9evacL/EHvddjE2zjA2Tp88zWOyHPGBXOQdz4XcLIPEx2hjS7zNR3R0vK6z4yBa4UMuZxgX2P/6VMdJKVbfHh/IBfZpNTA7a53f87gxrcSW6HzofLg6f4j7Fac6TsHJ9pPQ2d4JwTtDHPKBbOQwNrKPHYe1I/XglBCKYaa8QbE/ilLfYcg1cj5Cd2sjzuFlk9qaGs6Hz5Klo9YTFOrpTHmztLch9tcRj7vrg9DvyEVnWwd0tLZDUGCwY/+ccZGdngXH0zJhre9afgz3HMUes7ZE3sdA/h48F8odpB61lCOjVI2g+sYTnA8fH33vYzyk1GRSlA/8neJAaB8c9Urszyb2HyOR90S2JSahxxpy0X6iDdpa2mDnjiCHfCAXWakZkHn0GKwZqYeD+murNoQo8jFSDzlim85bngflrN+7zsc/mw+K8aO6Ba7k1Ynziz0RPwO5aG1uhRPNJyAwwDEfmSNscD5G5g8xT8Oe2Jrj8HyIdW/ysXakv5Uu2uGDdEDOh7y+jSt8yHOsbIkYh9XKuDjR1AItjc2Mj50O+chISeds4BxC/sdo9geRe5zLRD5E+4ry0ZW4Pyls3Lp/Pn7S093F+Zgze65b7yM9QAbkfBA3+KylGjiifUW9/Nz5PjHHFqWlsQWaG5qhqb4Jdozku9vjA7lAGwt9kHV+z/kYTXwJ5dF6wz/X16+0u35FjDjyz+k5Olr/HPfyxP085KKprhEaaxsgwH+HY/+ccZHDfHRc310/sr6Lvr4WehrofOjru55IY10DNDA26q318Mn2AId84NourvHmZRlgg7B/Lu43qlV274ngfGB+ra6v3pXJk6ZxPi6cV39eGtpCYp0f5KKupg5qq2vBf9vf+RAlLvog5B03QH52LkRFRGnqHunxV+MnFH+lhfhEUd59532oY1zUWqxgraqBDes2OuQjKvwAFOTkQaEhH2JGai5qZf6YNvVdzsfglZu6znpZdgQEcj4K8vNVP1b0PcifnjP7Q7AyNmoYG9WV1TB71ocO+YiOjAJjbgEU5RVC7IEYTfkfKJT/QfW4dfGS7xcVw/mIjFBfzwO54Hosxe9iHWHkwmK2QFVFFa9PYosPqXZiYAgU5xmhpKCI21l4DNnQSn5UW8dpPX9wHMRYUMj58Fut/h4rmK9B+bUrl/uChXFRVV4JlWVm3r/TER+bNmzibJgKS6B0pD4D8mEvvp32YnAtTg31GbJz8jkfUVFxut56Uag+w9SRGp3jJaiDzurpoC7Tft62LduhkrFhZmxUlFb8jQf537hnXmosgbIiE5QXl8KEtybx42KdEvEn7dmopW+Uv38g58NSrf48nZdFMOcO+ejp6hr3saAeulO/BOOtkItyUzmUl5Q55QPrXSEXFey1Zvae2R88r3+llZ6c6KNTfThdd70joSGhnA9Ddo5qxyivf0XHE+ISGRfPa73FxdjfNyM+3mH6hVxUMqaq2JyzctkqyUfXSg0TzD9HPtaM7N/oMraSm2PgfGzauFn1Y5WvNWXxfrzP61lFymLQbfGBgn6Khdlk6LdsH+ktg/aap/XbRT/FG/Wpk46kcT4yMg26/o6xYO8orE+NfEyZPE3145XvVZh4L94SKC4sho0bNtu0reTHjh1Nh2qzBWoqLZB8OHnUY5L3bqCYM3l/A6XieDF+F/nA/lG6Do+trPVbx/kwl2svZgFt8RLGBdZ6K8ovgqWLl9nlQ5SD0QfBWlUNtZYaMOYVSsePHErwaBzi2pa9/jjkRyl17gOD13j/Dz8/9fdn17JkHsvkfAT4B3j8GWJMIuZ7UPwq9YqhZ+xocwZRQnbulPyE+R8u5FxQPauZ789yyAcd99/2CdRZrFBfUwsN1rpRX0P0iWjdgDgY6/5Rh5OOcj6OZWTrejxGgr2dsb8a8jF50lRF+ED9oFxU6nvsSs6gqyL60BvXb+JcFBgKID8n36YtZYsP7KPTUFMHjdZ6aKprgA/nzOPH0f/wpM4P9aymn67muYxGZs+ex/nA/pxT9D4HYyK7d+3hfKSmHB3V54h84LxAcwPpiFK6gn656Htg/cMCQz5jIw/ihbUrZ3xMnDCZx8JjTHxzfRNs3rhFYs+TOBNbOYL4TBD7O9vKYR+tmKusnI+ICG3U1taSvPbqf6Cy3Mz5WLbUs1gFWzmDqPfkq1L/TqX4wLUrsQ5PZnom5GXnQe7xXAj8ZKdT30P8H/rnLQ1NcKKxReoBj2w4qvOD3FNvc/G4PF9e7NUpz59U8h5u3RrA+eg7O6DHYyks27f68/7n5aVlHr3fXs6gLd13JWcQOUI9I3/FluAaLNlXb7HvRy4MWQbIycyR9jGc+eYkSez7W5taoK35BFSUltvkA88Rx0P9N8l/UnoeGI10nuqGy1dvQXj4AV2vFZw7TMZizsdo4q3s5QxSL1fRpnDmn6PdLq+/QPVO6DUYQ0hxJehDiLWs3n93pkt8SH1yNm2F9pZW6DjRBp2t7Yy7KdIcgZzSeckFx+mIYW/Lli3+nI/unvPwxuv6HKLINWX2tqWiEooKjKoZE+oc6qX4nCbBdTDUS/G5vcM/kNeaPs7YyErPcup7yP+PPGFdIKybdbK9k/nm66VxiN+NnNB6lFrvZ3vHGRi8dB0OHlR/7X3Vzx2vvAH5hjzOh+/K1aocIz7DkQW0a6j2AekqveZQ3CHORWZaJoSF7nObDxRcu8KapFibNCEuQZoT8Xuph7kW7umiRUs5H/0DV2CmBvuNqkmCA0OgtMjE95C1Mma0saj+CdfhNydwLjJSM9h5HAO/kTpvrvge4mtSU1L52nbXqdNQW219YZ1MC/WqX1wjMHM+jMZSXc9H8VzG9VDkg/KItCLiuutHCxZDxlHGRsoxSE9O5/0T3fHNxX3Cbma39Zzpgt6ubml/Ef0crcQqkkyZ/A6cOdMH584PsrkvSNd3N+VVZlehTYJ8hI70ANCSHIgMl37HvjbpKemQdiSNndNhl20r+euQq94z3dDX3QNne3phT+he6TVamz9QAtl1QT46mD8yY8ZsXe/dkG2btzNfNovHu7726huaPpek+CRIPZIKR5OOwtaN29x+v8hRRVkF71t4rvcsVDGfzBaPWhKj0QR9ff1QVlrJe7rouu9c5s1dAKlJqZyPGSrJg3NHcM+c7B20C1MZFymHUyDlUDKPwXJn7pAzgnuD5/vO8d7Q/ecuwJRJ6o9hdiRYp6mj/TR0d5+FhPjDuv47kYlvT4HYA7Gcj00b1J/f4Uxwvkg5lALJiclwJOGIZAd5yscHzA7pP3ceBs5fgIsX+qX675jfroWaP7YEe/oiH6dP9cC2rZ/oHNgR1J3IsEg4dPAQROyN0OQ5YLyguKedEJPAuUAby1+4957ygYK1rQf7B+DSwEWorbG69H5c+8U1NSVjDpUU/+2BnI9O5ous0WPg/+6PMzb27QmHw8x/jd0fqzp/E/UL9wOd7buJa62zZsyBpIQkfk7I/Lw5CzxiQ85IeFgEXLo4CJcHL8GVS5dh1khOurzOLwquNeO4cY9ELTUb7Ek8s6+Qj7bWTvBZslznQpCdAUHcRo89cBAmTpiiyjEiI7QPiD/l+3Fo44hzB9qHxEZibKLHtpWcD1wbRS6uXr4C165chcSEQy/w6Wycapa4g4mcjxpLHbw3fYbOBvqz2wL4+ifyMeltdbIhF5xH8LmMQs9lsWYC/k5coGDuh6e2la334TrW9avX4Ma169DPfBE6TnEvnsaX4PspBkDMFxNr24vHlRbMny7IL4KWpjZorG8G31Xqr282ZjbVK2/A7uDdPO4C+Vgw7yNFPtdePLoYty7qga1+ZO7MKfheivGQ7JqFSzgXyMhhZjd8MLK+7ykbcka2btkON69fh1s3bsDtmzd5fLMS1w6vD50H5Yvh73itaB5CP0bJPiG2GDmWlsn5qLM2wKoV6owrGkvBuKoENpdivDfysXD+IsU+W+QD7QuKzcV4KLzPeEyMa0UbXYzp9VTE2N2IvZHctkLfPErIB1KKD5SB/n64c+sWDN2+zeyRauk4xgx72l+K4pCp/hxeJzwuXh95fsxYyYHIaM5HTZUVggJD/jFsYE0nnC8wzzT96DHF1/DlfFCcoHhf5Tl0o+EDbX5RH6dPe4+vV+Ga7lFmM/qu9FOEDfoM+pykw0cYG3fg7tAQDN+9y2tf03g8jTcRa5sgG8T8ePCBsitkD+ejqsLCn6eY6/Ays7Fi2UrOBdbwwHlDyfqgeC/J3hHtJeq55y0+Arbt4L4U7uGkJ6fxtTml+BA/Z9qU6TA8dBfu3R2G+/fugSHH8MIcQjV/PZk/RB+Lrg/ZVzT/ektnVi5fzfkoN1VAXna+ZKu+TPI6437f3nBe6wxrB+K6J9pYSn4H3jfKvRD5oL7elFcqt7Op97ESbPz3zQk8jiSNcYHxiKPZ83DFxsrJNsCDe/fh4f0H8OjBQ15DiMblCR9y/5xikL3ln9u1OdicfDwjG0zGUl4DBuvkvfqKtuOOSObOmQeFeUZe1x/52DGSez0WgvfTlr9NPcNd9c9dXROV11LHuDG0HTGWPSs9U7IdlWJDzshSn+WMiwfw6cOH8PjRp5Cf91ddFLFuvKO1BTXlFzr0WdkzNjR4N+ejICef+XZJMHf2PO3OGa+9yeOFmuobeT8xrB2Isd5aGDuuRznrBY5ruOLcgXkeGdiLOS2T5wlGhEUqPnfY+rzG+gZ4/Omn8OTxY3j62WfsWfucCfRB7PEh1v3Cn1raI8G4fvTrMF/5eFoWhIWGSfnKWpA3Xn8TQoJ2QX1tPZxoPsH5iAzfrxnfiuwtmlvs7T3L5441q9fxmEreUzPLIMVWKs2GnBGs5/KEcfH0yRP4/OlTMBYa7Y4RfTR5br2a6je4KmhbrfNbz/nA/vA5GcfhQPgBKSdGnVz8l+cktLa08hzQjtYOKCrqBp8VZZq7/pS3KtrcaIvQc1b+bMb7hT6HISuH+ZC5cEDopTnWfKC0NLfAF59/Dl9+8QV89eWXbGzvveCHODsfrQrO2Z8wHw/5yM/O47224mPiYMVS9fTXwniHuNh4OH3yFJzt7YPuM93M17DAhg37YOrsX7m88pqfJq+/rect2iZyPgLZsVzsM4u9NHMLnNYOVZqR5ctWci6+/uor+Obrr6GkuORv6xbO5kNNc8I4DwoI4nxgLyHsB4F9hTC3bjziVLC+17at/mAuN/NYoMGBi3Dh3AVoqGuADes+/mvckys5H29P79b09UcdE2uVIDP07MXaVlj3DXMdsX50bFTsmM8dtj6/ra0Nvv3ma3j27bfw3bNnMH/eQolxqheh5romSshb/zcRNn+8BXIys6HGbIH66lpoZs8D7EUUx+YVfI6MVR7W3DnzYe+efVBrreV7Urdv3uLxP8iHIdsAq2zUF/nXvybAlA++5Iy89uYezT+j0CahNWQ6HrY7DAoZF0X5Rl6f/YOZs73ChpyReR8ugGfPGBvfPYPvv/8OTrH5XFy/82S9V8uCMT77md9bba7idfVOtnXw2hZ93b3MJ27ia+MR4ZGwZNFS8FmyzOXPfXf6+1zXg5mPffhQErS2tsHnzLb9jPmAjx4+4ntRyEdLUzOEBO/i9pXDuWZCKucDOUFetHzNcc1KrNk7c8YszkVxYRGYikogPtZ5Xd2xnENKTaXwww/fw48//gA//fQjbNn8Vz4v1pL/J/EhylKm/xFhEVBabOJ8YP4l2jwYA33z+g0eh/CA6fXjR49g6M4QtDGd7+zohNOMp+6ubrh27Sr8+ecf8Ptvv8Evv/wMP/34I38GffvtN8yu+Irzcef2bSgvq4A97Hk5bap7NbgnzbjHGUFWPPUDRF+S+pfJ7QU6Ju/7p5RgzXQxdiMpMQlMzM7F615uKpP6Z3qLDTkj0995H54+fQI///wTv4/Dw8N8z1K6D2zsWqzloLTgPsPOwCDe766yohJ6GAPEx+dPnnI/Dm1U5OC3337lbIh8IDcnO0/y+WPjx5ulPsQeP3eZf06++r//7b6/JO5F0N6eGCuEx9HmEfsiKZ0rJ49pWrN6La89hLatubRcynUdTz5QUpKPwq+//MLv6++//wb5+QXS/7AWkCs136nnwT+RHdT1FctXwcoVvtyO8l3lB6t9xz7OHn10T311kQ/qE0v/o9gped8bV2Lo3Fn7F+0T3MspyC3gtaIxJqDEWCzt73ibDVuM3GPPwj/YM4KeewsXLHqBc0eM4NyLa1zuzMFU+11+bDxjUrQmOG94ut5ray+bcoHwXsr5cDXGlNZvHe0D2OoVGxUZBWZma2KNnerKKvZc9pV0dDz5oO/G5x1y8b///cnl2tWr0uvQT7fHB9Wld3dfBF8v9jJE8WbOyMsi5KujP+Lqcwl9DZEPvOao13ic4iQ85YM+D20ze/YE6pLYKxZt16pyM1jMVVBTVQ3JScnjZlc5mkMKCgql+eOPP36H1KNpL5yTPFdd7KXlicjnkPGKideyiOu9rvjqtLdFvY3oWtPfVL+cnlf4N8Vl07zizv2V9/mQx8E+77VQwnvJWi01UFdTC29PmKwKNuSMoF/+4MEDzgbaWuiLLJj/kXReFDuGzxkx18NTkc8hOh+eCe6DuLPeSzmA4v0TeyDJ80HluT3uCPWXIbtAHgPLe8laqhkXVqi31kGA/w7VzB227CxfX7//b+/KuqOqsvD+J/3Wc7fLZlBBUAEHCEFFRRlCJkjCJEhrVCAkIfM8kHme55B5JnNCCINEWlq0baVXL7q1l9341g/90uc7yS5O3dyq3JtUhSR1H/YqqFQqt+qe7+z97b3PtyUukHcBX9fms7Sfd6nGZ40ZH0/qzMhqN+bqqK+vtGtztJ8eOuAjddMb6+qpuaGREpV4ZaVgQ+96srNz6KdHj+jRo//I3GRz8xU7/uUKTGhnoFj8fGmm5ntXam+Wmh9GzRR8vKm+ka404kx0tZyn+6Q5udE467rwqcAG6iL//vFHOnnysea3nm6WZU/elrM3y0z8gFyVysd/9cvfUKbACs5ZtGBG5pUWWftYqb5DL84C73jw4DtZU0fNC/V17s8ya4iVVmNP/Grm6u7szUI8jLqhUYxo87mfhH4qcNEs+2naW1vpwrkLKx4betcHnwFcoP/kXz/8QDN3ZoRveZznNdJ/wuczYZ5aP1xOc3dvlnrWyQhGsEZUPo5Z460iXm9vaaWOtnbKz82T5yJXAzb0MFJSUir7hn74/nvZPzE2Omb3WmezqFRsmM0NWmZuzXJ/H9brS15/lxh5bmuu3JN4DYM76vVYmTW8z0IY0asB7tj+CrUBF61t1NUOPb9Gcd1bVzTnMIKR8bEx+qfABvrg//HwIRUWPD4rgr1BTxvIHdhQNbPxyPcFa4M1aNTnPcVU/R2s/dsz/7Nx9auDX9jm9/HcZX50J0a0nGPzpq1SG72zvZ26Ozupt6ub9r93YNXEVc64yG+Fj/j6q6/oocAGzlKhF09b91H5urv8BnKErDXD/8bzuD/I3+N5nlnvqfjAOsX3fiDwoR1X19bLXaVvqIcRrAW13wLxU3lpGXV3dFJPVxf19fTQKSXfs9qwoYcRnBW5/+WXsjcb5w5xLjdE6a9kH+LOmEq9x2r90NPrilr9NuTFy8p77fK9rtRvWwgjKj6ADXCMnk6Bi+4e6u/tpcjwyFWPDb3rPxZyQuLib7AHD6S2Q0jwMbu16U6+wWcyuQ+bc2Keig98ftZ1ZXxwrKlydfRmuQsfWoyo3z2wUZCXT73d3RIXmBVbVlJiO4+52jiHEYzAZwAX38G+/VbqoEAPRc39LQYbRjijqoGMxyep9bsSjNcl9gptfIXvZ//+YNru/ZPESGHZf206ybzPOMPdYq4F76nWj8PDwmUsNdDXR4MDAyLGKl1z2NDDSPjFSImLv34D+4Zm7tyRmn6OuNlCps5+Xwz/YK1L7ndUzzJ4AkbwmdXvT+2bev9sp8QHcDIwMDWvx0rP8DMtv3RmiKe0Z7EjLkbIs8lX+/tp6OpVycnXr9u4JrGhh5Gc7FypMfeXr7+WZ6g/u33bhhHO7SEGXehsFc+rsvJX7rPF9GbhnizUS4T7DNPm+MEvGBfDg4OSk+Nc+VrhHEb4Oiw7K1vmtb66f19w9/vyzMiRwCC7fcVZHwqfE7DWsHttsb1ZuDfO9hptnACdx0sRkTKWAi5Gh4ck91D1wdcqNhxh5HJmltS7hgbHn+/do3tf3BMYsZ8pi+9Qz4/g+19OXS3mJtp+bVf0cS81RtLzoeoeznp9fJ1mz4IvpjcL98YRl9TOPgavAPceHrxKI0NDNDaC+cI9Nm0eT8CGI4xA9wYzEzA7ATo1f7p7lwIDjtjtM/C/aozKXHE5r9vRLB/W8MPzWA/L7dMc5RTUnBP3+/MZJvByMzhWe7M2bgozdW0qFvXuJbAB7j2Li2EaHx0VnLzXI7HhCCMZ4juEzs3dz+/S3ZnPpdZZakraPD+i950b5fCu0M/g/gpVb8Bs/ovPo+q9r/q8qpnjLE4xgg9tjWMhLXQ9W2xvlrqXafV4wCuaGhpELAVcjNDk+JjkHp6MDUcYef/Uafp8Zkb2Md757I7UicrNyZPameraMpv/VXviltIHzL6Bz2QtFh/a1+jp4HDuVZ3Tp4cR1n1R349f52p8yP1/TjcLvVlmfk+Pi0DDA9x7TOBiYmyMrk2MU11NDW1Y/4zHY8MRRgL8AyUuoJOJebm3hDU2NM7TBNSe0V9oXWtrT4uNr1xRf9e+Rk8HR7ue9bRa+dy3VouCc9TuwIfK1Z9+euEZnpy7BTZUfAQdDZYcY2JslCYFLqYmJ6m+rlbshb+zsPEz57lfr13e4rsblbPWoTcIPdnhwSGpC6XmBjkH7EzHVK3JL5U3Y32pPXq83lRdNOzzC+X+neGDf2Z0PXM/jtZ/4HrUMwF41PqjxX4PRnSzOG+Le6TGU+AaMdExkmMglpqanKDrU9coMSHBho21Wt9wJUZefGEbNdQ30PTUtDyLeP3alNTnxMw8rR/BHsX3Q2/Pd2W/Cvd4G+EPer8L7LgSH/y+2r/LcZcjDdCl1HhU3ax1G/XnfEOLQ5ubB9eoqqykCYGLa8DFtUmx901RRHiEw3jCMscYwX6C/C9wcW1iUuw3k8IfT1BhfiGt18wg1quV8N7qKHbXM/yOu3LGvK+rGpwwPR0c4EjNN8FfuTOXrfZdmeHqWt0s+Apt7hYWHBQie6jAMaYELqYFLkaGh8jP19/CxhI5CXzG5PiEwMa48MtjMvbq6eqRepza34We6e5du23aP3qzHhfike78bFzTVOsVevWTpdYrFmNm+mq0ulmIcX19fOa9DvFURlq6uH/jMpaanoJG93WZs0KMYGHDNRjZ+ZoX9Xb30ujwKI0MjdDI4LDURU9OTNGdr8FaJs766PR4gSefcwdOzXx+1s3a8+7sPEntOVBoCaOOwRzjxvSU4JTTlJuTY5eTtHDhGowAB3k5eZKrDwlsDA4Mytlh7S1tcg6NNk7iuEXvfOJS90/uiVzpvVpcFzSqdWSUpzHXuxAxJvsW1dhP+oz0DBFLPeYYNwUukMf19wuwfIabcXI0MIg6Wtvpat8ADfT2U39Pn5w/mZmeKbCwwS6WmX19oN09dRR/m+lz5JzYSp8bh8+E6zT62YB7I58JsRT2He3+gPM8A/19sxxjLpa6ffMGNTc10cYNz1rYWCaMrPvDRsrKyKI+gQ3EXeAj3Z3d1NXRRcdDTtg0LVT7JHQ296WnB8G6y0bjED7vZjRuc0cs5I5rxXp3hiXsNXr5dMS/NdXVNo5xQ+Di1s1p+uz2Tfo49GOHORjL3JffgmEmZbOICboFLrraO6mzrUP4lg6qr6mnfYpmmGpnT5+ehxMzsZXZPdnM67S6to7MKF9XfZ3RWFBPTx+40ItTN6x7huJi42bztcDF9VmOcfvWTaqsqLB8xorwJRsoNjpO4qK9pZ3aBB9pvdJKrc0tVFxQTLu99jjFCWJ0M1qkXHsz+jtG1zLXaoz4G1yz0Xonv69R7q3mKaA/pYcLcIyw82EyX3t9Ll9784aIpW7dkDVx9EE4u2eWLS9GYDu2v0qlRaUSF9CdxEzM5oZmaqpvovjYBPLa6e10/SJuWGgWHGIwM/sx1rDRdWkGH2Z0qDiXZ4R7MxYcvRa4OPvBH+dxjFuCYyCWioq8NC83ZeFiZeHk8CE/qiqvkrhorGukhtoGahDxVn11nZzBpVc3gfEsONR+nc3zMdPLZWYdm8EHcGr0DCv32DjLdXNtVa+2B0M9NjYmVp4Fn8cx5mKpl17cbuFileAE/DwoMJjKS8qlBn6dwEZtVS3VVNZQdUU1ZaVnkb9voG1GnWrAB/ZRPPLMEjbudTQaM+F1RuN+M/gwE7fBuFaqxmTYA1BLddbrufPVXRIXk5qekFmOcUPiYreXtxVLrSKM2OFErP8jAUeppLBE4gJ+pbKskipKK6hCYKe8uIzOnPpA4GCbbqzB/V28frAHm+l1NLOGzeLDTE4BNRC8N3wOPg9wgVhSi3+OoXwOHqYrTc22vnM7jiFiqcrycgsXayjmgp8I8AukwtyCOVyUU1lRGZUWllJJQQkV5xdTckIK7XvrXXrq939wmAvCOgNGsLYQj7lyDbvDf7DWGnDBml+Oejn3vvkWRUdFz+s7VzlGhYWLNY+TN/bspbTkNBsuivKKBG4KqSCngPKz8ykvK48iwyLp7TffoaccxEYqPsIvnJPcHv9n7sLrz534YA7N653jJb4m+D9ck7P+f8yVjhLYgX7O7Bk++75z7glJTkoS723hwlPiLtirL++kj86GSp9SkJMvsJEnsJFLuZdzKCczh7IzsiVPCTt3kfx8/On5TVud/h3mLWo8xns850nxM8YQc2LGmYoPPqfN5yfU1/NcCH5vYAK8WuURjnpqUFc9sP+g1AmB1vOsTsjs2VbZd670hAAzoR+F2tUwLFx4Hk4QT72zdx/Fx8Tb4eJy2mXKTM2kjJQMSk9Op7SkNIqLiqMTISfpde83afNzWwz/bVWXgOddMy44Z6Tig+txWPscIzE++NFIvR+1IehThn4YSsWFRTYtQlUnhDkG950nJiTSvrffNeSPLfOc2Au2cf2z5H84gKIjou1wkZqYSimCnyTHJ1NSXBIlxiZSQkwCxUfH04dnPqT9+w6KtbyHnntm84I1FHfZ5k1byHv363Qs5LicAV5ZXmHTOwcuWHPNphMCjjHXd56VeZn8DvvZnW91tqdY5tk+BYbeiffe2U+ffnSOUuIFNuIENmIFNmIENqIFNqLiKe5SHMVGxlJMRAxFh0dT1MUouhR2ic6HnqdjR4/TEb+jtPeNt8lbYGfTs89Ln6M922XEwJtQX9j24g7y2rlb9mgGHQmihLgEysq4LGcqtc3NVOrq6JB65zZdZxsuBm0co7+vlzIzMshXBxOWr7DMLFZ+8fNf02uv7KIA30A6//F5h7iIvBApDf/G8zGRMTImA56ShM+B/4EvSk9Oo0zhnxDDZWdkSc4D/lMguFBRfiGVFBRTWVEplZeUUWVZBVVXVFFtZTXVVddSQ209NdU3yLmtLc2z8yl5ppKcHQNc9EDvvM9OixBa6GfPnJW9hGY/v2WWmVkr4AMvbNkm/cvxoBN2uABWgBtgCPEXYjH4nlQRnyFWy5C4yJS4AN9BTgD5gaK8QiouKKLSohJZl6ksLaeq8kqqkbioEbjArO8Gam5okvMp2+R8yrbZmUodszOVOJbCrKWUpGTpY6Cjs9jPaZllZrDibB1hThb4x1sinvL3CaDTJ87QxXMXJW9JS0oVuEiXfB/cPyczW+IiX+AC+bPifIGLwhIqKy6Vc70lLuAzqmpk/b+xrl7golHW7Hg+ZaeIpdJT0+T51ZPHT9GB9w7KucGu+CyWWeZuvGjjsy2bX5AGHn/ogI+sUR8+5Eu+h/xk/tj/sDDfAEIdM9D/iKz7M88IPhpMO7a9LGdUvrz9Fbdeq2WWuRszy70Wn/Tft8wyV61bV5r1HVtmmWWWWWbZyrL/A1BLAQIXCxQAAgAIANqIPltuy0oXBkAAAABxAgAEAAkAAAAAAAAAAAAAgAAAAABkYXRhVVQFAAclDtxoUEsFBgAAAAABAAEAOwAAADlAAAAAAA==</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #25</Name>
|
|
<Index>25</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPltU0LGsGEAAAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J33W5TH2se/f8l7zvWe6z0nlphmYmKLSYydqMSCit1YjhpAEQuoCCgiSpHem3RYdqlL71XBgqjYY4stMSbn9/POPTDr7AMoC7u4C88P98Wy9Xlm5jN3mfue+fvf/oG/q/Le5G//87+DFrW9VBkL494Wvl8VVSw1TtVrUkXlYXDjbuHCxVzc9rvDzc0d4RExSExKY5KKouIytJ6/iNa2i2hp7UBzSzuXpuYLaGw6j8bGNjQ0tqK+gUl9C6Ki4pnEITIyDocOHoGT016sWbMec+cuxOTPpph07WpfqmIJJgZ6zzfffI9Nm7bCy/skUs5lop6N7Y5LXWi/eBUXOjqZXMH5diYXLqPtwiXGxaU3XLQquGgiLtoMXNTVN6O2jkltE2pqGlFd04Dq6npUVdWjsrIOFRW1TGpQXl6NuLgk+Pmdwa6dzpjz/XyM++BDlRdVRpSHCeMnYaWDI3x8/HAuLRuXrlzncvHyNXRc7jJw0c656JS4YCK4aOsw6Azioqn5PGeDuGggLhqICyaCi9pGxgZx0WDgorJScFGDsrJqlJVWoVRfCb2+AvqScpQUl6O4qAwpyWk4cdwPG9dvwfSpX6usqDIsLvp7zc5uKQ4eOgJdfgkuX+3G5c4buNT5hgvOhuBC6Aziot2Yi4LCUsQnpCAuniQZe/fu57JnD4kbFxcXkn1wcd4HZ2dXLj5ML0Uw2yw8nElYNNcZxEU5cVHGuCit7GGjpMLARXFRKYoK9SgsKEEBu+4CXTHytUXIYEx7e53AimWr8Oknn6usqDIkXeHgsBZBweFoZuP6Slc3rhi4uNGHiw6Ji6TkdPifDsI+t0NYvnwVFiz4gescS1z/jOmzmB21AJuZbbdrpxOCg8KYvkhnXJQyLhgbggtdEXTaQujyCqDV5CMvNx+aHB1ys7U4yz6z1nEDPvl4ssqKKm/VFYKJFsZEZ9dNxsXNHi6u3uhhg7gQthTjIpeNt2Nevti48SfMmjXbau5v3AcT8f3sedixfRfTPb5cZ2g1BT1c5OoYG1rGRh5ysjTIzsxFdkYustJzEHgmGGtWr+vDisrJ2NUVU76YiuMn/FHJ7PvOa7cUXHQbuCDRMPuEfPBFC5fY3P2TLbV8mQOOHfVBSlIacjI1PVxk5CAzPZsxlIWM1Eykn8tAWko63A8ehv2SZSbZoaqMHi4cVq1FLPMBrl6/3cMFkz5cMImKTuCxKUvZSO9Lpn41A7t3OSMyLKqXi0zGRQZSmX2Wynz6c0mpSEk8h2jm92xctwkff/SZyskY4GLLlh2oqmnkXFzt5cJIZxATMcTEtlHHxEBC9tRmZiOGMttScJGckIJkNn8kxSUjMTYJCTGJcGI8kb5VORldXEyY8BHc3T3ReuHygFxomS+7afPYYWIg+WrKNLg47UVUeDQS4xgXsYmMjQTER8cjLioOsZGx8GC219czvlE5sXG/m3PhIXEhbKleLppbOxAYFMbX99T2M5YP/jUBS36wxwnm3wsuYiNiERMeg+iwaEQxu+yQ2yHMnD5L5cQG41FkR7VJXMg6o6Kqnq9njHVdMVghXbHPxQ3R4T1cRIZGIjIkAhFnwxEeHIYDrgfw0YefqJzYABd2dvaoqm1C1wBcbGY2lNp2Q5OPJn2Kndt3GbgICwpFWGAoQgNCEBJwFttY2/7rn+NVRqyQDfIbM7I0KhcjwQnTFTu2/huhgT1cnD0TjODTQQj2D4Qfs8eW2C1VdYkV6QzyMbpu3DH2Ma4x/6Ktg3GxXW03C8kkxgnpDOIi6FQAAv3OIODkaZzx9cdBZnNNnzpTZeQ9siFsKaWPQTkhqn8xckIc7P15D2eDi99pBDJegvwDsMFxg2pzjRAb4jHFpU74nu7XloqJTcIXihi9KiMj8+cswElmX5EuCT4dyOyuIGZ/BePEMR/MmPa1ysgI6Ixvv52DgqKyXp1h7GPYKexer2Pe3AZQ29Fy4rrXDdOlsU+6gnRGCPNJQplvEhYUwnz5UObTh8Fx1doB5zxVhs+Gk7OrwsfoyQnxOX6qjy1VWlqG//73v4iLS1Db0oL+x+vXr3k7O6xcbfQa6QtfrxOICA5DZEg4okIjEB0WCR9Pb3w86VNVl5jZnhK5Usq4lN0iY52xa8cO/pf6i/qNRJ7fVDGfZGfn8vZtbm7h/69auRKffTrZSJds2bAF0aGRiAmLQmxENOIiY7g+mTdnvsqImewpni+lyAmhdW9ZZ6xfu7bPd1G/yf2nivlkwfxFhvlH6I4P2Tz2z/8bhzmz5/DH4r20vniG+e1xkbGIj45DQkw8kmITsGPrDpWRYbCxZct2XqutzAlxcHA0vEfMV1992dcnJ72h7ENVzCNi7iEdonxN8CH3CeWr7Hfdj8ReNpLjE5GSkAxvZm/Ra6pPYhobVJOhzDunHEJlbGrRgkVv/d6gwGDejw8fPlLb2Yw+ObUp+R5vs1370+mrVqxGSnwSzjE2UpNSkJZ8DuHMd5/65XSVkUGwMWH8R7yGT5lfGxgUamRPkZ/Rn854mw9JrKjtPXyfnOYaU9pzj5OT0f+UIxwXFYv05FRkpKQhMzUdSXGJ+E7KE1UZ6Z8NXaG+Tw3f7p/39NEJQ53v1DYfnsj62NTYuWzjkk0V6B+ArNQMZKdlIicjC7mZ2Vj+4wrVJ+kvRsV0g65Ab8RFU0s7Vq5842sIfUG+oalxW7KT6XPqGB+ebP1pO2eD/pryOeov4oP8RfLh6blxvT5JTkY2YyMHmqxc5OVosGKZw5hnxChGxfQqxWrl2tbG5gt96jIofijrBBJ1zL4fG8tUpmitVvShHAMmcd7tjLxsDbQ5edDlapGfp4PHQY8xy4h8r8QAxaREbStJnq7IyNeQuVDOSUPRCSL2IuyE0b4+Iq8FyfE8um/hS8hxcGFDCZvUVF0hC/1GfzEusU4lhHRGvkaLAsZGoTYfRboCHHE/MuYY6Y8NeZ+QPO0bNkQ8/W3zGLW9KfMZ8dTVdc3wP62zj3a/XcS5le1Ec7qwU4XfTdwQE+K99J6hrh/Rd1D79tc/ZCtT38q6ZOXyVZyL4vxClBQUQV9YDM/DnmOGEfn+iA3yL+S9CDVaY71BbSivMw003k3xRaj/5f4mNsZCXIvaiMY93bu4X+W902tC1wzUXqb+5tv0O7GhtA0cVqzmXJQWlaCsWI/yklIcO3ps1Me1jONUk1BeWWe0F6FGW2hgo792G6x9q/LR/zwuYkfCpqJxa0k+TPEPaT2RxGBPO6xBGeOiXF+GitJyVJZVwIn5KKOVESUbebpio70INXlv2KC+HErO7WA/Q/0t21dknw2WrdFiX9H9UzsQG7J9Rc+LvBHxXhrjZCOZ2hemzDlkI5DIfuCaVY6ci6rySlRXVKGmshpr16wbdYz0ZaPIaL/zXAUb1EcklsxLH2v+ubB1lH74SPjnpugb+j1Z5ziuXsu4qEJtVQ3qqmtRX1OHdY7rRxUj8j0EBIYY7eucqykw8jdo7hJr3ZZmRBXrEcFGf/lcpDPqa2rRUFuHxrp6lDNd9vXMb0cFI/K10761hv3OL11FXUOrERvHvTxVRlQ2+HM/bd5sFNfavnUHmuob0NzQiJbGJlRVVOLzyV/adExLvuaNm7b2ctFzRgad/SL2O6d2UK4XqYyoekMZ+z3p64eWpma0MhuwraUV2ZnZhvnV1vgwiuMyDui8sZ6zY3rOVKIz+cR7KYbbX56hysjYZUPMm8oYZmJ8As63tuFC23m0n7+AyPBIm7SzZH9cX1pldKbSzp1v4nTviuHKjKg1TmOHDVnkWqsJ4z9EblYOOi6042J7By51XMTuXU42xYh8jRGRsUbnU/r7B/WZI971fcSIiNfLz1N8Us4HpTYX8Xy1Fso2+HgXG2KMyDkU38z6Do3MF7l88SKuXLqEzstXYLdosU34IvK17dzlbHQ+ZVa21mAv/rjUflC1G28TeW2L4o9kg4l4vlpzbv1iyhxG+kPO11q5YhXj4jKuXrmCrs5OtLW2Wr0vIrNLvrd8PmV1TSM+//wr/pq5/AiZj4HWgdVxaBmR80bE+joJrSOK52nO6u95c8lxnxPounoV17q6cP3aNSRIOUbWyIjsc2Tn6N6c23r+Ij+nUp43TM0pVPmwLpHbV+RzifV4sdYuakREf5u6Bj9Qn8t2QVFBIW5cu47uGzdws7sbe1z2WiUj8rV4eh5nbFzi+yrQmcZ+pwKM9KTwKYZaryRYUPmwDj5kX1DoDHrOXDmOwuag8aLsU9qTvKO9Hbe6b+L2rVu4zPyRL6dMtSo+ZLuKzjIWZ323tHWgoFA/YM4h3TPpaVNrnEQOCsW1BBP0HbL/Iednq2I+EW0q8yF0A7U9PTY3HzSH0vcLvUH7cZD/Kl4nnXGHsXH39h3cu3MX2jytVekQ+RoKi8r42cgtrR1obmln92bHn39bnjqNbVNrZUX+mxq/Gnm9QX2ltK/EY5kDc/Ah16coRY7vpCSn4N7du7h/7x4e3L+Pfa5uVsGI/NuurgcNXJAcPuJleE25X9i75ghVrFd/kJ6W9xOj+Yh8DRr/9FfodPqf3kt/SZ+bkiMt7KmB8iJpLMl7B01k/5Ov/uCXX/DwwQPcuH6dP2ctfFAuTHMvG03NF6DLL8b4cW9iuYNtE3X/BNtghNiQ7VfqN3puoDUqU/pV1OMO5jOzZs4yrI3sc92PRw8f4vGjR3jy+DEyMzLfqw6RfzMuPplz0dR8Ho1N5zG/164yhY+xJIuYn0ZrWh6HPHDE4wg8jx7rsSVi41CqL0VYaBhO+fnDz+8UTp70w+7dTvjRfjmzKaaPKT/nXUJ2ibx2WFhYiF+fPMHTX3/Fs6dPYW+/7L3wIfvky5Y5cDaIi8bGNgQHhxl0oMrGPzD3+/m89i3oTBDytTqeP0S5EbTue+PaNdy+eRP3797jcx/168sXL/DHH6/w119/cnn9xx/4/fff+PPPnj3FkyePkZ9fgNP+Z7Bt644+55GPNZHz976fPY9z8fzZM7x4/hxNjY3vRYfIv6XTFTM22tDA2Cgtq8Lk3rxjZf7lWJFxH0zAih9X4riXD99joJzpA6p/o9qe5sYmzkdpiR5pqWkICT5rpD/2ux3AhvUbea6qrD/Ky8q5XhF8PGQs3Wd+6J07d3Cz+yZqqmv4ehnlXoxFPuRxdjY4BC9ePMfLly/w228vue5VzukjpTu2b9/FuWhoaEV9QwtcXPYZ3tdfvHo0y9LF9jh80IPvBZjH7p32qSE+0s+lwZuN/W3M11wwb5EZxsM0rHVcz5nS5Go4H7R+fLWzE5cvXoK+uASeR44xn3DKmLHFKCYg1gk+nPgxmzvucZ376tXvbC55wJ8bKR0ifmP8uA+ZvqjmXFA9h15fyZ8TcTmRnzma41J0vsXa1ev42Ui05zLtJ0t8hAaFYMO6jey+Z1r8GiZOmMT3M6Ax0tjQyHNbqT6CdFV0ZAzsly4btWwQE6I+WF7zcmd+Hdmor1//gT//fM118UjoEPn7XVzcUM+4qKtrRm1dExwdN/SJz8k1zNR/o2XNbhKbj7Zt2cbPAKdzXxKi43A2IBibN2zBJx+/X5tyxXIHhIWEcT7qa+tRU1WNTMYsMTRauBDrKfIeAspY8PXr17n/9p///IVff30yIjpE1h2kL2qJjdom5OToDO+h2kg5j0R5H7a8JyjpC4dlq/gZrXT2JPHhsd8di+2WWN21kn3lcegwigqLUFFWgdJiPaIiojD7u7k22/4i9qucd+WxJx47OblwNkiIE/LlLOmrG+kO532ci5qaRlTXNMBxzZs9JfpbBxR7Gov7ssUzASkme9rXH0GnAjkf+1xcjc5ktVahueznXU583+ei/CLomF/kddTrves5U4VsdlErJ2pHlPaIsmaiu/sGZ4NsrMePH1lUh8i6o7i4vIeN6gZkZ+UZ3qM850EpxDrdoy2tA9JZku4HPJiPEY6QgLPwOnwM3/bWzttWXG0iDrsf4Xxo2NhKYv4S7TFlK9cv9hx6V+4prauLeJbTz86cDfJDSCgWaCk/RHyf45oNnIuq6npUVdVhzeo3uuNte+XKvomt9Mm8OQsQFhyO6PBozsfqFauNzrq3RZk2dQZCgkKQlZ6FtJQ0rkvk880sNbaFHUT9L9vc9JieIxtD1g/K/eXoPYOxzZVrCtevX+O+OsmDBw8sYmPJ35Wdnce4qEdlZR0yM9/URx5wcx3Sd4t8NyHC9rJ0fc27ZI+zKxLjkhAXFQ9vTx980VvfNVrkp81bOR90BmBESAQ/Q3Mk+FDuXyn2cqQ+Fj622MNxqL8nn6Hw824nvHr1isd6KeYr6tUtwcfSpcs5F5WVtaioqGG/7WKS7uhPqF3EWomcq2OJ+ppB2SFsLj3DfIxzSamcj61bto8qLozs9SnTcJbZjAkxCYiJiIGdtK+MpfgQezaK/hb7VyrtpuHwodz3n/IWiQ1aL+zs7DSrDpG/IzwsmnFRi/LyGuh0RYb1jqHqDqEnSK+KfXCF/WXO+prBytSvZiApIQXp5zIQExXH7avRyoaQnnNlD3A+SI9s/2mH2b6b5jqxfifbV6JWh0TYV+bkg4Rym4QO8T1xEr+9fMnX1F+8eMFz2czNx+TPpqCCcVFeXo2ysip4HvV5a8zKFBE5oUKXvA8+pk2diXPJacjKyEF4SOSYyQUUsnbNes5HSGAIs722meU7yV+guU8+Y2Ug+4r6V9hXpE+Ge1akvO8Jxa0of43yTp4/f4Z4M9aqi8/vd3NnXDA2SqtQqq/EjOmzDHME+QxDXSNXtp0l6jMHw0Z6aiZymW8VxOyNcRb2V61VKIZNfAT6B/K1TnMxIvvbQ/XPhyKyPkqIT+B5i5TD9vTpU0ycOPz6EPmz6WlZbCxXQq+vQEy08foFsSFqW03d61u0iznra0wRuvasjFxoNQUICQ7jcdCxyIaQhfPtOB/+vv7YsG6TzV0/sUZjhewQOd5FeTaU20s50rSeTrmg5uJjyeIfuc7Ql1SgpLgcqxx64uaUf081Ksr5QulLDGaMmqu+xhQhHZibo0VBfjHCQiPHPBtC5s9dyPnw9fbFOmnt15pF2DE09oQtQ/aVPD4vdnTw+hCqn6qpqRmWjSV/5ugRL5SUlDM2ylBcVGoYR2TjDeR7iFwAa80nodhCXl4Bu58yRIbHqGwohGITxIf3EW8ssbPOOh6xJiLGmXI+Jj7kc6m8vXw4G1RjSPU2X06ZZhY+cnN0fBwVFZbixPFTBjaUusOWJD4+hevElOR0lY0BZM7seZwPr8NemDt7vtVdHzHxrhoKmr9F3gnVBjx69JCzQXXqZ04HDJuPxT/Ycy6KCvUoLCjBD3ZLbZ4Pby9fvn5D+kPdE+Idca3V6zgfXsyG+Pwz26spITZoTyDxf1VVFR48+IWvibS2tAzJxpLfe9jDk3GhZzZ6Cfdj+9NbtiT29it4fgzxQX6VysC7xXmXC/x8/HBov7tN5tfI64W0988v9+/zvYBIZn83Z1h8ZGVquP+aryuCD7NHBR/y/iq2IlT7W6Kv4Hwc2O+hjv1BCvU36Y+g04HYtH6zzV2/vB86+RzEBe2XdffOHezd4zpkPqjenbjI11JedCFW9O6jO9z1wPclMTGJvGYlKSlNHfcmyjdff8f5iAgJt2iuliUZF4+bm5o4G3du3+Z1/abaWOJ9e1z2cS60zE7XavINfqzyfDhbkHXrNvFaeeJjpg32rzUI1UwSHwGnztjctcs5UFRvS/v13r55C7du3uQ1yoPlQ34PrQkQF3m5+Qg9G2543tbqZGkP4IrKOs6HvIeEKqYJ+R6kQ+Kj45idZXtrh0IW/7CUc0F7vnff6Mbq3joYU/ggXUFcaHJ10ORosa03b02cNS/va2/t7eG67yDf21HL7ER1nA9P/p+9836LItn6+PlX7nPfd4Ov965r3OSuOWMW05pZRUBUBJQgSQQBAUlDHHLOkgwkA5gzYlpXN7u7bt77B7z1Lam+Ze8MMwzN0KP9w3mAZkJ19/l0nVN1AmJ8wUdedq7ucxDl/RHEZsgx4I8ePOR9EVCLFPGLQ+VjEbsO4AIxSbXVDTRzxgs/X+4dJ+cB47uxZ6639VL05UGvBfCxYsVqQ8c1kPDQcCorKqH9/vt1NzbEK2EfXdQJlgWMiNdVV1XT/Xv36T57XUtTi90+iPj/bl8/zkVtVT3VVL3cJw4MyFyqxzHUGKyRlISjxzgfqIFq6LY2Mu3jGZyPWqZj498d/hyijj21VJvaVr6cXFNKFhFLr7ZzUAMIvaf67/bT3b67dvVnk/8XF5vAuUC8d+zhF3m7lnruQjBWjA/jttR7Qz43Oa9exP+rj2slyPlDb1DwsWD+YkO3NZToyGjOR0hQyLA/S53rIepaycds5csJuwavE3Gyan3CPqHY00b9437Gxd07fdR3547Cj7181FQyNipqqaq8hnZ571bWyBxZt8K4RSyAbIfJeWTgXOsY3f37QzkfBYVlhk5rLKhRAT6aG48POz7HUi6UuhaUrXwHsGDLtlfXIu1jbNy5fYfu3LpNB/YH283HjOmzqaqihirLq6myrErpcwP+HNn7kGP5wTY4UJ+jukeaFnK+9wrnY7NGuQyGvCyp7H6BDx+vXQ77z9b4UM8hWuUDyTXT0WsKNVlv3bxJpcWldvvmn67byLioporSKiovqVTWKWz1ubF1LUROh+gXMZJ8bN26g27c6qe2k52GLo+QrFqxmvNRXlrmkD6IOcJaLq1cF1ErPuS4j6TEZLp14yavp49ak7Z8dHHcx8uXnXMlY6OCyorLFdvK0XhEuR+w3ANtJPnIzingfATuDzF0eQSluqKSTp84SfPmDD2+FzohcgZlXRE+qbwmq1W+HJ7v4hnv4+3L6xVfZ3Lt6jXe58meNazoqBjOBWp4oLbNYL65PSLWucS5Cd9J5A2KfEut8qAmT/6Abvc94Hy8anV59CahIaGcj+gox/RV5MbJzAifVJ0bp0W+HHRYxPMuXOBG1xkX165c5X0nFg74EZb4kI/lZZuplPm0JYWltHf3PoU7R2v4yOct+1CiLoP6+HBl27YdnI/6hhZDh0dYFrst5Xy0tbjetcaaLri4wuTypcvKeoAtPsBFcUEJFeUXKznIiLmS4+j1LLl5RZwPH6k+lyEjJ4319XS2u4vmz1uo+7FiDSs8NFj5G70gLjP75dKFixR2MNwmH4jTLM5nbJiLqZDpGfaCXO1+9fU/4nwYtpVzJDI8kvOxz2+fS4xXtoPy8/LpYu9FutBzgfJyzDbXrubNWcjrBhbkFfK6eoIP2EDwnUSdEvwU+zV6ild0c1vG+WjvOGvorpNk3dr1nA9zXp5uxyj8HNhQci+atJQ0xkYv9Z7vYfNgg9U1LPH35g1bOBf5OflkzjYP+p3CdxDM6CH2KjgknPORfCzd0F0nycTxkzkfly70jvpY4OfKz3DxU+y5qX17v73+1HOuh6/vokekLT42MT7MA2zkZb14HmDtSrbZ9Cx5zGcCH7t8/QzddaLU1dRwPrAmNNrzhK3XYA1L5BP67dnH2DhH586cZYyftclHWHAY5wL1WKMj/ltD1FXyobrO9HI+Fi1aZuitEyU5MYnz4e3lo/uxyrVH581dyLk403WGznR2KzWXre2BHAw6SLmmHMrJyKGQgb017Au6Si/z/vuPOR+GzjpX9u7x43xERkTqfqyYO8Re97y5C3iPxu7OLurq6KS5A/uc1vhAr6TsjGzKSs+i4MBghTdXqOXj5rac89HRdd7QWSfLiuUrOR/FRUWuxQebL7o6uqizvZP3abTEh/x7SmIKZaVl8n5JXju8lc9zBftK8FFeWWforJMFex/go662RvdjlePQUUezk3HRcaqd2k+epl3evoPykZmaSaYUE+/Num71i57A2Bd0hXpXIaERnI/DMfGGzjpZoGfg48b1ay7hf8i9btsZG6cZG6dOnOIxWYPxAS4yjqVTenKawsdwY0uczUdwcLihs6MgrsKHWk4zLtD/+mTrCSVW3xof4AJ9WtOYnbXW/UXcmKvElhh8GHzYO3/I+xUnW0/SiZYT1NbSRt47fQblA2ykMjZSjh6jNQP14LQQEcMs8gbl/ihafUdaejbnw3e3a8Q5vGpSVVHB+XBbtHjYegIRPZ1F3qzY25D768jHh+qDiN/BRVtzK7U2tZCXp/fg/jnjIiUhmY7FJ9GalWv4Mew5yj1mLYm6j4H6PTgXkTsoetSKHBmtagTV1B3nfLi5GXsfoyH5ZrOmfOB3EQci9sGhV3J/Nrn/mBB1T2RLYpZ6rIGLluPN1NzYTDt3eA3KB7hIjkukpCNHafVAPRzor6XaELKoxyh6yAm2xXmr86Bs9Xs3+Hi9+RAxfqJugT15dfL8Yk3kzwAXTQ1NdLzhOHluH5yPpAE2OB8D84ecp2FNLM1xOB/BujP5WDPQ38oQ1+FD6ICaD3V9G3v4UOdYWRI5DquJcXG8vpEa6xoYHzsH5SMxNoGzgTlE+B/D2R8E95jLZD5k+0rko2txf2LZuA3/fPSks6Od8zFj+swhvU/oARhQ8yG4wbNW1MCR7SvRy28o3yfn2EIa6xqpobaB6mvqacdAvrs1PsAFbCz4IGvdX/AxnPgSkUfrDP/cWL9y3fUrwchg/rl4jg7XP8denryfBy7qq+uorqqWtnvsGNw/Z1ykMh8d67vrBtZ34eu7Qk8Dgw9jfdcRqauupVrGRk1lDX22bfugfGBtF2u8GclptF7aP5f3G/Uqu/cEcD6QX2voq3Nl4oQpnI/z5/SflwZbSK7zAy6qK6qpqryKPLb+nQ9ZwoIPUsaxNDKlpFNQQJBL3SMj/mr0RMRfuUJ8oiwfvPcRVTMuqsoqqbK0gtav3TAoH0H+BygzNYOy0kwUMlBz0VXmjymTP+B8XLxy09BZJ8uO7Z6cj0yTSfdjhe8h/OkZ02dRJWOjgrFRXlJO06fNGpSP4MAgyk7PpJyMLAo9EOJS/gdE5H+IetyGOMn3CwrhfAQG6K/ngVqwHivid1FHGFyUFZdRaVEpr09iiQ+ldqKnD+VmZFNeZg63s3AMbLhKflRz6ykjf3AUJDszi/Phvkr/PVaQryHya5cvXUlljIvSwhIqKSjm/TsH42Pj+o2cDXNWHuUP1GcAH9bi28VeDNbi9FCfISXVxPkICgoz9NaJIuozTB6o0TlaAh20VU8Huiz287Zu3kYljI1ixkZRftHfeFD/jT3z/Ow8KsgxU2FuPo17ZwI/LtcpkX+KPRu99I3y8PDkfJSV6z9P51UR5NyBj8729lEfC/RwKPVLEG8FLgrNhVSYV2CTD9S7AhdF7LXF7D3TP3lR/8pVenLCRxf14QzddY74+vhyPtJSUnU7RnX9K3E8IiyScfGi1ltYiPV9M8HHe0y/wEUJY6qUzTnLl6xQfHRXqWGC/HPwsXpg/8aQkZX01DTOx8YNm3Q/VvVaUzLvx/uinlWgKgbdEh8Q+CllzCaD37JtoLcM7DVH67fLfooz6lNHH47nfCQmpRn6O8KC3lGoTw0+Jk2covvxqvcqzLwXbx7lZuXShvWbLNpW6mNHjyRQeXEZVZSUUcyhmGGPSd27QcScqfsbaBXHi/hd8IH+UYYOj6yscV/L+SgudL2YBdjieYwL1HrLMeXQ4oVLrPIhy8Hgg1RZWk5VZRWUnZGlHD8cFeHQOOS1LWv9cYQfpdW59168xvt/uLvrvz+7K0vS0STOx3aP7Q5/hhyTiHwPEb8qesWIZ+xwcwYhPjt3Kn7CnFnzOBeintXHH00blA9x3GPrZ1RdVkk1FVVUW1k97GsIn0isGwgORrp/1KHoI5yPo4kphh6PkKC3M/qrgY+JEyZrwgf0Q+Siir7H9uQM2iuyD71h3UbORWZaJplSTRZtKUt8oI9ObUU11VXWUH11Lc2aMZsfh//hSJ0f0bNa/LQ3z2U4Mn36bM4H+nNOMvocjIjs3rWH8xEXe2RYnyPzgXlBzA1CR7TSFfjlsu+B+oeZaSbGRgaFS2tXtvgYP24ij4VHTHxDTT1t2rBZYc+ROBNLOYJ4Jsj9nS3lsA9XiksrOR8BAa5RW9uV5K03/49KCos5H0sWOxarYClnEHovfFXRv1MrPrB2JdfhSUpIooyUDEo/lk6en+206XvI/4N/3lhbT8frGpUe8GBjsDo/4F70NpePq/Pl5V6d6vxJLe/hli3bOR/dZ3qNeCyNZdsWD97/vDC/wKH3W8sZtKT79uQMgiPomfBXLAnWYIV99Q77fnCRlpxGqUmpyj6GLd9cSDT7/qb6RmpuOE5F+YUW+cA5Yjyi/6bwn7SeB4YjbSc76PLVW+Tvf8DQaw3nDnN2LudjOPFW1nIGRS9X2aaw5Z/DblfXXxD1TsRrEEMo4krgQ8i1rD764GO7+FD65GzcQi2NTdR6vJnamloYd5OUOQKcivNSC8Y5GMPOls2bPTgfHZ3naMzbxhyiyTVl9nZZUQnlZGbrZkzQOeil/JwWgnUw6KX83N7h4clrTR9jbCQnJNv0PdT/B0+oC4S6WSda2phvvk4Zh/zd4ESsR+n1fra0nqaLl67TwYP6r72v+7njjTFkSsvgfKxcvkqXY8QzHCzArhG1D4SuitdEhUVxLpLik8jPd9+Q+YBg7Qo1SVGbNCIsQpkT8b2ih7kr3NMFCxZzPnp6r9DHLthvVE/i7elD+TlmvofsKmOGjSXqn3AdHjuOc5EYl8jO4yi5D9R5s8f3kF8TFxvH17bbT56iqvLKl9bJXKFe9ctrBMWcj+zsfEPPh/Fcxnoo+BB5RK4i8rrr/LkLKfEIYyP2KCXEJPD+iUPxzeV9wg5mt3Webqeu9g5lfxF+jqvEKgqZNPE9On26m86eu8jmPi9D34cobzK7CjYJ+PAd6AHgSnIg0F/5HX1tEmITKP5wPDunQ3bbVurXgauu0x3U3dFJZzq7aI/vXuU1rjZ/QDzZdQEfrcwfmTp1uqH3Q5Ctm7YxXzaZx7u+9eYYlz6X6PBoijscR0eij9CWDVuH/H6Zo6KCIt638GzXGSplPpklHl1JsrPN1N3dQwX5Jbyni6H7tmX2zLkUFx3H+Ziqkzy4oQj2zIW9A7swjnEReyiWYqNieAzWUOYONSPYGzzXfZb3hu45e54mTdB/DPNggjpNrS2nqKPjDEWEHzL034aMf3cShR4I5XxsXK///A5bgvkiNiqWYiJj6HDEYcUOcpSPT5gd0nP2HPWeO08Xzvco9d+R3+4KNX8sCXr6go9TJztp65bPDA6sCHQn0C+Qog5GUcDeAJc8B8QLynvaESERnAvYWB7SvXeUDwhqW1/s6aVLvReoqqLSrvdj7RdralrGHGopHts8OR9tzBdZbcTA/90fZ2zs2+NPh5j/Gro/VHf+JvQL+4G29t3ktdZpU2dQdEQ0PycwP3vGXIfYUDPi7xdAly5cpMsXL9GVS5dp2kBOurrOLwRrzRg39kj0UrPBmoQz+wp8NDe1kduipQYXkuzc7sVt9NADB2n8uEm6HCMYEfuA+Knej4ONI88dsA8FG5GhkQ7bVmo+sDYKLq5evkLXrlylyIiol/i0NU49S9jBSM5HRVk1ffj+VIMN+LNbt/P1T/Ax4V19sqEWzCN4LkPEc1mumYDfBRcQ5H44altZeh/Wsa5fvUY3rl2nHuaLiOMi7sXR+BK8X8QAyPlicm17+bjWgvzpTFMONdY3U11NA61cof/6ZiNmU70xhnZ77+ZxF+Bj7uz5mnyutXh0OW5d1gNL/ciGMqfgvSLGQ7Fr5i3iXICRQ8xu+GRgfd9RNtSMbNm8jW5ev063btyg2zdv8vhmLa4dro84D5Evht9xrcQ8BD9Gyz4hlhg5Gp/E+aiurKUVy/QZVzSSgriqCDaXIt4bfMybs0Czz5b5gH0hYnMRD4X7jGNyXCtsdDmm11GRY3cD9gZy2wq+eZCUD6QVH5Denh66c+sW9d2+zeyRcuU4YoYd7S8l4pBF/TlcJxyXr486P2ak5EBgMOejorSSvDx9Xhs2UNMJ8wXyTBOOHNV8DV/Nh4gTlO+rOoduOHzA5pf18f0pH/L1KqzpHmE248rl7pqwIT5DfE70ocOMjTt0t6+P+u/e5bWvxXgcjTeRa5uADcH8aPAB2eWzh/NRWlTGn6fIdXiV2Vi2ZDnnAjU8MG9oWR8U91LYO7K9JHruOYuP7Vt3cF8KezgJMfF8bU4rPuTPmTLpfervu0v37vbT/Xv3KC017aU5RNT8dWT+kH0scX2EfSXmX2fpzPKlqzgfheYiykgxKbbqqyRvM+737fXntc5QO/BwVAq3sbT8Dtw3kXsh8yH6eou8UrWdLXofa8HGv8aO43Ek8YwLxCMOZ8/DHhsrNSWNHty7Tw/vP6BHDx7yGkJiXI7wofbPRQyys/xzqzYHm5OPJaaQOTuf14BBnbw333DtuCMhM2fMpqyMbF7XH3zs9T9Hk6f/Rm+O2ab5d+F+WvK3Rc9we/1ze9dE1bXUETcG2xGx7MkJSYrtqBUbakYWuy1lXDygzx8+pMePPidTxn/rosh14wdbW9BTfuGgPit7xvp67+Z8ZKaamG8XTTOnz3bdOeOtsTxeqL6mjvcTQ+1AxHqPHW/ifEz65Gv65z/1ucaN9ShbvcCxhivPHcjzSEQv5vgknicY4Beo+dxh6fPqamrp8eef05PHj+npF1+wZ+0LJuCDWONDrvuFn660R4K4fvh1yFc+Fp9Mfr5+Sr6yK8iYt8eSj9cuqqmqoeMNxzkfgf77X/Ktxn94mTOCn//4xzhdjV/YW2Jusbb3rJ47Vq9ay2MqeU/N5DQltlJrNtSMoJ7LE8bF0ydP6MunTyk7K9vqGOGjqXPr9VS/wV6BbbXWfR3nA/3hUxOP0QH/A0pOjD65+BfPSWhqbOI5oK1NrWRKN9GsGX+vYYZ5A/MHGPn3xBLdnYvIW5Vtbtgi4jmrfjbjfsHnSEtOZT5kOh2QemmONB+QxoZG+urLL+nrr76ib77+mo3tw5f8EFvn46qCOfsz5uOBD1NKBu+1FR4SRssW66e/FuIdwkLD6dSJk3Smq5s6TncwX6OM1tiIM3vjLXfOB+StsXt0ef0tPW9hm6j58GTH0tFnFr000zNt1g7VmpGlS5ZzLr795hv67ttvKS8372/rFrbmQ5fmhHHutd2L84FeQugHgb5CyK0bjTgV1PfausWDiguLeSzQxd4LdP7seaqtrqX1az+1/3PGxSmM/M//ztft9YeOybVKwIx49qK2Feq+IdcR9aNDg0JHfO6w9PnNzc30/Xff0rPvv6cfnj2jObPnKYyLehF6rmuihbzz7/G06dPNlJqUQhXFZVRTXkUN7HmAXkRhbF7Bc2Sk8rBmMjtp7559VFVZxfekbt+8xeN/wEdaShqtcLC+yDuTGzgfE6be050vYmm9R6whi+N+u/0oi3GRY8rm9dk/+Xi6U9hQMzJ71lx69oyx8cMz+vHHH+gkm8/l9TtH1ntdWRDjs5/5veXFpbyu3onmVl7boruji/nE9XxtPMA/kBYtWExui5bY/bkfvP8R13Vv5mMfioqmpqZm+pLZtl8wH/DRw0d8Lwp8NNY3kI/3Lm5fDec8wATYACNgRc/XHGtWcs3ej6dO41zkZuWQOSePwkNt19UdyTkk35xPP/30Iz1//hP9/PNz2rzpv/m8qCX/OvEhy2Km/wF+AZSfa+Z8IP8SNg9ioG9ev8HjEB4wvX786BH13emjZqbzba1tdIrx1NHeQdeuXaW//vqT/vj9d/r111/o5+fP+TPo+++/Y3bFN5yPO7dvU2FBEe1hz8spk7WtwQ3bSthZsLks+QGyLyn6l6ntBXFM3fdPK0HNdDl2IzoymszMzsV1LzQXKP0zncWGmpH33/uInj59Qr/88jO/j/39/XzPUrwOY3fFWg5aC/YZdnp68X53JUUl1MkYEHx8+eQp9+Ngo4KD33//jbMh8wFuTrSd4PPHhk83KX2IR1LgowtG4LvL/5P3IsTenhwrhOOweeS+SFrnyqljmlavWsNrD8G2Lc4vVHJdR5MPSGzMEfrt11/5ff3jj9/JZMpU/odaQPbUfBc9D15HdqDry5auoOXLVnI7auUKd1q1Uh9x9ljrFXuHsi8i8yH6xIr/idgpdd8be2LohrL2L9sn2MvJTM/ktaIRE5CXnavs7zibDUuM3GPPwj/ZM0I89+bNXfAS54MxgrkXa1xDmYNF7Xf1sdGMSXkVBUzIe4eW+JAZELmjaj7sjTEV67eD7QNY6hUbFBhExczWRI2d8pJS9lxeqejoaPIhvhvPO3Dxn//8xeXa1avK6+CnW+ND1KUf6r4IXi/3MoQ4M2fkdRJ579D9027ua8h84JpDr3FcxEk4yof4PNhm1uwJ6JLcKxa2a2lhMZUVl1JFaTnFRMeMml012BySmZmlzB9//vkHxR2Jf+mc1Lnqci8tR0Q9h4xWTPzrIIhdFL5IefVzpbeRuNbib1G/XDyv8LeIyxbzylDur7rPhzoO9kWvhTzeS7ayrIKqK6ro3XETdcGGmhH45Q8ePOBswNaCLzJ3znzlvETsGJ4zcq6Hw7axag4x+BhZ+f/2zrM9juqK4+eb5F0KSfATXAAbDHHBuIhijMFFVi9usXFAgJskq/di9d7LSrJ6t7pkuWLjxMEQAuYFCeQhMU8+Qe7/Smd9dzS7OyNpZUk7L84jWI9Wszv3d0+953Ad41afn2lo5DuH56fOQNKeB9We7TEjPF+G7QJtDaycJVtbJ7hooKYGG4UGhy0b3aFnZ+3bt19ygbgL/HVtPEv7eRcqfNaY+XhaZ0a8Rf7w4tUlr2N0tp8ePugr+6Y3NTRSi62JkhV7ZbmwoXc/ubl59PPjx/T48X9lbLKl5YqD/7UYTGhnoFj++dL560+rjlGNDyNnCn+8ubGJrjThTHStnKf7tH1yo3bWdaFTwQbyIv/56Sc6ceJJz2+9vlmWrBxR6xifefb8vG1jo9ciVqX647/59W8pW7CCcxatmJF5pVXmPpar7tCzs+B3PHr0rcypI+eF/DrXZ5kV2EorsSZ+NQu4mG8dI+xh5A2NMqKN534S8angokXW03S0tdH5s+eXPRt69wedAS5Qf/LvH3+ke3fvCd3yJM5rpP6Ez2dCvDV/uFxlPnWM6lknI4xgjaj+OGaNtwl7vaO1jTrbO6gwv0Cei1wJbOgxUlZWLuuGfvzhB1k/MT427nCtq1lUKhtmY4OWmPN/ub6P6xhU4TUM31GtsVJzh/Dbjf49vI87RvRygNu2vkbt4KKtnbo70M+vSdz35mXtcxhhZGJ8nP4l2EAd/D+//56Ki56cFcHeoNcbyBNsqD2z8ZOfC9YG96BRX/cWUfvvqH0T1Hn1+F547jL/xPWwrdhf16tjnC8jWp9j08bNsjd6V0cH9XR1UV93Dx14/+CKsatc+SK/Ezriqy+/pO8FGzhLhVo8bd5H9dc9pTcQI+ReM/zfeB3PB/F7vM4z672VD6xTfO/a2J82X67mmtQ6RjM9UJwxgrWg1lvAfqosr6Cezi7q7e6m/t5eOqnEe1YaG3qM4KzIwy++kLXZOHeIc7nhSn0l6xBP2lTqM1bzh96eV9T2bwMb2DtUPeGuf5tax2imB4oeIyofYAM+Rm+X4KKnlwb6+ig6MnrFs6F3/0fDj0suvoM8eiR7O4SHHXVYm570N/hMJtdhc0zMW/nA5+e+rswH25p8DZ8BNdLfUK+O0Swj6ncPNooKCqmvp0dygVmxFWVl9vOYK83nMMIIdAa4+BbyzTeyDwr6oaixv/mwYSS2pfZA5j3Sm/ngdQkG9OwrrqvCdWyX4jXeZ7Tvt5AeKPgb/Lf4tcgLkdKWGuzvp6HBQWFjla86NvQYibwYLbn4x9eQr+ne3buyp58z38ydqLPf5+N/cK9LrndUzzJ4AyP4zOr3p9ZNMTfMiLbGSitqHaPRHiiwp7RnsaMuRsmzyVcHBmj46lXpk69bu2FVsqHHSF5uvuwx9/evvpJnqD+7c8fOCMf2YIO6O1vF86qs+NXyEe6BAl3iKneI5wzRxvjhXzAXI0ND0ifHufLV4nMY8dchuTm5Mq715cOHwnd/KM+MBAeFOuwrrupQ+JyAtSaXn3Ado6vcodZOQJ/HS1HR0pYCF2Mjw9L3UPuDr1Y2nDFyOTtH9rtGD46/PXhAD/76QDDiOFMW36GeHgEbS9lXi30Tbb32YtRxL9RG0tOheI3vhfv1ae0mT4m7Hija2cfwK+B7jwxdpdHhYRofxXzhXntvHm9gwxkj6HuDmQmYnYA+NX+5f5+CAoMd9hnoX9VGZV9xKe/b2Swf7uGH17EGl1qnOYspqDEnrvfnM0zwy+fLsdE9Se2BwnWMes8SbMD3nuFihCbGxoRP3ueVbDhjJEusN/S5uf/5fbp/73PZ6yw9LWOOHuH1YHb/W6xZ01xfofYbMBv/4vOoeu+rvq72zHHlExnhQ5vjcNcL3dl9g3/1HLM7UesYUfer7ccDv6LZZhO2FLgYpamJcel7eDMbzhj508lT9Pm9e7KO8e5nd2WfqPy8Atk7U/uMzO53HF9fSB0w6wY+kzVfPrTX6PXB4dirOqdPb01yvZT6fnzdYvMBwb3g85qJ8SHWezjkf/TcWseYJHp4wPceF1xMjo/TtckJaqiro/Xrnvd6NpwxEhgQJLlAn0zMy70tpMnWNKcnoPaMvrt1rc09zde+Woz8u/YavT442vWs16uV8xPaXhQco/YEH2oO14h9hvjKpo07aM2azQ58h4aESR9jcnyMpgQX01NT1NhQL/bC31ts/MJ17Hf3Lh/x3Y3JWevoN4h+siNDw7IvlBob5Biwqz6mZp+nK8H6Umv0eL2pfdGwz2try8zwwf9mdD1zPY5Wf/A+r/Ks1Ufz/R6g79ztNxy3xTNS7Sn4GnGxcdLHgC01PTVJ16evUXJSkp2N1ZrfWExGXn1lC9kabXRj+oY8i3j92rTsz4mZeVo9gj2Kn4fenr+Y9Spc423Ef9D7XbCzmHzw+2r/LttdznqALiTHg/fhPcdZnhC9OLSxefgaNdXVNCm4uAYurk2JvW+aoiKjnNoTljhnBPsJ4r/g4trklNhvpoQ+nqTiwmJap5lBrJcr4b3VjD+J3/FUzJj3dbUHJ0SvDw44UuNN0FeejGVr666M6FKev6G+Dl2hjd1CwkLDZQ0VfIxpwcUNwcXoyDD5+wVYbCzQJ4HOmJqYFGxMCL08Lm2v3u5e2Y9T+7voZ7pn1x577x+9WY/ubAdPfjbOaar+rV7+ZKnzFRBTPvfsDFr+fmHj+vn6zo1fCXsqKyNTPL8JaUvdmEaP7usyZgUbwWJjcRjZ+fpu6uvpo7GRMRodHqXRoRHZFz01OU13voaz/c2dX+DN59zBqZnPr9XP2nOg6CWMPAb7GDdvTAuf8gbl5+U5xCQtLhaHEXBQkFcgffVhwcbQ4JCcHdbR2i7n0GifHdsteucTF7p/ck3kcq/V4ryg0V5HRv009vVYv6m2n9QZmVnClnriY9wSXCCOG+AfaOkMD3MSEhRKnW0ddLV/kAb7Bmigt1/On8zOzBYsrHewAWauD3J4ps7sbzN1juyfLve5cfhMZvIV4N7IZ4IthX1Huz/gPM/gQP+MjzFrS925dZNamptpw/oXLDaWiJG1z22gnKwc6hdswO6CP9LT1UPdnd10LPy4vaeFKp9EzMS+9PpBwB4zuta5xyz8bKN2mydsIU/cK9a7K5aw1+jF02H/1tXW2n2Mm4KL27du0Gd3btHHER87jcFY4rn4FgQzKVuETdAjuOju6KKu9k6hWzqpsa6R9is9w1Q5c+rUHE7M2FZm92Qz13E/BCPxI7O6zqgtqNdPH1zo2anr1z5PCfEJM/FacHF9xse4c/sWVVdVWTpjWeiS9RQfmyC56GjtoHbhj7RdaaO2llYqLSqlPbvfcMkJbHQzvUg592b0d4yuZc7VGNE3uGej+U5+X6O+txqnQP8pPS7gY1w4d0HGa6/Pxmtv3RS21O2bMieOOghXz8ySpWUEsm3rDiovKZdcoO8kZmK22FqoubGZEuOTaPdOH5frF3aDu1lwam7MyH6MNWx0XZrhQ2/Wnys+jeZImQVn14KLMx/8eY6PcVv4GLClYqIvzYlNWVwsL06OHPanmsoayUVTQxPZ6m1kE/ZWY22DnMGllzeB8Cw45H5dzfMxU8tlZh2b4QOcuqtjUe/BXaybc6t6uT0I8rHxcfHyLPgcH2PWlvrjq1stLlYIJ/DPQ4PCqLKsUvbAbxBs1NfUU111HdVW1VJOZg4F+AXZZ9SpAj6wj+Inzyxh4VpHozYTrjNq95vhw4zdBuFcqWqTYQ9ALtVVrefOHbskF1OampAZH+Om5GLPbh/LllpBjDhwItZ/cGAIlRWXSS6gV6orqqmqvIqqBDuVpRV0+uQHgoMturYG13fx+uGcsVHb38waNsuHmZgC1xRC5+DzgAvYklr+2YbyPXSErjS32OvOHXwMYUtVV1ZaXKwimwt6ItA/iIrzi2a5qKSKkgoqLy6nsqIyKi0spdSkNNr/znu05tnnnMaCuG8a1hbsscVcw57QH9xrDVxwzy9ntZx7336HYmNi59Sdqz5GlcXFqufkrTf2UkZqhp2LkoISwU0xFeUVUWFuIRXkFFD0hWja9/a7tMaJbaTyEXn+rPTt8f/su/D68yQf7EPzemd7ie8J+g/35Kr+H3OlYwQ76J8zc4bPse6ca0JSU1LEe1tceIvdBdmxfSd9dCZC6pSivELBRoFgI5/yL+dRXnYe5WblSj/lwtmL5O8bQC9t3Ozy77DfotpjvMdznBT/xgyxT8ycqXzwOW0+P6Fez3Mh+L3BBPxq1Y9wVlODvOrBA4dknxD0ep7pEzJztlXWnSs1IWAm4qMIhxyGxYX3cQJ76t29+ykxLtGBi8sZlyk7PZuy0rIoMzWTMlIyKCEmgY6Hn6A3fd6mTS8a7zOr9iXgedfMBceMVD44H4e1zzYS88E/jeT7kRtCf8qIDyOotLjE3otQ7RPCPgbXnScnJdP+fe8Z0seWeI/tBdmw7gUKOBJIsVGxDlykJ6dTmvBPUhNTKSUhhZLjkykpLokSYxPpw9Mf0oH9h8RafoNefH6T2xyKp2TTxpfJZ8+bdDT8mJwBXl1ZZe93Di6455q9Twh8jNm685zsy+R/xN/hfKurPcUS79YpENROvP/uAfr0o7OUlijYSBBsxAs24gQbsYKNmERKuJRA8dHxFBcVR7GRsRRzMYYuXbhE5yLO0dGQYxTsH0J739pHPoKdjS+8JHWO9myXEYHfhPzClle30e6de2SNZmhwKCUlJFFO1mU5U6l9dqZSd2en7Hdu7+ts52LI7mMM9PdRdlYW+ekwYekKS8yy8qtfPkOvv7aLAv2C6NzH55xyEX0+Wgr+G6/HRcdJmww8pQidA/0DXZSZmkHZQj/BhsvNypE+D/yfIuELlRQWU1lRKVWUlFNlWQVVV1RRbVUN1VfXUkNtPdnqG6m50Sbntra2zMyn5JlKcnYMuOhFv/N+h16E6IV+5vQZWUto9vNbYomZtQJ/4JWXt0j9ciz0uAMXYAXcgCHYX7DFoHvShX0GWy1LcpEtuYC/g5gA4gMlBcVUWlRC5SVlMi9TXV5JNZXVVCe5qBNcYNa3jVpszXI+ZbucT9k+M1Opc2amEttSmLWUlpIqdQz66Mz3c1piiRlWXK0jzMmC//GOsKcCfAPp1PHTdPHsRem3ZKSkCy4ypb8P3z8vO1dyUSi4QPystFBwUVxGFaXlcq635AI6o6ZO5v+bGhoFF00yZ8fzKbuELZWZniHPr544dpIOvn9Izg1ejM9iiSWe5kVrn7286RUp8OMPH/SVOeojh/3I77C/jB8HHBHiF0jIYwYFBMu8P/sZYSFhtG3LdjmjcvvW1zx6r5ZY4mlmlnotPu2/b4kli7VuF1Os79gSSyyxxBJLlpf8H1BLAQIXCxQAAgAIANqIPltU0LGsGEAAAABxAgAEAAkAAAAAAAAAAAAAgAAAAABkYXRhVVQFAAclDtxoUEsFBgAAAAABAAEAOwAAAEtAAAAAAA==</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #26</Name>
|
|
<Index>26</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPlvy65SMnT8AAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J33W5TH2se/f8l7zvWe6z0nlphmYmKLSYydqMSCit1YjhpAEQuoCCgiSpHem3RYdqlL71XBgqjYY4stMSbn9/POPTDr7AMoC7u4C88P98Wy9Xlm5jN3mfue+fvf/oG/q/Le5G//87+DFrW9VBkL494Wvl8VVSw1TtVrUkXlYXDjbuHCxVzc9rvDzc0d4RExSExKY5KKouIytJ6/iNa2i2hp7UBzSzuXpuYLaGw6j8bGNjQ0tqK+gUl9C6Ki4pnEITIyDocOHoGT016sWbMec+cuxOTPpph07WpfqmIJJgZ6zzfffI9Nm7bCy/skUs5lop6N7Y5LXWi/eBUXOjqZXMH5diYXLqPtwiXGxaU3XLQquGgiLtoMXNTVN6O2jkltE2pqGlFd04Dq6npUVdWjsrIOFRW1TGpQXl6NuLgk+Pmdwa6dzpjz/XyM++BDlRdVRpSHCeMnYaWDI3x8/HAuLRuXrlzncvHyNXRc7jJw0c656JS4YCK4aOsw6Azioqn5PGeDuGggLhqICyaCi9pGxgZx0WDgorJScFGDsrJqlJVWoVRfCb2+AvqScpQUl6O4qAwpyWk4cdwPG9dvwfSpX6usqDIsLvp7zc5uKQ4eOgJdfgkuX+3G5c4buNT5hgvOhuBC6Aziot2Yi4LCUsQnpCAuniQZe/fu57JnD4kbFxcXkn1wcd4HZ2dXLj5ML0Uw2yw8nElYNNcZxEU5cVHGuCit7GGjpMLARXFRKYoK9SgsKEEBu+4CXTHytUXIYEx7e53AimWr8Oknn6usqDIkXeHgsBZBweFoZuP6Slc3rhi4uNGHiw6Ji6TkdPifDsI+t0NYvnwVFiz4gescS1z/jOmzmB21AJuZbbdrpxOCg8KYvkhnXJQyLhgbggtdEXTaQujyCqDV5CMvNx+aHB1ys7U4yz6z1nEDPvl4ssqKKm/VFYKJFsZEZ9dNxsXNHi6u3uhhg7gQthTjIpeNt2Nevti48SfMmjXbau5v3AcT8f3sedixfRfTPb5cZ2g1BT1c5OoYG1rGRh5ysjTIzsxFdkYustJzEHgmGGtWr+vDisrJ2NUVU76YiuMn/FHJ7PvOa7cUXHQbuCDRMPuEfPBFC5fY3P2TLbV8mQOOHfVBSlIacjI1PVxk5CAzPZsxlIWM1Eykn8tAWko63A8ehv2SZSbZoaqMHi4cVq1FLPMBrl6/3cMFkz5cMImKTuCxKUvZSO9Lpn41A7t3OSMyLKqXi0zGRQZSmX2Wynz6c0mpSEk8h2jm92xctwkff/SZyskY4GLLlh2oqmnkXFzt5cJIZxATMcTEtlHHxEBC9tRmZiOGMttScJGckIJkNn8kxSUjMTYJCTGJcGI8kb5VORldXEyY8BHc3T3ReuHygFxomS+7afPYYWIg+WrKNLg47UVUeDQS4xgXsYmMjQTER8cjLioOsZGx8GC219czvlE5sXG/m3PhIXEhbKleLppbOxAYFMbX99T2M5YP/jUBS36wxwnm3wsuYiNiERMeg+iwaEQxu+yQ2yHMnD5L5cQG41FkR7VJXMg6o6Kqnq9njHVdMVghXbHPxQ3R4T1cRIZGIjIkAhFnwxEeHIYDrgfw0YefqJzYABd2dvaoqm1C1wBcbGY2lNp2Q5OPJn2Kndt3GbgICwpFWGAoQgNCEBJwFttY2/7rn+NVRqyQDfIbM7I0KhcjwQnTFTu2/huhgT1cnD0TjODTQQj2D4Qfs8eW2C1VdYkV6QzyMbpu3DH2Ma4x/6Ktg3GxXW03C8kkxgnpDOIi6FQAAv3OIODkaZzx9cdBZnNNnzpTZeQ9siFsKaWPQTkhqn8xckIc7P15D2eDi99pBDJegvwDsMFxg2pzjRAb4jHFpU74nu7XloqJTcIXihi9KiMj8+cswElmX5EuCT4dyOyuIGZ/BePEMR/MmPa1ysgI6Ixvv52DgqKyXp1h7GPYKexer2Pe3AZQ29Fy4rrXDdOlsU+6gnRGCPNJQplvEhYUwnz5UObTh8Fx1doB5zxVhs+Gk7OrwsfoyQnxOX6qjy1VWlqG//73v4iLS1Db0oL+x+vXr3k7O6xcbfQa6QtfrxOICA5DZEg4okIjEB0WCR9Pb3w86VNVl5jZnhK5Usq4lN0iY52xa8cO/pf6i/qNRJ7fVDGfZGfn8vZtbm7h/69auRKffTrZSJds2bAF0aGRiAmLQmxENOIiY7g+mTdnvsqImewpni+lyAmhdW9ZZ6xfu7bPd1G/yf2nivlkwfxFhvlH6I4P2Tz2z/8bhzmz5/DH4r20vniG+e1xkbGIj45DQkw8kmITsGPrDpWRYbCxZct2XqutzAlxcHA0vEfMV1992dcnJ72h7ENVzCNi7iEdonxN8CH3CeWr7Hfdj8ReNpLjE5GSkAxvZm/Ra6pPYhobVJOhzDunHEJlbGrRgkVv/d6gwGDejw8fPlLb2Yw+ObUp+R5vs1370+mrVqxGSnwSzjE2UpNSkJZ8DuHMd5/65XSVkUGwMWH8R7yGT5lfGxgUamRPkZ/Rn854mw9JrKjtPXyfnOYaU9pzj5OT0f+UIxwXFYv05FRkpKQhMzUdSXGJ+E7KE1UZ6Z8NXaG+Tw3f7p/39NEJQ53v1DYfnsj62NTYuWzjkk0V6B+ArNQMZKdlIicjC7mZ2Vj+4wrVJ+kvRsV0g65Ab8RFU0s7Vq5842sIfUG+oalxW7KT6XPqGB+ebP1pO2eD/pryOeov4oP8RfLh6blxvT5JTkY2YyMHmqxc5OVosGKZw5hnxChGxfQqxWrl2tbG5gt96jIofijrBBJ1zL4fG8tUpmitVvShHAMmcd7tjLxsDbQ5edDlapGfp4PHQY8xy4h8r8QAxaREbStJnq7IyNeQuVDOSUPRCSL2IuyE0b4+Iq8FyfE8um/hS8hxcGFDCZvUVF0hC/1GfzEusU4lhHRGvkaLAsZGoTYfRboCHHE/MuYY6Y8NeZ+QPO0bNkQ8/W3zGLW9KfMZ8dTVdc3wP62zj3a/XcS5le1Ec7qwU4XfTdwQE+K99J6hrh/Rd1D79tc/ZCtT38q6ZOXyVZyL4vxClBQUQV9YDM/DnmOGEfn+iA3yL+S9CDVaY71BbSivMw003k3xRaj/5f4mNsZCXIvaiMY93bu4X+W902tC1wzUXqb+5tv0O7GhtA0cVqzmXJQWlaCsWI/yklIcO3ps1Me1jONUk1BeWWe0F6FGW2hgo792G6x9q/LR/zwuYkfCpqJxa0k+TPEPaT2RxGBPO6xBGeOiXF+GitJyVJZVwIn5KKOVESUbebpio70INXlv2KC+HErO7WA/Q/0t21dknw2WrdFiX9H9UzsQG7J9Rc+LvBHxXhrjZCOZ2hemzDlkI5DIfuCaVY6ci6rySlRXVKGmshpr16wbdYz0ZaPIaL/zXAUb1EcklsxLH2v+ubB1lH74SPjnpugb+j1Z5ziuXsu4qEJtVQ3qqmtRX1OHdY7rRxUj8j0EBIYY7eucqykw8jdo7hJr3ZZmRBXrEcFGf/lcpDPqa2rRUFuHxrp6lDNd9vXMb0cFI/K10761hv3OL11FXUOrERvHvTxVRlQ2+HM/bd5sFNfavnUHmuob0NzQiJbGJlRVVOLzyV/adExLvuaNm7b2ctFzRgad/SL2O6d2UK4XqYyoekMZ+z3p64eWpma0MhuwraUV2ZnZhvnV1vgwiuMyDui8sZ6zY3rOVKIz+cR7KYbbX56hysjYZUPMm8oYZmJ8As63tuFC23m0n7+AyPBIm7SzZH9cX1pldKbSzp1v4nTviuHKjKg1TmOHDVnkWqsJ4z9EblYOOi6042J7By51XMTuXU42xYh8jRGRsUbnU/r7B/WZI971fcSIiNfLz1N8Us4HpTYX8Xy1Fso2+HgXG2KMyDkU38z6Do3MF7l88SKuXLqEzstXYLdosU34IvK17dzlbHQ+ZVa21mAv/rjUflC1G28TeW2L4o9kg4l4vlpzbv1iyhxG+kPO11q5YhXj4jKuXrmCrs5OtLW2Wr0vIrNLvrd8PmV1TSM+//wr/pq5/AiZj4HWgdVxaBmR80bE+joJrSOK52nO6u95c8lxnxPounoV17q6cP3aNSRIOUbWyIjsc2Tn6N6c23r+Ij+nUp43TM0pVPmwLpHbV+RzifV4sdYuakREf5u6Bj9Qn8t2QVFBIW5cu47uGzdws7sbe1z2WiUj8rV4eh5nbFzi+yrQmcZ+pwKM9KTwKYZaryRYUPmwDj5kX1DoDHrOXDmOwuag8aLsU9qTvKO9Hbe6b+L2rVu4zPyRL6dMtSo+ZLuKzjIWZ323tHWgoFA/YM4h3TPpaVNrnEQOCsW1BBP0HbL/Iednq2I+EW0q8yF0A7U9PTY3HzSH0vcLvUH7cZD/Kl4nnXGHsXH39h3cu3MX2jytVekQ+RoKi8r42cgtrR1obmln92bHn39bnjqNbVNrZUX+mxq/Gnm9QX2ltK/EY5kDc/Ah16coRY7vpCSn4N7du7h/7x4e3L+Pfa5uVsGI/NuurgcNXJAcPuJleE25X9i75ghVrFd/kJ6W9xOj+Yh8DRr/9FfodPqf3kt/SZ+bkiMt7KmB8iJpLMl7B01k/5Ov/uCXX/DwwQPcuH6dP2ctfFAuTHMvG03NF6DLL8b4cW9iuYNtE3X/BNtghNiQ7VfqN3puoDUqU/pV1OMO5jOzZs4yrI3sc92PRw8f4vGjR3jy+DEyMzLfqw6RfzMuPplz0dR8Ho1N5zG/164yhY+xJIuYn0ZrWh6HPHDE4wg8jx7rsSVi41CqL0VYaBhO+fnDz+8UTp70w+7dTvjRfjmzKaaPKT/nXUJ2ibx2WFhYiF+fPMHTX3/Fs6dPYW+/7L3wIfvky5Y5cDaIi8bGNgQHhxl0oMrGPzD3+/m89i3oTBDytTqeP0S5EbTue+PaNdy+eRP3797jcx/168sXL/DHH6/w119/cnn9xx/4/fff+PPPnj3FkyePkZ9fgNP+Z7Bt644+55GPNZHz976fPY9z8fzZM7x4/hxNjY3vRYfIv6XTFTM22tDA2Cgtq8Lk3rxjZf7lWJFxH0zAih9X4riXD99joJzpA6p/o9qe5sYmzkdpiR5pqWkICT5rpD/2ux3AhvUbea6qrD/Ky8q5XhF8PGQs3Wd+6J07d3Cz+yZqqmv4ehnlXoxFPuRxdjY4BC9ePMfLly/w228vue5VzukjpTu2b9/FuWhoaEV9QwtcXPYZ3tdfvHo0y9LF9jh80IPvBZjH7p32qSE+0s+lwZuN/W3M11wwb5EZxsM0rHVcz5nS5Go4H7R+fLWzE5cvXoK+uASeR44xn3DKmLHFKCYg1gk+nPgxmzvucZ376tXvbC55wJ8bKR0ifmP8uA+ZvqjmXFA9h15fyZ8TcTmRnzma41J0vsXa1ev42Ui05zLtJ0t8hAaFYMO6jey+Z1r8GiZOmMT3M6Ax0tjQyHNbqT6CdFV0ZAzsly4btWwQE6I+WF7zcmd+Hdmor1//gT//fM118UjoEPn7XVzcUM+4qKtrRm1dExwdN/SJz8k1zNR/o2XNbhKbj7Zt2cbPAKdzXxKi43A2IBibN2zBJx+/X5tyxXIHhIWEcT7qa+tRU1WNTMYsMTRauBDrKfIeAspY8PXr17n/9p///IVff30yIjpE1h2kL2qJjdom5OToDO+h2kg5j0R5H7a8JyjpC4dlq/gZrXT2JPHhsd8di+2WWN21kn3lcegwigqLUFFWgdJiPaIiojD7u7k22/4i9qucd+WxJx47OblwNkiIE/LlLOmrG+kO532ci5qaRlTXNMBxzZs9JfpbBxR7Gov7ssUzASkme9rXH0GnAjkf+1xcjc5ktVahueznXU583+ei/CLomF/kddTrves5U4VsdlErJ2pHlPaIsmaiu/sGZ4NsrMePH1lUh8i6o7i4vIeN6gZkZ+UZ3qM850EpxDrdoy2tA9JZku4HPJiPEY6QgLPwOnwM3/bWzttWXG0iDrsf4Xxo2NhKYv4S7TFlK9cv9hx6V+4prauLeJbTz86cDfJDSCgWaCk/RHyf45oNnIuq6npUVdVhzeo3uuNte+XKvomt9Mm8OQsQFhyO6PBozsfqFauNzrq3RZk2dQZCgkKQlZ6FtJQ0rkvk880sNbaFHUT9L9vc9JieIxtD1g/K/eXoPYOxzZVrCtevX+O+OsmDBw8sYmPJ35Wdnce4qEdlZR0yM9/URx5wcx3Sd4t8NyHC9rJ0fc27ZI+zKxLjkhAXFQ9vTx980VvfNVrkp81bOR90BmBESAQ/Q3Mk+FDuXyn2cqQ+Fj622MNxqL8nn6Hw824nvHr1isd6KeYr6tUtwcfSpcs5F5WVtaioqGG/7WKS7uhPqF3EWomcq2OJ+ppB2SFsLj3DfIxzSamcj61bto8qLozs9SnTcJbZjAkxCYiJiIGdtK+MpfgQezaK/hb7VyrtpuHwodz3n/IWiQ1aL+zs7DSrDpG/IzwsmnFRi/LyGuh0RYb1jqHqDqEnSK+KfXCF/WXO+prBytSvZiApIQXp5zIQExXH7avRyoaQnnNlD3A+SI9s/2mH2b6b5jqxfifbV6JWh0TYV+bkg4Rym4QO8T1xEr+9fMnX1F+8eMFz2czNx+TPpqCCcVFeXo2ysip4HvV5a8zKFBE5oUKXvA8+pk2diXPJacjKyEF4SOSYyQUUsnbNes5HSGAIs722meU7yV+guU8+Y2Ug+4r6V9hXpE+Ge1akvO8Jxa0of43yTp4/f4Z4M9aqi8/vd3NnXDA2SqtQqq/EjOmzDHME+QxDXSNXtp0l6jMHw0Z6aiZymW8VxOyNcRb2V61VKIZNfAT6B/K1TnMxIvvbQ/XPhyKyPkqIT+B5i5TD9vTpU0ycOPz6EPmz6WlZbCxXQq+vQEy08foFsSFqW03d61u0iznra0wRuvasjFxoNQUICQ7jcdCxyIaQhfPtOB/+vv7YsG6TzV0/sUZjhewQOd5FeTaU20s50rSeTrmg5uJjyeIfuc7Ql1SgpLgcqxx64uaUf081Ksr5QulLDGaMmqu+xhQhHZibo0VBfjHCQiPHPBtC5s9dyPnw9fbFOmnt15pF2DE09oQtQ/aVPD4vdnTw+hCqn6qpqRmWjSV/5ugRL5SUlDM2ylBcVGoYR2TjDeR7iFwAa80nodhCXl4Bu58yRIbHqGwohGITxIf3EW8ssbPOOh6xJiLGmXI+Jj7kc6m8vXw4G1RjSPU2X06ZZhY+cnN0fBwVFZbixPFTBjaUusOWJD4+hevElOR0lY0BZM7seZwPr8NemDt7vtVdHzHxrhoKmr9F3gnVBjx69JCzQXXqZ04HDJuPxT/Ycy6KCvUoLCjBD3ZLbZ4Pby9fvn5D+kPdE+Idca3V6zgfXsyG+Pwz26spITZoTyDxf1VVFR48+IWvibS2tAzJxpLfe9jDk3GhZzZ6Cfdj+9NbtiT29it4fgzxQX6VysC7xXmXC/x8/HBov7tN5tfI64W0988v9+/zvYBIZn83Z1h8ZGVquP+aryuCD7NHBR/y/iq2IlT7W6Kv4Hwc2O+hjv1BCvU36Y+g04HYtH6zzV2/vB86+RzEBe2XdffOHezd4zpkPqjenbjI11JedCFW9O6jO9z1wPclMTGJvGYlKSlNHfcmyjdff8f5iAgJt2iuliUZF4+bm5o4G3du3+Z1/abaWOJ9e1z2cS60zE7XavINfqzyfDhbkHXrNvFaeeJjpg32rzUI1UwSHwGnztjctcs5UFRvS/v13r55C7du3uQ1yoPlQ34PrQkQF3m5+Qg9G2543tbqZGkP4IrKOs6HvIeEKqYJ+R6kQ+Kj45idZXtrh0IW/7CUc0F7vnff6Mbq3joYU/ggXUFcaHJ10ORosa03b02cNS/va2/t7eG67yDf21HL7ER1nA9P/p+98/yKItsW+P5X7lrvTXpz7ziOYZwZHTGPillMY0ZEQFQElCBBEQQEhIaGBprQ0NBkJBkIJjBnxDSOTnZycO7Hu+56Zx/ZNceyE03RVI31YS+g6HCqav/q7H3ODhjji3wUm4pUn4Mo7o9gbIYYA/7w/gPeFwFrkWL84lD5mM+uA3KBMUn1tU0wfdpzP1/sHSfmAeN345652tZLsS8P9lpAPpYuXaHruAISHxsP1vIK2BO+R3Vjw3gl3EenOsGiICP0utqaWrh39x7cY69ra2lz2weh/+8IDeNc1Nc0Ql3Ni33ikAGRS/k4hhqDNZKSfvgI5wNroOq6rYxMnTKN81HPdGzsu8OfQ+Sxp/ZqU7vKlxNrSolCsfRyOwdrAGHvqYE7A3Cn/45b/dnE/6WmpHMuMN475eDzvF17PXdRcKw4Phy3vd4b4rmJefUU/y8/rpRgzh/2BkU+5n6yQNdtBSUpMYnzERMVM+zPkud6UF0r8ZirfDmya/B1FCcr1yfcJ6Q9bax/PMC4uHO7H/pv35b4cZePOhtjo7oeaqrqYHvwDmmNzJN1Kxw3xQKIdpiYR4acKx2ju2dPLOejtMyq67TCgjUqkI/W5qPDjs+xlwslrwXlKt8BWXBl28trkfYzNm7fug23b96CvXui3eZjms9MqKmuA1tVLdisNVKfG+TPk70PMZYf2UYO5Oco75GmhJzru8z52KBQLoMuL0oOu1/IR0jQdo/9Z0d8yOcQpfKBxJrp2GsKa7LevHEDKi2Vbvvmn65ex7ioherKGqiqsEnrFK763Li6FpTTQf0iRpKPTZu2wvWbA9BxvFvX5RGS5UtXcD6qKq0e6QPNEY5yacW6iErxIcZ9ZGZkwc3rN3g9faw16cpHp+MhQaHsnG2MjWqwWqok28rTeESxH7DYA20k+TAVlnI+IvfE6Lo8glJbbYOTx47DnFlDj+9FnaCcQVFXyCcV12SVypfD5zs940OCQ3m94mtMrl65yvs8ubOGlbQ/mXOBNTywto0z39wdoXUuOjfynShvkPItlcqDmjDhA7jVf5/z8Xery6M2iY2J5Xwk7fdMXyk3TmSGfFJ5bpwS+XKowxTPO2+uL1xjXFy9fIX3nZg36EfY40M8VmwyQyXzaSvKKmHXjt0Sd57W8BHPW/ShqC6D/PhwZfPmrZyPxqY2XYdHWBb4LuJ8dLRp71rjmi5ycZnJpYuXpPUAV3wgF5bSCigvsUg5yBhzJcbRq1mKiss5HyFCfS5dRk6aGxvhzKke+GTOPNWPFdew4mOjpb+xF8QlZr9cPH8B4vbFu+QD4zQtJYwNswXKmJ7hXpDW7lf/wEPOh25beUcS4xM5H7vDdmtivKIdVFJcAhf6LsD53vNQXGh2uXY1Z9Y8XjewtLiM19UjPtAGQt+J6pTgT9qvUVO8oq/vYs5HZ9cZXXe9JKtXreF8mIuLVTtG8nPQhhJ70RiyDYyNPug718vmwSaHa1j094a1GzkXJYUlYDaZnX4n+Q7EjBpir6Jj4jkfWUdydd31kowbO4HzcfF836iPBf1c8RlOP2nPTe7bh+0Kh96zvXx9F3tEuuJjPePDPMhGccHz5wGuXYk2m5qlmPlMyMf20DBdd70oDXV1nA9cExrtecLVa3ANi/IJw3buZmychbOnzzDGz7jkIy46jnOB9ViTEv6qIaqVfKie032cj/nzF+t660XJysjkfAQHhah+rGLt0Tmz53EuTvechtPdp6Say472QPZF7YMiYyEU5hVCzODeGu4LaqWX+cC9R5wPXWe9K7t2hnE+EhMSVT9WnDtor3vO7Lm8R+Op7h7o6eqG2YP7nI74wF5JpjwTFOQWQHRktMSbFmr5+Pou4Xx09ZzTddbLsnTJMs6HpbxcW3yw+aKnqwe6O7t5n0Z7fIi/Z2dkQ4Ehn/dLCtoaLH2eFuwr4qPK1qDrrJcF9z6Qj4b6OtWPVYxDxzqa3YyLrhOd0Hn8JGwPDnXKR35OPhizjbw36+oVz3sC476gFupdxcQmcD4OJqfpOutlQT1DPq5fu6oJ/0PsddvJ2DjJ2Dhx7ASPyXLGB3KRdyQXcrMMEh/DjS3xNh/R0fG6zo6CaIUPuZxkXGD/6+Ptx6RYfUd8IBfYp9XA7KxVfs/jxrQSW6LzofPh7vwh7lccbz8Ox9qOQUdbBwRvC3HKB7KRw9jIPnwEVg7Wg1NCKIaZ8gbF/ihKfYch18T5CN2hjTiHv5vUVFdzPnznLxi2nqBQT2fKm6W9DbG/jnh8qD4I/Y5cdLS2Q3tLGwQFBjv3zxkX2elZcCQtE1YuW8mP4Z6j2GPWnsj7GMjfg+dCuYPUo5ZyZJSqEVTXcJTz4eur732MhpSYzYrygb9THAjtg6Neif3ZxP5jJPKeyPbELPRYQy7ajrZCa3MrbNsa5JQP5CIrNQMyDx2GFYP1cFB/7dWGEEU+RuohR2zTecvzoFz1e9f5eLX5oBg/qlvgTl6dOL84EvEzkIuWphY42nQUAgOc85E5yAbnY3D+EPM0HIm9OQ7Ph1j3Jh8rB/tb6aIdPkgH5HzI69u4w4c8x8qeiHFYLYyLo43N0NzQxPjY5pSPjJR0zgbOIeR/DGd/ELnHuUzkQ7SvKB9difuTwsat++ejJ91dnZyPaT7Th/Q+0gNkQM4HcYPPWqqBI9pX1MtvKN8n5tiiNDc0Q1N9EzTWNcLWwXx3R3wgF2hjoQ+yyu85H8OJL6E8Wm/45/r6lXbXr4gRZ/45PUeH65/jXp64n4dcNNY2QENNPQT4b3XunzMucpiPjuu7qwfXd9HX10JPA50PfX3XE2morYd6xkadrQ62bA5wygeu7eIab16WAdYI++fifqNaZcfOCM4H5tfq+updGffeRM7HubPqz0tDW0is84Nc1FbXQk1VDfhvepkPUeKi90HeEQMYs3MhKiJKU/dIj78aPaH4Ky3EJ4rywfsfQS3josZqA1tlNaxZtdYpH1HheyE/Jw8KDEaIGay5qJX5Y+KEDzgfFy7f0HXWy7I1IJDzkW80qn6s6HuQPz3NZwbYGBvVjI2qiirwmTrDKR/RkVFgys2HwrwCiN0boyn/A4XyP6gety5e8v2iYjgfkRHq63kgF1yPpfhdrCOMXFgtVqgsr+T1SezxIdVODAyBojwTFOcXcjsLjyEbWsmPam0/oecPjoKY8gs4H37L1d9jBfM1KL92yaJlYGVcVJZVQEWphffvdMbHujXrOBvmgmIoGazPgHw4im+nvRhci1NDfYbsHCPnIyoqTtdbLwrVZ5gwWKNztAR10FU9HdRl2s/btGEzVDA2LIyN8pLyl3iQ/4175iWmYigtNENZUQmMeec9flysUyL+pD0btfSN8vcP5HxYq9Sfp/N3Ecy5Qz66OztHfSyoh0OpX4LxVshFmbkMyopLXfKB9a6Qi3L2Wgt7j8/Hz+tfaaUnJ/roVB9O113vSGhIKOfDkJ2j2jHK61/R8YS4RMbF81pvcTGO982Ij/eZfiEXFYypSjbnLFm4VPLRtVLDBPPPkY8Vg/s3uoys5OYYOB/r1q5X/Vjla01ZvB/v83pWkbIYdHt8oKCfYmU2Gfotmwd7y6C95mn9dtFP8UZ96qSDaZyPjEyDrr8jLNg7CutTIx/jx01U/XjlexVm3ou3GIoKimDtmvV2bSv5scOH0qHKYoXqCiskH0ge9pjkvRso5kze30CpOF6M30U+sH+UrsMjKyv9VnE+LGXai1lAW7yYcYG13gqNhbBg3kKHfIiyL3of2CqroMZaDaa8Aun4wf0JHo1DXNty1B+H/Cilzr3vwlXe/8PPT/392bUsmYczOR8B/gEef4YYk4j5HhS/Sr1i6Bk73JxBlJBt2yQ/YdaMOZwLqmc15aOpTvmg4/6btkCt1QZ11TVQb6sd9jVEn4jWDYiDke4fdSDpEOfjcEa2rscjJNjbGfurIR/j3pugCB+oH5SLSn2P3ckZdFdEH3rt6nWci3xDPhhzjHZtKXt8YB+d+upaaLDVQWNtPcyYNpMfR//Dkzo/1LOafrqb5zIc8fGZyfnA/pzj9T4HIyI7tu/kfKSmHBrW54h84LxAcwPpiFK6gn656Htg/cN8g5GxkQfxwtqVKz7GjhnHY+ExJr6prhHWr90gsedJnIm9HEF8Joj9ne3lsA9XLJU2zkdEhDZqa2tJ3nj9/6CizML5WLjAs1gFezmDqPfkq1L/TqX4wLUrsQ5PZnom5GXnQe6RXAjcss2l7yH+D/3z5vpGONrQLPWARzac1flB7qm3uXhcni8v9uqU508qeQ83bgzgfJw63afHYyksmzf68/7nZSWlHr3fUc6gPd13J2cQOUI9I3/FnuAaLNlX77DvRy4MWQbIycyR9jFc+eYkSez7WxqbobXpKJSXlNnlA88Rx0P9N8l/UnoeGI50HO+CS1duQnj4Xl2vFZw7zKYizsdw4q0c5QxSL1fRpnDln6PdLq+/QPVO6DUYQ0hxJehDiLWsPvpgilt8SH1y1m2EtuYWaD/aCh0tbYy78dIcgZzSeckFx+mMYW/Lhg3+nI+u7rPw1pv6HKLINWX2trW8AgrzTaoZE+oc6qX4nCbBdTDUS/G5vdU/kNeaPsLYyErPcul7yP+PPGFdIKybdaytg/nmq6VxiN+NnNB6lFrvZ1v7Sbhw8Rrs26f+2vuqnzteewuMhjzOx7Ily1U5RnyGIwto11DtA9JVes3+uP2ci8y0TAgL3T1kPlBw7QprkmJt0oS4BGlOxO+lHuZauKdz5y7gfPT2XYYpGuw3qiYJDgyBkkIz30PWypjRxqL6J1yH3x7DuchIzWDncRj8Buu8ueN7iK9JTUnla9udx09ATZXthXUyLdSrfnGNwML5MJlKdD0fxnMZ10ORD8oj0oqI666fzJ4HGYcYGymHIT05nfdPHIpvLu4TdjG7rftkJ/R0dkn7i+jnaCVWkWT8uPfh5MlTcObsBTb3Ben6PkR5ndlVaJMgH6GDPQC0JHsjw6Xfsa9Neko6pB1MY+d0wG3bSv465KrnZBec6uqG0909sDN0l/Qarc0fKIHsuiAf7cwfmTzZR9f7Icim9ZuZL5vF413feP0tTZ9LUnwSpB5MhUNJh2Dj2k1Dfr/IUXlpOe9beKbnNFQyn8wej1oSk8kMp071QmlJBe/pouu+a5k5fTakJqVyPiarJA9uKIJ75mTvoF2YyrhIOZACKfuTeQzWUOYOOSO4N3j21BneG7r3zDkY/576Y5idCdZpam87AV1dpyEh/oCu/y5k7LvjIXZvLOdj3Rr153e4EpwvUvanQHJiMhxMOCjZQZ7y8TGzQ3rPnIW+s+fg/Lleqf475rdroeaPPcGevsjHiePdsGnjFp0DB4K6ExkWCfv37YeIXRGaPAeMFxT3tBNiEjgXaGP5C/feUz5QsLb1hd4+uNh3HmqqbW69H9d+cU1NyZhDJcV/cyDno4P5Iiv0GPiX/XHGxu6d4XCA+a+xe2JV52+ifuF+oKt9N3GtderkaZCUkMTPCZmfOW22R2zIGQkPi4CL5y/ApQsX4fLFSzB1MCddXucXBdeacdy4R6KWmg2OJJ7ZV8hHa0sH+M5fpHMhyLaAIG6jx+7dB2PHjFflGJER2gfEn/L9OLRxxLkD7UNiIzE20WPbSs4Hro0iF1cuXYarl69AYsL+F/h0NU41S9y+RM5HtbUWPpw0WWcD/dlNAXz9E/l47111siEXnEfwuYxCz2WxZgL+TlygYO6Hp7aVvffhOta1K1fh+tVr0Mt8ETpOcS+expfg+ykGQMwXE2vbi8eVFsyfzjcWQnNjKzTUNcGypeqvbzZiNtVrb8GO4B087gL5WLg4T5HPdRSPLsati3pgrx/ZUOYUfC/FeEh2zZz5nAtk5ACzGz4eXN/3lA05Ixs3bIYb167BzevX4daNGzy+WYlrh9eHzoPyxfB3vFY0D6Efo2SfEHuMHE7L5HzU2uph6WJ1xhWNpGBcVQKbSzHeG/nwW3MZJvj8Bv8aV6EoH2hfUGwuxkPhfcZjYlwr2uhiTK+nIsbuRuyK5LYV+uZRQj6QUnyg9PX2wu2bN6H/1i1mj1RJxzFm2NP+UhSHTPXn8DrhcfH6yPNjRkr2RkZzPqorbRAUGPLKsIE1nXC+wDzT9EOH+Rr+G2/v5HwowYicD4oTFO+rPIduOHygzS/q46SJH/L1KlzTPcRsxmVL/BRhgz6DPifpwEHGxm24098PA3fu8NrXNB5P403E2ibIBjE/GnygbA/ZyfmoLLfy5ynmOvyd2Vi8cAnnAmt44Lwh1gcdLiN4L8neEe0l6rnnLT4CNm3lvhTu4aQnp/G1OaX4ED9n4vhJMNB/B+7eGYB7d++CIcfwwhxCNX89mT9EH4uuD9lXNP96S2eWLFrO+Sgzl0NetlGyVf9O8ibjfveucF7rDGsH4ron2lgv2V3DYATvG+VeiHxQX2/KK5Xb2dT7WAk2/vn2GB5Hksa4wHjE4ex5uGNj5WQb4P7de/Dg3n14eP8BryFE4/KED7l/TjHI3vLPHdocbE4+kpENZlMJrwGDdfJef03bcUck06fNhII8E6/rj3xsHcy9duibDJMRe/429Qx31z93d01UXksd48bQdsRY9qz0TCn+Qyk25Iws8F3EuLgPnz14AI8efgbGvL/qooh1452tLagpv9CpXrBnbGjwDs5Hfo6R+XZJMN1npnbnjDfe5vFCjXUNvJ8Y1g7EWG+3roWC/ogngutRrnqB4xquOHdgnkcG9mJOy+R5ghFhkYrPHfY+r6GuHh599hk8fvQInnz+OXvWPmcCfRBHfIh1v/CnlvZIMK4f/TrMVz6SlgVhoWFSvrIW5K0334aQoO1QV1MHR5uOcj4iw/cM2bd67Q0/GP/xV15nhOwtmlsc7T3L544Vy1fxmEreUzPLIMVWKs2GnBGs5/KYcfHk8WP44skTMBWYHI4RfTR5br2a6je4K2hbrfJbzfnA/vA5GUdgb/heKSdGnVz8k+cktDS38BzQ9pZ2MOYaYca0WR5/5v/87ycSI+9O6oJ//GOMV86F8lZFmxttEXrOyp/NeL/Q5zBk5TAfMhf2Cr00R5oPlOamZvjyiy/gqy+/hK+/+oqN7cMX/BBX56NVwTl7C/PxkA9jdh7vtRUfEweLF6invxbGO8TFxsOJY8fhdM8p6DrZxXwNK6xUKM5MZGTsh5e8xoij5y3aJnI+AtmxXOwzi700c/Nd1g5VmpFFC5dwLr75+mv49ptvoLio+KV1C1fzoaY5YZwHBQRxPrCXEPaDwL5CmFs3GnEqWN9r00Z/sJRZeCzQhb7zcO7MOaivrYc1qz5V/PtGkxHSMbFWCTJDz16sbYV13zDXEetHx0bFjvjcYe/zW1tb4btvv4Gn330H3z99CrNmzpEYp3oRaq5rooS886+xsP7TDZCTmQ3VFivUVdVAE3seYC+iODav4HNkpPKwpjM7adfO3VBjq+F7Urdu3OTxP8iHIdsAS0e4vshoM0LrPbSGTMfDdoRBAeOi0Gji9dk/nuLjFTbkjMycMRuePmVsfP8UfvjhezjO5nNx/c6T9V4tC8b47GF+b5WlktfVO9bazmtbnOrqYT5xI18bjwiPhPlzF4Dv/IVuf+4Hkz7iuh7MfOwD+5OgpaUVvmC27efMB3z44CHfi0I+mhubICR4O7evvHXOo80IrlmJNXunTJ7KuSgqKARzYTHEx7quqzuSc0iJuQR+/PEH+OmnH+Hnn3+CDev/yufFWvKvEh+iLGD6HxEWASVFZs4H5l+izYMx0DeuXedxCPeZXj96+BD6b/dDK9P5jvYOOMF46ursgqtXr8Cffz6DP37/HX799Rf4+aef+DPou+++ZXbF15yP27duQVlpOexkz8uJE7xbg5v2xl0xQvWV5X3/lBKsmS7GbiQlJoGZ2bl43cvMpVL/TG+xIWdk0vsfwZMnj+GXX37m93FgYIDvWdLrcOxarOWgtOA+w7bAIN7vrqK8AroZA8THF4+fcD8ObVTk4Pfff+NsiHwgN8c6jvH5Y+2n66U+xKMl4l4E+sdXrv36EiNo84h9kZTOlZPHNK1YvpLXHkLb1lJSJuW6jiYfKCnJh+C3X3/l9/WPP34HozFf+h/WAnKn5jv1PHgV2UFdX7xoKSxZvIzbUcuW+sHyZeqOsxf5oD6x8nnk2Z//lV4vxma78rvdHYNon+BeTn5uPq8VjTEBxaYiaX/H22zYY+QuexY+Y88Ieu7NmT33Bc6dMYJzL65xDWUOptrv8mOjGZPyKom9vWy83rl5xyRGPt3yTLK13I0xpfVbZ/sA9nrFRkVGgYXZmlhjp6qikj2Xl0k6Opp80Hfj8w65+Pe//+Ry9coV6XXopzvig+rSD3VfBF8v9jJE8WbOyKsq1CtP5AOvOeo1HkdGHnz2n5dsraHEYOPnoW3myJ5AXRJ7xaLtWllmAaulEqorqyA5KXnU7Cpnc0h+foE0fzx79gekHkp74ZzkuepiLy1P75V4zUcrJv5VEtrbot5GdK3pb6pfLre1srNLuI0w1Psr7/Mhj4N93muhmPeStVmroba6Bt4dM04VbMgZQb/8/v37nA20tdAXmT3rE+m8KHYMnzNiroenIp9DdD68x4jY54iedZQXSHbtVJ8tL9ha8+atGvJ3UX8ZsgvkMbC8l6y1inFhgzpbLQT4/3975/0dxXXF8fuf5Lc0J/E5ptlgbIdim+aCMTZFqIEkWsDElm2aJNR7Qb2seltJqHfUJYQoBpMQsOPY5OQ4sXOckD8h7/uWu7wdze7OiF2QtPPDPYLVSprZeZ9367s3ctHoDj07a9eu3ZILxF3gr2vjWdr79YW+533pWZ4ZsURffJEfcbef7t8bJPumtzQ1U5u9hdIUe2WxsKF3PQUFhfS/hw/p4cP/ythkW9slF//LF0xoZ6BY/vnyZoSfL/8bOVP4463NLXSpBWei6+U83Wftkxu1s64KPQs2kBf5z08/0bFjj3t+6/XNssRixJ0gVqX647/65XOUJ1jBOYt2zMi81C5zH4tVd+jZWfA7Hjz4TubUkfNCfp3rsxZi7y7FmnhLfMOINp77WfTngos2WU/T1dFBZ0+fXfRs6F0fdAa4QP3Jv3/8kW7fui10y+M4r5H6Ez6fCQnU/GEgM4I1ovrjmDXeIez1rvYO6u7sopKiYnkucimwoceIzVYp64Z+/OEHWT8xOTHp8l5Ps6hUNszGBi0x5/9yfR/XMajCMQ/4jvyavxnRywFu2vg6dYKLjk7q7UI/vxZx3a8sap/DCCNTk5P0L8EG6uD/+f33VFb6+KwI9ga93kD+YEPtmY2v/NyxNrgHjfp6oIjaf0ftm6DOq8fnwnOX+as/GdH6HOvWviJ7o/d0dVFfTw8N9PbRng/3Lhm7ypMv8huhI77+6iv6XrCBs1SoxdPmfVR/3V96AzFC7jXD/8brqKFD/B6v88z6QOUDewM+d23sT5sv90V/Q3eMYC2o9Rawn6orq6ivu4f6e3tpsL+fjivxnqXGhh4jOCty/949WZuNc4c4lxul1FeyDvGnTaU+YzV/GOh5RW3/NrCBvUPVE77s3+aNEZUPsAEfo79HcNHXT0MDAxQXE7fk2dC7/sNRRyUXf4c8eCB7O0RFHnZZm/70N/hMJvds5JhYoPKB++e+rswH25r8Hj4D6i8+VEaQYx8ennXRG6XFJTTQ1ye5wKzYKpvNeR5zqfkcRhiBzgAX30G+/Vb2QUE/FP4+uFgIG0Z8RrUHMu+RgcwH/ArkUcGAnn3FdVV4H9uleI33GU/cLYSRe/f+4ZI/jjkXI22p4cFBGhkeFjZW5bJjQ4+RmPNxkou/fQP5hm7fuiV7+rnzzbyJOvt9If4H97rkekfucRoojOCe1c+Pz2qovV+ZEW2NlZ7ge1r/0pPAntKexY49HyvPJl8eGqLRy5elT75yxeplyYYeI4UFRbLH3F+//lqeof7i5k0nIxzbgw3q7WwVz6uy4leLS/BMvNUS4TlDtDF++BfMxdjIiPTJca58ufgcRvx1SEF+gYxrfXX/vvDd78szIwfDI1z2FU91KHxOwFqPi1PwbDztNVo7AX0eL8TGSVsKXEyMjUrfQ+0PvlzZcMfIxbx82e8aPTj+cvcu3f3zXcGI60xZfIZ6egSf/9Psq8W+iXYWg2qP+KJufyE2kp4OVfdw7tentZv8KXg27nxJ7exj+BXwvcdGLtP46ChNjmO+cL+zN08gsOGOEfS9wcwEzE5An5o/3blD4WEHXfYZ6F/VRmVf8Wlet7tZPtzDD69jPTxtneYupqDGnLjen88wwS9fKMdm9iT+rDw9S7AB39vBxRhNTUwIn3wgINlwx0iu+AzR5+bOl3fozu0vZa+zrMzseXpE7zM36sP7Ys/k+gq134DZ+BefR9X7verrWIfaGo+F8qHNcXjrhe7uusG/eo7ZiKh7mbYfD/yKVrtd2FLgYpxmpial7xHIbLhj5A/HT9CXt2/LOsZbX9ySfaKKCotl70ztMzK733G/0yepA2bdwGeyFsqH9j16fXA49qrO6dNbk1wvpf4+fp+v+YDgWnC/ZmN8er4IenjA954UXExPTtKV6SlqamigVSvXBDwb7hgJCw2XXKBPJubl3hDSYm+Z1xNQe0bf27pWZ7E8iX3li/y79j3qz7Ne0q5nvV6tnJ/Q9qLgGLU/+FBzuEbsM47dgg2Vj4hDkdLHmJ6coBnBxezMDDU3NYq98LcWGz/zHPvdtnWH+Owm5Kx19BtEP9mxkVHZF0qNDXIM2FMfU7PP05udoNbo8XpTZyhin/cW+/fEB3/P6Hrmehyt/uB9XuVZq4+eJC7lbb/huC2ekWpPwddITEiUPgZsqdmZabo6e4XSUlOdbCzX/IYvGXnt1Q1kb7bT3OycPIt49cqs7M+JmXlaPYI9ip+H3p7vy3oVrvE24j/o/SzY8SUf/Hu1f5ftLnXPNurPGLFXec9xlydELw5tbB6+Rl1tLU0LLq6AiyszYu+bpdiYWLf2hCXuGcF+gvgvuLgyPSP2mxmhj6eprKSMVq5YM0+Pa58H761m/En8jL9ixryvs67h1/msPM8nBcvgSI03QV/5M5atrbsyokt5/ob6OnSFNnYLiYyIkjVU8DFmBRdzgovxsVEKCQ612HhCnwQ6Y2ZqWrAxJfTypLS9+nv7ZT9O7c+in+n2rdudvX/0Zj16sx38eW+c01T9W738ybPIV5jxuXkGLX++sHGDg4LmvQ/2VG52jnh+U9KWmptFj+6rMmYFG8FiwzeMbHlzGw30DdDE2ASNj47T+MiY7IuekZapO1/D3f7mzS8I5HPu4NTM/Wv1s/YcKHoJI4/BPsa1uVnhU85RUWGhS0zS4sI3jICD4sJi6auPCjZGhkfk7LCu9k45h0b77Nhu0Tuf+KT7J9dELvZaLc4LGu11ZNRPY1+P9Ztq+0mdkZMrbKnHPsZ1wQXiuKEhYZbO8DMnh8IjqLujiy4PDtPwwBAN9Q/K+ZN5OXmChVUuNoDj/eEuz9Sd/W2mzpH908U+Nw73ZCZfAe6N3BNsKew72v0B53mGhwYdPsYjW+rm9WvU1tpKq1e9aLHxlBhZ8cJqys/Np0HBBuwu+CN9PX3U291LR6KOOntaqPJZtCP2pdcPgvsuG7VDeH6cUbvNH7aQP64V690TS9hr9OLpsH8b6uudPsY1wcWN63P0xc3r9Gn0p25jMJb4L74FwUzKNmET9Akuert6qKezW+iWbmpuaKbdSs8wVU6dODGPEzO2ldk92cz7tH1tPcWPzOo6o7agXj99cKFnp65asYaSk5Id8VpwcdXhY9y8cZ1qa2osnbEodMkqSkpIllx0tXdRp/BHOi51UEdbO1WUVtD2bW955AQ2uplepJx7M/ozRtcy52qM6Btcs9F8J/9eo763GqdA/yk9LuBjnDtzTsZrrz6K116/JmypG9dkThx1EJ6emSVPlxHIpo1vUGV5peQCfScxE7PN3katza2UkpRK27bs8Lh+YTd4mwWn5saM7MdYw0bXpRk+zPSh4lieEd+bWXD3XnBx6qM/zvMxbggfA7ZUfNyFebEpi4vFxcmB/SFUV10nuWhpaiF7o53swt5qrm+SM7j08iYQngWH3K+neT5marnMrGMzfIBTo2dYucbGU6ybc6t6uT0I8rFJiUnyLPg8H+ORLfX71zZaXCwRTuCfR4RHUrWtWvbAbxJsNNY1UkNtA9XX1FN+Tj6FBoc7Z9SpAj6wj+Irzyxh4VpHozYT3mfU7jfDhxm7DcK5UtUmwx6AXKqnWs8tb2yVXMxoakIcPsY1ycX2bTssW2oJMeLCiVj/B8MOka3MJrmAXqmtqqWayhqqEexUV1TRyeMfCQ426NoaXN/F64dzxkZtfzNr2CwfZmIKXFMInYP7ARewJbX8sw0VtO8AXWptc9adu/gYwpaqra62uFhGNhf0RFhIOJUVlT7iopqqyquosqySbKU2qiipoIzUTNr93gf0/O9ecBsL4r5pWFuwx3y5hv2hP7jXGrjgnl/uajl3vvseJcQnzKs7V32MGouLZc/JO2/tpOyMbCcX5cXlgpsyKi0spZKCEirOL6a4c3G069336Xk3tpHKR8zZ09K3x//Zd+H1508+2Ifm9c72El8T9B+uyVP9P+ZKxwt20D/HcYbPte6ca0Iy0tPF77a4CBS7C/LG5i30yaloqVNKC0sEG8WCjSIqulhIhXmFVJBbIP2Uc6fPU0hQKL289hWPf4f9FtUe4z2e46T4HjPEPjFzpvLB57T5/IT6fp4Lwb8bTMCvVv0IdzU1yKvu3bNP9glBr2dHnxDH2VZZd67UhICZ6E+iXXIYFheBxwnsqfd37qaUxBQXLi5mX6S8rDzKzcylnIwcyk7PpuT4ZDoadYze3vEurXtpveG/rfYl4HnXzAXHjFQ+OB+Htc82EvPBX43k+5EbQn/K6I+jqaKs3NmLUO0Twj4G152npabR7l0fGNLHlgSO7QVZvfJFCj0QRgmxCS5cZKVlUabwTzJSMig9OZ3SktIoNTGVUhJS6OOTH9Oe3fvEWn6LXlqzzmsOxV+ybu162rH9bTocdUTOAK+trnH2OwcX3HPN2ScEPsajuvP8vIsUciDE5Xyrpz3FksDWKRDUTnz4/h76/JPTlJki2EgWbCQJNhIFGwmCjfgUSr6QTElxSZQYm0gJMQkUfz6eLpy7QGeiz9DhQ0foYMgh2vnOLtoh2Fn74stS52jPdhkR+E3IL2x4bRNt27Jd1mhGHIyg1ORUys+9KGcqdT6aqdTb3S37nTv7Oju5GHH6GEODA5SXm0vBOkxYusISs6z84ue/pjdf30phweF05tMzbrmIOxsnBf/G64lxidImA0/pQudA/0AX5WRkU57QT7DhCnLzpc8D/6dU+ELlJWVkK62gqvJKqrZVUW1VDdXX1FFjbT011TeSvbGZWpvtcm5re5tjPiXPVJKzY8BFP/qdD7r0IkQv9FMnT8laQrP3b4klZtYK/IFX12+Q+uVIxFEXLsAKuAFDsL9gi0H3ZAn7DLZaruQiT3IBfwcxAcQHyovLqKK0nCrLbTIvU1tZTXXVtdQguWgQXGDWt53a7K1yPmWnnE/Z6Zip1O2YqcS2FGYtZaZnSB2DPjoLvU9LLDHDiqd1hDlZ8D/eE/ZUaFAYnTh6ks6fPi/9luz0LMFFjvT34fsX5hVILkoEF4ifVZQILspsVFVRKed6Sy6gM+oaZP6/palZcNEic3Y8n7JH2FI5Wdny/OqxI8dp74f75NxgX9yLJZb4mxetfbZ+3atS4Mfv3xskc9QH9gdT8P4QGT8OPSAkOIyQxwwPPSjz/uxnRB6KpE0bNssZlZs3vu7Xa7XEEn8z87TX4rP++5ZY4qt160uxPmNLLLHEEkssWVzyf1BLAQIXCxQAAgAIANqIPlvy65SMnT8AAABxAgAEAAkAAAAAAAAAAAAAgAAAAABkYXRhVVQFAAclDtxoUEsFBgAAAAABAAEAOwAAANA/AAAAAA==</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #27</Name>
|
|
<Index>27</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPlvyStk8BEAAAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J33W5TH2se/f8l7zvWe6z0nlphmYmKLSYydqMSCit1YjhpAEQuoCCgiSpHem3RYdqlL71XBgqjYY4stMSbn9/POPTDr7AMoC7u4C88P98Wy9Xlm5jN3mfue+fvf/oG/q/Le5G//87+DFrW9VBkL494Wvl8VVSw1TtVrUkXlYXDjbuHCxVzc9rvDzc0d4RExSExKY5KKouIytJ6/iNa2i2hp7UBzSzuXpuYLaGw6j8bGNjQ0tqK+gUl9C6Ki4pnEITIyDocOHoGT016sWbMec+cuxOTPpph07WpfqmIJJgZ6zzfffI9Nm7bCy/skUs5lop6N7Y5LXWi/eBUXOjqZXMH5diYXLqPtwiXGxaU3XLQquGgiLtoMXNTVN6O2jkltE2pqGlFd04Dq6npUVdWjsrIOFRW1TGpQXl6NuLgk+Pmdwa6dzpjz/XyM++BDlRdVRpSHCeMnYaWDI3x8/HAuLRuXrlzncvHyNXRc7jJw0c656JS4YCK4aOsw6Azioqn5PGeDuGggLhqICyaCi9pGxgZx0WDgorJScFGDsrJqlJVWoVRfCb2+AvqScpQUl6O4qAwpyWk4cdwPG9dvwfSpX6usqDIsLvp7zc5uKQ4eOgJdfgkuX+3G5c4buNT5hgvOhuBC6Aziot2Yi4LCUsQnpCAuniQZe/fu57JnD4kbFxcXkn1wcd4HZ2dXLj5ML0Uw2yw8nElYNNcZxEU5cVHGuCit7GGjpMLARXFRKYoK9SgsKEEBu+4CXTHytUXIYEx7e53AimWr8Oknn6usqDIkXeHgsBZBweFoZuP6Slc3rhi4uNGHiw6Ji6TkdPifDsI+t0NYvnwVFiz4gescS1z/jOmzmB21AJuZbbdrpxOCg8KYvkhnXJQyLhgbggtdEXTaQujyCqDV5CMvNx+aHB1ys7U4yz6z1nEDPvl4ssqKKm/VFYKJFsZEZ9dNxsXNHi6u3uhhg7gQthTjIpeNt2Nevti48SfMmjXbau5v3AcT8f3sedixfRfTPb5cZ2g1BT1c5OoYG1rGRh5ysjTIzsxFdkYustJzEHgmGGtWr+vDisrJ2NUVU76YiuMn/FHJ7PvOa7cUXHQbuCDRMPuEfPBFC5fY3P2TLbV8mQOOHfVBSlIacjI1PVxk5CAzPZsxlIWM1Eykn8tAWko63A8ehv2SZSbZoaqMHi4cVq1FLPMBrl6/3cMFkz5cMImKTuCxKUvZSO9Lpn41A7t3OSMyLKqXi0zGRQZSmX2Wynz6c0mpSEk8h2jm92xctwkff/SZyskY4GLLlh2oqmnkXFzt5cJIZxATMcTEtlHHxEBC9tRmZiOGMttScJGckIJkNn8kxSUjMTYJCTGJcGI8kb5VORldXEyY8BHc3T3ReuHygFxomS+7afPYYWIg+WrKNLg47UVUeDQS4xgXsYmMjQTER8cjLioOsZGx8GC219czvlE5sXG/m3PhIXEhbKleLppbOxAYFMbX99T2M5YP/jUBS36wxwnm3wsuYiNiERMeg+iwaEQxu+yQ2yHMnD5L5cQG41FkR7VJXMg6o6Kqnq9njHVdMVghXbHPxQ3R4T1cRIZGIjIkAhFnwxEeHIYDrgfw0YefqJzYABd2dvaoqm1C1wBcbGY2lNp2Q5OPJn2Kndt3GbgICwpFWGAoQgNCEBJwFttY2/7rn+NVRqyQDfIbM7I0KhcjwQnTFTu2/huhgT1cnD0TjODTQQj2D4Qfs8eW2C1VdYkV6QzyMbpu3DH2Ma4x/6Ktg3GxXW03C8kkxgnpDOIi6FQAAv3OIODkaZzx9cdBZnNNnzpTZeQ9siFsKaWPQTkhqn8xckIc7P15D2eDi99pBDJegvwDsMFxg2pzjRAb4jHFpU74nu7XloqJTcIXihi9KiMj8+cswElmX5EuCT4dyOyuIGZ/BePEMR/MmPa1ysgI6Ixvv52DgqKyXp1h7GPYKexer2Pe3AZQ29Fy4rrXDdOlsU+6gnRGCPNJQplvEhYUwnz5UObTh8Fx1doB5zxVhs+Gk7OrwsfoyQnxOX6qjy1VWlqG//73v4iLS1Db0oL+x+vXr3k7O6xcbfQa6QtfrxOICA5DZEg4okIjEB0WCR9Pb3w86VNVl5jZnhK5Usq4lN0iY52xa8cO/pf6i/qNRJ7fVDGfZGfn8vZtbm7h/69auRKffTrZSJds2bAF0aGRiAmLQmxENOIiY7g+mTdnvsqImewpni+lyAmhdW9ZZ6xfu7bPd1G/yf2nivlkwfxFhvlH6I4P2Tz2z/8bhzmz5/DH4r20vniG+e1xkbGIj45DQkw8kmITsGPrDpWRYbCxZct2XqutzAlxcHA0vEfMV1992dcnJ72h7ENVzCNi7iEdonxN8CH3CeWr7Hfdj8ReNpLjE5GSkAxvZm/Ra6pPYhobVJOhzDunHEJlbGrRgkVv/d6gwGDejw8fPlLb2Yw+ObUp+R5vs1370+mrVqxGSnwSzjE2UpNSkJZ8DuHMd5/65XSVkUGwMWH8R7yGT5lfGxgUamRPkZ/Rn854mw9JrKjtPXyfnOYaU9pzj5OT0f+UIxwXFYv05FRkpKQhMzUdSXGJ+E7KE1UZ6Z8NXaG+Tw3f7p/39NEJQ53v1DYfnsj62NTYuWzjkk0V6B+ArNQMZKdlIicjC7mZ2Vj+4wrVJ+kvRsV0g65Ab8RFU0s7Vq5842sIfUG+oalxW7KT6XPqGB+ebP1pO2eD/pryOeov4oP8RfLh6blxvT5JTkY2YyMHmqxc5OVosGKZw5hnxChGxfQqxWrl2tbG5gt96jIofijrBBJ1zL4fG8tUpmitVvShHAMmcd7tjLxsDbQ5edDlapGfp4PHQY8xy4h8r8QAxaREbStJnq7IyNeQuVDOSUPRCSL2IuyE0b4+Iq8FyfE8um/hS8hxcGFDCZvUVF0hC/1GfzEusU4lhHRGvkaLAsZGoTYfRboCHHE/MuYY6Y8NeZ+QPO0bNkQ8/W3zGLW9KfMZ8dTVdc3wP62zj3a/XcS5le1Ec7qwU4XfTdwQE+K99J6hrh/Rd1D79tc/ZCtT38q6ZOXyVZyL4vxClBQUQV9YDM/DnmOGEfn+iA3yL+S9CDVaY71BbSivMw003k3xRaj/5f4mNsZCXIvaiMY93bu4X+W902tC1wzUXqb+5tv0O7GhtA0cVqzmXJQWlaCsWI/yklIcO3ps1Me1jONUk1BeWWe0F6FGW2hgo792G6x9q/LR/zwuYkfCpqJxa0k+TPEPaT2RxGBPO6xBGeOiXF+GitJyVJZVwIn5KKOVESUbebpio70INXlv2KC+HErO7WA/Q/0t21dknw2WrdFiX9H9UzsQG7J9Rc+LvBHxXhrjZCOZ2hemzDlkI5DIfuCaVY6ci6rySlRXVKGmshpr16wbdYz0ZaPIaL/zXAUb1EcklsxLH2v+ubB1lH74SPjnpugb+j1Z5ziuXsu4qEJtVQ3qqmtRX1OHdY7rRxUj8j0EBIYY7eucqykw8jdo7hJr3ZZmRBXrEcFGf/lcpDPqa2rRUFuHxrp6lDNd9vXMb0cFI/K10761hv3OL11FXUOrERvHvTxVRlQ2+HM/bd5sFNfavnUHmuob0NzQiJbGJlRVVOLzyV/adExLvuaNm7b2ctFzRgad/SL2O6d2UK4XqYyoekMZ+z3p64eWpma0MhuwraUV2ZnZhvnV1vgwiuMyDui8sZ6zY3rOVKIz+cR7KYbbX56hysjYZUPMm8oYZmJ8As63tuFC23m0n7+AyPBIm7SzZH9cX1pldKbSzp1v4nTviuHKjKg1TmOHDVnkWqsJ4z9EblYOOi6042J7By51XMTuXU42xYh8jRGRsUbnU/r7B/WZI971fcSIiNfLz1N8Us4HpTYX8Xy1Fso2+HgXG2KMyDkU38z6Do3MF7l88SKuXLqEzstXYLdosU34IvK17dzlbHQ+ZVa21mAv/rjUflC1G28TeW2L4o9kg4l4vlpzbv1iyhxG+kPO11q5YhXj4jKuXrmCrs5OtLW2Wr0vIrNLvrd8PmV1TSM+//wr/pq5/AiZj4HWgdVxaBmR80bE+joJrSOK52nO6u95c8lxnxPounoV17q6cP3aNSRIOUbWyIjsc2Tn6N6c23r+Ij+nUp43TM0pVPmwLpHbV+RzifV4sdYuakREf5u6Bj9Qn8t2QVFBIW5cu47uGzdws7sbe1z2WiUj8rV4eh5nbFzi+yrQmcZ+pwKM9KTwKYZaryRYUPmwDj5kX1DoDHrOXDmOwuag8aLsU9qTvKO9Hbe6b+L2rVu4zPyRL6dMtSo+ZLuKzjIWZ323tHWgoFA/YM4h3TPpaVNrnEQOCsW1BBP0HbL/Iednq2I+EW0q8yF0A7U9PTY3HzSH0vcLvUH7cZD/Kl4nnXGHsXH39h3cu3MX2jytVekQ+RoKi8r42cgtrR1obmln92bHn39bnjqNbVNrZUX+mxq/Gnm9QX2ltK/EY5kDc/Ah16coRY7vpCSn4N7du7h/7x4e3L+Pfa5uVsGI/NuurgcNXJAcPuJleE25X9i75ghVrFd/kJ6W9xOj+Yh8DRr/9FfodPqf3kt/SZ+bkiMt7KmB8iJpLMl7B01k/5Ov/uCXX/DwwQPcuH6dP2ctfFAuTHMvG03NF6DLL8b4cW9iuYNtE3X/BNtghNiQ7VfqN3puoDUqU/pV1OMO5jOzZs4yrI3sc92PRw8f4vGjR3jy+DEyMzLfqw6RfzMuPplz0dR8Ho1N5zG/164yhY+xJIuYn0ZrWh6HPHDE4wg8jx7rsSVi41CqL0VYaBhO+fnDz+8UTp70w+7dTvjRfjmzKaaPKT/nXUJ2ibx2WFhYiF+fPMHTX3/Fs6dPYW+/7L3wIfvky5Y5cDaIi8bGNgQHhxl0oMrGPzD3+/m89i3oTBDytTqeP0S5EbTue+PaNdy+eRP3797jcx/168sXL/DHH6/w119/cnn9xx/4/fff+PPPnj3FkyePkZ9fgNP+Z7Bt644+55GPNZHz976fPY9z8fzZM7x4/hxNjY3vRYfIv6XTFTM22tDA2Cgtq8Lk3rxjZf7lWJFxH0zAih9X4riXD99joJzpA6p/o9qe5sYmzkdpiR5pqWkICT5rpD/2ux3AhvUbea6qrD/Ky8q5XhF8PGQs3Wd+6J07d3Cz+yZqqmv4ehnlXoxFPuRxdjY4BC9ePMfLly/w228vue5VzukjpTu2b9/FuWhoaEV9QwtcXPYZ3tdfvHo0y9LF9jh80IPvBZjH7p32qSE+0s+lwZuN/W3M11wwb5EZxsM0rHVcz5nS5Go4H7R+fLWzE5cvXoK+uASeR44xn3DKmLHFKCYg1gk+nPgxmzvucZ376tXvbC55wJ8bKR0ifmP8uA+ZvqjmXFA9h15fyZ8TcTmRnzma41J0vsXa1ev42Ui05zLtJ0t8hAaFYMO6jey+Z1r8GiZOmMT3M6Ax0tjQyHNbqT6CdFV0ZAzsly4btWwQE6I+WF7zcmd+Hdmor1//gT//fM118UjoEPn7XVzcUM+4qKtrRm1dExwdN/SJz8k1zNR/o2XNbhKbj7Zt2cbPAKdzXxKi43A2IBibN2zBJx+/X5tyxXIHhIWEcT7qa+tRU1WNTMYsMTRauBDrKfIeAspY8PXr17n/9p///IVff30yIjpE1h2kL2qJjdom5OToDO+h2kg5j0R5H7a8JyjpC4dlq/gZrXT2JPHhsd8di+2WWN21kn3lcegwigqLUFFWgdJiPaIiojD7u7k22/4i9qucd+WxJx47OblwNkiIE/LlLOmrG+kO532ci5qaRlTXNMBxzZs9JfpbBxR7Gov7ssUzASkme9rXH0GnAjkf+1xcjc5ktVahueznXU583+ei/CLomF/kddTrves5U4VsdlErJ2pHlPaIsmaiu/sGZ4NsrMePH1lUh8i6o7i4vIeN6gZkZ+UZ3qM850EpxDrdoy2tA9JZku4HPJiPEY6QgLPwOnwM3/bWzttWXG0iDrsf4Xxo2NhKYv4S7TFlK9cv9hx6V+4prauLeJbTz86cDfJDSCgWaCk/RHyf45oNnIuq6npUVdVhzeo3uuNte+XKvomt9Mm8OQsQFhyO6PBozsfqFauNzrq3RZk2dQZCgkKQlZ6FtJQ0rkvk880sNbaFHUT9L9vc9JieIxtD1g/K/eXoPYOxzZVrCtevX+O+OsmDBw8sYmPJ35Wdnce4qEdlZR0yM9/URx5wcx3Sd4t8NyHC9rJ0fc27ZI+zKxLjkhAXFQ9vTx980VvfNVrkp81bOR90BmBESAQ/Q3Mk+FDuXyn2cqQ+Fj622MNxqL8nn6Hw824nvHr1isd6KeYr6tUtwcfSpcs5F5WVtaioqGG/7WKS7uhPqF3EWomcq2OJ+ppB2SFsLj3DfIxzSamcj61bto8qLozs9SnTcJbZjAkxCYiJiIGdtK+MpfgQezaK/hb7VyrtpuHwodz3n/IWiQ1aL+zs7DSrDpG/IzwsmnFRi/LyGuh0RYb1jqHqDqEnSK+KfXCF/WXO+prBytSvZiApIQXp5zIQExXH7avRyoaQnnNlD3A+SI9s/2mH2b6b5jqxfifbV6JWh0TYV+bkg4Rym4QO8T1xEr+9fMnX1F+8eMFz2czNx+TPpqCCcVFeXo2ysip4HvV5a8zKFBE5oUKXvA8+pk2diXPJacjKyEF4SOSYyQUUsnbNes5HSGAIs722meU7yV+guU8+Y2Ug+4r6V9hXpE+Ge1akvO8Jxa0of43yTp4/f4Z4M9aqi8/vd3NnXDA2SqtQqq/EjOmzDHME+QxDXSNXtp0l6jMHw0Z6aiZymW8VxOyNcRb2V61VKIZNfAT6B/K1TnMxIvvbQ/XPhyKyPkqIT+B5i5TD9vTpU0ycOPz6EPmz6WlZbCxXQq+vQEy08foFsSFqW03d61u0iznra0wRuvasjFxoNQUICQ7jcdCxyIaQhfPtOB/+vv7YsG6TzV0/sUZjhewQOd5FeTaU20s50rSeTrmg5uJjyeIfuc7Ql1SgpLgcqxx64uaUf081Ksr5QulLDGaMmqu+xhQhHZibo0VBfjHCQiPHPBtC5s9dyPnw9fbFOmnt15pF2DE09oQtQ/aVPD4vdnTw+hCqn6qpqRmWjSV/5ugRL5SUlDM2ylBcVGoYR2TjDeR7iFwAa80nodhCXl4Bu58yRIbHqGwohGITxIf3EW8ssbPOOh6xJiLGmXI+Jj7kc6m8vXw4G1RjSPU2X06ZZhY+cnN0fBwVFZbixPFTBjaUusOWJD4+hevElOR0lY0BZM7seZwPr8NemDt7vtVdHzHxrhoKmr9F3gnVBjx69JCzQXXqZ04HDJuPxT/Ycy6KCvUoLCjBD3ZLbZ4Pby9fvn5D+kPdE+Idca3V6zgfXsyG+Pwz26spITZoTyDxf1VVFR48+IWvibS2tAzJxpLfe9jDk3GhZzZ6Cfdj+9NbtiT29it4fgzxQX6VysC7xXmXC/x8/HBov7tN5tfI64W0988v9+/zvYBIZn83Z1h8ZGVquP+aryuCD7NHBR/y/iq2IlT7W6Kv4Hwc2O+hjv1BCvU36Y+g04HYtH6zzV2/vB86+RzEBe2XdffOHezd4zpkPqjenbjI11JedCFW9O6jO9z1wPclMTGJvGYlKSlNHfcmyjdff8f5iAgJt2iuliUZF4+bm5o4G3du3+Z1/abaWOJ9e1z2cS60zE7XavINfqzyfDhbkHXrNvFaeeJjpg32rzUI1UwSHwGnztjctcs5UFRvS/v13r55C7du3uQ1yoPlQ34PrQkQF3m5+Qg9G2543tbqZGkP4IrKOs6HvIeEKqYJ+R6kQ+Kj45idZXtrh0IW/7CUc0F7vnff6Mbq3joYU/ggXUFcaHJ10ORosa03b02cNS/va2/t7eG67yDf21HL7ER1nA9P/p+9836L6tr6+PpX7nPfN8V4E2ONSUzsGhV7N3ZEBERFRClSFEFAQNrAAEMZekeahWIDe0dsMZqq6fX++j7Pu79b9sn2ZBrDMMyJ54f1AIeZM/vMWZ+z19p7FcT4go98Y57H5yDK+yOIzZBjwB89eMj7IqAWKeIXB8rHPPY9gAvEJNVWN9C0qS/8fLl3nJwHjM/GnrmnrZeiLw96LYCPJUtW6DruAomKiKKy4hLaG7zX48aGeCXso4s6wbKAEfG66qpqun/vPt1nr2tpanHYBxH/3xEYxLmoraqnmqqX+8SBAZlL9TgGGoM1lJJ05CjnAzVQdd12jUz+aCrno5bp2Oh3Bz+HqGNPLdWmtpcvJ9eUkkXE0qvtHNQAQu+pvrt9dLf3rkP92eT/JcQncS4Q7x1/6EXerqWeuxCMFePDuC313pCvTc6rF/H/6uOuEuT8oTco+JjzyXxdt10osTGxnI/w0PBBn0ud6yHqWsnH7OXLCbsGrxNxsmp9wj6h2NNG/eM+xsXdO73Ue+eOwo+jfNRUMjYqaqmqvIa2++9Q1sicWbfCuEUsgGyHyXlk4NzVMbp790ZwPgqLynSddrGgRgX4aG48Nuj4HEu5UOpaUPbyHcCCPdteXYu0l7Fx5/YdunPrNu3bG+YwH1OnzKCqihqqLK+myrIqpc8N+HNm70OO5Qfb4EB9jeoeaa6Q8z1XOB8bXJTLoMvLks7uF/gI8NvutP9sjQ/1HOKqfCC5Zjp6TaEm662bN6nUXOqwb/7p6nWMi2qqKK2i8pJKZZ3CXp8be9+FyOkQ/SKGko9Nm7bSjVt91HaiU9flIZJlS1ZwPspLy5zSBzFHWMullesiuooPOe4jJTmVbt24yevpo9akPR9dHA/wC2TXXMnYqKAyc7liWzkbjyj3A5Z7oA0lH8bcQs5HyN5wXZeHUKorKunU8RM0e+bA43uhEyJnUNYV4ZPKa7KuypfD81084wP8A3m94utMrl29xvs8ObKGFXsgjnOBGh6obWPLN3dExDqXuDbhO4m8QZFv6ao8qPHj36fbvQ84H/+0ujyeJhHhEZyP2APO6avIjZOZET6pOjfOFfly0GERzzt3jhddZ1xcu3KV952Y2+9HWOJDPpZvNFEp82lLikpp147dCnfO1vCRr1v2oURdBvXxwcrmzVs5H/UNLboOD7HM91rI+Whr0d53jTVdcHGFyeVLl5X1AHt8gAtzYQkVF5iVHGTEXMlx9J4sefnFnI8AqT6XLkMnjfX1dPZ0F30ye67HjxVrWFERYcrf6AVxmdkvly5cpMj9UXb5QJymuYCxYTJTEdMz7AVp7X719j3ifOi2lXskJiqG87E7aLcmxivbQQX5BXSx5yJd6L5A+bkmu2tXs2fO5XUDC/OLeF09wQdsIPhOok4Jfor9Gk+KV/TyWsT5aO84q+uum2T1qjWcD1N+vseOUfg5sKHkXjQZaRmMjR7qOd/N5sEGq2tY4u8NazdyLgpyC8hkNNn8TOE7CGY8IfYqLDyK85F6NFPXXTfJ2NHjOR+XLvQM+1jg58rPcPFT7LmpffugXcHUfa6br++iR6Q9PtYzPkz9bOTnvHgeYO1Kttk8WfKZzwQ+tgcG6brrRqmrqeF8YE1ouOcJe6/BGpbIJwzauZuxcY7OnTnLGD9rl4/IsEjOBeqxxkb/VUNUK/lQXWd6OB/z5i3S9daNkpqcwvnw9wvw+LHKtUdnz5rLuTjTdYbOdJ5Wai5b2wPZH7qf8gy5lJuVS+H9e2vYF9RKL/O++485H7rOuld27QzifMREx3j8WDF3iL3u2bPm8B6Npzu7qKujk2b173Na4wO9koxZRsrJzKGwkDCFNy3U8vHyWsz56Og6r+usm2XJ4qWcD3Nxsbb4YPNFV0cXdbZ38j6NlviQf09LTqOcjGzeL8lvq79yPi3YV4KP8so6XWfdLNj7AB91tTUeP1Y5Dh11NDsZFx0n26n9xCna7h9ok4/s9GwypBl4b9bVK170BMa+oBbqXYVHRHM+DsUl6jrrZoGegY8b169pwv+Qe922MzZOMTZOHj/JY7Js8QEuso5mUmZqhsLHYGNL3M1HWFiUrrPDIFrhQy2nGBfof32i9bgSq2+ND3CBPq0ZzM5atfxF3JhWYkt0PnQ+HJ0/5P2KE60n6HjLcWpraSP/bQE2+QAb6YyNtCNHaWV/PThXiIhhFnmDcn8UV31GRqaR8xG4QxtxDv80qaqo4Hx4zZs/aD2BiJ7OIm9W7G3I/XXk4wP1QcTv4KKtuZVam1rIz9fftn/OuEhLSqWjiSm0culKfgx7jnKPWUui7mOgfg+uReQOih61IkfGVTWCauqOcT68vPS9j+GQApPJpXzgdxEHIvbBoVdyfza5/5gQdU9kS2KSeqyBi5ZjzdTc2EzbtvrZ5ANcpCYkU8rhI7Sivx4O9NdSbQhZ1GMUPeQE2+K61XlQ9vq963y82nyIGD9Rt8CRvDp5frEm8jnARVNDEx1rOEa+Prb5SOlng/PRP3/IeRrWxNIch+sRrLuTj5X9/a100Q4fQgfUfKjr2zjChzrHypLIcVhNjItj9Y3UWNfA+Nhmk4/k+CTOBuYQ4X8MZn8Q3GMuk/mQ7SuRj+6K+xPPxq3758MnnR3tnI+pU6YN6H1CD8CAmg/BDZ61ogaObF+JXn4D+Tw5xxbSWNdIDbUNVF9TT1v7892t8QEuYGPBB1m1/AUfg4kvEXm07vDP9fUr7a5fCUZs+efiOTpY/xx7efJ+Hrior66juqpa8vHeats/Z1ykMx8d67ur+9d34etroaeBzoe+vuuM1FXXUi1jo6ayhrZs9rHJB9Z2scablZpBa6T9c3m/0VNlx849nA/k1+r66l4ZO2YC5+P8Oc/PS4MtJNf5ARfVFdVUVV5F3pv+zocskWH7KetoBhnSMil0T6im7pEefzV8IuKvtBCfKMv7731I1YyLqrJKqiytoDWr1trkIzR4H2WnZ1FOhoHC+2suamX+mDD+fc7HxSs3dZ11s2z18eV8ZBsMHj9W+B7Cn546ZTpVMjYqGBvlJeU0ZfJ0m3yEhYSSMTObcrNyKGJfuKb8D4jI/xD1uHVxk+8XGs75CNnjeT0P1IL1WBG/izrC4KLMXEalxaW8PoklPpTaib4BlJdlpPzsXG5n4RjY0Ep+VHPrST1/cBjEmJ3D+Vi+zPN7rCBfQ+TXLl64lMoYF6VFJVRSaOb9O23xsW7NOs6GKSefCvrrM4APa/HtYi8Ga3GeUJ8hLd3A+QgNjdT11o0i6jOM76/ROVwCHbRXTwe6LPbzNm3YTCWMDTNjo7ig+G88qP/GnnmBMZ8Kc01UlFdAo94Zw4/LdUrkn2LPxlP6Rnl7+3I+yso9P0/nnyLIuQMfne3twz4W6OFA6pcg3gpcFJmKqCi/0C4fqHcFLorZa83sPVM+flH/Sis9OeGji/pwuu66RwIDAjkfGWnpHjtGdf0rcTw6MoZx8aLWW2S49X0zwcd7TL/ARQljqpTNOYsXLFF8dK3UMEH+OfhY0b9/o8vQSmZ6Budj3dr1Hj9W9VpTKu/H+6KeVYgqBt0SHxD4KWXMJoPfsrm/twzsNWfrt8t+ijvqU8ceSuR8JKdk6Po7xILeUahPDT7GjZ3g8eNV71WYeC/efMrLyaO1a9ZbtK3Ux44cTqJycxlVlJRR3MG4QY9J3btBxJyp+xu4Ko4X8bvgA/2jdB0eWlm5fBXnw1ykvZgF2OL5jAvUess15NL8uQus8iHL/rD9VFlaTlVlFWTMylGOHzoQ7dQ45LUta/1xhB/lqmvvuXiN9/9Yvtzz+7NrWVKOpHA+fLx9nD6HHJOIfA8Rvyp6xYhn7GBzBiEB27YpfsLM6bM5F6Ke1UcfTrbJhzjuvWkLVZdVUk1FFdVWVg/6O4RPJNYNBAdD3T/qYOxhzseR5DRdj4dI0NsZ/dXAx9gx413CB/RD5KKKvseO5Aw6KrIPvXb1Os5FdkY2GdINFm0pS3ygj05tRTXVVdZQfXUtTZ86gx+H/+FMnR/Rs1r8dDTPZTAyZcoMzgf6c47T+xwMiezYvpPzkRB/eFDnkfnAvCDmBqEjrtIV+OWy74H6h9kZBsZGFkVJa1f2+Bg9aiyPhUdMfENNPa1fu0Fhz5k4E0s5gngmyP2dLeWwD1bMpZWcjz17tFFbW0vyxutvUUmRmfOxYL5zsQqWcgah98JXFf07XcUH1q7kOjwpSSmUlZZFmUczyXfLNru+h/w/+OeNtfV0rK5R6QEPNmzV+QH3ore5fFydLy/36lTnT7ryHm7c6MP5OH2mR4/HcrFs3ujN+58XFRQ69X5rOYOWdN+RnEFwBD0T/oolwRqssK/eYZ8PLjJSMyg9JV3Zx7DnmwuJZZ/fVN9IzQ3HqLigyCIfuEaMR/TfFP6Tq+eBwUjbiQ66fPUWBQfv0/XahXOHyZjH+RhMvJW1nEHRy1W2Kez557Db1fUXRL0T8RrEEIq4EvgQci2rD9//yCE+lD456zZSS2MTtR5rpramFsbdOGWOAKfiutSCcdpi2N2yYYM356Oj8xyNeFOfQ1zynTJ7u6y4hHKzjR4zJugc9FJ+TgvBOhj0Un5ub/X25bWmjzI2UpNS7foe6v+DJ9QFQt2s4y1tzDdfrYxD/mxwItajPPV+trSeoouXrtP+/Z5fe9/j547XRpAhI4vzsXTxMo8cI57hYAF2jah9IHRVvOZA5AHORUpiCgUF7h4wHxCsXaEmKWqTRkdGK3MiPlf0MNfCPZ0zZz7no7vnCn2kwX6jniT+vgFUkGvie8haGTNsLFH/hOvwyFGci+SEZHYdR2h5f503R3wP+TUJ8Ql8bbv9xEmqKq98aZ1MC/WqX14jMHM+jMYCXc8H8VzGeij4EHlEWhF53fWTWXMp+TBjI/4IJcUl8f6JA/HN5X3CDma3dZ5qp672DmV/EX6OVmIVhYwb+x6dOnWazp67yOY+P13fByivM7sKNgn4COzvAaAl2RcSrPyOvjZJ8UmUeCiRXdNBh20r9evAVdepDjrd0UlnOrtoZ+Au5TVamz8gvux7AR+tzB+ZNGmKrvcDkE3rNzNfNpXHu77x+ghNX0tsVCwlHEqgw7GHaePaTQN+v8xRcWEx71t4tusMlTKfzBKPWhKj0USnT3dTYUEJ7+mi6759mTFtFiXEJnA+JnlIHtxABHvmwt6BXZjAuIg/GE/xB+J4DNZA5g41I9gbPHf6LO8N3X32PI0b4/kxzLYEdZpaW05SR8cZio46qOu/HRn97jiK2BfB+djiU0j/+tcoTV8P5ov4A/EUFxNHh6IPKXaQs3x8zOyQ7rPnqOfcebpwvlup/478di3U/LEk6OkLPk6e6KRNG7foHFgR6E5IUAgd2H+AQvfm0fgpv9KYSffof/73E81cA+IF5T3t6PBozgVsLG/p3jvLBwS1rS9299ClngtUVVHp0Pux9os1NVfGHLpSvDf7cj7amC+yQo+B/7s/ztjYvTOYDjL/NWJvBL01cgFnA4xA3hi5c1jHB/3CfqC9fTd5rXXypKkUGx3LrwnMz5g6yyk21IwEB+2hSxcu0uWLl+jKpcs0uT8nXV3nF4K1ZowbeySeUrPBmkQx+wp8NDe1kde8hToXkmzz8eM2esS+/TR61IvYCdhW74xvUBh5e2zJsNpbYETsA+Knej8ONo48d6xbs15hIyYixmnbSs0H1kbBxdXLV+jalasUE33gJT7tjdOTJXJ/DOejoqyaPpg4SWcD/uwmH77+CT7GvDvub/9/a1SCwsjoDy57hL2FeQTPZYh4Lss1E/C74AKC3A9nbStL78M61vWr1+jGtevUzXwRcVzEvTgbX4L3ixgAOV9Mrm0vH3e1IH8625BLjfXNVFfTQEuXeH59syGzqV4bQTv8d/C4C/Axa4Z1vX/tjeU07uOvOCP4acveshaPLsety3pgqR/ZQOYUvFfEeCh2zex5nAswcpDZDR/3r+87y4aakY0bNtPN69fp1o0bdPvmTR7f7Ip7gu9HXIfIF8Pv+K7EPAQ/xpV9QiwxciQxhfNRXVlLSxZ5ZlzRUAriqqLZXIp4b/Axe+Ycu++BbfXuxA679pbMB+wLEZuLeCjcZxyT41pho8sxvc6KHLu7Z1cIt63gm4dK+UCu4gPS091Nd27dot7bt5k9Uq4cR8yws/2lRByyqD+H7wnH5e9HnR8zVLIvJIzzUVFaSX6+Aa8MG6jphPkCeaZJh48MeA1fbW/9+9+TbPIh4gTl+6rOoRsMH7D5ZX2cOOEDvl6FNd3DzGZcuni5S9gQ5xDniT14iLFxh+729lLf3bu89rUYj7PxJnJtE7AhmB8OPiDbA3ZyPkqLy/jzFLkO/2Q2Fi1YzLlADQ/MG87WB1XbW6+P2MzvpbB3ZHtJ9NxzFx8+m7ZyXwp7OElxiXxtzlV8yOeZMG4i9fXepXt3++j+vXuUkZ7x0hwiav46M3/IPpb4foR9JeZfd+nM4oXLOB9FpmLKSjMotuo/Sd5k3O/eFcxrnaF2INY9YWMN5pywrTB/iLkkOu47JfdC5kP09RZ5pWo7W/Q+dgUb/xk5iseRJDIuEI84mD0PR2ys9LQMenDvPj28/4AePXjIawiJcTnDh9o/FzHI7vLPrdocbE4+mpxGJmMBrwGDOnmvv6btuCMh06bOoJwsI6/rDz629udeu0pGjjYojHy65Q969vz/LObMyv0n7fnnjq6JqmupI24MtiNi2VOTUhTb0VVsqBmZ77WQcfGAPnv4kB4/+owMWX/VRZHrxttaW/Ck/EKbPit7xgb67+B8ZKcbmG8XS9OmzNDunPHGSB4vVF9Tx/uJoXYgYr2HZC2M2Vdqe2sw58N6lL1e4FjDlecO5HkkoxdzYgrPE9wTFOLyucPS+epqaunxZ5/Rk8eP6ennn7Nn7Qsm4INY40Ou+4WfWtojQVw//DrkKx9NTKWgwCAlX1kLMuLNkRTgt51qqmroWMMxzkdI8N4h963gp8v2FuYVZ84j7C0xt1jbe1bPHSuWreIxlbynZmqGElvpajbUjKCeyxPGxdMnT+iLp0/JmGO0Okb4aOrcek+q3+Dw85DZVquWr+Z8oD98evJR2he8T8mJ8Uwu/sNzEpoam3gOaGtTKxkyDTR96ky3jkO2t7Ae7Myeu8hblW1u2CLiOat+NuN+wefISE1nPmQm7ZN6aQ41H5DGhkb68osv6Ksvv6Svv/qKje2Dl/wQe9ejVcGcvYX5eODDkJbFe21FhUfSovme018L8Q6REVF08vgJOtN1mjpOdTBfo4xWDmOcGfYPZXsL613OnMfS8xa2iZoPX3YsE31m0UszM9tu7VBXM7JwwWLOxTdff03ffvMN5eflK6/B/ODIfKhpThjnfj5+nA/0EkI/CPQVQm7dcMSpoL7Xpo3eZC4y81igiz0X6PzZ81RbXUtrVn3qEd8Z4lBkewv7Js6eCzom1yoBM+LZi9pWqPuGXEfUj44IjRjyucPS+Zubm+nZt9/Q82fP6Lvnz2nmjNkK46JehCfXNXGFvPP2aFr/6QZKT0mjCnMZ1ZRXUQN7HqAXUSSbV/AcGao8rGnMTtq1czdVVVbxPanbN2/x+B/wkZGWQUs8sL4IbCvssw/W3pLXe8QasjgetCOIchgXuQYjr8/+8UdT3MKGmpEZ02fR8+eMje+e0/fff0cn2Hwur985s96rZUGMz17m95abS3ldvePNrby2xemOLuYT1/O18T3BITRvznzymrfA4fO+P/FDruv+zMc+eCCWmpqa6Qtm237OfMBHDx/xvSjw0VjfQAH+27l95fFrgyp7y9kYR6xZyTV7P5o0mXORl5NLptx8ioqwX1d3KOeQAlMB/fDD9/Tjjz/QTz/9SBvW/5XPi1ryrxIfssxn+r8naA8V5Jk4H8i/hM2DGOib12/wOIQHTK8fP3pEvXd6qZnpfFtrG51kPHW0d9C1a1fpzz//oN9/+41++eVn+unHH/kz6Nmzb5ld8TXn487t21RUWEw72fNywnj31uAWe+PyGpOopSy/ThxT9/2zZG+NeDtiwONAzXQ5diM2JpZMzM7F915kKlT6Z7qLDTUjE9/7kJ4+fUI///wTv499fX18z1K8DmPXYi0HVwv2Gbb5+vF+dyXFJdTJGBB8fPHkKffjYKOCg99++5WzIfMBbo63Hefzx9pP1yt9iIdL5L0IsbcnxwrhOGweuS+SpZhcdU4JfnfU3lLHNK1YtpLXHoJtay4oUnJdh5MPSHzcYfr1l1/4ff3999/IYMhW/odaQI7UfBc9D15FdqDrixYuocWLlnI7aumS5bRsqWfH2ct8iD6x4n8idkrd98ZWDB3mDsGIozm8sn2CvZzszGxeKxoxAfnGPGV/x91sWGLkHnsW/sGeEeK5N3vWnJc4t8UI5l6scVmag62JqP2uPjacMSmvkljayxa5QLiXaj4ciTEFE3IOrzV7y1Kv2NCQUDIzWxM1dspLStlzeamio8PJh/hsPO/AxX//+yeXa1evKq+Dn26ND1GXfqD7Ini93MsQ4s6ckVdVRK88mQ9853i24biIk3CGD0v2lqWcEuiS3CsWtmtpkZnKzKVUUVpOcbFxw2ZX2ZpDsrNzlPnjjz9+p4TDiS9dkzpXXe6l5ey9kr/z4YqJf5VE7G2J3kbiuxZ/i/rl4nmFv0VctphXHBHZ3pJzeNVxsC96LeTzXrL/3955tkdxXXH8fJO8S0+c2IBtMLYDGExzwRibIlSRRAuY2LJNk4R6L6j3XlYS6h11CSGKwSTEsuPY5IUTO48T8hFy/1ec5e5odndG7IqVdl6cR7Ba7c7u3N899Z7TVN9ItsZm+v3v1vgEG1pG4JfPz89LNmBrwRfZtvXx5+LaMewz6lmPpYpWh1h8LB8j6pwj3uv4XKD2PKj2bI9R0TvDq62BlbNk6xsEF03U0mSj8LAIn9EdenbW3r37JBeIu8Bf18azeJ6Op+pM+Kwx8/G0zoxY4h1Rz/DC7lJ/d+hAgOyb3tLUTG22FkpV7BVfYUPvevLzC+h/Dx/Sw4f/lbHJtrYrDr64J5jQzkCx/PPVLbC34uKy7f9HzhT+eGtzC11pwZnoejlP92n75EbtrOtCp4IN5EX+8+OPdOLE457fen2zLPEvMWM/IFal+uO/+PmvKFfshThn0Y4ZmVfaZe7DV3WHnp0Fv+PBg29lTh05L+TXuT5rKfbuSqyJt0RfYA8jb2iUEW0895OoTwUXbbKepqujg86fPe/zbOhdH3QGuED9yb9/+IHu3rkrdMvjOK+R+hNwwTaTv+YPV5OoZ52MMII1ovrjmDXeIez1rvYO6u7souLCInkuciWwocdIRUWlrBv64fvvZf3E5MSkw3NdzaJS2TATG7TE/Jrl+j6uY1CF1zB8R70aK7OC13HHiF4OcMvmrdQJLjo6qbcL/fxaxHW/7NM+hxFGpiYn6V+CDdTB//O776i05PFZEewNer2BvMGG2jMbP/m+YG1wDxr1cX8Rtf+O2jdBnVeP74XnLvNPbzKi9Tk2rH9Z9kbv6eqivp4eGujto/3vH1gxdpUrX+TXQkd89eWX9J1gA2epUIunne+u+uve0huI93KvGf43Hsf9Qfwej/PMen/lA+sU37s29qfNl3uqv6EeI1gLar0F7Kfqyirq6+6h/t5eGuzvp5NKvGelsaHHCM6KzH/xhazNxrlDnMuNVOorWYd406ZS77GaP/T3vKK2fxvYwN6h6glP9m9zx4jKB9iAj9HfI7jo66ehgQGKjY5d8WzoXf/RyOOSi39AHjyQvR0iI446rE1v+ht8JpPrsDkm5q984PNzX1fmg21Nfg6fAfUWH1pG1O8ebJQUFdNAX5/kArNiqyoq7OcxV5rPYYQR6Axw8S3km29kHxT0Q1Fjf0thw4jPqPZA5j3Sn/ngdQkG9OwrrqvC89guxWO8z7jibinXwu/Fj0VfiJa21PDgII0MDwsbq3LVsaHHSPTFWMnF37+GfE1379yRPf2c+WbuRJ39vhT/g3tdcr2jepbBHxjBZ1a/P7VuirlhRrQ1VnqC32n9S1cCe0p7FjvmYow8m3x1aIhGr16VPvma59atSjb0GCnIL5Q95v721VfyDPVnt2/bGeHYHmxQd2ereF6VFb/yLcE9cVdLhPsM0cb44V8wF2MjI9Inx7ny1eJzGPHXIfl5+TKu9eX8vPDd5+WZkbDQcId9xVUdCtaxVYPou4J742qv0doJ6PN4KSZW2lLgYmJsVPoean/w1cqGM0Yu5+bJftfowfHX+/fp/l/uC0YcZ8riO9TTI/j+l7OvFvsm2nrtJ63j9oSNpKdD1T2c+/Vp7SZvCu6NM19SO/sYfgV877GRqzQ+OkqT45gv3G/vzeMPbDhjBH1vMDMBsxPQp+bP9+5RaEiYwz4D/avaqOwrLud1O5vlwz388DjWw3LrNGcxBTXmxPX+fIYJfvlSOTazJ/F35epegg343gtcjNHUxITwyQf8kg1njOSI7xB9bu59fo/u3f1c9jrLzMhapEf0vnOjPrwn9kyur1D7DZiNf/F5VL3XVR9Xe+a4slOM8KHNcbjrhe7susG/eo7ZiKh7mbYfD/yKVptN2FLgYpxmpial7+HPbDhj5I8nT9Hnd+/KOsY7n92RfaIKC4pk70ztPTK733F8/UnqgFk38JmspfKhfY5eHxyOvapz+vTWJNdLqa/Hz/M0HxBcCz6v2Rifni+CHh7wvScFF9OTk3RteoqaGhpo7Zrn/Z4NZ4yEBIdKLtAnE/NybwlpsbUs6gmoPaPvbl1rc09Lta88kX/XPkevD452Pev1auX8hLYXBceovcGHmsM1Yp9x7BZsqHyEH4mQPsb05ATNCC5mZ2aoualR7IW/sdj4ievY784du8V3NyFnraPfIPrJjo2Myr5QamyQY8Cu+piavZ/u7AS1Ro/Xm9oXDfu8u9i/Kz74d0bXM9fjaPUH7/Mqz1p99CRxKXf7DcdtcY9Uewq+RkJ8gvQxYEvNzkzT9dlrlJqSYmdjteY3PMnIq69sIluzjeZm5+RZxOvXZmV/TszM0+oR7FF8P/T2fE/Wq3CNtxH/Qe9vwY4n+eDX1b4v213OeoA+SY4Hr8N7jrM8IXpxaGPz8DXqamtpWnBxDVxcmxF73yzFRMc4tScscc4I9hPEf8HFtekZsd/MCH08TaXFpbRGM4NYL1fCe6sZfxJ/462YMe/rag9OiF4fHHCkxpugr7wZy9bWXRnRpTx/Q30cukIbu4VEhEfKGir4GLOCiznBxfjYKAUFBltsPKFPAp0xMzUt2JgSenlS2l79vf2yH6f2b9HPdNeOXfbeP3qzHt3ZDt78bJzTVP1bvfzJ08hXmPG5eQYtf7+wcQMDAhY9D/ZUTla2uH9T0paam0WP7usyZgUbwWLDM4xsf30nDfQN0MTYBI2PjtP4yJjsi56emqE7X8PZ/ubOL/Dnc+7g1Mzn1+pn7TlQ9BJGHoN9jBtzs8KnnKPCggKHmKTFhWcYAQdFBUXSVx8VbIwMj8jZYV3tnXIOjfbesd2idz7xSfdPron09Votzgsa7XVk1E9jX4/1m2r7SZ2RnSNsqcc+xk3BBeK4wUEhls7wMidHQsOpu6OLrg4O0/DAEA31D8r5k7nZuYKFtQ42wMLzQx3uqTP720ydI/unvj43Dp/JTL4C3Bv5TLClsO9o9wec5xkeGlzwMR7ZUrdv3qC21lZat/YFi41lYuS5Z9dRXk4eDQo2YHfBH+nr6aPe7l46Fnnc3tNClU+iFmJfev0guO+yUTuEz7sZtdu8YQt541qx3l2xhL1GL54O+7ehvt7uY9wQXNy6OUef3b5JH0d97DQGY4n34lsQzKRsEzZBn+Cit6uHejq7hW7ppuaGZtqn9AxT5cypU4s4MWNbmd2TzTxP29fWVfzIrK4zagvq9dMHF3p26trnnqekxKSFeC24uL7gY9y+dZNqa2osneETumQtJcYnSS662ruoU/gjHVc6qKOtncpLymnXzjdccgIb3UwvUs69Gf0bo2uZczVG9A2u2Wi+k1/XqO+txinQf0qPC/gYF85dkPHa64/itTdvCFvq1g2ZE0cdhKt7ZsnyMgLZsnkbVZZVSi7QdxIzMdtsbdTa3ErJiSm0c/tul+sXdoO7WXBqbszIfow1bHRdmuHDTB8qjuUZ8b2ZBWfPBRdnPvjTIh/jlvAxYEvFxV5aFJuyuPAtTg4fCqK66jrJRUtTC9kabWQT9lZzfZOcwaWXN4HwLDjkfl3N8zFTy2VmHZvhA5waPcPKNTauYt2cW9XL7UGQj01MSJRnwRf5GI9sqT+8utniYoVwAv88PDSCqiuqZQ/8JsFGY10jNdQ2UH1NPeVl51FwYKh9Rp0q4AP7KH7yzBIWrnU0ajPheUbtfjN8mLHbIJwrVW0y7AHIpbqq9dy+bYfkYkZTE7LgY9yQXOzauduypVYQIw6ciPUfFnKEKkorJBfQK7VVtVRTWUM1gp3q8io6ffIDwcEmXVuD67t4/XDO2Kjtb2YNm+XDTEyBawqhc/B5wAVsSS3/bEMFHDxMV1rb7HXnDj6GsKVqq6stLlaRzQU9ERIUSqWFJY+4qKaqsiqqLK2kipIKKi8up/SUDNr3znv0zG+fdRoL4r5pWFuwxzy5hr2hP7jXGrjgnl/Oajn3vP0OxcfFL6o7V32MGouLVc/JW2/soaz0LDsXZUVlgptSKikooeL8YirKK6LYC7G09+136RkntpHKR/T5s9K3x//Zd+H1500+2Ifm9c72El8T9B+uyVX9P+ZKxwl20D9n4QyfY90514Skp6WJ17a48Be7C7Ltte300ZkoqVNKCooFG0WCjUIqvFxABbkFlJ+TL/2UC2cvUlBAML20/mWX78N+i2qP8R7PcVL8jhlin5g5U/ngc9p8fkJ9Ps+F4NcGE/CrVT/CWU0N8qoH9h+UfULQ63mhT8jC2VZZd67UhICZqI+iHHIYFhf+xwnsqXf37KPkhGQHLi5nXabczFzKycih7PRsykrLoqS4JDoeeYLe3P02bXhxo+H3VvsS8Lxr5oJjRiofnI/D2mcbifngn0by/cgNoT9l1IdRVF5aZu9FqPYJYR+D685TU1Jp3973DOljS/zH9oKsW/MCBR8OofiYeAcuMlMzKUP4J+nJ6ZSWlEapiamUkpBCyfHJ9OHpD2n/voNiLb9BLz6/wW0OxVuyYf1G2r3rTToaeUzOAK+trrH3OwcX3HPN3icEPsajuvO83MsUdDjI4Xyrqz3FEv/WKRDUTrz/7n769KOzlJEs2EgSbCQKNhIEG/GCjbhkSrqURImxiZQQk0Dx0fEUdzGOLl24ROeiztHRI8coLOgI7XlrL+0W7Kx/4SWpc7Rnu4wI/CbkFza9uoV2bt8lazTDw8IpJSmF8nIuy5lKnY9mKvV2d8t+5/a+znYuRuw+xtDgAOXm5FCgDhOWrrDELCs/++kv6fWtOygkMJTOfXzOKRex52Ol4N94PCE2Qdpk4ClN6BzoH+ii7PQsyhX6CTZcfk6e9Hng/5QIX6isuJQqSsqpqqySqiuqqLaqhupr6qixtp6a6hvJ1thMrc02Obe1vW1hPiXPVJKzY8BFP/qdDzr0IkQv9DOnz8haQrOf3xJLzKwV+AOvbNwk9cux8OMOXIAVcAOGYH/BFoPuyRT2GWy1HMlFruQC/g5iAogPlBWVUnlJGVWWVci8TG1lNdVV11KD5KJBcIFZ3zZqs7XK+ZSdcj5l58JMpe6FmUpsS2HWUkZautQx6KOz1M9piSVmWHG1jjAnC/7HO8KeCg4IoVPHT9PFsxel35KVlim4yJb+Pnz/gtx8yUWx4ALxs/JiwUVpBVWVV8q53pIL6Iy6Bpn/b2lqFly0yJwdz6fsEbZUdmaWPL964thJOvD+QTk32BOfxRJLvM2L1j7buOEVKfDjDx0IkDnqw4cCKfBQkIwfBx8WEhhCyGOGBofJvD/7GRFHImjLptfkjMrXNm/16rVaYom3mVnutfi0398SSzy1bj0p1ndsiSWWWGKJJb4l/wdQSwECFwsUAAIACADaiD5b8krZPARAAAAAcQIABAAJAAAAAAAAAAAAAIAAAAAAZGF0YVVUBQAHJQ7caFBLBQYAAAAAAQABADsAAAA3QAAAAAA=</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #28</Name>
|
|
<Index>28</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPlveCA2HAEAAAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J33W5TH2se/f8l7zvWe6z0nlphmYmKLSYydqMSCit1YjhpAEQuoCCgiSpHem3RYdqlL71XBgqjYY4stMSbn9/POPTDr7AMoC7u4C88P98Wy9Xlm5jN3mfue+fvf/oG/q/Le5G//87+DFrW9VBkL494Wvl8VVSw1TtVrUkXlYXDjbuHCxVzc9rvDzc0d4RExSExKY5KKouIytJ6/iNa2i2hp7UBzSzuXpuYLaGw6j8bGNjQ0tqK+gUl9C6Ki4pnEITIyDocOHoGT016sWbMec+cuxOTPpph07WpfqmIJJgZ6zzfffI9Nm7bCy/skUs5lop6N7Y5LXWi/eBUXOjqZXMH5diYXLqPtwiXGxaU3XLQquGgiLtoMXNTVN6O2jkltE2pqGlFd04Dq6npUVdWjsrIOFRW1TGpQXl6NuLgk+Pmdwa6dzpjz/XyM++BDlRdVRpSHCeMnYaWDI3x8/HAuLRuXrlzncvHyNXRc7jJw0c656JS4YCK4aOsw6Azioqn5PGeDuGggLhqICyaCi9pGxgZx0WDgorJScFGDsrJqlJVWoVRfCb2+AvqScpQUl6O4qAwpyWk4cdwPG9dvwfSpX6usqDIsLvp7zc5uKQ4eOgJdfgkuX+3G5c4buNT5hgvOhuBC6Aziot2Yi4LCUsQnpCAuniQZe/fu57JnD4kbFxcXkn1wcd4HZ2dXLj5ML0Uw2yw8nElYNNcZxEU5cVHGuCit7GGjpMLARXFRKYoK9SgsKEEBu+4CXTHytUXIYEx7e53AimWr8Oknn6usqDIkXeHgsBZBweFoZuP6Slc3rhi4uNGHiw6Ji6TkdPifDsI+t0NYvnwVFiz4gescS1z/jOmzmB21AJuZbbdrpxOCg8KYvkhnXJQyLhgbggtdEXTaQujyCqDV5CMvNx+aHB1ys7U4yz6z1nEDPvl4ssqKKm/VFYKJFsZEZ9dNxsXNHi6u3uhhg7gQthTjIpeNt2Nevti48SfMmjXbau5v3AcT8f3sedixfRfTPb5cZ2g1BT1c5OoYG1rGRh5ysjTIzsxFdkYustJzEHgmGGtWr+vDisrJ2NUVU76YiuMn/FHJ7PvOa7cUXHQbuCDRMPuEfPBFC5fY3P2TLbV8mQOOHfVBSlIacjI1PVxk5CAzPZsxlIWM1Eykn8tAWko63A8ehv2SZSbZoaqMHi4cVq1FLPMBrl6/3cMFkz5cMImKTuCxKUvZSO9Lpn41A7t3OSMyLKqXi0zGRQZSmX2Wynz6c0mpSEk8h2jm92xctwkff/SZyskY4GLLlh2oqmnkXFzt5cJIZxATMcTEtlHHxEBC9tRmZiOGMttScJGckIJkNn8kxSUjMTYJCTGJcGI8kb5VORldXEyY8BHc3T3ReuHygFxomS+7afPYYWIg+WrKNLg47UVUeDQS4xgXsYmMjQTER8cjLioOsZGx8GC219czvlE5sXG/m3PhIXEhbKleLppbOxAYFMbX99T2M5YP/jUBS36wxwnm3wsuYiNiERMeg+iwaEQxu+yQ2yHMnD5L5cQG41FkR7VJXMg6o6Kqnq9njHVdMVghXbHPxQ3R4T1cRIZGIjIkAhFnwxEeHIYDrgfw0YefqJzYABd2dvaoqm1C1wBcbGY2lNp2Q5OPJn2Kndt3GbgICwpFWGAoQgNCEBJwFttY2/7rn+NVRqyQDfIbM7I0KhcjwQnTFTu2/huhgT1cnD0TjODTQQj2D4Qfs8eW2C1VdYkV6QzyMbpu3DH2Ma4x/6Ktg3GxXW03C8kkxgnpDOIi6FQAAv3OIODkaZzx9cdBZnNNnzpTZeQ9siFsKaWPQTkhqn8xckIc7P15D2eDi99pBDJegvwDsMFxg2pzjRAb4jHFpU74nu7XloqJTcIXihi9KiMj8+cswElmX5EuCT4dyOyuIGZ/BePEMR/MmPa1ysgI6Ixvv52DgqKyXp1h7GPYKexer2Pe3AZQ29Fy4rrXDdOlsU+6gnRGCPNJQplvEhYUwnz5UObTh8Fx1doB5zxVhs+Gk7OrwsfoyQnxOX6qjy1VWlqG//73v4iLS1Db0oL+x+vXr3k7O6xcbfQa6QtfrxOICA5DZEg4okIjEB0WCR9Pb3w86VNVl5jZnhK5Usq4lN0iY52xa8cO/pf6i/qNRJ7fVDGfZGfn8vZtbm7h/69auRKffTrZSJds2bAF0aGRiAmLQmxENOIiY7g+mTdnvsqImewpni+lyAmhdW9ZZ6xfu7bPd1G/yf2nivlkwfxFhvlH6I4P2Tz2z/8bhzmz5/DH4r20vniG+e1xkbGIj45DQkw8kmITsGPrDpWRYbCxZct2XqutzAlxcHA0vEfMV1992dcnJ72h7ENVzCNi7iEdonxN8CH3CeWr7Hfdj8ReNpLjE5GSkAxvZm/Ra6pPYhobVJOhzDunHEJlbGrRgkVv/d6gwGDejw8fPlLb2Yw+ObUp+R5vs1370+mrVqxGSnwSzjE2UpNSkJZ8DuHMd5/65XSVkUGwMWH8R7yGT5lfGxgUamRPkZ/Rn854mw9JrKjtPXyfnOYaU9pzj5OT0f+UIxwXFYv05FRkpKQhMzUdSXGJ+E7KE1UZ6Z8NXaG+Tw3f7p/39NEJQ53v1DYfnsj62NTYuWzjkk0V6B+ArNQMZKdlIicjC7mZ2Vj+4wrVJ+kvRsV0g65Ab8RFU0s7Vq5842sIfUG+oalxW7KT6XPqGB+ebP1pO2eD/pryOeov4oP8RfLh6blxvT5JTkY2YyMHmqxc5OVosGKZw5hnxChGxfQqxWrl2tbG5gt96jIofijrBBJ1zL4fG8tUpmitVvShHAMmcd7tjLxsDbQ5edDlapGfp4PHQY8xy4h8r8QAxaREbStJnq7IyNeQuVDOSUPRCSL2IuyE0b4+Iq8FyfE8um/hS8hxcGFDCZvUVF0hC/1GfzEusU4lhHRGvkaLAsZGoTYfRboCHHE/MuYY6Y8NeZ+QPO0bNkQ8/W3zGLW9KfMZ8dTVdc3wP62zj3a/XcS5le1Ec7qwU4XfTdwQE+K99J6hrh/Rd1D79tc/ZCtT38q6ZOXyVZyL4vxClBQUQV9YDM/DnmOGEfn+iA3yL+S9CDVaY71BbSivMw003k3xRaj/5f4mNsZCXIvaiMY93bu4X+W902tC1wzUXqb+5tv0O7GhtA0cVqzmXJQWlaCsWI/yklIcO3ps1Me1jONUk1BeWWe0F6FGW2hgo792G6x9q/LR/zwuYkfCpqJxa0k+TPEPaT2RxGBPO6xBGeOiXF+GitJyVJZVwIn5KKOVESUbebpio70INXlv2KC+HErO7WA/Q/0t21dknw2WrdFiX9H9UzsQG7J9Rc+LvBHxXhrjZCOZ2hemzDlkI5DIfuCaVY6ci6rySlRXVKGmshpr16wbdYz0ZaPIaL/zXAUb1EcklsxLH2v+ubB1lH74SPjnpugb+j1Z5ziuXsu4qEJtVQ3qqmtRX1OHdY7rRxUj8j0EBIYY7eucqykw8jdo7hJr3ZZmRBXrEcFGf/lcpDPqa2rRUFuHxrp6lDNd9vXMb0cFI/K10761hv3OL11FXUOrERvHvTxVRlQ2+HM/bd5sFNfavnUHmuob0NzQiJbGJlRVVOLzyV/adExLvuaNm7b2ctFzRgad/SL2O6d2UK4XqYyoekMZ+z3p64eWpma0MhuwraUV2ZnZhvnV1vgwiuMyDui8sZ6zY3rOVKIz+cR7KYbbX56hysjYZUPMm8oYZmJ8As63tuFC23m0n7+AyPBIm7SzZH9cX1pldKbSzp1v4nTviuHKjKg1TmOHDVnkWqsJ4z9EblYOOi6042J7By51XMTuXU42xYh8jRGRsUbnU/r7B/WZI971fcSIiNfLz1N8Us4HpTYX8Xy1Fso2+HgXG2KMyDkU38z6Do3MF7l88SKuXLqEzstXYLdosU34IvK17dzlbHQ+ZVa21mAv/rjUflC1G28TeW2L4o9kg4l4vlpzbv1iyhxG+kPO11q5YhXj4jKuXrmCrs5OtLW2Wr0vIrNLvrd8PmV1TSM+//wr/pq5/AiZj4HWgdVxaBmR80bE+joJrSOK52nO6u95c8lxnxPounoV17q6cP3aNSRIOUbWyIjsc2Tn6N6c23r+Ij+nUp43TM0pVPmwLpHbV+RzifV4sdYuakREf5u6Bj9Qn8t2QVFBIW5cu47uGzdws7sbe1z2WiUj8rV4eh5nbFzi+yrQmcZ+pwKM9KTwKYZaryRYUPmwDj5kX1DoDHrOXDmOwuag8aLsU9qTvKO9Hbe6b+L2rVu4zPyRL6dMtSo+ZLuKzjIWZ323tHWgoFA/YM4h3TPpaVNrnEQOCsW1BBP0HbL/Iednq2I+EW0q8yF0A7U9PTY3HzSH0vcLvUH7cZD/Kl4nnXGHsXH39h3cu3MX2jytVekQ+RoKi8r42cgtrR1obmln92bHn39bnjqNbVNrZUX+mxq/Gnm9QX2ltK/EY5kDc/Ah16coRY7vpCSn4N7du7h/7x4e3L+Pfa5uVsGI/NuurgcNXJAcPuJleE25X9i75ghVrFd/kJ6W9xOj+Yh8DRr/9FfodPqf3kt/SZ+bkiMt7KmB8iJpLMl7B01k/5Ov/uCXX/DwwQPcuH6dP2ctfFAuTHMvG03NF6DLL8b4cW9iuYNtE3X/BNtghNiQ7VfqN3puoDUqU/pV1OMO5jOzZs4yrI3sc92PRw8f4vGjR3jy+DEyMzLfqw6RfzMuPplz0dR8Ho1N5zG/164yhY+xJIuYn0ZrWh6HPHDE4wg8jx7rsSVi41CqL0VYaBhO+fnDz+8UTp70w+7dTvjRfjmzKaaPKT/nXUJ2ibx2WFhYiF+fPMHTX3/Fs6dPYW+/7L3wIfvky5Y5cDaIi8bGNgQHhxl0oMrGPzD3+/m89i3oTBDytTqeP0S5EbTue+PaNdy+eRP3797jcx/168sXL/DHH6/w119/cnn9xx/4/fff+PPPnj3FkyePkZ9fgNP+Z7Bt644+55GPNZHz976fPY9z8fzZM7x4/hxNjY3vRYfIv6XTFTM22tDA2Cgtq8Lk3rxjZf7lWJFxH0zAih9X4riXD99joJzpA6p/o9qe5sYmzkdpiR5pqWkICT5rpD/2ux3AhvUbea6qrD/Ky8q5XhF8PGQs3Wd+6J07d3Cz+yZqqmv4ehnlXoxFPuRxdjY4BC9ePMfLly/w228vue5VzukjpTu2b9/FuWhoaEV9QwtcXPYZ3tdfvHo0y9LF9jh80IPvBZjH7p32qSE+0s+lwZuN/W3M11wwb5EZxsM0rHVcz5nS5Go4H7R+fLWzE5cvXoK+uASeR44xn3DKmLHFKCYg1gk+nPgxmzvucZ376tXvbC55wJ8bKR0ifmP8uA+ZvqjmXFA9h15fyZ8TcTmRnzma41J0vsXa1ev42Ui05zLtJ0t8hAaFYMO6jey+Z1r8GiZOmMT3M6Ax0tjQyHNbqT6CdFV0ZAzsly4btWwQE6I+WF7zcmd+Hdmor1//gT//fM118UjoEPn7XVzcUM+4qKtrRm1dExwdN/SJz8k1zNR/o2XNbhKbj7Zt2cbPAKdzXxKi43A2IBibN2zBJx+/X5tyxXIHhIWEcT7qa+tRU1WNTMYsMTRauBDrKfIeAspY8PXr17n/9p///IVff30yIjpE1h2kL2qJjdom5OToDO+h2kg5j0R5H7a8JyjpC4dlq/gZrXT2JPHhsd8di+2WWN21kn3lcegwigqLUFFWgdJiPaIiojD7u7k22/4i9qucd+WxJx47OblwNkiIE/LlLOmrG+kO532ci5qaRlTXNMBxzZs9JfpbBxR7Gov7ssUzASkme9rXH0GnAjkf+1xcjc5ktVahueznXU583+ei/CLomF/kddTrves5U4VsdlErJ2pHlPaIsmaiu/sGZ4NsrMePH1lUh8i6o7i4vIeN6gZkZ+UZ3qM850EpxDrdoy2tA9JZku4HPJiPEY6QgLPwOnwM3/bWzttWXG0iDrsf4Xxo2NhKYv4S7TFlK9cv9hx6V+4prauLeJbTz86cDfJDSCgWaCk/RHyf45oNnIuq6npUVdVhzeo3uuNte+XKvomt9Mm8OQsQFhyO6PBozsfqFauNzrq3RZk2dQZCgkKQlZ6FtJQ0rkvk880sNbaFHUT9L9vc9JieIxtD1g/K/eXoPYOxzZVrCtevX+O+OsmDBw8sYmPJ35Wdnce4qEdlZR0yM9/URx5wcx3Sd4t8NyHC9rJ0fc27ZI+zKxLjkhAXFQ9vTx980VvfNVrkp81bOR90BmBESAQ/Q3Mk+FDuXyn2cqQ+Fj622MNxqL8nn6Hw824nvHr1isd6KeYr6tUtwcfSpcs5F5WVtaioqGG/7WKS7uhPqF3EWomcq2OJ+ppB2SFsLj3DfIxzSamcj61bto8qLozs9SnTcJbZjAkxCYiJiIGdtK+MpfgQezaK/hb7VyrtpuHwodz3n/IWiQ1aL+zs7DSrDpG/IzwsmnFRi/LyGuh0RYb1jqHqDqEnSK+KfXCF/WXO+prBytSvZiApIQXp5zIQExXH7avRyoaQnnNlD3A+SI9s/2mH2b6b5jqxfifbV6JWh0TYV+bkg4Rym4QO8T1xEr+9fMnX1F+8eMFz2czNx+TPpqCCcVFeXo2ysip4HvV5a8zKFBE5oUKXvA8+pk2diXPJacjKyEF4SOSYyQUUsnbNes5HSGAIs722meU7yV+guU8+Y2Ug+4r6V9hXpE+Ge1akvO8Jxa0of43yTp4/f4Z4M9aqi8/vd3NnXDA2SqtQqq/EjOmzDHME+QxDXSNXtp0l6jMHw0Z6aiZymW8VxOyNcRb2V61VKIZNfAT6B/K1TnMxIvvbQ/XPhyKyPkqIT+B5i5TD9vTpU0ycOPz6EPmz6WlZbCxXQq+vQEy08foFsSFqW03d61u0iznra0wRuvasjFxoNQUICQ7jcdCxyIaQhfPtOB/+vv7YsG6TzV0/sUZjhewQOd5FeTaU20s50rSeTrmg5uJjyeIfuc7Ql1SgpLgcqxx64uaUf081Ksr5QulLDGaMmqu+xhQhHZibo0VBfjHCQiPHPBtC5s9dyPnw9fbFOmnt15pF2DE09oQtQ/aVPD4vdnTw+hCqn6qpqRmWjSV/5ugRL5SUlDM2ylBcVGoYR2TjDeR7iFwAa80nodhCXl4Bu58yRIbHqGwohGITxIf3EW8ssbPOOh6xJiLGmXI+Jj7kc6m8vXw4G1RjSPU2X06ZZhY+cnN0fBwVFZbixPFTBjaUusOWJD4+hevElOR0lY0BZM7seZwPr8NemDt7vtVdHzHxrhoKmr9F3gnVBjx69JCzQXXqZ04HDJuPxT/Ycy6KCvUoLCjBD3ZLbZ4Pby9fvn5D+kPdE+Idca3V6zgfXsyG+Pwz26spITZoTyDxf1VVFR48+IWvibS2tAzJxpLfe9jDk3GhZzZ6Cfdj+9NbtiT29it4fgzxQX6VysC7xXmXC/x8/HBov7tN5tfI64W0988v9+/zvYBIZn83Z1h8ZGVquP+aryuCD7NHBR/y/iq2IlT7W6Kv4Hwc2O+hjv1BCvU36Y+g04HYtH6zzV2/vB86+RzEBe2XdffOHezd4zpkPqjenbjI11JedCFW9O6jO9z1wPclMTGJvGYlKSlNHfcmyjdff8f5iAgJt2iuliUZF4+bm5o4G3du3+Z1/abaWOJ9e1z2cS60zE7XavINfqzyfDhbkHXrNvFaeeJjpg32rzUI1UwSHwGnztjctcs5UFRvS/v13r55C7du3uQ1yoPlQ34PrQkQF3m5+Qg9G2543tbqZGkP4IrKOs6HvIeEKqYJ+R6kQ+Kj45idZXtrh0IW/7CUc0F7vnff6Mbq3joYU/ggXUFcaHJ10ORosa03b02cNS/va2/t7eG67yDf21HL7ER1nA9P/p+98/yKKtkW+P5X7rrvTfB6Z8yOzuiICQyYxTQmREBAVAQkJ5EchIaGBprQ0OScREkGEAOKipjGUSfp5HHu3K9vrVe7pM4UZzrRnG5O6/mwF3DoUN1n/6r2rtoBY3yRjyJNoexzEPnzEYzN4GPAnzx6TPsiYC1SjF+cLB/ryfeAXGBMUn1tE6xY/sbP53vH8XnA+N54Zi63/VLsy4O9FpCPrVt3KDougURHRIO+rBxOBZ6S3dgwXgnP0VmdYF6QEfa42ppaePjgITwkj2tvbbfYB2H/P+YfQLmor2mEupqJfeKQAZ5L8TgmG4NlS0lNO0v5wBqoim5LI8uWLqd81BMdmzN76muIOPbUUG1qc/lyfE0pXlgsvdjOwRpA2Htq7P4Y3B+9b1F/Nv5/yYmplAuM90488yZv11DPXRQcK44Px22o9wb/2fi8ehb/L74ulWDOH/YGRT7Wrtmg6LaEEh8bT/kIDw2f8muJcz1YXSv+mrl8OWbX4ONYnKxYn/CckJ1pY/3jMcLF/XujMHrvnsCPpXzUVRM2quqhprIOjvoeE/bIrNm3wnGzWADeDuPzyJBzqWN0T52KoHyUlOoVnZZYsEYF8tHW3DLl+BxDuVDiWlDm8h2QBXO2vbgW6Shh497de3Dvzl0IORVmMR/LnVZBTVUdVFfWQrW+Ruhzg/xZc/bBx/Ij28iB+DOKe6RJIVcGb1A+DkiUy6DIRMkm9wv58PM5arX/bIwP8RoiVT4QXzMde01hTdY7IyNQoauw2Df/Yvc+wkUtVFXUQGV5tbBPYa7PjbnvguV0sH4RtuTD3d0Lbt8Zg86uXkWXbSTbt+6gfFRW6K3SB7ZGGMul5esiSsUHH/eRkZ4Jd26P0Hr6WGvSnI/Orvv5+JPPXE3YqAK9rlKwrayNR+T7AfM90GzJh6aghPIRfCpc0WUbSm1VNVw41wUuqycf34s6wXIGeV1hPim/JytVvhzO72yO9/P1p/WKbxEZvjlM+zxZsocVH5dAucAaHljbxpRvbomwfS722ZjvxPIGWb6lVHlQCxYshrujjygfb1tdHrlJRHgE5SM+zjp9ZblxPDPMJxXnxkmRL4c6zOJ51611hVuEi+EbN2nfiXXjfoQhPvhrRRotVBCftry0Ak4cOylwZ20NH/5z8z4Uq8sgvj5VOXTIi/LR2NSu6LCNZYPrJspHZ7vjfde4p4tc3CBy/dp1YT/AHB/Iha6kHMqKdUIOMsZc8XH0cpbCojLKhx9Xn0sR20lzYyNc6u+DNS7rZD9W3MOKjggT/sZeENeJ/XLt6hBERUab5QPjNHXFhA2tDkqJnuFZkKPdr9GxJ5QPxbayj8RGx1I+TgacdIjx8nZQcVExDA0OwdWBq1BUoDW7d+Wyeh2tG1hSVErr6jE+0AZC34nVKcGf7LxGTvGKrq6bKR/dPZcU3bWT7N61h/KhLSqS7RiZn4M2FN+LRpWlImwMwuCVAbIONhndw2J/H9h7kHJRXFAMWo3W5Hsy34ExI4fYq7DwaMpH5tkcRXftJPPmLKB8XLs6OO1jQT+Xn8PZT3bmJvbtA04EwsDlAbq/iz0izfGxn/ChHWejKP/NfIB7V7zNJmcpIj4T8nHUP0DRXTtKQ10d5QP3hKZ7nTD3GNzDYvmEAcdPEjYuw+WLlwjjl8zyERUWRbnAeqzxMX/VEHWUfKi+i4OUj/XrNyt6a0fJTM+gfPj6+Ml+rHztURfndZSLi30X4WJvv1Bz2dgZSGRoJBSqC6AgtwDCx8/W8FzQUXqZjz18SvlQdNa+cuJ4AOUjNiZW9mPFtYOddbs4r6U9Gvt7+6Cvpxecx885jfGBvZI0uRrIz8mHsOAwgTdHqOXj6rqF8tHTd0XRWTvL1i3bKB+6sjLH4oOsF309fdDb3Uv7NBrig/89Kz0L8lV5tF+Sj5ev8HqOYF8xPiqrGxSdtbPg2Qfy0VBfJ/ux8nHoWEezl3DRc74bursuwFFff5N85GXngTpLTXuz7t7xpicwngs6Qr2r8IgYyseZhBRFZ+0sqGfIx+1bww7hf/C9brsJGxcIG+fPnacxWab4QC5yz+ZATqZK4GOqsSX25iMsLFrR2WkQR+FDLBcIF9j/uqvjnBCrb4wP5AL7tKqInbXL7U3cmKPElih8KHxYun7w5xVdHV1wrv0cdLZ3gu8RP5N8IBvZhI2stLOwc7wenBTCYphZ3iDfH0Wq91DlaCgf/sccI87hbZOaqirKh+v6DVPWExTW05nlzbKzDb6/Dn99sj4I+x256GzrgI7WdvDx9jXtnxMuslIz4WxKBuzctpNewzNHvsesIRH3MRA/Bz8Lyx1kPWpZjoxUNYLqGlooH66uytnHdEixVispH/g7iwNh5+CoV3x/Nr7/GBNxT2RDouV6rCEX7S1t0NbcBke8fEzygVxkJqdDRlIa7Bivh4P6a6g2BC/iMbIecoxt9rnFeVDm+r0rfLzbfLAYP1a3wJK8On59MSb8ayAXrU2t0NLUAt6epvnIGGeD8jG+fvB5GsbE0BqHn4exbk8+do73t1LEcfhgOiDmQ1zfxhI+xDlWhoSPw2olXLQ0NkNzQxPh44hJPtITUykbuIYw/2Mq54PIPa5lPB+8fcXy0aW4P4lk3Ip/Pn3S29NN+VjutGJSz2N6gAyI+WDc4FzLauDw9hXr5TeZ9+NzbFGaG5qhqb4JGusawWs8390YH8gF2ljog+xye8PHVOJLWB6tPfxzZf/KcfevGCOm/HM2j07VP8ezPP48D7lorG2Ahpp68PTwMu2fEy6yiY+O+7u7x/d30dd3hJ4GCh/K/q410lBbD/WEjbrqOjh8yNMkH7i3i3u8uZkq2MOdn/PnjXKVY8eDKB+YX6voq31l3tyFlI8rl+Wfl4a2EF/nB7moraqFmsoa8HD/Ox+8RIVFQu5ZFaizciA0KNSh7pESfzV9wuKvHCE+kZfFn3wGtYSLGn01VFdUwZ5de03yERoYAnnZuZCvUkP4eM1FR1k/Fi5YTPkYujGi6KydxcvTm/KRp1bLfqzoezB/ernTSqgmbFQRNirLK8Fp2UqTfIQFh4ImJw8KcvMhIiTcofwPFJb/wepxK2In3y80nPIRHCS/ngdiwf1YFr+LdYSRC71ODxVlFbQ+iSE+hNqJ3n5QmKuBorwCamfhNWTDUfKj2jrOK/mD0yCavHzKh9t2+fdYwXwNll+7ZdM20BMuKkrLobxER/t3muJj3559lA1tfhEUj9dnQD6Mxbezsxjci5NDfYasbDXlIzQ0StFbOwqrz7BgvEbndAnqoLl6OqjL7DzP/cAhKCds6AgbZcVlf+NB/DeemRdriqCkQAulhcUw6+O59Dpfp4T/yc5s5NI3ysPDm/Khr5R/ns7bIphzh3z0dndP+1hQDydTvwTjrZCLUm0plBaVmOUD610hF2XksTryHKfP39S/cpSenOijs/pwiu7aR/z9/Ckfqqxs2Y5RXP+KXY+JiiVcvKn1FhVu/NyM8fEJ0S/kopwwVUHWnC0btwo+uqPUMMH8c+Rjx/j5jSK2lZxsFeVj3979sh+reK8pk/bjfVPPKlgUg26IDxT0U/TEJkO/5dB4bxm016yt3877KfaoTx1/JoXykZ6hUvTXxoK9o7A+NfIxf95C2Y9XfFahpb14i6AwvxD27tlv0LYSX0tLSoVKnR6qyvWQcDphymMS925gMWfi/gZSxfFi/C7ygf2jFB22rex020X50JU6XswC2uJFhAus9VagLoAN6zYa5YOXyLBIqK6ohBp9FWhy84XrZ+JirBoHv7dlrD8O86Ok+uyDQ8O0/4ebm/z7szuyZKRlUD48PTytfg0+JhHzPVj8KusVw+bYqeYMovgdOSL4CatXulAuWD2rpZ8tM8kHu+7hfhhq9dVQV1UD9dW1U/4O0Sdi+waMA1v3jzodn0T5SEvPUvTYRoK9nbG/GvIxb+4CSfhA/WC5qKzvsSU5g5YK70Pv3b2PcpGnygN1ttqgLWWID+yjU19VCw3VddBYWw8rl6+i19H/sKbOD+tZzX5amucyFXFyWkX5wP6c85U+BzaRY0ePUz6SE5Om9Do8H7gusLWB6YhUuoJ+Oe97YP3DPJWasJEL0dzelTk+5syaR2PhMSa+qa4R9u89ILBnTZyJoRxBnBP4/s6GctinKrqKaspHUJBj1NZ2JPng/X9BeamO8rFxg3WxCoZyBlHvma/K+ndKxQfuXfF1eDJSMyA3KxdyzuaA9+EjZn0P/n/onzfXN0JLQ7PQAx7ZMFXnB7lnvc356+J8eb5Xpzh/Usp7ePCgJ+Wj/+KgEo8lsRw66EH7n5cWl1j1fGM5g4Z035KcQeQI9Yz5K4YE92CZffUxeX/kQpWpguyMbOEcw5xvziSevH9rYzO0NbVAWXGpQT7wM+J4WP9N5j9JvQ5MRTq7euD6zTsQGBii6LWEa4dWU0j5mEq8lbGcQdbLlbcpzPnnaLeL6y+weifsMRhDyOJK0Ifga1l9tnipRXwIfXL2HYT25lboaGmDztZ2wt18YY1ATtnnEguO0xTD9pYDBzwoHz29l2HGh8oaIsl3SuxtfVk5FORpZDMm1DnUS36eZoL7YKiX/Lzt5eFNa02fJWxkpmaa9T3E/0eesC4Q1s06195JfPPdwjj490ZO2H6UXO9ne8cFGLp2CyIj5V97X/Zrx3szQK3KpXxs27JdlmPEORxZQLuG1T5gusoeExcVR7nISMmAAP+Tk+YDBfeusCYp1iaNiYoR1kR8X9bD3BHu6dq1GygfA4M3YKkD9huVk/h6+0FxgZbMiS0w59Pr8N4HbvK//8TGYvVPqA7PnEW5SE9Oh7SkNHAbr/Nmie/BPyY5MZnubXd3nYeayuoJ+2SOUK964h6BjvKh0RQrej6FeRn3Q5GPTW4jsMDpdyofL2iCf/5ziazHzu+7rnFeB+lJhI3ENEhNSKX9Eyfjm/PnhD3Ebuu90A193T3C+SL6OY4Sq8hk/rxP4MKFfrh0eYisfT6Kvk9S3id2FdokyIe/rz/84x+z4KN55QIjKP+alUyvy3H8IcGBwu/Y1yY1MRVSzqSQz3TaYttK/Djkqu9CD/T39MLF3j447n9CeIyjrR8o3uR7QT46iD+yZImToveTEPf9h4gvm0njXT94f4Zw/X/+dw3MXtQjMDL/82/gg5nHZf1Z4qPjIflMMiTFJ8HBve6Tfj7PUVlJGe1beKnvIlQQn8wQj44kGo0W+vsHoKS4nPZ0UXTfvKxa4QzJ8cmUjyVG4p7en3EI5i55IHAiJ98Ez8yZvYP55cmEi8TTiZAYl0BjsCazdogZwbPBy/2XaG/ogUtXYP5c+ccwmxKs09TRfh56ei5CTPRpRf/NyJzZ8yEiJILysW+P+fwOtLFwDZGrb4LrRWJcIiTEJsCZmDOCHWQtH58TO2Tg0mUYvHwFrl4ZEOq/Y367I9T8MSTY0xf5ON/VC+4HDyscGBHUneCAYIiLjIOgE0EWPw99kJlz1LLwTTBekD/TjgmPoVygjeXB3Xtr+UDB2tZDA4NwbfAq1FRVW/R83PvFPTUpYw6lFI9D3pSPTuKL7FBi4P9uLxE2Th4PhNPEf404FWGVv4nrhq18E9QvPA80d+7G77UuW7Ic4mPi6WdC5lctd7aKDTEjgQFBcO3qEFwfugY3rl2HZeM56eI6vyi414zjxjMSudRsMCbRxL5CPtpaO8F1/SaFC06OePpQGz0iJBLmzJo/tXWI+CG28E2QEXYOiD/F53Fo4/BrB9qHjI3YiFirbSsxH7g3ilzcvH4Dhm/chNiYuAl8mhunnCUqMpbyUaWvhU8XyXsP327+rLsn3f9EPubOni/Z6874KMJmvgmuIzgvo7B5ma+ZgL8zLlAw98Na28rYPtatm8Nwe/gWDBBfhF1ncS/Wxpfg81kMAJ8vxte2569LLZg/nacugObGNmioa4JtW+Vf38xmNtV7M+CY7zEad4F8OK9aI8nr8jG5xnwTL6+gCbEg1trlODfjc1mMh2DXuKynXCAjp4nd8Pn4/r61bIgZOXjgEIzcugV3bt+GuyMjNL5Ziu8O4yzZ52D5Yvg7fldsHUI/Rso+IYYYSUvJoHzUVtfD1s3yjCuypWBcVQxZSzHeG/lwWb1Wstfm+UD7Au/ljZvfgPeJPwVGVri+htVr8wUbnY/ptVb42N2gE8HUtkLfPJTLB5KKD5TBgQG4d+cOjN69S+yRSuE6xgxb21+KxSGz+nMYZ4nX+e9HnB9jKwkJDqN8VFVUg4+33zvDBtZ0wvUC80xTk9Ik38MX88HiBPG+trS/mOCb4O/om0yFD7T5eX1ctPBTul+Fe7pJxGbctsVNEjbYa7DXiT99hrBxD+6PjsLY/fu09jUbj7XxJnxtE2SDMT8dfKAc9TtO+ago09P5FHMd3mY2Nm/cQrnAGh64bkhZHxTvJbN3eHuJ9dzj72tk3AhdQxgnuLZY65uI+fB096K+FJ7hpCak0L05qfjgX2fh/EUwNnofHtwfg4cPHoAqWzVhDWE1f61ZP3gfi/HB7Cucc9i6Yg/Zsmk75aNUWwa5WWrBVn2b5EPC/ckTgbTWGdYOxH1PtLGkfA+8byz3gueD9fVmeaVMD9AHEfsm+Pdkzk3EbPx75iwaR5JCuMB4xKmceVhiY2VnqeDRg4fw+OEjePLoMa0hxMZlDR9i/5zFINvLPzdqc5A1+Wx6Fmg1xbQGDNbJe19i/ZkuWbF8FeTnamhdf+TDazz32haC99OQv816hjM+eD14+er/YKnzjQnnJrj3ZSkf/JkDxo2h7Yix7JmpGYLtKBUbYkY2uG4iXDyCLx8/hqdPvgR17l91Ufi68ab2FuSUX2jSZyVzrL/vMcpHXraa+HbxsMJpleOuGR/MpPFCjXUNtJ8Y1g7EWG+5jld8bsJ8E6OPJ3YTv3Zgnkc69mJOyaB5gkEBwZKvHYZer6GuHp5++SU8e/oUnn/1FZlr3zCBPogxPvi6X/jTkc5IMK4f/TrMVz6bkgkB/gFCvrIjyIwPZ4Kfz1Goq6mDlqYWykdw4CmH8a0WLI6ccG6CZ/KGfBPx2rFj+y4aU0l7amaqhNhKqdkQM4L1XJ4RLp4/ewYvnj8HTb7G6BjRRxPn1supfoOlgrbVLrfdlA/sD5+dfhZCAkOEnBh5cvFvmpPQ2txKc0A7WjtAnaOGlctXO9z3jz6I83q9Ud9EPDfj/UKfQ5WZTXzIHAjhemnamg+U5qZm+PrFC/jm66/h22++IWP7dIIfwvJweR8CbStHWjcM2ohkzT5MfDzkQ52VS3ttRYdHweYN8umvhfEOURHRcP5cF1zs64eeCz3E19DDzrcgzmz27LWwZGXv33wTMR/exF7JwT6z2EszJ89s7VCpGdm0cQvl4rtvv4Xvv/sOigqL/rZvwdhwhFisSXNCOPfx9KF8YC8h7AeBfYUwt2464lSwvpf7QQ/QlepoLNDQ4FW4cukK1NfWw55dX7x1+29OKwNg2ZqHAie68kFh7sXaVlj3DXMdsX50RGiEzdcOQ6/f1tYGL7//Dl69fAk/vHoFq1e5CDYVqxch57omUsjHH82B/V8cgOyMLKjS6aGusgaayHyAvYiiyLqC84it8rBWEDvpxPGTUFNdQ8+k7o7cofE/yIcqSwVbZVpfRMo5aqVLKqRn/zhh/z/gWADkEy4K1Bpan/3zpU52YUPMyKqVzvDqFWHjh1fw448/QBdZz/n9O2v2ex1ZMMbnFPF7K3UVtK7eubYOWtuiv6eP+MSNdG88KDAY1q/dAK7rN1r8uosXfUZ13Zf42Kfj4qG1tQ1eENv2K+IDPnn8hJ5FIR/NjU3g53uU2lfvyneOe1Z8zd6lS5ZRLgrzC0BbUATREebr6tpyDSnWFsNPP/0IP//8E/zyy89wYP9f+bxYS/5d4oOXDUT/gwKCoLhQS/nA/Eu0eTAGeuTWbRqH8Ijo9dMnT2D03ii0EZ3v7OiE84Snnu4eGB6+CX/++R/44/Vr+O23X+GXn3+mc9DLl9/Dt8SmRT7u3b0LpSVlcJzMlwsX2LcGNzsbZ3+z/mVie4FdE/f9k0qwZjofuxEfGw9aYufi916qLRH6Z9qLDTEjiz75DJ4/fwa//voLvY9jY2P0zJI9DsfuiLUcpBY8Zzji7UP73ZWXlUMvYYDx8eLZc+rHoY2KHLx+/Ttlg+cDuTnXeY6uH3u/2C/0IZ4u4WuOs7M9PlYIr6PNw/dFkjpXThzTtGP7Tlp7CG1bXXGpkOs6nXygJCYkwe+//Ubv6x9/vAa1Ok/4H9YCsqTmO+t58C6yg7q+edNW2LJ5G7Wjtm11g+3b5B1nz/PB+sSy/7HYOXHfG0ti6Caz98/bJ3iWk5eTR2tFY0xAkaZQON+xNxuGGHlA5sL/kDmCzXsuzmsncG6KEVx7cY9rMmswq/0uvjadMSnvkhjqWcFygfBeivmwNMaUnZeZOgcw1Cs2NDgUdMTWxBo7leUVZF7eJujodPLB3hvnO+Tiv//9k8rwzZvC49BPN8YHq0s/2XMRfDzfyxDFnjkj76qwXnk8H/ido17jdRYnYS0f7PXQNjNmT6Au8b1i0XatKNWBXlcBVRWVkBCfMG12lak1JC/v/9s7z/YoriuOn2+Sd+mJE1Nsg7EdwGCaC8bYVFUk0QwmtmzTJKHeC+q9l5WEekddQohiMAmx7Dg2eeHEzuOExJ8g93+Xs747ml3NiF2x0s6L8wDLarUzc3/31HtOoUN//PDD/yg5KcXpmrRn1dVZWot9Vuo9f1I18f4knNvi2UZ8r/nf3L+c9yv8m+uyWa+Yeb7aOR/aOlj7rIVSOUu2sa6BbA1N9PvfrfYJNrSMwC+fm5uTbMDWgi+ydcs2x3Vx7Rj2GfWsx2JFq0MsPpaOEXXOEe91PLNDex5Ue7bHjPB8GbYLtDWwcpZsXb3gopGaG20UFhruM7pDz87as2ev5AJxF/jr2niW9no9oe9Ve/dJnRmxxHviaj89uP+Q7Jve3NhErbZmSlHsFV9hQ+/75OXl038fPqSHD/8jY5OtrVec/C9PMKGdgWL55/7h+/DfkTOFP97S1ExXmnEmuk7O033SPrlRO+u60KlgA3mRf3//PZ048a7jfXp9syzxLzFjPyBWpfrjv/j5ryhHsIJzFm2YkXmlTeY+fFV36NlZ8DsePPha5tSR80J+neuzFmPvLseaeEv0BfYw8oZGGdHGcz+K/Fhw0SrraTrb2+n82fM+z4be94POABeoP/nXd9/R3Tt3hW75Mc5rpP6Ez2dC/DV/uNJ8Ca7tNsII1ojqj2PWeLuw1zvb2qmro5OKCgrlucjlwIYeI+XlFbJu6Ltvv5X1ExPjE07vdTeLSmXDbGzQEnNrluv7uI5BFV7D8B31aqzMCj5nIUb0coCbN22hDnDR3kE9nejn1yy+9ws+7XMYYWRyYoL+KdhAHfw/vvmGSop/PCuCvUGvN5A32FB7ZuNPfi5YG9yDRn3dn/xetYcM901Q59XjvvDcZf7Tm4xofY71616QvdG7Ozupt7ub+nt6ad87+5eNXeXOF/m10BFffP45fSPYwFkq1OJp8z6qv+4tvYEYIfea4b/jdTwfxO/xOs+s91c+sE5x37WxP22+3FP9DfUYwVpQ6y1gP1VVVFJvVzf19fTQQF8fnVTiPcuNDT1GcFZk7rPPZG02zh3iXG6EUl/JOsSbNpX6jNX8ob/nFbX928AG9g5VT2jrrTzBhytGVD7ABnyMvm7BRW8fDfb3U0xUzLJnQ+/7H404Lrn4O+TBA9nbISL8qNPa9Ka/Afb4meNZcEzMX/nA9XNfV+aDbU1+D58B9RYfWkbUew82iguLqL+3V3KBWbGV5eWO85jLzecwwgh0Brj4GvLVV7IPCvqhqLG/xbBhxGfEnqjWPjzJXr++ILwuwYCefcV1VXgf26V4jfcZd9wt5rvw7+LXoi5ESVtqaGCAhoeGhI1VseLY0GMk6mKM5OJvX0K+pLt37siefq58s4VEnf2+GP+De11yvaN6lsEfGME1q/dPrZtibpgRbY2VnuD/tP6lO4E9pT2LHX0xWp5Nvjo4SCNXr0qffPWqtSuSDT1G8vMKZI+5v37xhTxD/cnt2w5GOLYHG3Shs1U8r8qKX/mW4JksVEuE5wzRxvjhXzAXo8PD0ifHufKV4nMY8dchebl5Mq71+dyc8N3n5JmR0JAwp33FXR0KnxOw1qNvCp6Nu71Gayegz+Ol6BhpS4GL8dER6Xuo/cFXKhuuGLmckyv7XaMHx1/u36f7f74vGHGeKYt7qKdHcP+Xsq8W+ybaem1P1HE/ro2kp0PVPZz79WntJm8Kno0rX1I7+xh+BXzv0eGrNDYyQhNjmC/c5+jN4w9suGIEfW8wMwGzE9Cn5k/37lFIcKjTPgP9q9qo7Csu5fd2NcsH/gv7s1gPS63TXMUU1JgT1/vzGSb45Yvl2MyexPfK3bMEG/C97VyM0uT4uPDJ+/2SDVeMZIt7iD439z69R/fufip7nWWkZ87TI3r33KgP74k9k+sr1H4DZuNffB5V73PV19WeOe7sFCN8aHMceufHjfhv4F89x2xE1L1M248HfkWLzSZsKXAxRtOTE9L38Gc2XDHy7slT9Ondu7KO8c4nd2SfqIL8Qtk7U/uMzO53HF9/nDpg1g18JmuxfGjfo9cHh2OvnKtxtSa5Xkr9PH6fp/mA4Lvges3G+PR8EfTwgO89IbiYmpiga1OT1FhfT2tWP+P3bLhiJDgoRHKBPpmYl3tLSLOteV5PQO0Z/YXWtTb3tFj7yhP5d+179PrgaNezXq9Wzk9oe1FwjNobfKg5XCP2GcduwYbKR9iRcOljTE2M07TgYmZ6mpoaG8Re+BuLjZ+4j/3u2L5L3LtxOWsd/QbRT3Z0eET2hVJjgxwDdtfH1OzzXMhOUGv0eL2pfdGwzy8U+3fHB/+f0fXM9Tha/cH7vMqzVh89Tlxqof2G47Z4Rqo9BV8jPi5e+hiwpWamp+j6zDVKSU52sLFS8xueZOSlFzeSrclGszOz8izi9Wszsj8nZuZp9Qj2KH4eenu+J+tVuMbbiP+g97Ngx5N88Odqfy/bXa56gD5Ojgefw3uOqzwhenFoY/PwNWpramhKcHENXFybFnvfDEVHRbu0JyxxzQj2E8R/wcW1qWmx30wLfTxFJUUltFozg1gvV8J7qxl/Ej/jrZgx7+tqD06IXh8ccKTGm6CvvBnL1tZdGdGlPO9IfR26Qhu7hYSHRcgaKvgYM4KLWcHF2OgIBQYEWWw8pk8CnTE9OSXYmBR6eULaXn09fbIfp/Zn0c905/adjt4/erMhF7IdvHltnNNU/Vu9/MmTyFeY8bl5Bi3fX9i4AYcOzXsf7KnszCzx/CalLTU7gx7d12XMCjaCxYZnGNn2yg7q7+2n8dFxGhsZo7HhUdkXPS0lXXe+hqv9bSG/wJ/PuYNTM9ev1c/ac6DoJYw8BvsYN2ZnhE85SwX5+U4xSYsLzzACDgrzC6WvPiLYGB4alrPDOts65Bwa7bNju0XvfOLj7p9cE+nrtVqcFzTa68ion8a+Hus31faTOiMrW9hSP/oYNwUXiOMGBQZbOsPLnBwJCaOu9k66OjBEQ/2DNNg3IOdP5mTlCBbWONkA9veHOD1TV/a3mTpH9k99fW4crslMvgLcG7km2FLYd7T7A87zDA0O2H2MR7bU7Zs3qLWlhdauedZiY4kYWfX0WsrNzqUBwQbsLvgjvd291NPVQ8cijjt6WqjyUaQ99qXXD4L7Lhu1Q/i8m1G7zRu2kDe+K9a7O5aw1+jF02H/1tfVOXyMG4KLWzdn6ZPbN+nDyA9dxmAs8V58C4KZlK3CJugVXPR0dlN3R5fQLV3UVN9Ee5WeYaqcOXVqHidmbCuze7KZ92n72rqLH5nVdUZtQb1++uBCz05ds+oZSkxItMdrwcV1u49x+9ZNqqmutnSGT+iSNZQQlyi56GzrpA7hj7Rfaaf21jYqKy6jnTtedcsJbHQzvUg592b0Z4yuZc7VGNE3+M5G8538uUZ9bzVOgf5TelzAx7hw7oKM115/FK+9eUPYUrduyJw46iDcPTNLlpYRyOZNW6mitEJygb6TmInZamullqYWSkpIph3bdrldv7AbFpoFp+bGjOzHWMNG16UZPsz0oeJYnhHfm1lw9V5wcea9P87zMW4JHwO2VGzMpXmxKYsL3+Lk8MFAqq2qlVw0NzaTrcFGNmFvNdU1yhlcenkTCM+CQ+7X3TwfM7VcZtaxGT7AqdEzrFxj4y7WzblVvdweBPnYhPgEeRZ8no/xyJb6w0ubLC6WCSfwz8NCwqmqvEr2wG8UbDTUNlB9TT3VVddRblYuBQWEOGbUqQI+sI/iT55ZwsK1jkZtJrzPqN1vhg8zdhuEc6WqTYY9ALlUd7We27Zul1xMa2pC7D7GDcnFzh27LFtqGTHixIlY/6HBR6i8pFxyAb1SU1lD1RXVVC3YqSqrpNMn3xMcbNS1Nbi+i9cP54yN2v5m1rBZPszEFLimEDoH1wMuYEtq+Wcb6tCBw3SlpdVRd+7kYwhbqqaqyuJiBdlc0BPBgSFUUlD8iIsqqiytpIqSCiovLqeyojJKS06nvW++TU/99mmXsSDum4a1BXvMk2vYG/qDe62BC+755aqWc/cbb1JcbNy8unPVx6i2uFjxnLz+6m7KTMt0cFFaWCq4KaHi/GIqyiuiwtxCirkQQ3veeIuecmEbqXxEnT8rfXv8m30XXn/e5IN9aF7vbC/xd4L+w3dyV/+PudKxgh30z7Gf4XOuO+eakLTUVPHZFhf+YndBtr68jT44Eyl1SnF+kWCjULBRQAWX8yk/J5/ysvOkn3Lh7EUKPBREz697we3vYb9Ftcd4j+c4Kf6PGWKfmDlT+eBz2nx+Qn0/z4XgzwYT8KtVP8JVTQ3yqvv3HZB9QtDr2d4nxH62VdadKzUhYCbyg0inHIbFhf9xAnvqrd17KSk+yYmLy5mXKScjh7LTsykrLYsyUzMpMTaRjkecoNd2vUHrn9tg+HerfQl43jVzwTEjlQ/Ox2Hts43EfPCfRvL9yA2hP2Xk+5FUVlLq6EWo9glhH4PrzlOSU2jvnrcN6WNL/Mf2gqxd/SwFHQ6muOg4Jy4yUjIoXfgnaUlplJqYSikJKZQcn0xJcUn0/un3ad/eA2Itv0rPPbN+wRyKt2T9ug20a+drdDTimJwBXlNV7eh3Di6455qjTwh8jEd157k5lynwcKDT+VZ3e4ol/q1TIKideOetffTxB2cpPUmwkSjYSBBsxAs24gQbsUmUeCmREmISKD46nuKi4ij2YixdunCJzkWeo6NHjlFo4BHa/foe2iXYWffs81LnaM92GRH4TcgvbHxpM+3YtlPWaIaFhlFyYjLlZl+WM5U6Hs1U6unqkv3OHX2dHVwMO3yMwYF+ysnOpgAdJixdYYlZVn7201/SK1u2U3BACJ378JxLLmLOx0jB3/F6fEy8tMnAU6rQOdA/0EVZaZmUI/QTbLi87Fzp88D/KRa+UGlRCZUXl1FlaQVVlVdSTWU11VXXUkNNHTXWNZCtoYlammxybmtbq30+Jc9UkrNjwEUf+p0POPUiRC/0M6fPyFpCs9dviSVm1gr8gRc3bJT65VjYcScuwAq4AUOwv2CLQfdkCPsMtlq25CJHcgF/BzEBxAdKC0uorLiUKkrLZV6mpqKKaqtqqF5yUS+4wKxvG7XaWuR8yg45n7LDPlOpyz5TiW0pzFpKT02TOgZ9dBZ7nZZYYoYVd+sIc7Lgf7wp7KmgQ8F06vhpunj2ovRbMlMzBBdZ0t+H75+fkye5KBJcIH5WViS4KCmnyrIKOddbcgGdUVsv8//NjU2Ci2aZs+P5lN3ClsrKyJTnV08cO0n73zkg5wZ74losscTbvGjtsw3rX5QCP/7g/kMyR334YAAFHAyU8eOgw0ICggl5zJCgUJn3Zz8j/Eg4bd74spxR+fKmLV79rpZY4m1mlnotPunfb4klnlq3nhTrHltiiSWWWGKJb8n/AVBLAQIXCxQAAgAIANqIPlveCA2HAEAAAABxAgAEAAkAAAAAAAAAAAAAgAAAAABkYXRhVVQFAAclDtxoUEsFBgAAAAABAAEAOwAAADNAAAAAAA==</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #29</Name>
|
|
<Index>29</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPlsWnOaT8z8AAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J33W5TH2se/f8l7zvWe6z0nlphmYmKLSYydqMSCit1YjhpAEQuoCCgiSpHem3RYdqlL71XBgqjYY4stMSbn9/POPTDr7AMoC7u4C88P98Wy9Xlm5jN3mfue+fvf/oG/q/Le5G//87+DFrW9VBkL494Wvl8VVSw1TtVrUkXlYXDjbuHCxVzc9rvDzc0d4RExSExKY5KKouIytJ6/iNa2i2hp7UBzSzuXpuYLaGw6j8bGNjQ0tqK+gUl9C6Ki4pnEITIyDocOHoGT016sWbMec+cuxOTPpph07WpfqmIJJgZ6zzfffI9Nm7bCy/skUs5lop6N7Y5LXWi/eBUXOjqZXMH5diYXLqPtwiXGxaU3XLQquGgiLtoMXNTVN6O2jkltE2pqGlFd04Dq6npUVdWjsrIOFRW1TGpQXl6NuLgk+Pmdwa6dzpjz/XyM++BDlRdVRpSHCeMnYaWDI3x8/HAuLRuXrlzncvHyNXRc7jJw0c656JS4YCK4aOsw6Azioqn5PGeDuGggLhqICyaCi9pGxgZx0WDgorJScFGDsrJqlJVWoVRfCb2+AvqScpQUl6O4qAwpyWk4cdwPG9dvwfSpX6usqDIsLvp7zc5uKQ4eOgJdfgkuX+3G5c4buNT5hgvOhuBC6Aziot2Yi4LCUsQnpCAuniQZe/fu57JnD4kbFxcXkn1wcd4HZ2dXLj5ML0Uw2yw8nElYNNcZxEU5cVHGuCit7GGjpMLARXFRKYoK9SgsKEEBu+4CXTHytUXIYEx7e53AimWr8Oknn6usqDIkXeHgsBZBweFoZuP6Slc3rhi4uNGHiw6Ji6TkdPifDsI+t0NYvnwVFiz4gescS1z/jOmzmB21AJuZbbdrpxOCg8KYvkhnXJQyLhgbggtdEXTaQujyCqDV5CMvNx+aHB1ys7U4yz6z1nEDPvl4ssqKKm/VFYKJFsZEZ9dNxsXNHi6u3uhhg7gQthTjIpeNt2Nevti48SfMmjXbau5v3AcT8f3sedixfRfTPb5cZ2g1BT1c5OoYG1rGRh5ysjTIzsxFdkYustJzEHgmGGtWr+vDisrJ2NUVU76YiuMn/FHJ7PvOa7cUXHQbuCDRMPuEfPBFC5fY3P2TLbV8mQOOHfVBSlIacjI1PVxk5CAzPZsxlIWM1Eykn8tAWko63A8ehv2SZSbZoaqMHi4cVq1FLPMBrl6/3cMFkz5cMImKTuCxKUvZSO9Lpn41A7t3OSMyLKqXi0zGRQZSmX2Wynz6c0mpSEk8h2jm92xctwkff/SZyskY4GLLlh2oqmnkXFzt5cJIZxATMcTEtlHHxEBC9tRmZiOGMttScJGckIJkNn8kxSUjMTYJCTGJcGI8kb5VORldXEyY8BHc3T3ReuHygFxomS+7afPYYWIg+WrKNLg47UVUeDQS4xgXsYmMjQTER8cjLioOsZGx8GC219czvlE5sXG/m3PhIXEhbKleLppbOxAYFMbX99T2M5YP/jUBS36wxwnm3wsuYiNiERMeg+iwaEQxu+yQ2yHMnD5L5cQG41FkR7VJXMg6o6Kqnq9njHVdMVghXbHPxQ3R4T1cRIZGIjIkAhFnwxEeHIYDrgfw0YefqJzYABd2dvaoqm1C1wBcbGY2lNp2Q5OPJn2Kndt3GbgICwpFWGAoQgNCEBJwFttY2/7rn+NVRqyQDfIbM7I0KhcjwQnTFTu2/huhgT1cnD0TjODTQQj2D4Qfs8eW2C1VdYkV6QzyMbpu3DH2Ma4x/6Ktg3GxXW03C8kkxgnpDOIi6FQAAv3OIODkaZzx9cdBZnNNnzpTZeQ9siFsKaWPQTkhqn8xckIc7P15D2eDi99pBDJegvwDsMFxg2pzjRAb4jHFpU74nu7XloqJTcIXihi9KiMj8+cswElmX5EuCT4dyOyuIGZ/BePEMR/MmPa1ysgI6Ixvv52DgqKyXp1h7GPYKexer2Pe3AZQ29Fy4rrXDdOlsU+6gnRGCPNJQplvEhYUwnz5UObTh8Fx1doB5zxVhs+Gk7OrwsfoyQnxOX6qjy1VWlqG//73v4iLS1Db0oL+x+vXr3k7O6xcbfQa6QtfrxOICA5DZEg4okIjEB0WCR9Pb3w86VNVl5jZnhK5Usq4lN0iY52xa8cO/pf6i/qNRJ7fVDGfZGfn8vZtbm7h/69auRKffTrZSJds2bAF0aGRiAmLQmxENOIiY7g+mTdnvsqImewpni+lyAmhdW9ZZ6xfu7bPd1G/yf2nivlkwfxFhvlH6I4P2Tz2z/8bhzmz5/DH4r20vniG+e1xkbGIj45DQkw8kmITsGPrDpWRYbCxZct2XqutzAlxcHA0vEfMV1992dcnJ72h7ENVzCNi7iEdonxN8CH3CeWr7Hfdj8ReNpLjE5GSkAxvZm/Ra6pPYhobVJOhzDunHEJlbGrRgkVv/d6gwGDejw8fPlLb2Yw+ObUp+R5vs1370+mrVqxGSnwSzjE2UpNSkJZ8DuHMd5/65XSVkUGwMWH8R7yGT5lfGxgUamRPkZ/Rn854mw9JrKjtPXyfnOYaU9pzj5OT0f+UIxwXFYv05FRkpKQhMzUdSXGJ+E7KE1UZ6Z8NXaG+Tw3f7p/39NEJQ53v1DYfnsj62NTYuWzjkk0V6B+ArNQMZKdlIicjC7mZ2Vj+4wrVJ+kvRsV0g65Ab8RFU0s7Vq5842sIfUG+oalxW7KT6XPqGB+ebP1pO2eD/pryOeov4oP8RfLh6blxvT5JTkY2YyMHmqxc5OVosGKZw5hnxChGxfQqxWrl2tbG5gt96jIofijrBBJ1zL4fG8tUpmitVvShHAMmcd7tjLxsDbQ5edDlapGfp4PHQY8xy4h8r8QAxaREbStJnq7IyNeQuVDOSUPRCSL2IuyE0b4+Iq8FyfE8um/hS8hxcGFDCZvUVF0hC/1GfzEusU4lhHRGvkaLAsZGoTYfRboCHHE/MuYY6Y8NeZ+QPO0bNkQ8/W3zGLW9KfMZ8dTVdc3wP62zj3a/XcS5le1Ec7qwU4XfTdwQE+K99J6hrh/Rd1D79tc/ZCtT38q6ZOXyVZyL4vxClBQUQV9YDM/DnmOGEfn+iA3yL+S9CDVaY71BbSivMw003k3xRaj/5f4mNsZCXIvaiMY93bu4X+W902tC1wzUXqb+5tv0O7GhtA0cVqzmXJQWlaCsWI/yklIcO3ps1Me1jONUk1BeWWe0F6FGW2hgo792G6x9q/LR/zwuYkfCpqJxa0k+TPEPaT2RxGBPO6xBGeOiXF+GitJyVJZVwIn5KKOVESUbebpio70INXlv2KC+HErO7WA/Q/0t21dknw2WrdFiX9H9UzsQG7J9Rc+LvBHxXhrjZCOZ2hemzDlkI5DIfuCaVY6ci6rySlRXVKGmshpr16wbdYz0ZaPIaL/zXAUb1EcklsxLH2v+ubB1lH74SPjnpugb+j1Z5ziuXsu4qEJtVQ3qqmtRX1OHdY7rRxUj8j0EBIYY7eucqykw8jdo7hJr3ZZmRBXrEcFGf/lcpDPqa2rRUFuHxrp6lDNd9vXMb0cFI/K10761hv3OL11FXUOrERvHvTxVRlQ2+HM/bd5sFNfavnUHmuob0NzQiJbGJlRVVOLzyV/adExLvuaNm7b2ctFzRgad/SL2O6d2UK4XqYyoekMZ+z3p64eWpma0MhuwraUV2ZnZhvnV1vgwiuMyDui8sZ6zY3rOVKIz+cR7KYbbX56hysjYZUPMm8oYZmJ8As63tuFC23m0n7+AyPBIm7SzZH9cX1pldKbSzp1v4nTviuHKjKg1TmOHDVnkWqsJ4z9EblYOOi6042J7By51XMTuXU42xYh8jRGRsUbnU/r7B/WZI971fcSIiNfLz1N8Us4HpTYX8Xy1Fso2+HgXG2KMyDkU38z6Do3MF7l88SKuXLqEzstXYLdosU34IvK17dzlbHQ+ZVa21mAv/rjUflC1G28TeW2L4o9kg4l4vlpzbv1iyhxG+kPO11q5YhXj4jKuXrmCrs5OtLW2Wr0vIrNLvrd8PmV1TSM+//wr/pq5/AiZj4HWgdVxaBmR80bE+joJrSOK52nO6u95c8lxnxPounoV17q6cP3aNSRIOUbWyIjsc2Tn6N6c23r+Ij+nUp43TM0pVPmwLpHbV+RzifV4sdYuakREf5u6Bj9Qn8t2QVFBIW5cu47uGzdws7sbe1z2WiUj8rV4eh5nbFzi+yrQmcZ+pwKM9KTwKYZaryRYUPmwDj5kX1DoDHrOXDmOwuag8aLsU9qTvKO9Hbe6b+L2rVu4zPyRL6dMtSo+ZLuKzjIWZ323tHWgoFA/YM4h3TPpaVNrnEQOCsW1BBP0HbL/Iednq2I+EW0q8yF0A7U9PTY3HzSH0vcLvUH7cZD/Kl4nnXGHsXH39h3cu3MX2jytVekQ+RoKi8r42cgtrR1obmln92bHn39bnjqNbVNrZUX+mxq/Gnm9QX2ltK/EY5kDc/Ah16coRY7vpCSn4N7du7h/7x4e3L+Pfa5uVsGI/NuurgcNXJAcPuJleE25X9i75ghVrFd/kJ6W9xOj+Yh8DRr/9FfodPqf3kt/SZ+bkiMt7KmB8iJpLMl7B01k/5Ov/uCXX/DwwQPcuH6dP2ctfFAuTHMvG03NF6DLL8b4cW9iuYNtE3X/BNtghNiQ7VfqN3puoDUqU/pV1OMO5jOzZs4yrI3sc92PRw8f4vGjR3jy+DEyMzLfqw6RfzMuPplz0dR8Ho1N5zG/164yhY+xJIuYn0ZrWh6HPHDE4wg8jx7rsSVi41CqL0VYaBhO+fnDz+8UTp70w+7dTvjRfjmzKaaPKT/nXUJ2ibx2WFhYiF+fPMHTX3/Fs6dPYW+/7L3wIfvky5Y5cDaIi8bGNgQHhxl0oMrGPzD3+/m89i3oTBDytTqeP0S5EbTue+PaNdy+eRP3797jcx/168sXL/DHH6/w119/cnn9xx/4/fff+PPPnj3FkyePkZ9fgNP+Z7Bt644+55GPNZHz976fPY9z8fzZM7x4/hxNjY3vRYfIv6XTFTM22tDA2Cgtq8Lk3rxjZf7lWJFxH0zAih9X4riXD99joJzpA6p/o9qe5sYmzkdpiR5pqWkICT5rpD/2ux3AhvUbea6qrD/Ky8q5XhF8PGQs3Wd+6J07d3Cz+yZqqmv4ehnlXoxFPuRxdjY4BC9ePMfLly/w228vue5VzukjpTu2b9/FuWhoaEV9QwtcXPYZ3tdfvHo0y9LF9jh80IPvBZjH7p32qSE+0s+lwZuN/W3M11wwb5EZxsM0rHVcz5nS5Go4H7R+fLWzE5cvXoK+uASeR44xn3DKmLHFKCYg1gk+nPgxmzvucZ376tXvbC55wJ8bKR0ifmP8uA+ZvqjmXFA9h15fyZ8TcTmRnzma41J0vsXa1ev42Ui05zLtJ0t8hAaFYMO6jey+Z1r8GiZOmMT3M6Ax0tjQyHNbqT6CdFV0ZAzsly4btWwQE6I+WF7zcmd+Hdmor1//gT//fM118UjoEPn7XVzcUM+4qKtrRm1dExwdN/SJz8k1zNR/o2XNbhKbj7Zt2cbPAKdzXxKi43A2IBibN2zBJx+/X5tyxXIHhIWEcT7qa+tRU1WNTMYsMTRauBDrKfIeAspY8PXr17n/9p///IVff30yIjpE1h2kL2qJjdom5OToDO+h2kg5j0R5H7a8JyjpC4dlq/gZrXT2JPHhsd8di+2WWN21kn3lcegwigqLUFFWgdJiPaIiojD7u7k22/4i9qucd+WxJx47OblwNkiIE/LlLOmrG+kO532ci5qaRlTXNMBxzZs9JfpbBxR7Gov7ssUzASkme9rXH0GnAjkf+1xcjc5ktVahueznXU583+ei/CLomF/kddTrves5U4VsdlErJ2pHlPaIsmaiu/sGZ4NsrMePH1lUh8i6o7i4vIeN6gZkZ+UZ3qM850EpxDrdoy2tA9JZku4HPJiPEY6QgLPwOnwM3/bWzttWXG0iDrsf4Xxo2NhKYv4S7TFlK9cv9hx6V+4prauLeJbTz86cDfJDSCgWaCk/RHyf45oNnIuq6npUVdVhzeo3uuNte+XKvomt9Mm8OQsQFhyO6PBozsfqFauNzrq3RZk2dQZCgkKQlZ6FtJQ0rkvk880sNbaFHUT9L9vc9JieIxtD1g/K/eXoPYOxzZVrCtevX+O+OsmDBw8sYmPJ35Wdnce4qEdlZR0yM9/URx5wcx3Sd4t8NyHC9rJ0fc27ZI+zKxLjkhAXFQ9vTx980VvfNVrkp81bOR90BmBESAQ/Q3Mk+FDuXyn2cqQ+Fj622MNxqL8nn6Hw824nvHr1isd6KeYr6tUtwcfSpcs5F5WVtaioqGG/7WKS7uhPqF3EWomcq2OJ+ppB2SFsLj3DfIxzSamcj61bto8qLozs9SnTcJbZjAkxCYiJiIGdtK+MpfgQezaK/hb7VyrtpuHwodz3n/IWiQ1aL+zs7DSrDpG/IzwsmnFRi/LyGuh0RYb1jqHqDqEnSK+KfXCF/WXO+prBytSvZiApIQXp5zIQExXH7avRyoaQnnNlD3A+SI9s/2mH2b6b5jqxfifbV6JWh0TYV+bkg4Rym4QO8T1xEr+9fMnX1F+8eMFz2czNx+TPpqCCcVFeXo2ysip4HvV5a8zKFBE5oUKXvA8+pk2diXPJacjKyEF4SOSYyQUUsnbNes5HSGAIs722meU7yV+guU8+Y2Ug+4r6V9hXpE+Ge1akvO8Jxa0of43yTp4/f4Z4M9aqi8/vd3NnXDA2SqtQqq/EjOmzDHME+QxDXSNXtp0l6jMHw0Z6aiZymW8VxOyNcRb2V61VKIZNfAT6B/K1TnMxIvvbQ/XPhyKyPkqIT+B5i5TD9vTpU0ycOPz6EPmz6WlZbCxXQq+vQEy08foFsSFqW03d61u0iznra0wRuvasjFxoNQUICQ7jcdCxyIaQhfPtOB/+vv7YsG6TzV0/sUZjhewQOd5FeTaU20s50rSeTrmg5uJjyeIfuc7Ql1SgpLgcqxx64uaUf081Ksr5QulLDGaMmqu+xhQhHZibo0VBfjHCQiPHPBtC5s9dyPnw9fbFOmnt15pF2DE09oQtQ/aVPD4vdnTw+hCqn6qpqRmWjSV/5ugRL5SUlDM2ylBcVGoYR2TjDeR7iFwAa80nodhCXl4Bu58yRIbHqGwohGITxIf3EW8ssbPOOh6xJiLGmXI+Jj7kc6m8vXw4G1RjSPU2X06ZZhY+cnN0fBwVFZbixPFTBjaUusOWJD4+hevElOR0lY0BZM7seZwPr8NemDt7vtVdHzHxrhoKmr9F3gnVBjx69JCzQXXqZ04HDJuPxT/Ycy6KCvUoLCjBD3ZLbZ4Pby9fvn5D+kPdE+Idca3V6zgfXsyG+Pwz26spITZoTyDxf1VVFR48+IWvibS2tAzJxpLfe9jDk3GhZzZ6Cfdj+9NbtiT29it4fgzxQX6VysC7xXmXC/x8/HBov7tN5tfI64W0988v9+/zvYBIZn83Z1h8ZGVquP+aryuCD7NHBR/y/iq2IlT7W6Kv4Hwc2O+hjv1BCvU36Y+g04HYtH6zzV2/vB86+RzEBe2XdffOHezd4zpkPqjenbjI11JedCFW9O6jO9z1wPclMTGJvGYlKSlNHfcmyjdff8f5iAgJt2iuliUZF4+bm5o4G3du3+Z1/abaWOJ9e1z2cS60zE7XavINfqzyfDhbkHXrNvFaeeJjpg32rzUI1UwSHwGnztjctcs5UFRvS/v13r55C7du3uQ1yoPlQ34PrQkQF3m5+Qg9G2543tbqZGkP4IrKOs6HvIeEKqYJ+R6kQ+Kj45idZXtrh0IW/7CUc0F7vnff6Mbq3joYU/ggXUFcaHJ10ORosa03b02cNS/va2/t7eG67yDf21HL7ER1nA9P/p+9836L6tr6+PpX7nPvG43Xe2OsMYnGrlGxd2NHQUBUBJQiRREEBISBoQ5l6B1pFooN7B2xxWi66fX+Ae/+btmT7ck0hjPDjJ4f1gMcppyZsz9nlb0KcnzBR0FuvtvXIMr7I8jNkHPAnzx6zOcioBcp8hcHy8dC9j2AC+Qk1dU00swZL/18eXacXAeM98aeubvFSzGXB7MWwMfy5au1Na6CREdGU3lJKe0P3u9254Z8Jeyjiz7BsoAR8bia6hp6+OAhPWSPa21utdsHEf/fHRjEuairbqDa6lfnxIEBmUvleQw2B8uZknzsOOcDPVC1ta2OTJs6g/NRx9bY2HeHrkOUuafmelPbqpeTe0rJInLplXYOegBh9lT//X6633ffrvls8v8SE5I5F8j3Tjjysm7X3MxdCM4V54fzNjd7Q/5scl29yP9XHldLUPOH2aDgY/7Hi7S1raLExcZxPiLCIob8WspaD9HXSj5mq15O2DV4nMiTVa4n7BOKPW30P+5nXNy/10d99+6Z+LGXj9oqxkZlHVVX1NIu/92mGJkjcSuct8gFkO0wuY4MnKudo7t/fyTno6i4XFvTKgt6VICPlqYTQ87PMVcLpewFZaveASzYsu2VvUj7GBv37t6je3fu0oH94XbzMWP6bKqurKWqihqqKq82zbkBf47sfci5/GAbHCg/o3JGmhpysfca52OzSrUMmrwqGex6gY8Av10O+8+W+FDqELXqgeSe6Zg1hZ6sd27fpjJjmd2++SfrNjIuaqiyrJoqSqtMcQpbc25sfReipkPMi3AmH1u3+tCtO/3UfqpLW8tOkpXLV3M+KsrKHVoPQkdYqqWV+yKqxYec95GakkZ3bt3m/fTRa9KWjy6OB/gFss9cxdiopHJjhcm2cjQfUZ4HLM9AcyYfuXlFnI/Q/RHaWnai1FRW0ZmTp2jenMHn92JNiJpBea0In1SOyapVL4f7u7jHB/gH8n7FN5ncuH6Dz3myJ4YVdyiec4EeHuhtY803t0dEnEt8NuE7ibpBUW+pVh3UxInv092+R5yP160vj7tJZEQk5yPukGPrVdTGycwIn1RZG6dGvRzWsMjnXTDfi24yLm5cu87nTiwY8CPM8SEfK8g1UBnzaUuLy2jv7n0m7hzt4SN/btmHEn0ZlMeHKtu2+XA+GhpbtTXsZFnktYTz0d7qed81Yrrg4hqTq1eumuIBtvgAF8aiUiopNJpqkJFzJefRu7PkF5RwPgKk/lyaOE+aGhro/Nlu+njeArc/V8SwoiPDTX9jFsRVZr9cuXSZog5G2+QDeZrGQsaGwUjFbJ1hL8jTrldf/xPOh2ZbuUZio2M5H/uC9nnE+cp2UGFBIV3uvUyXei5RQZ7BZuxq3pwFvG9gUUEx76sn+IANBN9J9CnBT7Ff4075il5eSzkfHZ3ntbXrIlm3dj3nw1BQ4LbnKPwc2FDyLBpduo6x0Uu9F3uYHmy0GMMSf2/esIVzUZhXSIZcg9X3FL6DYMYdcq/CI6I5H2nHM7W16yIZP3Yi5+PKpd5hPxf4ufI9XPwUe25K3z5obzD1XOjh8V3MiLTFxybGh2GAjYKcl/cDxK5km82dpYD5TOBjV2CQtnZdKPW1tZwPxISGW0/YegxiWKKeMGjPPsbGBbpw7jxj/LxNPqLCozgX6McaF/NXD1FPqYfqPtfL+Vi4cKm2bl0oaSmpnA9/vwC3P1e59+i8uQs4F+e6z9G5rrOmnsuW9kAOhh2kfH0e5WXlUcTA3hr2BT1llnn/w6ecD23Nulb27gnifMTGxLr9uUJ3iL3ueXPn8xmNZ7u6qbuzi+YO7HNa4gOzknKzciknM4fCQ8NNvHlCLx8vr2Wcj87ui9qadbEsX7aC82EsKfEsPpi+6O7spq6OLj6n0Rwf8u/pKemUo8vm85L8fPxNr+cJ9pXgo6KqXluzLhbsfYCP+rpatz9XOQ8dfTS7GBedpzuo49QZ2uUfaJWP7Ixs0qfr+WzWdatfzgTGvqAn9LuKiIzhfByJT9LWrIsF6wx83Lp5wyP8D3nWbQdj4wxj4/TJ0zwnyxof4CLreCZlpulMfAw1t8TVfISHR2trdhjEU/hQyhnGBeZfn2o7acrVt8QHuMCcVh2zs9auepk35im5JRofGh/26g95v+JU2yk62XqS2lvbyX9ngFU+wEYGYyP92HFaM9APTg0ROcyiblCej6LWe+gyczkfgbs9I8/hdZPqykrOh9fCRUNeJxAx01nUzYq9DXm+jnx8sD6I+B1ctLe0UVtzK/n5+lv3zxkX6clpdDwpldasWMOPYc9RnjFrTpRzDJTPwWcRtYNiRq2okVGrR1Bt/QnOh5eXtvcxHFJoMKjKB34XeSBiHxzrSp7PJs8fE6KciWxODNKMNXDReqKFWppaaKePn1U+wEVaYgqlHj1Gqwf64WD9musNIYvyHMUMOcG2+NzKOihb8941Pt5sPkSOn+hbYE9dnaxfLIn8GuCiubGZTjSeIN8d1vlIHWCD8zGgP+Q6DUtiTsfh8wjWXcnHmoH5Vpp4Dh9iDSj5UPa3sYcPZY2VOZHzsJoZFycamqipvpHxsdMqHykJyZwN6BDhfwxlfxDcQ5fJfMj2lahHV+P6JLDz1vzz4ZOuzg7Ox4zpMwf1PLEOwICSD8EN7rWiB45sX4lZfoN5P7nGFtJU30SNdY3UUNtAPgP17pb4ABewseCDrF31ko+h5JeIOlpX+Oda/Mpz41eCEWv+ubiPDtU/x16evJ8HLhpq6qm+uo52ePtY988ZFxnMR0d8d91AfBe+vifMNND40OK7jkh9TR3VMTZqq2pp+7YdVvlAbBcx3qw0Ha2X9s/l/UZ3ld17QjgfqK/V1qtrZfy4SZyPixfcvy4NtpDc5wdc1FTWUHVFNXlv/TsfskSFH6Ss4zrSp2dSWEiYR10jLf9q+ETkX3lCfqIs77/3IdUwLqrLq6iqrJLWr91glY+w4AOUnZFFOTo9RQz0XPQU/TFp4vucj8vXbmtr1sXis8OX85Gt17v9ucL3EP70jOmzqIqxUcnYqCitoOnTZlnlIzw0jHIzsykvK4ciD0R4lP8BEfUfoh+3Ji7y/cIiOB+hIe4380ApiMeK/F30EQYX5cZyKisp4/1JzPFh6p3oG0D5WblUkJ3H7SwcAxueUh/V0nZaqx8cBsnNzuF8rFrp/jNWUK8h6muXLVlB5YyLsuJSKi0y8vmd1vjYuH4jZ8OQU0CFA/0ZwIel/HaxF4NYnDv0Z0jP0HM+wsKitHXrQhH9GSYO9OgcLsEatNVPB2tZ7Odt3byNShkbRsZGSWHJ33hQ/o0988LcAirKM1BxfiGNeWccPy73KZF/ij0bd5kb5e3ty/kor3D/Op3XRVBzBz66OjqG/VywDgfTvwT5VuCi2FBMxQVFNvlAvytwUcIea2TPmf7Ry/5XnjKTEz666A+nrV3XSGBAIOdDl57htueo7H8ljsdExTIuXvZ6i4qwvG8m+HiPrS9wUcqYKmM6Z9ni5SYf3VN6mKD+HHysHti/0cS5kpmh43xs3LDJ7c9VGWtK4/N4X/azClXkoJvjAwI/pZzZZPBbtg3MloG95mj/dtlPcUV/6rgjSZyPlFSdtn6dLJgdhf7U4GPC+Eluf77KvQoDn8VbQPk5+bRh/SaztpXy2LGjyVRhLKfK0nKKPxw/5HNSzm4QOWfK+QZq5fEifxd8YH6UtoadK2tWreV8GIs9L2cBtngB4wK93vL0ebRowWKLfMhyMPwgVZVVUHV5JeVm5ZiOHzkU49B5yLEtS/NxhB+l1mfvvXyDz/9Ytcr957N7sqQeS+V87PDe4fBryDmJqPcQ+atiVoy4xw61ZhASsHOnyU+YM2se50L0s5r64TSrfIjj3lu3U015FdVWVlNdVc2Qv0P4RCJuIDhw9vyow3FHOR/HUtK1dewkwWxnzFcDH+PHTVSFD6wPUYsq5h7bUzNor8g+9IZ1GzkX2bps0mfozdpS5vjAHJ26yhqqr6qlhpo6mjVjNj8O/8ORPj9iZrX4aW+dy1Bk+vTZnA/M55ygzTlwiuzetYfzkZLSSCNGbVOFD+gFoRvEGlFrrcAvl30P9D/M1ukZG1kULcWubPExdsx4nguPnPjG2gbatGGziT1H8kzM1QjiniDPdzZXwz5UMZZVcT5CQjyjt7YnycgR/6bSYiPnY+P2z2ji9F9p3JQHNOq/kfSPf4yxz3cxUzOIdS98VTG/Uy0+ELuS+/CkJqdSVnoWZR7PJN/tO236HvL/4J831TXQifom0wx4sGGtzw+4F7PN5ePKenl5VqeyflLNa7hlyw7Ox9lzvVo+lsqybYs3n39eXFhEo8fqacJHX3JGhPx3fCm9NXKVxedbqhk0t/btqRkER1hnwl8xJ4jBCvvqHfb+4EKXpqOM1AzTPoYt31xIHHv/5oYmamk8QSWFxWb5wGfE+Yj5m8J/UlsPDEXaT3XS1et3KDj4gLauVdQdhtx8zoecbzVy9B56d3LnK5yM/eAqP25Op1iqGRSzXGWbwpZ/Drtd2X9B9DsRj0EOocgrgQ8h97L68P2pdvFhmpOzcQu1NjVT24kWam9uZdxNMOkIcCo+l1JwntYYdrVs3uzN+ejsukCj3tZ0iCrfKbO3y0tKKS871+z///V/H3P9IesU/I5j//znFKecE9Yc1qV8nxaCOBjWpXzf9vH25b2mjzM20pLTbPoeyv+DJ/QFQt+sk63tzDdfZzoP+b3BiYhHuev1bG07Q5ev3KSDB92/977b6463RpFel8X5WLFspdXHQmfAH4FfIusU6BjoFGedI+7hYAF2jeh9INaqeMyhqEOci9SkVAoK3DdoPiCIXaEnKXqTxkTFmHQi3lfMMPeEazp//iLOR0/vNZrqgfNG3Un8fQOoMM/A95AH5RszXwT6Q+YE3Px7TKLTdIocCxL9T/gaHj2Gc5GSmMI+xzFaNdDnzR7fQ35MYkIij213nDpN1RVVr8TJPKFf9asxAiPnIze3UFvnQ7gvIx4KPkQd0WAFLIAJpU55Z2KjVX9+qCLHXT+eu4BSjjI2Eo5Rcnwyn584GN9c3ifsZHZb15kO6u7oNO0vws/xlFxFIRPGv0dnzpyl8xcuM93np633QcoIZlfBJgEfgQMzAIb8mqO2/c2fH2yM2F45EBps+h1zbZITkinpSBL7TIfttq2UjwNX3Wc66WxnF53r6qY9gXv/0pcepj8gvux7AR9tzB+ZMmW6tu4HIVs3bWO+bBrPdx05YpSqrw2dYilGDF9f7c8SFx1HiUcS6WjcUdqyYeugny9zVFJUwucWnu8+R2XMJzPHoydJbq6Bzp7toaLCUj7TRVv7tmX2zLmUGJfI+ZjixDo46Az47YgJm4sRO/q62DMX9g7swkTGRcLhBEo4FM9zsAajO5SMYG/wwtnzfDZ0z/mLNGGc++cwWxP0aWprPU2dnecoJvqwtv5tyNh3J1DkgUjOx8b1rqvvEDFimRPoF+iZofjz0BcJhxIoPjaejsQcMdlBjvLxEbNDes5foN4LF+nSxR5T/3fUt3tCzx9zgpm+4OP0qS7aumW7xoGlmBNbO6FBoXTo4CEK2RsyLOdgLUZsT84X8gXlPe2YiBjOBWwsb+naO8oHBL2tL/f00pXeS1RdWWXX8xH7RUxNzZxDNcV7my/no535Iqu1HPi/+86MjX17gukw818j90e6hb8JHhDnMhcjtuTPy7HWaVNmUFxMHP9MYH72jLkOsaFkJDgohK5cukxXL1+ha1eu0rSBmnRln18IYs3Yx8Qeibv0bLAk0cy+Ah8tze3ktXCJxoUkO3f4cRs98sBBGjtmgludm4gR28r5go0j6w7Yh4KN2MhYh20rJR+IjYKL61ev0Y1r1yk25tArfEJXiP1K/PSUfUNI1MFYzkdleQ19MHmKxgb82a07ePwTfIx7173YUIq5nC/oFBwfOWKiyS8HC4ILCGo/HLWtLMWxbl6/Qbdu3KQe5ouI4yLvxdH8Ejxf5ADI9WJyb3v5uNqC+ulsfR41NbRQfW0jrVju/v3NnGa/vDWKdvvv5nkX4GPubHViq5by0eW8dXkdmJtHZo9OUeZ8+fj85TPNn7eQcwFGDjO74aOB+L6jbCgZ2bJ5G92+eZPu3LpFd2/f5vnNanx3+H7E2hf1Yvgd35XQQ/Bj1JwTYo6RY0mpnI+aqjpavnTlG8cG8qpimC5Fvjf4mDdnvmqvLfMB+0Lk5iIfCtcZx+S8Vtjock7vYP156A7YX3LubsjeUG5bwTcPk+qB1OID0tvTQ/fu3KG+u3eZPVJhOo6cYUfnS4k8ZNF/Dt8Tjsvfj7I+xllyIDSc81FZVkV+vgFvDBvo6QR9gTrT5KPHVI/hK/kQeYLydVXW0DnKh7D55fU4edIHPF6FmO5RZjOuWLZKFTbEa4jXiTt8hLFxj+739VH//fu897U4H0fzTeTeJmBDMD8cfEB2BezhfJSVlPP7KWodXmc2li5exrlADw/oDTX7g+JawgZQ2ldi5p6r+Nix1Yf7UtjDSY5P4rE5tfiQX2fShMnU33efHtzvp4cPHpAuQ/eKDhE9fx3RH4IDMZtQnu0r9K+r1syyJSs5H8WGEspK15ts1ddJ3mbc79sbzHudoXcg4p6wsdR8D1w3UXsh8yHmeou6UqWdLWYfq8HGf0aP4XkkSYwL5CMOZc/DHhsrI11Hjx48pMcPH9GTR495DyFxXo7wofTPRQ6yq/xzizYH08nHU9LJkFvIe8CgT94IldfPcMnMGbMpJyuX9/UHHz4DtdfOEFxPc/62mBlur39ub0xU2UsdeWOwHZHLnpacarId1WJDycgiryWMi0f06ePH9PTJp6TP+qsvitw33pwIXetO9YVWfVZ2jw303835yM7QM98ujmZOn+25OmPkaJ4v1FBbz+eJoXcgcr094dyxd2BrFjhiuLLuQJ1HCmYxJ6XyOsGQoFDVdYe516uvraOnn35Kz54+peeffcbutS+ZgA9iiQ+57xd+etIeCfL64dehXvl4UhoFBQaZ6pU9QUa9PZoC/HZRbXUtnWg8wfkIDd7vMb6VsLeEbrG096zUHatXruU5lXymZprOlFupNhtKRhYvWkrPGBfPnz2jz58/p9ycXIvnCB9NWVvvTv0b7BXYVmtXreN8YD58RspxOhB8wFQT455c/IfXJDQ3NfMa0LbmNtJn6mnWjDke9/2LulXZ5oYtIu6zynszrhd8Dl1aBvMhM+mANEvT2XxAmhqb6IvPP6cvv/iCvvryS3ZuH7zih9j6PJ4q0NnbmY8HPvTpWXzWVnREFC1d5D7ztZDvEBUZTadPnqJz3Wep80wn8zXKac1rkGdm7n4L20TJhy87lok5s5ilmZlts3eo2owsWbyMc/H1V1/RN19/TQX5BX+LW9jShx7NCePcb4cf5wOzhDAPAnOFUFs3HHkq6O+1dYs3GYuNPBfocu8lunj+ItXV1NH6tZ+8dvE3rDG5VwmYEfde9LZC3zfUOqJ/dGRYpNN1h7nXb2lpoW+/+ZpefPstfffiBc2ZPc/EuOgX4c59TdSQd/47ljZ9spkyUtOp0lhOtRXV1MjuB5hFFMX0Cu4jzqrDmsnspL179lF1VTXfk7p7+w7P/wEfunQdLV/2eucBiHiPiCGL40G7gyiHcZGnz+X92T+aOt0lbCgZmT1rLr14wdj47gV9//13dIrpczl+50i816N1/7yFtJ/5vRXGMt5X72RLG+9tcbazm/nEDTw2HhIcSgvnLyKvhYvtft33J3/I17o/87EPH4qj5uYW+pzZtp8xH/DJ4yd8Lwp8NDU0UoD/Lm5fvSnfOWJWcs/eqVOmcS7yc/LIkFdA0ZG2++o6U4cUGgrphx++px9//IF++ulH2rzpr3pe9JJ/k/iQZRFb/yFBIVSYb+B8oP4SNg9yoG/fvMXzEB6xdf30yRPqu9dHLWzNt7e102nGU2dHJ924cZ3+/PMP+v233+iXX36mn378kd+Dvv32G2ZXfMX5uHf3LhUXldAedr+cNNG1PbjF3rgcYxK9lOXHiWPKuX9qCXqmy7kbcbFxZGB2Lr73YkORaX6mq9hQMjL5vQ/p+fNn9PPPP/Hr2N/fz/csxeNw7p7Yy0FtwT7DTl8/Pu+utKSUuhgDgo/Pnz3nfhxsVHDw22+/cjZkPsDNyfaTXH9s+GSTaQ7xcIm8FyH29uRcIRyHzSPPRVK7Vk6Z07R65Rreewi2rbGw2FTrOpx8QBLij9Kvv/zCr+vvv/9Gen226X/oBWRPz3cx8+BNZAdrfemS5bRs6QpuR61YvopWrnDvPHuZDzEnVvxP5E4p597Yk0M3mNi/bJ9gLyc7M5v3ikZOQEFuvml/x9VsmGPkAbsX/sHuEeK+N2/u/Fc4t8YIdC9iXIPRwaL3u/LYcOakvElibi9b1ALhWir5sDfHVMRvre0DmJsVGxYaRkZma6LHTkVpGbsvrzCt0eHkQ7w37nfg4n//+5PLjevXTY+Dn26JD9GXfrD7Ini8PMsQ4sqakTdVxKw8mQ9851jXOC7yJBzlQ7webDNL9gTWkjwrFrZrWbGRyo1lVFlWQfFx8cNmV1nTIdnZOSb98ccfv1Pi0aRXPpOyVl2epeXotZK/8+HKiX+TROxtidlG4rsWf4v+5eJ+hb9FXrbQK4O5vso5H8o82JezFgr4LNmq/2/vPNujuK44fr5J3qUnTmyKDcZ2AINpLhhjU4QqkmgBEyzbNEmo94J672Ulod5RlxCiGExCLDuOTV44sfM4IR8h93/FWe6OZndnpF0haefFeYBltZrZub976j2ntp5s9Y30+9+tWRZsaBmBXz47OyvZgK0FX2T7th32++LaMewz6lmPhYpWh1h8LB0j6pwj3uv4XKD2PKj2bI8Z4fkybBdoa2DlLNnaOsFFAzU12Cg0JGzZ6A49O2vfvv2SC8Rd4K9r41na+/WEvlft3Wd1ZsQS74mz/fTwQT/ZN72poZFabE2UrNgry4UNvevJzc2j/z1+TI8f/1fGJltarjn4X55gQjsDxfLPfcP34b8jZwp/vLmxia414Ux0rZyn+6x9cqN21k2hU8EG8iL/+fFHOnnyac9vvb5ZlviWmLEfEKtS/fFf/PxXlC1YwTmLVszIvNYqcx/LVXfo2VnwOx49+lbm1JHzQn6d67MWYu+uxJp4S/QF9jDyhkYZ0cZzP4n4VHDRIutpOtra6OL5i8ueDb3rg84AF6g/+fcPP9D9e/eFbnka5zVSf8LnMyG+mj9cbb4E13YbYQRrRPXHMWu8TdjrHa1t1NneQYX5BfJc5EpgQ4+RsrJyWTf0w/ffy/qJ8bFxh/e6mkWlsmE2NmiJuTXL9X1cx6AKr2H4jno1VmYFn+OOEb0c4NYt26gdXLS1U3cH+vk1iet+ZVn7HEYYmRgfp38JNlAH/8/vvqPioqdnRbA36PUG8gYbas9s/MnPBWuDe9Cor/uS36v2kOHzFOq8enwvPHeZ//QmI1qfY+OGV2Rv9K6ODurp6qK+7h468MHBFWNXufJFfi10xFdffknfCTZwlgq1eNq8j+qve0tvIEbIvWb473gdzwfxe7zOM+t9lQ+sU3zv2tifNl++mP5U7hjBWlDrLWA/VZZXUE9nF/V2d1N/by+dUuI9K40NPUZwVmT2iy9kbTbOHeJcbrhSX8k6xJs2lfqM1fyhr+cVtf3bwAb2DlVPeLJ/mztGVD7ABnyM3i7BRU8vDfT1UXRk9IpnQ+/6j4WfkFz8A/LokeztEB52zGFtetPf4DOZXIfNMTFf5QP3z31dmQ+2Nfk9fAbUW3xoGVG/e7BRVFBIfT09kgvMiq0oK7Ofx1xpPocRRqAzwMW3kG++kX1Q0A9Fjf0thA0jPqPaA5n3SF/mg9clGNCzr7iuCu9juxSv8T7jiruFXAv/Ln4t8lKktKUG+/tpaHBQ2Fjlq44NPUYiL0dLLv7+NeRrun/vnuzp58w3cyfq7PeF+B/c65LrHdWzDL7ACO5Z/f7UuinmhhnR1ljpCf5P61+6EthT2rPYUZej5Nnk6wMDNHz9uvTJ17ywblWyocdIXm6+7DH3t6++kmeoP7t7184Ix/Zgg7o7W8Xzqqz41fISPBN3tUR4zhBtjB/+BXMxMjQkfXKcK18tPocRfx2Sm5Mr41pfzs4K331WnhkJCQ512Fdc1aHwOQFrPS5PwbNxtddo7QT0ebwSFS1tKXAxNjIsfQ+1P/hqZcMZI1ezc2S/a/Tg+OvDh/TwLw8FI44zZfEd6ukRfP9L2VeLfRNtvbYn6rgXayPp6VB1D+d+fVq7yZuCZ+PMl9TOPoZfAd97ZOg6jQ4P0/go5gv32nvz+AIbzhhB3xvMTMDsBPSp+fODBxQcFOKwz0D/qjYq+4pLed3OZvlwDz+8jvWw1DrNWUxBjTlxvT+fYYJfvlCOzexJ/F25epZgA773HBcjNDE2JnzyPp9kwxkjWeI7RJ+bB58/oAf3P5e9ztLTMubpEb3v3KgP74k9k+sr1H4DZuNffB5V73PV19WeOa7sFCN8aHMc7nqhO7tu8K+eYzYi6l6m7ccDv6LZZhO2FLgYpamJcel7+DIbzhj546nT9Pn9+7KO8d5n92SfqPy8Atk7U/uMzO53HF9fTB0w6wY+k7VQPrTv0euDw7FXdU6f3prkein18/h9nuYDgmvB/ZqN8en5IujhAd97XHAxOT5ONyYnqKGujtauWe/zbDhjJCgwWHKBPpmYl3tHSJOtaV5PQO0ZfXfrWpt7Wqh95Yn8u/Y9en1wtOtZr1cr5ye0vSg4Ru0NPtQcrhH7jGO3YEPlI/RomPQxJsfHaEpwMT01RY0N9WIv/I3Fxk9cx3537dwjvrsxOWsd/QbRT3ZkaFj2hVJjgxwDdtXH1OzzdGcnqDV6vN7UvmjY593F/l3xwf9ndD1zPY5Wf/A+r/Ks1UeLiUu52284botnpNpT8DXiYuOkjwFbanpqkm5O36DkpCQ7G6s1v+FJRl57dTPZGm00Mz0jzyLevDEt+3NiZp5Wj2CP4ueht+d7sl6Fa7yN+A96Pwt2PMkHf67297Ld5awH6GJyPPgc3nOc5QnRi0Mbm4evUVNdTZOCixvg4saU2PumKSoyyqk9YYlzRrCfIP4LLm5MTon9Zkro40kqLiymNZoZxHq5Et5bzfiT+BlvxYx5X1d7cEL0+uCAIzXeBH3lzVi2tu7KiC7l+Rvq69AV2tgtJCw0XNZQwceYFlzMCC5GR4YpwD/QYmORPgl0xtTEpGBjQujlcWl79Xb3yn6c2p9FP9PdO3fbe//ozXp0Zzt48944p6n6t3r5k2eRrzDjc/MMWv5+YeP6+/nNex/sqayMTPH8JqQtNTONHt03ZcwKNoLFhmcY2fHGLurr6aOxkTEaHR6l0aER2Rc9NTlNd76Gs/3NnV/gy+fcwamZ+9fqZ+05UPQSRh6DfYxbM9PCp5yh/Lw8h5ikxYVnGAEHBXkF0lcfFmwMDQ7J2WEdre1yDo322bHdonc+cbH7J9dELvdaLc4LGu11ZNRPY1+P9Ztq+0mdkZklbKmnPsZtwQXiuIEBQZbO8DInR4NDqbOtg673D9Jg3wAN9PbL+ZPZmdmChbUONsDc+4Mdnqkz+9tMnSP7p8t9bhzuyUy+AtwbuSfYUth3tPsDzvMMDvTP+RhPbKm7t29RS3MzrVv7osXGEjHywvPrKCcrh/oFG7C74I/0dPVQd2c3HQ8/Ye9poconEXOxL71+ENx32agdwufdjNpt3rCFvHGtWO+uWMJeoxdPh/1bV1tr9zFuCS7u3J6hz+7epo8jPnYag7HEe/EtCGZStgiboEdw0d3RRV3tnUK3dFJjXSPtV3qGqXL29Ol5nJixrczuyWbep+1r6yp+ZFbXGbUF9frpgws9O3XtC+spIT5hLl4LLm7O+Rh379ym6qoqS2csC12yluJjEyQXHa0d1C78kbZrbdTW0kqlRaW0e9ebLjmBjW6mFynn3oz+jNG1zLkaI/oG12w038mfa9T3VuMU6D+lxwV8jEsXLsl47c0n8drbt4QtdeeWzImjDsLVM7NkaRmBbN2yncpLyiUX6DuJmZgtthZqbmymxPgk2rVjj8v1C7vB3Sw4NTdmZD/GGja6Ls3wYaYPFcfyjPjezIKz94KLsx/+aZ6PcUf4GLClYqKvzItNWVwsL06OHA6gmsoayUVTQxPZ6m1kE/ZWY22DnMGllzeB8Cw45H5dzfMxU8tlZh2b4QOcGj3DyjU2rmLdnFvVy+1BkI+Nj4uXZ8Hn+RhPbKk/vLbF4mKFcAL/PDQ4jCrLKmUP/AbBRn1NPdVV11FtVS3lZOZQoH+wfUadKuAD+yj+5JklLFzraNRmwvuM2v1m+DBjt0E4V6raZNgDkEt1Veu5Y/tOycWUpiZkzse4JbnYvWuPZUutIEYcOBHrPyToKJUVl0kuoFeqK6qpqryKqgQ7laUVdObUh4KDzbq2Btd38frhnLFR29/MGjbLh5mYAtcUQufgfsAFbEkt/2xD+R06QteaW+x15w4+hrClqisrLS5Wkc0FPREUEEzF+UVPuKikipIKKi8up7KiMiotLKXUpDTa/+779Nxvn3caC+K+aVhbsMc8uYa9oT+41xq44J5fzmo5977zLsXGxM6rO1d9jCqLi1XPydtv7qWM1Aw7FyUFJYKbYirKK6LC3EIqyCmg6EvRtO+d9+g5J7aRykfkxfPSt8e/2Xfh9edNPtiH5vXO9hJfE/QfrslV/T/mSscIdtA/Z+4Mn2PdOdeEpKakiM+2uPAVuwuy/fUd9NHZCKlTivIKBRsFgo18yr+aR3nZeZSblSv9lEvnL1OAXyC9vOEVl7+H/RbVHuM9nuOk+D9miH1i5kzlg89p8/kJ9f08F4I/G0zAr1b9CGc1NcirHjxwSPYJQa/nuT4hc2dbZd25UhMCZiI+inDIYVhc+B4nsKfe27ufEuMSHbi4mnGVstOzKSstizJTMykjJYMSYhLoRPhJemvPO7TxpU2Gf7fal4DnXTMXHDNS+eB8HNY+20jMB/9pJN+P3BD6U0aci6DS4hJ7L0K1Twj7GFx3npyUTPv3vW9IH1viO7YXZN2aFynwSBDFRsU6cJGenE5pwj9JTUyllIQUSo5PpqS4JEqMTaRzZ87Rgf2HxFp+k15av9FtDsVbsnHDJtqz+y06Fn5czgCvrqyy9zsHF9xzzd4nBD7Gk7rznOyrFHAkwOF8q6s9xRLf1ikQ1E588N4B+vSj85SWKNhIEGzECzbiBBuxgo2YREq4kkDx0fEUFxVHsZGxFHM5hq5cukIXIi7QsaPHKSTgKO19ex/tEexsePFlqXO0Z7uMCPwm5Bc2v7aVdu3YLWs0Q0NCKSkhiXKyrsqZSu1PZip1d3bKfuf2vs52LobsPsZAfx9lZ2WRvw4Tlq6wxCwrP/vpL+mNbTspyD+YLnx8wSkX0RejpeDveD0uOk7aZOApRegc6B/ooszUDMoW+gk2XG5WjvR54P8UCV+opLCYyopKqaKknCrLKqi6oopqq2qovrqWGmrryVbfSM2NNjm3tbVlbj4lz1SSs2PARS/6nfc79CJEL/SzZ87KWkKz92+JJWbWCvyBVzdtlvrleOgJBy7ACrgBQ7C/YItB96QL+wy2WpbkIltyAX8HMQHEB0oKiqm0qITKS8pkXqa6vJJqKqupTnJRJ7jArG8btdia5XzKdjmfsn1uplLn3EwltqUwayktJVXqGPTRWeh9WmKJGVZcrSPMyYL/8a6wpwL9guj0iTN0+fxl6bdkpKQLLjKlvw/fPy87V3JRKLhA/Ky0UHBRXEYVpeVyrrfkAjqjpk7m/5saGgUXTTJnx/Mpu4QtlZmeIc+vnjx+ig5+cEjODfbEvVhiibd50dpnmza+KgV+/OGDfjJHfeSwP/kfDpDx48AjQvyDCHnM4MAQmfdnPyPsaBht3fy6nFH5+pZtXr1WSyzxNjNLvRaf9e+3xBJPrVtPivUdW2KJJZZYYsnykv8DUEsBAhcLFAACAAgA2og+Wxac5pPzPwAAAHECAAQACQAAAAAAAAAAAACAAAAAAGRhdGFVVAUAByUO3GhQSwUGAAAAAAEAAQA7AAAAJkAAAAAA</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #30</Name>
|
|
<Index>30</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPltlZuKj8D8AAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J33W5TH2se/f8l7zvWe6z0nlphmYmKLSYydqMSCit1YjhpAEQuoCCgiSpHem3RYdqlL71XBgqjYY4stMSbn9/POPTDr7AMoC7u4C88P98Wy9Xlm5jN3mfue+fvf/oG/q/Le5G//87+DFrW9VBkL494Wvl8VVSw1TtVrUkXlYXDjbuHCxVzc9rvDzc0d4RExSExKY5KKouIytJ6/iNa2i2hp7UBzSzuXpuYLaGw6j8bGNjQ0tqK+gUl9C6Ki4pnEITIyDocOHoGT016sWbMec+cuxOTPpph07WpfqmIJJgZ6zzfffI9Nm7bCy/skUs5lop6N7Y5LXWi/eBUXOjqZXMH5diYXLqPtwiXGxaU3XLQquGgiLtoMXNTVN6O2jkltE2pqGlFd04Dq6npUVdWjsrIOFRW1TGpQXl6NuLgk+Pmdwa6dzpjz/XyM++BDlRdVRpSHCeMnYaWDI3x8/HAuLRuXrlzncvHyNXRc7jJw0c656JS4YCK4aOsw6Azioqn5PGeDuGggLhqICyaCi9pGxgZx0WDgorJScFGDsrJqlJVWoVRfCb2+AvqScpQUl6O4qAwpyWk4cdwPG9dvwfSpX6usqDIsLvp7zc5uKQ4eOgJdfgkuX+3G5c4buNT5hgvOhuBC6Aziot2Yi4LCUsQnpCAuniQZe/fu57JnD4kbFxcXkn1wcd4HZ2dXLj5ML0Uw2yw8nElYNNcZxEU5cVHGuCit7GGjpMLARXFRKYoK9SgsKEEBu+4CXTHytUXIYEx7e53AimWr8Oknn6usqDIkXeHgsBZBweFoZuP6Slc3rhi4uNGHiw6Ji6TkdPifDsI+t0NYvnwVFiz4gescS1z/jOmzmB21AJuZbbdrpxOCg8KYvkhnXJQyLhgbggtdEXTaQujyCqDV5CMvNx+aHB1ys7U4yz6z1nEDPvl4ssqKKm/VFYKJFsZEZ9dNxsXNHi6u3uhhg7gQthTjIpeNt2Nevti48SfMmjXbau5v3AcT8f3sedixfRfTPb5cZ2g1BT1c5OoYG1rGRh5ysjTIzsxFdkYustJzEHgmGGtWr+vDisrJ2NUVU76YiuMn/FHJ7PvOa7cUXHQbuCDRMPuEfPBFC5fY3P2TLbV8mQOOHfVBSlIacjI1PVxk5CAzPZsxlIWM1Eykn8tAWko63A8ehv2SZSbZoaqMHi4cVq1FLPMBrl6/3cMFkz5cMImKTuCxKUvZSO9Lpn41A7t3OSMyLKqXi0zGRQZSmX2Wynz6c0mpSEk8h2jm92xctwkff/SZyskY4GLLlh2oqmnkXFzt5cJIZxATMcTEtlHHxEBC9tRmZiOGMttScJGckIJkNn8kxSUjMTYJCTGJcGI8kb5VORldXEyY8BHc3T3ReuHygFxomS+7afPYYWIg+WrKNLg47UVUeDQS4xgXsYmMjQTER8cjLioOsZGx8GC219czvlE5sXG/m3PhIXEhbKleLppbOxAYFMbX99T2M5YP/jUBS36wxwnm3wsuYiNiERMeg+iwaEQxu+yQ2yHMnD5L5cQG41FkR7VJXMg6o6Kqnq9njHVdMVghXbHPxQ3R4T1cRIZGIjIkAhFnwxEeHIYDrgfw0YefqJzYABd2dvaoqm1C1wBcbGY2lNp2Q5OPJn2Kndt3GbgICwpFWGAoQgNCEBJwFttY2/7rn+NVRqyQDfIbM7I0KhcjwQnTFTu2/huhgT1cnD0TjODTQQj2D4Qfs8eW2C1VdYkV6QzyMbpu3DH2Ma4x/6Ktg3GxXW03C8kkxgnpDOIi6FQAAv3OIODkaZzx9cdBZnNNnzpTZeQ9siFsKaWPQTkhqn8xckIc7P15D2eDi99pBDJegvwDsMFxg2pzjRAb4jHFpU74nu7XloqJTcIXihi9KiMj8+cswElmX5EuCT4dyOyuIGZ/BePEMR/MmPa1ysgI6Ixvv52DgqKyXp1h7GPYKexer2Pe3AZQ29Fy4rrXDdOlsU+6gnRGCPNJQplvEhYUwnz5UObTh8Fx1doB5zxVhs+Gk7OrwsfoyQnxOX6qjy1VWlqG//73v4iLS1Db0oL+x+vXr3k7O6xcbfQa6QtfrxOICA5DZEg4okIjEB0WCR9Pb3w86VNVl5jZnhK5Usq4lN0iY52xa8cO/pf6i/qNRJ7fVDGfZGfn8vZtbm7h/69auRKffTrZSJds2bAF0aGRiAmLQmxENOIiY7g+mTdnvsqImewpni+lyAmhdW9ZZ6xfu7bPd1G/yf2nivlkwfxFhvlH6I4P2Tz2z/8bhzmz5/DH4r20vniG+e1xkbGIj45DQkw8kmITsGPrDpWRYbCxZct2XqutzAlxcHA0vEfMV1992dcnJ72h7ENVzCNi7iEdonxN8CH3CeWr7Hfdj8ReNpLjE5GSkAxvZm/Ra6pPYhobVJOhzDunHEJlbGrRgkVv/d6gwGDejw8fPlLb2Yw+ObUp+R5vs1370+mrVqxGSnwSzjE2UpNSkJZ8DuHMd5/65XSVkUGwMWH8R7yGT5lfGxgUamRPkZ/Rn854mw9JrKjtPXyfnOYaU9pzj5OT0f+UIxwXFYv05FRkpKQhMzUdSXGJ+E7KE1UZ6Z8NXaG+Tw3f7p/39NEJQ53v1DYfnsj62NTYuWzjkk0V6B+ArNQMZKdlIicjC7mZ2Vj+4wrVJ+kvRsV0g65Ab8RFU0s7Vq5842sIfUG+oalxW7KT6XPqGB+ebP1pO2eD/pryOeov4oP8RfLh6blxvT5JTkY2YyMHmqxc5OVosGKZw5hnxChGxfQqxWrl2tbG5gt96jIofijrBBJ1zL4fG8tUpmitVvShHAMmcd7tjLxsDbQ5edDlapGfp4PHQY8xy4h8r8QAxaREbStJnq7IyNeQuVDOSUPRCSL2IuyE0b4+Iq8FyfE8um/hS8hxcGFDCZvUVF0hC/1GfzEusU4lhHRGvkaLAsZGoTYfRboCHHE/MuYY6Y8NeZ+QPO0bNkQ8/W3zGLW9KfMZ8dTVdc3wP62zj3a/XcS5le1Ec7qwU4XfTdwQE+K99J6hrh/Rd1D79tc/ZCtT38q6ZOXyVZyL4vxClBQUQV9YDM/DnmOGEfn+iA3yL+S9CDVaY71BbSivMw003k3xRaj/5f4mNsZCXIvaiMY93bu4X+W902tC1wzUXqb+5tv0O7GhtA0cVqzmXJQWlaCsWI/yklIcO3ps1Me1jONUk1BeWWe0F6FGW2hgo792G6x9q/LR/zwuYkfCpqJxa0k+TPEPaT2RxGBPO6xBGeOiXF+GitJyVJZVwIn5KKOVESUbebpio70INXlv2KC+HErO7WA/Q/0t21dknw2WrdFiX9H9UzsQG7J9Rc+LvBHxXhrjZCOZ2hemzDlkI5DIfuCaVY6ci6rySlRXVKGmshpr16wbdYz0ZaPIaL/zXAUb1EcklsxLH2v+ubB1lH74SPjnpugb+j1Z5ziuXsu4qEJtVQ3qqmtRX1OHdY7rRxUj8j0EBIYY7eucqykw8jdo7hJr3ZZmRBXrEcFGf/lcpDPqa2rRUFuHxrp6lDNd9vXMb0cFI/K10761hv3OL11FXUOrERvHvTxVRlQ2+HM/bd5sFNfavnUHmuob0NzQiJbGJlRVVOLzyV/adExLvuaNm7b2ctFzRgad/SL2O6d2UK4XqYyoekMZ+z3p64eWpma0MhuwraUV2ZnZhvnV1vgwiuMyDui8sZ6zY3rOVKIz+cR7KYbbX56hysjYZUPMm8oYZmJ8As63tuFC23m0n7+AyPBIm7SzZH9cX1pldKbSzp1v4nTviuHKjKg1TmOHDVnkWqsJ4z9EblYOOi6042J7By51XMTuXU42xYh8jRGRsUbnU/r7B/WZI971fcSIiNfLz1N8Us4HpTYX8Xy1Fso2+HgXG2KMyDkU38z6Do3MF7l88SKuXLqEzstXYLdosU34IvK17dzlbHQ+ZVa21mAv/rjUflC1G28TeW2L4o9kg4l4vlpzbv1iyhxG+kPO11q5YhXj4jKuXrmCrs5OtLW2Wr0vIrNLvrd8PmV1TSM+//wr/pq5/AiZj4HWgdVxaBmR80bE+joJrSOK52nO6u95c8lxnxPounoV17q6cP3aNSRIOUbWyIjsc2Tn6N6c23r+Ij+nUp43TM0pVPmwLpHbV+RzifV4sdYuakREf5u6Bj9Qn8t2QVFBIW5cu47uGzdws7sbe1z2WiUj8rV4eh5nbFzi+yrQmcZ+pwKM9KTwKYZaryRYUPmwDj5kX1DoDHrOXDmOwuag8aLsU9qTvKO9Hbe6b+L2rVu4zPyRL6dMtSo+ZLuKzjIWZ323tHWgoFA/YM4h3TPpaVNrnEQOCsW1BBP0HbL/Iednq2I+EW0q8yF0A7U9PTY3HzSH0vcLvUH7cZD/Kl4nnXGHsXH39h3cu3MX2jytVekQ+RoKi8r42cgtrR1obmln92bHn39bnjqNbVNrZUX+mxq/Gnm9QX2ltK/EY5kDc/Ah16coRY7vpCSn4N7du7h/7x4e3L+Pfa5uVsGI/NuurgcNXJAcPuJleE25X9i75ghVrFd/kJ6W9xOj+Yh8DRr/9FfodPqf3kt/SZ+bkiMt7KmB8iJpLMl7B01k/5Ov/uCXX/DwwQPcuH6dP2ctfFAuTHMvG03NF6DLL8b4cW9iuYNtE3X/BNtghNiQ7VfqN3puoDUqU/pV1OMO5jOzZs4yrI3sc92PRw8f4vGjR3jy+DEyMzLfqw6RfzMuPplz0dR8Ho1N5zG/164yhY+xJIuYn0ZrWh6HPHDE4wg8jx7rsSVi41CqL0VYaBhO+fnDz+8UTp70w+7dTvjRfjmzKaaPKT/nXUJ2ibx2WFhYiF+fPMHTX3/Fs6dPYW+/7L3wIfvky5Y5cDaIi8bGNgQHhxl0oMrGPzD3+/m89i3oTBDytTqeP0S5EbTue+PaNdy+eRP3797jcx/168sXL/DHH6/w119/cnn9xx/4/fff+PPPnj3FkyePkZ9fgNP+Z7Bt644+55GPNZHz976fPY9z8fzZM7x4/hxNjY3vRYfIv6XTFTM22tDA2Cgtq8Lk3rxjZf7lWJFxH0zAih9X4riXD99joJzpA6p/o9qe5sYmzkdpiR5pqWkICT5rpD/2ux3AhvUbea6qrD/Ky8q5XhF8PGQs3Wd+6J07d3Cz+yZqqmv4ehnlXoxFPuRxdjY4BC9ePMfLly/w228vue5VzukjpTu2b9/FuWhoaEV9QwtcXPYZ3tdfvHo0y9LF9jh80IPvBZjH7p32qSE+0s+lwZuN/W3M11wwb5EZxsM0rHVcz5nS5Go4H7R+fLWzE5cvXoK+uASeR44xn3DKmLHFKCYg1gk+nPgxmzvucZ376tXvbC55wJ8bKR0ifmP8uA+ZvqjmXFA9h15fyZ8TcTmRnzma41J0vsXa1ev42Ui05zLtJ0t8hAaFYMO6jey+Z1r8GiZOmMT3M6Ax0tjQyHNbqT6CdFV0ZAzsly4btWwQE6I+WF7zcmd+Hdmor1//gT//fM118UjoEPn7XVzcUM+4qKtrRm1dExwdN/SJz8k1zNR/o2XNbhKbj7Zt2cbPAKdzXxKi43A2IBibN2zBJx+/X5tyxXIHhIWEcT7qa+tRU1WNTMYsMTRauBDrKfIeAspY8PXr17n/9p///IVff30yIjpE1h2kL2qJjdom5OToDO+h2kg5j0R5H7a8JyjpC4dlq/gZrXT2JPHhsd8di+2WWN21kn3lcegwigqLUFFWgdJiPaIiojD7u7k22/4i9qucd+WxJx47OblwNkiIE/LlLOmrG+kO532ci5qaRlTXNMBxzZs9JfpbBxR7Gov7ssUzASkme9rXH0GnAjkf+1xcjc5ktVahueznXU583+ei/CLomF/kddTrves5U4VsdlErJ2pHlPaIsmaiu/sGZ4NsrMePH1lUh8i6o7i4vIeN6gZkZ+UZ3qM850EpxDrdoy2tA9JZku4HPJiPEY6QgLPwOnwM3/bWzttWXG0iDrsf4Xxo2NhKYv4S7TFlK9cv9hx6V+4prauLeJbTz86cDfJDSCgWaCk/RHyf45oNnIuq6npUVdVhzeo3uuNte+XKvomt9Mm8OQsQFhyO6PBozsfqFauNzrq3RZk2dQZCgkKQlZ6FtJQ0rkvk880sNbaFHUT9L9vc9JieIxtD1g/K/eXoPYOxzZVrCtevX+O+OsmDBw8sYmPJ35Wdnce4qEdlZR0yM9/URx5wcx3Sd4t8NyHC9rJ0fc27ZI+zKxLjkhAXFQ9vTx980VvfNVrkp81bOR90BmBESAQ/Q3Mk+FDuXyn2cqQ+Fj622MNxqL8nn6Hw824nvHr1isd6KeYr6tUtwcfSpcs5F5WVtaioqGG/7WKS7uhPqF3EWomcq2OJ+ppB2SFsLj3DfIxzSamcj61bto8qLozs9SnTcJbZjAkxCYiJiIGdtK+MpfgQezaK/hb7VyrtpuHwodz3n/IWiQ1aL+zs7DSrDpG/IzwsmnFRi/LyGuh0RYb1jqHqDqEnSK+KfXCF/WXO+prBytSvZiApIQXp5zIQExXH7avRyoaQnnNlD3A+SI9s/2mH2b6b5jqxfifbV6JWh0TYV+bkg4Rym4QO8T1xEr+9fMnX1F+8eMFz2czNx+TPpqCCcVFeXo2ysip4HvV5a8zKFBE5oUKXvA8+pk2diXPJacjKyEF4SOSYyQUUsnbNes5HSGAIs722meU7yV+guU8+Y2Ug+4r6V9hXpE+Ge1akvO8Jxa0of43yTp4/f4Z4M9aqi8/vd3NnXDA2SqtQqq/EjOmzDHME+QxDXSNXtp0l6jMHw0Z6aiZymW8VxOyNcRb2V61VKIZNfAT6B/K1TnMxIvvbQ/XPhyKyPkqIT+B5i5TD9vTpU0ycOPz6EPmz6WlZbCxXQq+vQEy08foFsSFqW03d61u0iznra0wRuvasjFxoNQUICQ7jcdCxyIaQhfPtOB/+vv7YsG6TzV0/sUZjhewQOd5FeTaU20s50rSeTrmg5uJjyeIfuc7Ql1SgpLgcqxx64uaUf081Ksr5QulLDGaMmqu+xhQhHZibo0VBfjHCQiPHPBtC5s9dyPnw9fbFOmnt15pF2DE09oQtQ/aVPD4vdnTw+hCqn6qpqRmWjSV/5ugRL5SUlDM2ylBcVGoYR2TjDeR7iFwAa80nodhCXl4Bu58yRIbHqGwohGITxIf3EW8ssbPOOh6xJiLGmXI+Jj7kc6m8vXw4G1RjSPU2X06ZZhY+cnN0fBwVFZbixPFTBjaUusOWJD4+hevElOR0lY0BZM7seZwPr8NemDt7vtVdHzHxrhoKmr9F3gnVBjx69JCzQXXqZ04HDJuPxT/Ycy6KCvUoLCjBD3ZLbZ4Pby9fvn5D+kPdE+Idca3V6zgfXsyG+Pwz26spITZoTyDxf1VVFR48+IWvibS2tAzJxpLfe9jDk3GhZzZ6Cfdj+9NbtiT29it4fgzxQX6VysC7xXmXC/x8/HBov7tN5tfI64W0988v9+/zvYBIZn83Z1h8ZGVquP+aryuCD7NHBR/y/iq2IlT7W6Kv4Hwc2O+hjv1BCvU36Y+g04HYtH6zzV2/vB86+RzEBe2XdffOHezd4zpkPqjenbjI11JedCFW9O6jO9z1wPclMTGJvGYlKSlNHfcmyjdff8f5iAgJt2iuliUZF4+bm5o4G3du3+Z1/abaWOJ9e1z2cS60zE7XavINfqzyfDhbkHXrNvFaeeJjpg32rzUI1UwSHwGnztjctcs5UFRvS/v13r55C7du3uQ1yoPlQ34PrQkQF3m5+Qg9G2543tbqZGkP4IrKOs6HvIeEKqYJ+R6kQ+Kj45idZXtrh0IW/7CUc0F7vnff6Mbq3joYU/ggXUFcaHJ10ORosa03b02cNS/va2/t7eG67yDf21HL7ER1nA9P/p+98/yL6tr6+PpX7ufeJ8XrTYw1JmrEHhXs2GIniICoCChFiqKICEgbGGAoQ+9Is9AsYO+ILUbTTY9J7ovn1fN59m/LnmxPpjEMwxw9L9Zn4DAz7HPO/p691l4NMb7gI1+f5/Y5iLJ/BLEZcgz4owcPeV8E1CJF/OJg+VjIrgO4QExSbXUDzZzxws6Xe8fJecD43/CZu9t+KfryoNcC+Fi2bKU2x50gMVExVFZcQntC9rjd2BCvBD+6qBMsCxgR76uuqqb79+7Tffa+lqYWu20Q8fcdQcGci9qqeqqperlPHBiQuVSOY7AxWMMpSUePcT5QA1Wb286R6dNmcD5q2Rwb+97Q1xBl7Km52tS28uXkmlKyiFh6pZ6DGkDoPdV/t5/u9t21qz+b/LfEhCTOBeK9Ew6+yNs113MXgrFifBi3ud4b8rnJefUi/l953FmCnD/0BgUf8z/20ua2EyU+Lp7zERkeOeTvUuZ6iLpW8jFb+XJCr8H7RJyscj7BTyh82qh/3M+4uHunj/ru3DHxYy8fNZWMjYpaqiqvoe0BO0x7ZI7sW2HcIhZA1sPkPDJw7uwY3T17ojgfhUVl2px2sqBGBfhobjw+5Pgcc7lQylpQtvIdwIIt3V5Zi7SPsXHn9h26c+s27d0TYTcfMzxmU1VFDVWWV1NlWZWpzw34c8T3Icfyg21woDxHZY80Z8j53iucj41OymXQ5GVJZ/cLfAT6b3fYfrbEh3INcVY+kFwzHb2mUJP11s2bVGostds2/2TNesZFNVWUVlF5SaVpn8JWnxtb10LkdIh+EcPJx+bNW+nGrX5qO9mpzeVhkhXLVnI+ykvLHJoPYo2wlEsr10V0Fh9y3EdKcirdunGT19NHrUlbNro4HugfxM65krFRQWXGcpNu5Wg8otwPWO6BNpx86HMLOR9heyK1uTyMUl1RSadPnKR5cwYf34s5IXIG5bkibFJ5T9ZZ+XJ4votnfGBAEK9XfJ3JtavXeJ8ne/aw4vcf4lyghgdq21izze0Rsc8lzk3YTiJvUORbOisPauLED+h23wPOx6tWl8fdJCoyivMRv9+x+Spy42RmhE2qzI1zRr4c5rCI510w35OuMy6uXbnK+04sGLAjzPEhH8vXG6iU2bQlRaW0a8duE3eO1vCRz1u2oURdBuXxocqWLVs5H/UNLdocHmbx8lzM+WhrUd+1xp4uuLjC5PKly6b9AFt8gAtjYQkVFxhNOciIuZLj6N1Z8vKLOR+BUn0uTYZPGuvr6Wx3F308b4HbjxV7WDFREabf0QviMtNfLl24SNH7YmzygThNYwFjw2CkIjbP4AtS2/3q63/E+dB0K9dIXEwc52N38G5VjFfWgwryC+hi70W60HOB8nMNNveu5s1ZwOsGFuYX8bp6gg/oQLCdRJ0SvAp/jTvFK3p6LuF8tHec1eaui2TN6rWcD0N+vtuOUdg50KHkXjQZaRmMjV7qPd/D1sEGi3tY4veN6zZxLgpyC8igN1j9n8J2EMy4Q+xVRGQM5yP1WKY2d10k48dO5HxcutA74mOBnSs/w8Wr8LkpbfvgXSHUc66H7++iR6QtPjYwPgwDbOTnvHgeYO9K1tncWfKZzQQ+tgcFa3PXhVJXU8P5wJ7QSK8Ttt6DPSyRTxi8czdj4xydO3OWMX7WJh/REdGcC9RjjY/9q4aoWvKhus70cj4WLlyizVsXSmpyCucjwD/Q7ccq1x6dN3cB5+JM1xk609ltqrlsyQeyL3wf5elyKTcrlyIHfGvwC6qll3n//cecD23OulZ27QzmfMTFxrn9WLF2CF/3vLnzeY/G7s4u6uropLkDfk5LfKBXkj5LTzmZORQRFmHiTQ21fDw9l3I+OrrOa3PWxbJs6XLOh7G4WF18sPWiq6OLOts7eZ9Gc3zIP6clp1FORjbvl+S/NcD0fWrQrwQf5ZV12px1scD3AT7qamvcfqxyHDrqaHYyLjpOtVP7ydO0PSDIKh/Z6dmkS9Px3qxrVr7oCQy/oBrqXUVGxXI+Dh46os1ZFwvmGfi4cf2aKuwPuddtO2PjNGPj1IlTPCbLGh/gIutYJmWmZpj4GGpsiav5iIiI0ebsCIha+FDKacYF+l+fbD1hitW3xAe4QJ/WDKZnrfZ+ETemltgSjQ+ND3vXD9lfcbL1JJ1oOUFtLW0UsC3QKh9gI52xkXb0GK0aqAfnDBExzCJvUO6P4qz/kZGp53wE7VBHnMOrJlUVFZwPz4VeQ54nENHTWeTNCt+G3F9HPj5YG0T8DC7amluptamF/P0CrNvnjIu0pFQ6diSFVi1fxY/B5yj3mDUnyj4Gys/gXETuoOhRK3JknFUjqKbuOOfD01PzfYyEFBgMTuUDP4s4EOEHx7yS+7PJ/ceEKHsimxOD1GMNXLQcb6bmxmbattXfKh/gIjUxmVIOH6WVA/VwMH/N1YaQRTlG0UNOsC3OW5kHZavfu8bH682HiPETdQvsyauT1xdLIn8HuGhqaKLjDcfJz9c6HykDbHA+BtYPOU/Dkphb43A+gnVX8rFqoL+VJurhQ8wBJR/K+jb28KHMsTInchxWE+PieH0jNdY1MD62WeUjOSGJs4E1RNgfQ/EPgnusZTIfsn4l8tGdcX8S2Lg1+3zkpLOjnfMxw2PmoD4n5gEYUPIhuMGzVtTAkfUr0ctvMP9PzrGFNNY1UkNtA9XX1NPWgXx3S3yAC+hYsEFWe7/gYyjxJSKP1hX2ubZ/pd79K8GINftcPEeHap/Dlyf788BFfXUd1VXVkq/PVuv2OeMindno2N9dM7C/C1tfDT0NND60/V1HpK66lmoZGzWVNfTpFl+rfGBvF3u8WakZtFbyn8v+RneVHTtDOR/Ir9Xmq2tl/LhJnI/z59w/Lw26kFznB1xUV1RTVXkV+Wz+Ox+yREfso6xjGaRLy6Tw0HBV3SMt/mrkRMRfqSE+UZYP3p9C1YyLqrJKqiytoLWr11nlIzxkL2WnZ1FOho4iB2ouqmX9mDTxA87HxSs3tTnrYtnq68f5yNbp3H6ssD2EPT3DYxZVMjYqGBvlJeXkMX2WVT4iwsJJn5lNuVk5FLU3UlX2B0Tkf4h63Jq4yPYLj+R8hIW6X88DpWA/VsTvoo4wuCgzllFpcSmvT2KOD1PtRL9AysvSU352LtezcAxsqCU/qrn1lJY/OAKiz87hfHivcP8eK8jXEPm1SxcvpzLGRWlRCZUUGnn/Tmt8rF+7nrNhyMmngoH6DODDUny78MVgL84d6jOkpes4H+Hh0dq8daGI+gwTB2p0jpRgDtqqp4O5LPx5mzduoRLGhpGxUVxQ/DcelL/DZ16gz6fCXAMV5RXQmHfH8eNynRL5Vfhs3KVvlI+PH+ejrNz983ReFUHOHfjobG8f8bFgHg6mfgnircBFkaGIivILbfKBelfgopi918g+4/HRi/pXaunJCRtd1IfT5q5rJCgwiPORk9tL/x6TSG+85e12Y1TWvxLHY6PjGBcvar1FR1r2mwk+3mfzC1yUMKZK2ZqzdNEyk42ulhomyD8HHysH/DeaDK9kpmdwPgKDn9BEj9+4TPjoK3p3YgONeieK/vU/H7vNWJV7Tam8H++LelZhihh0c3xAYKeUMZ0MdsuWgd4y0Nccrd8u2ymuqE8df/AI5yM5JUObv8Ms6B2F+tTgY8q0PfTO+BIaN/WeiRMhOIa/vTV6J/3zn1NHbLxKX4WB9+LNp7ycPFq3doNZ3Up57OjhJCo3llFFSRkdOnBoyGNS9m4QMWfK/gbOiuNF/C74QP8obQ4Pr6zyXs35MBa97BcEA1g7sIZgLVHyMvbDyzR6rI7eHLWF/vGPMSOmi+czLlDrLVeXS14LFlnkQ5Z9EfuosrScqsoqSJ+VYzp+cH+sQ+OQ97Ys9ccRdpSzzr334jXe/8Pb2/37s6tZUo6mcD58fXytvg86FmyT9yZ3/I0VCI7j74uWxpjiV0WvGPGMHWrOICRw2zaTnTBn1jzOhahnNW3KdKt8iOM+mz+l6rJKqqmootrK6iFfQ9hEYt9AcDDc/aMOxB/mfBxNTtPm8TAJejujvxr4GD9u4qA+i3UD6wfWESUrwnbZ5NtMxpJeu3IG7RXZhl63Zj3nIjsjm3TpOot7V8rj6KNTW1FNdZU1VF9dS7NmzObHYX84UudH9KwWr/bmuQxFPDxmcz7Qn3OC1udgWGTH9p2cj8SEw0P6nj/+/D9ul1iyXTwWfE2+gY9MtoujcwV2uWx7oP5hdoaOsZFFMdLelS0+xo4Zz2PhERPfUFNPG9ZtNLHnSJyJuRxBPBPk/s7mctiHKsbSSs5HaKg6amurSd56899UUmTkfCzycixWwVzOIOb9latfUUXt/1Jo1H/N2i5eK78h70+6B227YO9KrsOTkpRCWWlZlHksk/w+3WbT9pD/Bvu8sbaejtc1mnrAgw1rdX6gE4re5vJxZb683KtTmT/pzHu4aZMv56P7TK8Wj+Vk2bLJh/c/LyoodOjzlnIGza0NXot2U3L6D1Ztl7kLyyggKM9kr5gT7MEK/epd9v/BRUZqBqWnpJv8GLZscyHxbJ431TdSc8NxKi4oMssHzhHjEf03hf3k7HVgKNJ2soMuX71FISF7tXntxLXDoM/jfAwl3spSzqDo5SrrFMI+hy5WWvnUou0y0/M5X3d2hJwl/4CUl/zliCEUcSWwIeRaVlM+mGYXH6Y+Oes3UUtjE7Ueb6a2phbG3QTTGoH1QJyXUmBfWGPY1bJxow/no6PzHI16W1tDnHJNmb5dVlxCudn6ER8L7BFrtsui1b/T7ohnFBnd+tJze6uPH681fYyxkZqUatP2UP4dPKEuEOpmnWhpY7b5C10Rc1/mAZyI/Sh3vZ8trafp4qXrtG+f+9fed/u1441RpMvI4nwsX7rC7caHfWRzfhesKfIe2P7o/ZyLlCMpFBy0e9B8QLB3hZqkqE0aGx1rWhOhT4ke5mq4p/Pne3E+enqv0DQV9ht1JwnwC6SCXAP3IathvIgFg19lo0+Faf14Z/QYzkVyYjI7j6PkPVDnzR7bQ35PYkIi39tuP3mKqsorX9onU0O96pf3CIycD72+QJvnDgp0a+yHgg+RR6QWkfddP567gJIPMzYSjlLSoSTeP3EwtrnsJ+xg9kTn6Xbqau8w+Rdh56glVlHIhPHv0+nT3XT23EW29vlr832Q8ibTq6CTgI+ggR4AapK9YSGmn9HXJikhiY4cPMLO6YDdupXyfeCq63QHdXd00pnOLtoZtOuvdUtl6wfEj10X8NHK7JGpUz20eT8I2bxhC7NlU3m861tvjlL1ucTHxFPiwUQ6HH+YNq3bPOjPyxwVFxbzvoVnu85QKbPJzPGoJtHrDdTd3UOFBSW8p4s2923L7JlzKTE+kfMx1U3y4AYj8JkLfQd6YSLjIuFAAiXsP8RjsAazdigZgW/wXPdZ3hu65+x5mjBukqrvNeo0tbacoo6OMxQbc0Cb/zZk7HsTKGpvFOdj/UD8t5oF60XC/gQ6FHeIDsYeNOlBjvLxEdNDes6eo95z5+nC+R5T/Xfkt6uh5o85QU9f8HHqZCdt3vSpxoEFwdwJCw6j/fv2U+iuUFWeA+IFZZ92bGQs5wI6lo907x3lA4La1hd7eulS7wWqqqi06/PY+0WsiTNjDp0pPlv8OB9tzBZZqcXA/90eZ2zs3hlCB5j9GrUnyu3sTcwv+Klt+d3kvdbpU2dQfGw8PycwP3vGXIfYUDISEhxKly5cpMsXL9GVS5dp+kBOurLOLwT+fIwbPhJ3qdlgSWKYfgU+mpvayHPhYo0LSbb5+nMdPWrvPho7ZoJbjhGMwKeBuYZXpT8OOo68dkA/FGzERcU5rFsp+cDeKLi4evkKXbtyleJi97/Ep61xurNE74vjfFSUVdOHk6dqbMCe3ezL9z/Bx7j33JMNpWAdwXMZIp7Lcs0E/Cy4gCD3w1HdytznsI91/eo1unHtOvUwW0Qchx/dnnXOkuDzov+BnC8m17aXjztbkD+drculxvpmqqtpoOXL3L++2bDpVG+Moh0BO3jcBfiYO9s5dRUs5WvIOUDyPDDXj2wwawo+K2I8THrNvIWcCzBygOkNHw3s7zvKhpKRTRu30M3r1+nWjRt0++ZNHt/sjGuH6yPOA6/ieuFaiXUIdowz+4SYY+TokRTOR3VlLS1b4n5xRcMtiKuKZWsp4r3Bx7w585323TIf0C9EbC7ioXCfcUyOa4WOLsf0Oipy7G7orjCuW8E2D5fygZzFB6S3p4fu3LpFfbdvM32k3HQcMcOO9pfCdRLxjXjFdcJx+foocw2HS/aGRXA+Kkoryd8v8LVhAzWdsF4gzzTp8FGn7+Er+RBxgvJ9VebQDYUP6PzyfJw86UO+X4U93cNMZ1y+1NspbIjvEN8Tf+AgY+MO3e3ro/67d3ntazEeR+NN5NomYEMwPxJ8QLYH7uR8lBaX8ecpch1eZTaWLFrKuUAND6wbzqwPinsp9B1ZXxI991zFh+/mrdyWgg8n6dARvjfnLD7k75k0YTL1992le3f76f69e5SRnvHSGiJq/jqyfsg2lrg+Qr8S66+r5szSxSs4H0WGYspK05l01VdJ3mbc794VwmudoXYg9j2hYznzf+C+QX9S1lMQfb1FXqlSzxa9j53Bxn9Gj+FxJEcYF4hHHIrPwx4dKz0tgx7cu08P7z+gRw8e8hpCYlyO8KG0z0UMsqvsc4s6B1uTjyWnkUFfwGvAoE7em2+oO+5IyMwZsyknS8/r+oOPrQO518MhuJ/m7G3RM9xe+9zePVFlLXXEjUF3RCx7alKKSXd0FhtKRrw8FzMuHtBnDx/S40efkS7rr7ooct14a3sL7pRfaNVmZc/YoIAdnI/sdB2z7eJppsds9a4Zb43m8UL1NXW8nxhqByLWWw1jx36UrV7g2MOV1w7keSSjF/ORFJ4nGBoc5vS1w9z31dXU0uPPPqMnjx/T088/Z8/aF0zABrHEB5gQOep4VZOPBHH9sOuQr3zsSCoFBwWb8pXVIKPeHk2B/tuppqqGjjcc53yEhexRjW0l9C2xtljyPSvXjpUrVvOYSt5TMzXDFFvpbDaUjKCeyxPGxdMnT+iLp09Jn6O3OEbYaMrad+5Uv8FegW612nsN5wP94dOTj9HekL2mnBj35OI/PCehqbGJ54C2NrWSLlNHs2bMUd31F3mrss4NXUQ8Z5XPZtwv2BwZqenMhsykvVIvzeHmA9LY0EhffvEFffXll/T1V1+xsX34kh1i63zUKlizP2U2HvjQpWXxXlsxkdG0xMt9+msh3iE6KoZOnThJZ7q6qeN0B7M1ymjVKxBnZu55C91EyYcfO5aJPrPopZmZbbN2qLMZWbxoKefim6+/pm+/+Yby8/L/tm9haz1UNSeMc39ff84HegmhHwT6CiG3biTiVFDfa/MmHzIWGXks0MXeC3T+7Hmqra6ltas/eeX23zDH5JpSYEY8e1HbCnXfkOuI+tFR4VHDvnaY+/7m5mb67ttv6Nl339H3z57RnNnzTIyL2ibuXNfEGfLuO2NpwycbKT0ljSqMZVRTXkUN7HmAXkTRbF3Bc2S48rBmMj1p187dVFVZxX1St2/e4vE/4CMjLYOWuWF9EWc/o6CTiD1kcTx4RzDlMC5ydXpen/2jaR4uYUPJyOxZc+nZM8bG98/ohx++p5NsPZf37xzZ71X12j9vIe1hdm+5sZTX1TvR3MprW3R3dDGbuJ7vjYeGhNHC+V7kuXCR3d/7weQpfK4HMBv7wP54ampqpi+Ybvs5swEfPXzEfVHgo7G+gQIDtnP96nW55tizgm4i9JNpU6dzLvJycsmQm08xUbbr6g7nGlJgKKAff/yBfvrpR/r5559o44a/8nlRS/514kMWLzb/Q4NDqSDPwPlA/iV0HsRA37x+g8chPGDz+vGjR9R3p4+a2Zxva22jU4ynjvYOunbtKv355x/0+/Pn9Ouvv9DPP/3En0Hfffct0yu+5nzcuX2bigqLaSd7Xk6a6Noa3MI3Lu8xiVrK8vvEMWXfP2cJaqbLsRvxcfFkYHournuRodDUP9NVbCgZmfz+FHr69An98svP/D729/dzn6V4H8auxloOzhb4Gbb5+fN+dyXFJdTJGBB8fPHkKbfjoKOCg+fPf+NsyHyAmxNtJ/j6se6TDaY+xCMlsi9C+PbkWCEch84j90Vydq6cMqZp5YpVvPYQdFtjQZEp13Uk+YAkHDpMv/36K7+vv//+nHS6bNPfUAvInprvoufB68gO5vqSxcto6ZLlXI9avsybVix37zh7mQ/RJ1b8TcROyTFUcmy2Lbvb3jHI+gl8OdmZ2bxWNGIC8vV5Jv+Oq9kwx8g99iz8gz0jxHNv3tz5L3FujRGsvdjjGswaLGq/K4+NZEzK6yTmfNkiFwj3UsmHvTGmYv/Wmh/AXK/Y8LBwMjJdEzV2yktK2XN5uWmOjiQf4n/jeQcu/vvfP7lcu3rV9D7Y6Zb4wPMC13SwfhG8X+5lCHFlzsjrKqJXnswHrjnmNY6LOAlH+RDfB93Mkj6BuST3ioXuWlpkpDJjKVWUlv9/e2f6H1V5xfHzn/RdN9vaKqCCqAUE2VwQUZaQlSRsBalGZUtC9n0h+74vk4TsO9kTQlgEaanRWqUvbLUfW1r/gj6/ZzjDMzd3JvcmMyHJ3Bfnk2Qymcyd+3yfsz7nUHxs/BOzq9zpkPz8Aof++PHH/1FSYrLTNWnPqoOLxeTStTrkSdXE+5JwbotnG/FnzT9z/3Ler/Az12WzXjFzf7HPadlQ46L2WQslcpZsQ2092eob6Xe/XbMs2NAyAr98dnZWsgFbC77Itq3bHdfFtWPYZ9SzHgsVrQ6x+Fg6RtQ5R7zX8blA7XlQ7dkeM8LzZdgu0NbAylmytXWCiwZqarBRaEjYstEdenbW3r37JBeIu8Bf18aztNfrCX2v2rtP6syIJd4TV/vpoQN+sm96U0MjtdiaKFmxV5YLG3rvJzc3j/778CE9fPgfGZtsabni5H95ggntXB7LP/cN34e/R84U/nhzYxNdacKZ6Fo5T/dJ++RG7azrQqeCDeRF/v3DD3TixOOe33p9syzxLTFjPyBWpfrjv/j5U5QtWME5i1bMyLzSKnMfy1V36NlZ8DsePPhG5tSR80J+neuzFmLvrsSaeEv0BfYw8oZGGdHGcz+O+ERw0SLraTra2uj82fPLng299wedAS5Qf/Kv77+nu3fuCt3yOM5rpP6Ez2dCfDV/uNp8Ca7tNsII1ojqj2PWeJuw1zta26izvYMK8wvkuciVwIYeI2Vl5bJu6PvvvpP1E+Nj407PdTeLSmXDbGzQEnNrluv7uI5BFV7D8B31aqzMCl5nPkb0coBbNm+ldnDR1k7dHejn1yTe90vL2ucwwsjE+Dj9U7CBOvh/fPstFRc9PiuCvUGvN5A32FB7ZuMr3xesDe5Boz7uS36v2kOGz1Oo8+rxufDcZf7qTUa0PseG9S/J3uhdHR3U09VFfd09tP+9AyvGrnLni/xK6Igvv/iCvhVs4CwVavG0eR/VX/eW3kCMkHvN8Pd4HPcH8Xs8zjPrfZUPrFN87trYnzZf7qn+hnqMYC2o9RawnyrLK6ins4t6u7upv7eXTirxnpXGhh4jOCsy+/nnsjYb5w5xLjdcqa9kHeJNm0q9x2r+0Nfzitr+bWADe4eqJzzZv20+RlQ+wAZ8jN4uwUVPLw309VF0ZPSKZ0Pv/R8NPy65+DvkwQPZ2yE87KjT2vSmv8FnMrkOm2NivsoHrp/7ujIfbGvyc/gMqLf40DKifvZgo6igkPp6eiQXmBVbUVbmOI+50nwOI4xAZ4CLbyBffy37oKAfihr7WwgbRnxGtQcy75G+zAevSzCgZ19xXRWex3YpHuN9xh13C3kv/L/4scgLkdKWGuzvp6HBQWFjla86NvQYibwYLbn421eQr+junTuyp58r32w+gS9j5J648j+41yXXO6pnGXyBEVyz+vmpdVPMDTOirbHSE/xO61+6E9hT2rPYURej5NnkqwMDNHz1qvTJ1zy7blWyocdIXm6+7DH31y+/lGeoP71928EIx/Zgg853tornVVnxq+UluCfz1RLhPkO0MX74F8zFyNCQ9Mlxrny1+BxG/HVIbk6ujGt9MTsrfPdZeWYkJDjUaV9xV4fC5wSs9bg8BffG3V6jtRPQ5/FSVLS0pcDF2Miw9D3U/uCrlQ1XjFzOzpH9rtGD4y/379P9P98XjDjPlMVnqKdH8PkvZV8t9k209dqeqONerI2kp0PVPZz79WntJm8K7o0rX1I7+xh+BXzvkaGrNDo8TOOjmC/c6+jN4wtsuGIEfW8wMwGzE9Cn5k/37lFwUIjTPgP9q9qo7Csu5ft2NcuHe/jhcayHpdZprmIKasyJ6/35DBP88oVybGZP4s/K3b0EG/C97VyM0MTYmPDJ+3ySDVeMZInPEH1u7n12j+7d/Uz2OktPy5ijR/Q+c6M+vCf2TK6vUPsNmI1/8XlUvddVH1d75rizU4zwoc1xzNcL3dX7Bv/qOWYjou5l2n488CuabTZhS4GLUZqaGJe+hy+z4YqRP5w8RZ/dvSvrGO98ekf2icrPK5C9M7X3yOx+x/H1xdQBs27gM1kL5UP7HL0+OBx7Vef06a1JrpdSX4+f52k+IHgvuF6zMT49XwQ9POB7jwsuJsfH6drkBDXU1dHaNc/5PBuuGAkKDJZcoE8m5uXeEtJka5rTE1B7Rn++da3NPS3UvvJE/l37HL0+ONr1rNerlfMT2l4UHKP2Bh9qDteIfcaxW7Ch8hF6JEz6GJPjYzQluJiemqLGhnqxF/7aYuMn7mO/O3fsFp/dmJy1jn6D6Cc7MjQs+0KpsUGOAbvrY2r2fs5nJ6g1erze1L5o2Ofni/2744N/Z3Q9cz2OVn/wPq/yrNVHi4lLzbffcNwW90i1p+BrxMXGSR8DttT01CRdn75GyUlJDjZWa37Dk4y88vImsjXaaGZ6Rp5FvH5tWvbnxMw8rR7BHsX3Q2/P92S9Ctd4G/Ef9P4W7HiSD35d7f9lu8tVD9DF5HjwOrznuMoToheHNjYPX6OmupomBRfXwMW1KbH3TVNUZJRLe8IS14xgP0H8F1xcm5wS+82U0MeTVFxYTGs0M4j1ciW8t5rxJ/E33ooZ876u9uCE6PXBAUdqvAn6ypuxbG3dlRFdyvM31MehK7SxW0hYaLisoYKPMS24mBFcjI4MU4B/oMXGIn0S6IypiUnBxoTQy+PS9urt7pX9OLV/i36mu3bscvT+0Zv1OJ/t4M1r45ym6t/q5U+eRL7CjM/NM2j584WN6+/nN+d5sKeyMjLF/ZuQttTMNHp0X5cxK9gIFhueYWT7azupr6ePxkbGaHR4lEaHRmRf9NTkNN35Gq72t/n8Al8+5w5OzVy/Vj9rz4GilzDyGOxj3JiZFj7lDOXn5TnFJC0uPMMIOCjIK5C++rBgY2hwSM4O62htl3NotPeO7Ra984mL3T+5JnK512pxXtBoryOjfhr7eqzfVNtP6ozMLGFLPfYxbgouEMcNDAiydIaXOTkSHEqdbR10tX+QBvsGaKC3X86fzM7MFiysdbIB7M8PdrqnruxvM3WO7J8u97lxuCYz+Qpwb+SaYEth39HuDzjPMzjQb/cxHtlSt2/eoJbmZlq39nmLjSVi5Nln1lFOVg71CzZgd8Ef6enqoe7ObjoWftzR00KVjyPssS+9fhDcd9moHcLn3Yzabd6whbzxXrHe3bGEvUYvng77t6621uFj3BBc3Lo5Q5/evkkfRXzkMgZjiffiWxDMpGwRNkGP4KK7o4u62juFbumkxrpG2qf0DFPlzKlTczgxY1uZ3ZPNPE/b19Zd/MisrjNqC+r10wcXenbq2mefo4T4BHu8Flxct/sYt2/dpOqqKktnLAtdspbiYxMkFx2tHdQu/JG2K23U1tJKpUWltGvn6245gY1uphcp596M/o3Rtcy5GiP6Bu/ZaL6TX9eo763GKdB/So8L+BgXzl2Q8drrj+K1N28IW+rWDZkTRx2Eu3tmydIyAtmyeRuVl5RLLtB3EjMxW2wt1NzYTInxSbRz+2636xd2w3yz4NTcmJH9GGvY6Lo0w4eZPlQcyzPiezMLrp4LLs68/8c5PsYt4WPAloqJvjQnNmVxsbw4OXwogGoqayQXTQ1NZKu3kU3YW421DXIGl17eBMKz4JD7dTfPx0wtl5l1bIYPcGr0DCvX2LiLdXNuVS+3B0E+Nj4uXp4Fn+NjPLKlfv/KZouLFcIJ/PPQ4DCqLKuUPfAbBBv1NfVUV11HtVW1lJOZQ4H+wY4ZdaqAD+yj+MozS1i41tGozYTnGbX7zfBhxm6DcK5UtcmwByCX6q7Wc/u2HZKLKU1NiN3HuCG52LVzt2VLrSBGnDgR6z8k6AiVFZdJLqBXqiuqqaq8iqoEO5WlFXT65PuCg026tgbXd/H64ZyxUdvfzBo2y4eZmALXFELn4HrABWxJLf9sQ/kdPExXmlscdedOPoawpaorKy0uVpHNBT0RFBBMxflFj7iopIqSCiovLqeyojIqLSyl1KQ02vf2u/T0b55xGQvivmlYW7DHPLmGvaE/uNcauOCeX65qOfe89TbFxsTOqTtXfYwqi4tVz8mbr++hjNQMBxclBSWCm2IqyiuiwtxCKsgpoOgL0bT3rXfoaRe2kcpH5Pmz0rfHz+y78PrzJh/sQ/N6Z3uJ3xP0H96Tu/p/zJWOEeygf479DJ9z3TnXhKSmpIjXtrjwFbsLsu3V7fThmQipU4ryCgUbBYKNfMq/nEd52XmUm5Ur/ZQLZy9SgF8gvbj+Jbf/h/0W1R7jPZ7jpPgdM8Q+MXOm8sHntPn8hPp8ngvBrw0m4FerfoSrmhrkVQ/sPyj7hKDXs71PiP1sq6w7V2pCwEzEhxFOOQyLC9/jBPbUO3v2UWJcohMXlzMuU3Z6NmWlZVFmaiZlpGRQQkwCHQ8/QW/sfos2vLDR8P9W+xLwvGvmgmNGKh+cj8PaZxuJ+eCvRvL9yA2hP2XEBxFUWlzi6EWo9glhH4PrzpOTkmnf3ncN6WNLfMf2gqxb8zwFHg6i2KhYJy7Sk9MpTfgnqYmplJKQQsnxyZQUl0SJsYn0wekPaP++g2Itv04vPLdh3hyKt2TD+o20e9cbdDT8mJwBXl1Z5eh3Di6455qjTwh8jEd15znZlyngcIDT+VZ3e4olvq1TIKideO+d/fTJh2cpLVGwkSDYiBdsxAk2YgUbMYmUcCmB4qPjKS4qjmIjYynmYgxdunCJzkWco6NHjlFIwBHa8+Ze2i3YWf/8i1LnaM92GRH4TcgvbHplC+3cvkvWaIaGhFJSQhLlZF2WM5XaH81U6u7slP3OHX2dHVwMOXyMgf4+ys7KIn8dJixdYYlZVn7201/Sa1t3UJB/MJ376JxLLqLPR0vB93g8LjpO2mTgKUXoHOgf6KLM1AzKFvoJNlxuVo70eeD/FAlfqKSwmMqKSqmipJwqyyqouqKKaqtqqL66lhpq68lW30jNjTY5t7W1xT6fkmcqydkx4KIX/c77nXoRohf6mdNnZC2h2eu3xBIzawX+wMsbN0n9ciz0uBMXYAXcgCHYX7DFoHvShX0GWy1LcpEtuYC/g5gA4gMlBcVUWlRC5SVlMi9TXV5JNZXVVCe5qBNcYNa3jVpszXI+ZbucT9lun6nUaZ+pxLYUZi2lpaRKHYM+Ogu9TkssMcOKu3WEOVnwP94W9lSgXxCdOn6aLp69KP2WjJR0wUWm9Pfh++dl50ouCgUXiJ+VFgouisuoorRczvWWXEBn1NTJ/H9TQ6Pgoknm7Hg+ZZewpTLTM+T51RPHTtKB9w7KucGeuBZLLPE2L1r7bOOGl6XAjz90wE/mqA8f8if/QwEyfhx4WIh/ECGPGRwYIvP+7GeEHQmjLZtelTMqX9281avv1RJLvM3MUq/FJ/3/LbHEU+vWk2J9xpZYYokllliyvOT/UEsBAhcLFAACAAgA2og+W2Vm4qPwPwAAAHECAAQACQAAAAAAAAAAAACAAAAAAGRhdGFVVAUAByUO3GhQSwUGAAAAAAEAAQA7AAAAI0AAAAAA</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #31</Name>
|
|
<Index>31</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPlvG2o4xwj8AAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J33W5TH2se/f8l7zvWe6z0nlphmYmKLSYydqMSCit1YjhpAEQuoCCgiSpHem3RYdqlL71XBgqjYY4stMSbn9/POPTDr7AMoC7u4C88P98Wy9Xlm5jN3mfue+fvf/oG/q/Le5G//87+DFrW9VBkL494Wvl8VVSw1TtVrUkXlYXDjbuHCxVzc9rvDzc0d4RExSExKY5KKouIytJ6/iNa2i2hp7UBzSzuXpuYLaGw6j8bGNjQ0tqK+gUl9C6Ki4pnEITIyDocOHoGT016sWbMec+cuxOTPpph07WpfqmIJJgZ6zzfffI9Nm7bCy/skUs5lop6N7Y5LXWi/eBUXOjqZXMH5diYXLqPtwiXGxaU3XLQquGgiLtoMXNTVN6O2jkltE2pqGlFd04Dq6npUVdWjsrIOFRW1TGpQXl6NuLgk+Pmdwa6dzpjz/XyM++BDlRdVRpSHCeMnYaWDI3x8/HAuLRuXrlzncvHyNXRc7jJw0c656JS4YCK4aOsw6Azioqn5PGeDuGggLhqICyaCi9pGxgZx0WDgorJScFGDsrJqlJVWoVRfCb2+AvqScpQUl6O4qAwpyWk4cdwPG9dvwfSpX6usqDIsLvp7zc5uKQ4eOgJdfgkuX+3G5c4buNT5hgvOhuBC6Aziot2Yi4LCUsQnpCAuniQZe/fu57JnD4kbFxcXkn1wcd4HZ2dXLj5ML0Uw2yw8nElYNNcZxEU5cVHGuCit7GGjpMLARXFRKYoK9SgsKEEBu+4CXTHytUXIYEx7e53AimWr8Oknn6usqDIkXeHgsBZBweFoZuP6Slc3rhi4uNGHiw6Ji6TkdPifDsI+t0NYvnwVFiz4gescS1z/jOmzmB21AJuZbbdrpxOCg8KYvkhnXJQyLhgbggtdEXTaQujyCqDV5CMvNx+aHB1ys7U4yz6z1nEDPvl4ssqKKm/VFYKJFsZEZ9dNxsXNHi6u3uhhg7gQthTjIpeNt2Nevti48SfMmjXbau5v3AcT8f3sedixfRfTPb5cZ2g1BT1c5OoYG1rGRh5ysjTIzsxFdkYustJzEHgmGGtWr+vDisrJ2NUVU76YiuMn/FHJ7PvOa7cUXHQbuCDRMPuEfPBFC5fY3P2TLbV8mQOOHfVBSlIacjI1PVxk5CAzPZsxlIWM1Eykn8tAWko63A8ehv2SZSbZoaqMHi4cVq1FLPMBrl6/3cMFkz5cMImKTuCxKUvZSO9Lpn41A7t3OSMyLKqXi0zGRQZSmX2Wynz6c0mpSEk8h2jm92xctwkff/SZyskY4GLLlh2oqmnkXFzt5cJIZxATMcTEtlHHxEBC9tRmZiOGMttScJGckIJkNn8kxSUjMTYJCTGJcGI8kb5VORldXEyY8BHc3T3ReuHygFxomS+7afPYYWIg+WrKNLg47UVUeDQS4xgXsYmMjQTER8cjLioOsZGx8GC219czvlE5sXG/m3PhIXEhbKleLppbOxAYFMbX99T2M5YP/jUBS36wxwnm3wsuYiNiERMeg+iwaEQxu+yQ2yHMnD5L5cQG41FkR7VJXMg6o6Kqnq9njHVdMVghXbHPxQ3R4T1cRIZGIjIkAhFnwxEeHIYDrgfw0YefqJzYABd2dvaoqm1C1wBcbGY2lNp2Q5OPJn2Kndt3GbgICwpFWGAoQgNCEBJwFttY2/7rn+NVRqyQDfIbM7I0KhcjwQnTFTu2/huhgT1cnD0TjODTQQj2D4Qfs8eW2C1VdYkV6QzyMbpu3DH2Ma4x/6Ktg3GxXW03C8kkxgnpDOIi6FQAAv3OIODkaZzx9cdBZnNNnzpTZeQ9siFsKaWPQTkhqn8xckIc7P15D2eDi99pBDJegvwDsMFxg2pzjRAb4jHFpU74nu7XloqJTcIXihi9KiMj8+cswElmX5EuCT4dyOyuIGZ/BePEMR/MmPa1ysgI6Ixvv52DgqKyXp1h7GPYKexer2Pe3AZQ29Fy4rrXDdOlsU+6gnRGCPNJQplvEhYUwnz5UObTh8Fx1doB5zxVhs+Gk7OrwsfoyQnxOX6qjy1VWlqG//73v4iLS1Db0oL+x+vXr3k7O6xcbfQa6QtfrxOICA5DZEg4okIjEB0WCR9Pb3w86VNVl5jZnhK5Usq4lN0iY52xa8cO/pf6i/qNRJ7fVDGfZGfn8vZtbm7h/69auRKffTrZSJds2bAF0aGRiAmLQmxENOIiY7g+mTdnvsqImewpni+lyAmhdW9ZZ6xfu7bPd1G/yf2nivlkwfxFhvlH6I4P2Tz2z/8bhzmz5/DH4r20vniG+e1xkbGIj45DQkw8kmITsGPrDpWRYbCxZct2XqutzAlxcHA0vEfMV1992dcnJ72h7ENVzCNi7iEdonxN8CH3CeWr7Hfdj8ReNpLjE5GSkAxvZm/Ra6pPYhobVJOhzDunHEJlbGrRgkVv/d6gwGDejw8fPlLb2Yw+ObUp+R5vs1370+mrVqxGSnwSzjE2UpNSkJZ8DuHMd5/65XSVkUGwMWH8R7yGT5lfGxgUamRPkZ/Rn854mw9JrKjtPXyfnOYaU9pzj5OT0f+UIxwXFYv05FRkpKQhMzUdSXGJ+E7KE1UZ6Z8NXaG+Tw3f7p/39NEJQ53v1DYfnsj62NTYuWzjkk0V6B+ArNQMZKdlIicjC7mZ2Vj+4wrVJ+kvRsV0g65Ab8RFU0s7Vq5842sIfUG+oalxW7KT6XPqGB+ebP1pO2eD/pryOeov4oP8RfLh6blxvT5JTkY2YyMHmqxc5OVosGKZw5hnxChGxfQqxWrl2tbG5gt96jIofijrBBJ1zL4fG8tUpmitVvShHAMmcd7tjLxsDbQ5edDlapGfp4PHQY8xy4h8r8QAxaREbStJnq7IyNeQuVDOSUPRCSL2IuyE0b4+Iq8FyfE8um/hS8hxcGFDCZvUVF0hC/1GfzEusU4lhHRGvkaLAsZGoTYfRboCHHE/MuYY6Y8NeZ+QPO0bNkQ8/W3zGLW9KfMZ8dTVdc3wP62zj3a/XcS5le1Ec7qwU4XfTdwQE+K99J6hrh/Rd1D79tc/ZCtT38q6ZOXyVZyL4vxClBQUQV9YDM/DnmOGEfn+iA3yL+S9CDVaY71BbSivMw003k3xRaj/5f4mNsZCXIvaiMY93bu4X+W902tC1wzUXqb+5tv0O7GhtA0cVqzmXJQWlaCsWI/yklIcO3ps1Me1jONUk1BeWWe0F6FGW2hgo792G6x9q/LR/zwuYkfCpqJxa0k+TPEPaT2RxGBPO6xBGeOiXF+GitJyVJZVwIn5KKOVESUbebpio70INXlv2KC+HErO7WA/Q/0t21dknw2WrdFiX9H9UzsQG7J9Rc+LvBHxXhrjZCOZ2hemzDlkI5DIfuCaVY6ci6rySlRXVKGmshpr16wbdYz0ZaPIaL/zXAUb1EcklsxLH2v+ubB1lH74SPjnpugb+j1Z5ziuXsu4qEJtVQ3qqmtRX1OHdY7rRxUj8j0EBIYY7eucqykw8jdo7hJr3ZZmRBXrEcFGf/lcpDPqa2rRUFuHxrp6lDNd9vXMb0cFI/K10761hv3OL11FXUOrERvHvTxVRlQ2+HM/bd5sFNfavnUHmuob0NzQiJbGJlRVVOLzyV/adExLvuaNm7b2ctFzRgad/SL2O6d2UK4XqYyoekMZ+z3p64eWpma0MhuwraUV2ZnZhvnV1vgwiuMyDui8sZ6zY3rOVKIz+cR7KYbbX56hysjYZUPMm8oYZmJ8As63tuFC23m0n7+AyPBIm7SzZH9cX1pldKbSzp1v4nTviuHKjKg1TmOHDVnkWqsJ4z9EblYOOi6042J7By51XMTuXU42xYh8jRGRsUbnU/r7B/WZI971fcSIiNfLz1N8Us4HpTYX8Xy1Fso2+HgXG2KMyDkU38z6Do3MF7l88SKuXLqEzstXYLdosU34IvK17dzlbHQ+ZVa21mAv/rjUflC1G28TeW2L4o9kg4l4vlpzbv1iyhxG+kPO11q5YhXj4jKuXrmCrs5OtLW2Wr0vIrNLvrd8PmV1TSM+//wr/pq5/AiZj4HWgdVxaBmR80bE+joJrSOK52nO6u95c8lxnxPounoV17q6cP3aNSRIOUbWyIjsc2Tn6N6c23r+Ij+nUp43TM0pVPmwLpHbV+RzifV4sdYuakREf5u6Bj9Qn8t2QVFBIW5cu47uGzdws7sbe1z2WiUj8rV4eh5nbFzi+yrQmcZ+pwKM9KTwKYZaryRYUPmwDj5kX1DoDHrOXDmOwuag8aLsU9qTvKO9Hbe6b+L2rVu4zPyRL6dMtSo+ZLuKzjIWZ323tHWgoFA/YM4h3TPpaVNrnEQOCsW1BBP0HbL/Iednq2I+EW0q8yF0A7U9PTY3HzSH0vcLvUH7cZD/Kl4nnXGHsXH39h3cu3MX2jytVekQ+RoKi8r42cgtrR1obmln92bHn39bnjqNbVNrZUX+mxq/Gnm9QX2ltK/EY5kDc/Ah16coRY7vpCSn4N7du7h/7x4e3L+Pfa5uVsGI/NuurgcNXJAcPuJleE25X9i75ghVrFd/kJ6W9xOj+Yh8DRr/9FfodPqf3kt/SZ+bkiMt7KmB8iJpLMl7B01k/5Ov/uCXX/DwwQPcuH6dP2ctfFAuTHMvG03NF6DLL8b4cW9iuYNtE3X/BNtghNiQ7VfqN3puoDUqU/pV1OMO5jOzZs4yrI3sc92PRw8f4vGjR3jy+DEyMzLfqw6RfzMuPplz0dR8Ho1N5zG/164yhY+xJIuYn0ZrWh6HPHDE4wg8jx7rsSVi41CqL0VYaBhO+fnDz+8UTp70w+7dTvjRfjmzKaaPKT/nXUJ2ibx2WFhYiF+fPMHTX3/Fs6dPYW+/7L3wIfvky5Y5cDaIi8bGNgQHhxl0oMrGPzD3+/m89i3oTBDytTqeP0S5EbTue+PaNdy+eRP3797jcx/168sXL/DHH6/w119/cnn9xx/4/fff+PPPnj3FkyePkZ9fgNP+Z7Bt644+55GPNZHz976fPY9z8fzZM7x4/hxNjY3vRYfIv6XTFTM22tDA2Cgtq8Lk3rxjZf7lWJFxH0zAih9X4riXD99joJzpA6p/o9qe5sYmzkdpiR5pqWkICT5rpD/2ux3AhvUbea6qrD/Ky8q5XhF8PGQs3Wd+6J07d3Cz+yZqqmv4ehnlXoxFPuRxdjY4BC9ePMfLly/w228vue5VzukjpTu2b9/FuWhoaEV9QwtcXPYZ3tdfvHo0y9LF9jh80IPvBZjH7p32qSE+0s+lwZuN/W3M11wwb5EZxsM0rHVcz5nS5Go4H7R+fLWzE5cvXoK+uASeR44xn3DKmLHFKCYg1gk+nPgxmzvucZ376tXvbC55wJ8bKR0ifmP8uA+ZvqjmXFA9h15fyZ8TcTmRnzma41J0vsXa1ev42Ui05zLtJ0t8hAaFYMO6jey+Z1r8GiZOmMT3M6Ax0tjQyHNbqT6CdFV0ZAzsly4btWwQE6I+WF7zcmd+Hdmor1//gT//fM118UjoEPn7XVzcUM+4qKtrRm1dExwdN/SJz8k1zNR/o2XNbhKbj7Zt2cbPAKdzXxKi43A2IBibN2zBJx+/X5tyxXIHhIWEcT7qa+tRU1WNTMYsMTRauBDrKfIeAspY8PXr17n/9p///IVff30yIjpE1h2kL2qJjdom5OToDO+h2kg5j0R5H7a8JyjpC4dlq/gZrXT2JPHhsd8di+2WWN21kn3lcegwigqLUFFWgdJiPaIiojD7u7k22/4i9qucd+WxJx47OblwNkiIE/LlLOmrG+kO532ci5qaRlTXNMBxzZs9JfpbBxR7Gov7ssUzASkme9rXH0GnAjkf+1xcjc5ktVahueznXU583+ei/CLomF/kddTrves5U4VsdlErJ2pHlPaIsmaiu/sGZ4NsrMePH1lUh8i6o7i4vIeN6gZkZ+UZ3qM850EpxDrdoy2tA9JZku4HPJiPEY6QgLPwOnwM3/bWzttWXG0iDrsf4Xxo2NhKYv4S7TFlK9cv9hx6V+4prauLeJbTz86cDfJDSCgWaCk/RHyf45oNnIuq6npUVdVhzeo3uuNte+XKvomt9Mm8OQsQFhyO6PBozsfqFauNzrq3RZk2dQZCgkKQlZ6FtJQ0rkvk880sNbaFHUT9L9vc9JieIxtD1g/K/eXoPYOxzZVrCtevX+O+OsmDBw8sYmPJ35Wdnce4qEdlZR0yM9/URx5wcx3Sd4t8NyHC9rJ0fc27ZI+zKxLjkhAXFQ9vTx980VvfNVrkp81bOR90BmBESAQ/Q3Mk+FDuXyn2cqQ+Fj622MNxqL8nn6Hw824nvHr1isd6KeYr6tUtwcfSpcs5F5WVtaioqGG/7WKS7uhPqF3EWomcq2OJ+ppB2SFsLj3DfIxzSamcj61bto8qLozs9SnTcJbZjAkxCYiJiIGdtK+MpfgQezaK/hb7VyrtpuHwodz3n/IWiQ1aL+zs7DSrDpG/IzwsmnFRi/LyGuh0RYb1jqHqDqEnSK+KfXCF/WXO+prBytSvZiApIQXp5zIQExXH7avRyoaQnnNlD3A+SI9s/2mH2b6b5jqxfifbV6JWh0TYV+bkg4Rym4QO8T1xEr+9fMnX1F+8eMFz2czNx+TPpqCCcVFeXo2ysip4HvV5a8zKFBE5oUKXvA8+pk2diXPJacjKyEF4SOSYyQUUsnbNes5HSGAIs722meU7yV+guU8+Y2Ug+4r6V9hXpE+Ge1akvO8Jxa0of43yTp4/f4Z4M9aqi8/vd3NnXDA2SqtQqq/EjOmzDHME+QxDXSNXtp0l6jMHw0Z6aiZymW8VxOyNcRb2V61VKIZNfAT6B/K1TnMxIvvbQ/XPhyKyPkqIT+B5i5TD9vTpU0ycOPz6EPmz6WlZbCxXQq+vQEy08foFsSFqW03d61u0iznra0wRuvasjFxoNQUICQ7jcdCxyIaQhfPtOB/+vv7YsG6TzV0/sUZjhewQOd5FeTaU20s50rSeTrmg5uJjyeIfuc7Ql1SgpLgcqxx64uaUf081Ksr5QulLDGaMmqu+xhQhHZibo0VBfjHCQiPHPBtC5s9dyPnw9fbFOmnt15pF2DE09oQtQ/aVPD4vdnTw+hCqn6qpqRmWjSV/5ugRL5SUlDM2ylBcVGoYR2TjDeR7iFwAa80nodhCXl4Bu58yRIbHqGwohGITxIf3EW8ssbPOOh6xJiLGmXI+Jj7kc6m8vXw4G1RjSPU2X06ZZhY+cnN0fBwVFZbixPFTBjaUusOWJD4+hevElOR0lY0BZM7seZwPr8NemDt7vtVdHzHxrhoKmr9F3gnVBjx69JCzQXXqZ04HDJuPxT/Ycy6KCvUoLCjBD3ZLbZ4Pby9fvn5D+kPdE+Idca3V6zgfXsyG+Pwz26spITZoTyDxf1VVFR48+IWvibS2tAzJxpLfe9jDk3GhZzZ6Cfdj+9NbtiT29it4fgzxQX6VysC7xXmXC/x8/HBov7tN5tfI64W0988v9+/zvYBIZn83Z1h8ZGVquP+aryuCD7NHBR/y/iq2IlT7W6Kv4Hwc2O+hjv1BCvU36Y+g04HYtH6zzV2/vB86+RzEBe2XdffOHezd4zpkPqjenbjI11JedCFW9O6jO9z1wPclMTGJvGYlKSlNHfcmyjdff8f5iAgJt2iuliUZF4+bm5o4G3du3+Z1/abaWOJ9e1z2cS60zE7XavINfqzyfDhbkHXrNvFaeeJjpg32rzUI1UwSHwGnztjctcs5UFRvS/v13r55C7du3uQ1yoPlQ34PrQkQF3m5+Qg9G2543tbqZGkP4IrKOs6HvIeEKqYJ+R6kQ+Kj45idZXtrh0IW/7CUc0F7vnff6Mbq3joYU/ggXUFcaHJ10ORosa03b02cNS/va2/t7eG67yDf21HL7ER1nA9P/p+9836L6tr6+PpX7nPvmxiv98ZYYxKNXaNi78ZOFAFREVCKFEUQEBCGNsAgDL0jzUKxgb0jthhNN73eP+Dd3w17sj2ZxnAY5uj5YT3AYco+56zP2WvtvQpifMFHvjHP43MQ5f0RxGbIMeBPHj3mfRFQixTxiwPlYwG7DuACMUk1VfU0Y3qfny/3jpPzgPHd2DP3tPVS9OVBrwXwsWzZKl3HVZCoiCgqLSqmfUH7PG5siFfCPrqoEywLGBGvq6qsoocPHtJD9rrmxmanfRDx/10BgZyLmso6qq58uU8cGJC5VI5joDFYQylJR49xPlADVddtdWTqlOmcjxqmY2PeGfwcoow9tVab2lG+nFxTShYRS6+0c1ADCL2neu/30v2e+071Z5P/lxCfxLlAvHf84b68XWs9dyEYK8aHcVvrvSGfm5xXL+L/lcfVEuT8oTco+Jj30UJdt1WU2JhYzkd4aPigP0uZ6yHqWsnHHOXLCbsGrxNxskp9wj6h2NNG/eNexsX9ez3Uc++ehR9n+aiuYGyU11BlWTXt9NtlWSNzZd0K4xaxALIdJueRgXO1Y3T37YvgfBwvLNV1WmVBjQrw0dRwYtDxOdZyoZS1oBzlO4AFR7a9shZpD2Pj3t17dO/OXdq/L8xpPqZPm0WV5dVUUVZFFaWVlj434M+VvQ85lh9sgwPlOSp7pKkhF7uvcT42qZTLoMvLks7uF/jw993psv9siw/lHKJWPpBcMx29plCT9c7t21RiLnHaN/947QbGRRWVl1RSWXGFZZ3CUZ8bR9dC5HSIfhFDyceWLdvp1p1eaj3VoevyEMmKZas4H2UlpS7pg5gjbOXSynUR1eJDjvtISU6lO7du83r6qDXpyEcXx/19A9g5VzA2yqnUXGaxrVyNR5T7Acs90IaSD2Pucc5HyL5wXZeHUKrKK+jMyVM0d/bA43uhEyJnUNYV4ZPKa7Jq5cvh+S6e8f5+Abxe8U0mN67f4H2enFnDij0Yx7lADQ/UtrHnmzsjYp1LnJvwnUTeoMi3VCsPasKE9+huzyPOx6tWl8fTJCI8gvMRe9A1fRW5cTIzwidV5sapkS8HHRbxvPPnedFNxsWNa9d534n5/X6ENT7kY/lGE5Uwn7a4sIT27Npr4c7VGj7yecs+lKjLoDw+WNm6dTvno66+WdfhIZaFXos5H63N2rvWWNMFF9eYXL1y1bIe4IgPcGE+XkxFBWZLDjJiruQ4ek+WvPwizoe/VJ9Ll6GThro6On+2kz6aO9/jx4o1rKiIMMvf6AVxldkvVy5dpsgDUQ75QJymuYCxYTJTIdMz7AVp7X719D7hfOi2lXskJiqG87E3cK8mxivbQQX5BXS5+zJd6rpE+bkmh2tXc2fP53UDj+cX8rp6gg/YQPCdRJ0S/BT7NZ4Ur+jltYTz0dZ+XtddN8naNes4H6b8fI8do/BzYEPJvWgMaQbGRjd1X+xi82C9zTUs8fem9Zs5FwW5BWQymux+p/AdBDOeEHsVFh7F+Ug9lqHrrptk3JgJnI8rl7qHfSzwc+VnuPgp9tyUvn3gniDqutDF13fRI9IRHxsZH6Z+NvJz+p4HWLuSbTZPlnzmM4GPnQGBuu66UWqrqzkfWBMa7nnC0WuwhiXyCQN372VsXKAL584zxs875CMyLJJzgXqssdF/1RDVSj5U57luzseCBUt0vXWjpCancD78fP09fqxy7dG5c+ZzLs51nqNzHWctNZdt7YEcCD1AeVm5lJuZS+H9e2vYF9RKL/Peh085H7rOulf27A7kfMREx3j8WDF3iL3uuXPm8R6NZzs6qbO9g+b073Pa4gO9koyZRsrJyKGwkDALb1qo5ePltZTz0d55UddZN8uypcs5H+aiIm3xweaLzvZO6mjr4H0arfEh/56WnEY5hmzeL8l3u5/l87RgXwk+yipqdZ11s2DvA3zU1lR7/FjlOHTU0exgXLSfbqO2U2dop1+AXT6y07MpKy2L92Zdu6qvJzD2BbVQ7yo8IprzcTguUddZNwv0DHzcunlDE/6H3Ou2jbFxhrFx+uRpHpNljw9wkXksgzJSDRY+Bhtb4m4+wsKidJ0dBtEKH0o5w7hA/+tTLSctsfq2+AAX6NNqYHbWmpV9cWNaiS3R+dD5cHb+kPcrTrWcopPNJ6m1uZX8dvjb5QNspDM20o4eo9X99eDUEBHDLPIG5f4oan2HIcPI+QjYpY04h1dNKsvLOR9eCxYOWk8goqezyJsVextyfx35+EB9EPE7uGhtaqGWxmby9fGz758zLtKSUulYYgqtXr6aH8Oeo9xj1poo+xgo34NzEbmDoketyJFRq0ZQde0JzoeXl773MRxSYDKpygd+F3EgYh8ceiX3Z5P7jwlR9kS2Jiapxxq4aD7RRE0NTbRju69dPsBFakIypRw5Sqv66+FAf63VhpBFOUbRQ06wLc5bmQflqN+7zsfrzYeI8RN1C5zJq5PnF1sifwa4aKxvpBP1J8hnm30+UvrZ4Hz0zx9ynoYtsTbH4XwE6+7kY3V/fytdtMOH0AElH8r6Ns7wocyxsiZyHFYj4+JEXQM11NYzPnbY5SM5PomzgTlE+B+D2R8E95jLZD5k+0rko6txf+LZuHX/fPiko72N8zF92owBvU/oARhQ8iG4wbNW1MCR7SvRy28g3yfn2EIaahuovqae6qrraHt/vrstPsAFbCz4IGtW9vExmPgSkUfrDv9cX7/S7vqVYMSefy6eo4P1z7GXJ+/ngYu6qlqqrayhbd7b7fvnjIt05qNjfXdt//oufH0t9DTQ+dDXd12R2qoaqmFsVFdU0ydbt9nlA2u7WOPNTDXQOmn/XN5v9FTZtTuY84H8Wl1f3Svjxk7kfFy84Pl5abCF5Do/4KKqvIoqyyrJe8vf+ZAlMuwAZR4zUFZaBoUGh2rqHunxV8MnIv6qovI+TZj2K415/yq9M6mdRo3Jon+PTqA3R26lN0as9Lhxv/fuB1TFuKgsraCKknJat2a9XT5Cg/ZTdnom5RiyKLy/5qJW5o+JE97jfFy+dlvXWTfL9m0+nI+CwgecD0cCdiBgZ+R/Izg7//o/9/TIhe8h/Onp02ZSBWOjnLFRVlxG06bOtMtHWEgoGTOyKTczhyL2h2vK/4CI/A9Rj1sXN/l+oeGcj5Dgvp4H0HfMGdB/zCFgAXOKM+yM//BL/vr/jivm7x8xajf/vH/+c7IqY8V6rIjfRR1hcFFqLqWSohJen8QaH5baiT7+lJdppPzsXG5n4RjY0Ep+VFPLaT1/cBjEmJ3D+Vi5wnENQeg59B16D/0HB+Bh7GTn5p7B2m7I1xD5tUsXL6dSxkVJYTEVHzfz/p32+NiwbgNnw5STTwX99RnAh634drEXg7U4T6jPkJaexfkIDY3U9daNIuozTOiv0TkYgZ0FfYfdBf1/e0I958EZdpS2G0Rpu0GXxX7elk1bqZixYWZsFBUUWV2zkv/GnnmBMZ+O55qoMK+ARr89lh+X65TIP8Wejaf0jfL29uF8lJZ5fp7OqyLIuQMfHW1tbvk+6DvEVdtN/izEW4GLQlMhFeYfd8gH6l2BiyL2WjN7z7QP++pfaaUnJ3x0UR9O1133SIB/AOfDkJY+7GP5xz9G27Xd8FOOR4mOjGFc9NV6iwy3vW8m+HiX6Re4KGZMlbA5Z+miZRYfXSs1TJB/Dj5W9e/f6DK0kpFu4HxsWL/R48f61lvTX1prSuX9ePvqWYUoYtCt8QGBn1LKbDL4LVv7e8vAXnO1frvsp7ijPnXs4UTOR3KKQdffoda3EaN4fWrwMX7cRI8fr3KvwsR78eZTXk4erV+30aptpTx29EgSlZlLqby4lOIOxQ16TMreDSLmTNnfQK04XsTvgg/0j9J1eGhl9co1nA9zofZiFmCL5zMuUOstNyuXFs5fZJMPWQ6EHaCKkjKqLC0nY2aO5fjhg9EujUNe27LVH0f4+2qde/flG7z/x8qVnt+fXcuScjSF87HNe5vLnyHHJCLfQ8Svil4x4hk72JxBiP+OHRY/YfbMuZwLUc9qygdT7fIhjntv+YSqSiuourySaiqqBn0NscYlYi8FB0PdP+pQ7BHOx9HkNF2Ph0jQ2xn91cDHuLETVOED+iFyUUXfY2dyBp0V2Ydev3YD5yLbkE1Z6Vk2166Ux9FHp6a8imorqqmuqoZmTp/Fj8P/cKXOj+hZLX46m+cyGJk2bRbnA/05x+t9DoZEdu3czflIiD8yqM+R+cC8IOYGoSNq6Qr8ctn3QP3DbEMWYyOToqS1K0d8jBk9jsfCIya+vrqONq7fZGHPlTgTazmCeCbI/Z2t5bAPVswlFZyP4GBt1NbWkox4899UXGjmfCxa6FqsgrWcQei98FVF/061+MAarFyHJyUphTLTMinjWAb5fLLDoe8h/w/+eUNNHZ2obbD0gAcb9ur8gHvR21w+rsyXl3t1KvMn1byHmzdv43ycPdetx2OpLFs3e/P+54UFx116v62cQWu670zOIDiCngl/xZpgDVbYV2+z7wcXhlQDpaekW/YxHPnmQmLZ9zfWNVBT/QkqKii0ygfOEeMR/TeF/6T2PDAYaT3VTlev36GgoP26Xqs4d5iMeZwPZ+KtHDGi5EP0cpVtCkf+Oex2Zf0FUe9EvAYxhCKuBD6EXMvqg/emOMWHpU/Ohs3U3NBILSeaqLWxmXE33jJHgFNxXkrBOO0x7G7ZtMmb89HecYFGvqXPIapcU2ZvlxYVU2620WPGBJ2DXsrPaSFYB4Neys/t7d4+vNb0McZGalKqQ99D+X/whLpAqJt1srmV+eZrLeOQvxuciPUoT72fzS1n6PKVm3TggOfX3vf4ueONkZRlyOR8LF+6wiPHiGc4WIBdI2ofCF0VrzkYeZBzkZKYQoEBewfMBwRrV6hJitqk0ZHRljkR3yt6mGvhns6bt5Dz0dV9jaZosN+oJ4mfjz8V5Jr4HrJWxgwbS9Q/4To8ajTnIjkhmZ3HUVrZX+fNGd9Dfk1CfAJf2247dZoqyypeWifTQr3ql9cIzJwPo7FA1/NBPJexHgo+RB6RVkRed/1oznxKPsLYiD9KSXFJvH/iQHxzeZ+wndltHWfaqLOt3bK/CD9HK7GKQsaPe5fOnDlL5y9cZnOfr67vA5Q3mV0FmwR8BPT3ANCS7A8JsvyOvjZJ8UmUeDiRndMhp20r5evAVeeZdjrb3kHnOjppd8Aey2u0Nn9AfNh1AR8tzB+ZPHmarvcDkC0btzJfNpXHu454c6SmzyU2KpYSDifQkdgjtHn9lgG/X+ao6HgR71t4vvMclTCfzBqPWhKj0URnz3bR8YJi3tNF133HMmvGHEqITeB8TPaQPLiBCPbMhb0DuzCBcRF/KJ7iD8bxGKyBzB1KRrA3eOHsed4buuv8RRo/1vNjmO0J6jS1NJ+m9vZzFB11SNd/BzLmnfEUsT+C87FhnefndzgSzBfxB+MpLiaODkcftthBrvLxIbNDus5foO4LF+nSxS5L/Xfkt2uh5o81QU9f8HH6VAdt2fyJzoENge6EBIbQwQMHKXhPsCbPAfGC8p52dHg05wI2lrd0713lA4La1pe7uulK9yWqLK9w6v1Y+8Wampoxh2qK91Yfzkcr80VW6THwf/fHGRt7dwfRIea/RuyL8Dh/E/qF/UBH+27yWuvUydMpNjqWnxOYnzV9jktsKBkJCgymK5cu09XLV+jalas0tT8nXVnnF4K1ZowbeySeUrPBlkQx+wp8NDW2kteCxToXkuzY5stt9Ij9B2jM6PEeOUYwIvYB8VO5HwcbR547YB8KNmIiYly2rZR8YG0UXFy/eo1uXLtOMdEHX+LT0Tg9WSIPxHA+ykur6P1Jk3U24M9u2cbXP8HH2Hc8kw2lYB7BcxkinstyzQT8LriAIPfDVdvK2vuwjnXz+g26deMmdTFfRBwXcS+uxpfg/SIGQM4Xk2vby8fVFuRPZ2flUkNdE9VW19PyZateWy6wx7HLbxePuwAfc2apU+/TVjy6HLcu64G1fmQDmVPwXhHjYbFr5i7gXICRQ8xu+LB/fd9VNpSMbN60lW7fvEl3bt2iu7dv8/hmNa4dro84D5Evht9xrcQ8BD9GzT4h1hg5mpjC+aiqqKFlSzwzrmgoBXFV0WwuRbw3+Jg7e55qny3zAftCxOYiHgr3GcfkuFbY6HJMr6six+4G7wnhthV881ApH0gtPiDdXV10784d6rl7l9kjZZbjiBl2tb+UiEMW9edwnXBcvj7K/Jihkv0hYZyP8pIK8vXxf23YQE0nzBfIM006clT1NXwlHyJOUL6vyhy6wfABm1/Wx0kT3+frVVjTPcJsxuVLV6rChvgM8Tmxhw4zNu7R/Z4e6r1/n9e+FuNxNd5Erm0CNgTzw8EHZKf/bs5HSVEpf54i1+FVZmPJoqWcC9TwwLyhRn1Q+fkt7B3ZXhI999zFx7Yt27kvhT2cpLhEvjanFh/y50wcP4l6e+7Tg/u99PDBAzKkG16aQ0TNX1fmD9nHEtdH2Fdi/nWXzixdvILzUWgqosy0LIut+irJW4z7vXuCeK0z1A7EuidsLDW/A/dN5F7IfIi+3iKvVGlni97HarDxn1GjeRxJIuMC8YiD2fNwxsZKTzPQowcP6fHDR/Tk0WNeQ0iMyxU+lP65iEF2l39u0+Zgc/Kx5DQyGQt4DRjUyXvzDW3HHQmZMX0W5WQaeV1/8LG9P/d6KAT305q/LXqGO+ufO7smqqyljrgx2I6IZU9NSrHYjmqxoWRkoddixsUj+vTxY3r65FPKyvyrLopcN97e2oIn5Rfa9VnZMzbAbxfnIzs9i/l2sTRj2iztzhkjRvF4obrqWt5PDLUDEeuthbFjPcpRL3Cs4cpzB/I8ktGLOTGF5wkGB4aoPndY+7za6hp6+umn9OzpU3r+2WfsWdvHBHwQW3zIdb/wU0t7JIjrh1+HfOVjiakUGBBoyVfWgox8axT5++6k6spqOlF/gvMRErRPM76VsLfE3GJr71k5d6xasYbHVPKemqkGS2yl2mwoGUE9l2eMi+fPntHnz5+TMcdoc4zw0ZS59Z5Uv8FZgW21ZuVazgf6w6cnH6P9QfstOTGeycV/eE5CY0MjzwFtaWyhrIwsmjl9tuauv8hblW1u2CLiOat8NuN+wecwpKYzHzKD9ku9NIeaD0hDfQN98fnn9OUXX9BXX37Jxvb+S36Io/PRqmDO/oT5eOAjKy2T99qKCo+kJQs9p78W4h0iI6Lo9MlTdK7zLLWfaWe+RimtfgXizKw9b2GbKPnwYccy0GcWvTQzsh3WDlWbkcWLlnIuvv7qK/rm668pPy//b+sWjuZDTXPCOPfd5sv5QC8h9INAXyHk1g1HnArqe23Z7E3mQjOPBbrcfYkunr9INVU1tG7Nx6/c+ht0TK5VAmbEsxe1rVD3DbmOqB8dERox5HOHtc9vamqib7/5ml58+y199+IFzZ4118K4qBfhyXVN1JC3/zuGNn68idJT0qjcXErVZZVUz54H6EUUyeYVPEeGKg9rBrOT9uzeS5UVlXxP6u7tOzz+B3wY0gy0zEPri6j5jIJNItaQxfHAXYGUw7jIzTLy+uwfTpnmFjaUjMyaOYdevGBsfPeCvv/+OzrF5nN5/c6V9V5Nz/1zF9A+5veWmUt4Xb2TTS28tsXZ9k7mE9fxtfHgoBBaMG8heS1Y5PTnvjfpA67rfszHPnQwlhobm+hzZtt+xnzAJ4+f8L0o8NFQV0/+fju5ffW6XHOsWck1e6dMnsq5yMvJJVNuPkVFOK6rO5RzSIGpgH744Xv68ccf6KeffqRNG//K50Ut+deJD1kWMv0PDgymgjwT5wP5l7B5EAN9++YtHofwiOn10ydPqOdeDzUxnW9taaXTjKf2tna6ceM6/fnnH/T7b7/RL7/8TD/9+CN/Bn377TfMrviK83Hv7l0qPF5Eu9nzcuIE99bgFnvj8hqTqKUsv04ck2Oh1BTUTJdjN2JjYsnE7Fxc90LTcUv/THexoWRk0rsf0PPnz+jnn3/i97G3t5fvWYrXYexarOWgtmCfYYePL+93V1xUTB2MAcHH58+ecz8ONio4+O23XzkbMh/g5mTrST5/rP94o6UP8XCJvBch9vbkWCEch80j90VSO1dOGdO0asVqXnsItq25oNCS6zqcfEDi447Qr7/8wu/r77//RllZ2Zb/oRaQMzXfRc+D15Ed6PqSxcto6ZLl3I5avmwlrVju2XH2Mh+in7H4n4idUva9cSaGbiBr/7J9gr2c7IxsXisaMQH5xjzL/o672bDGyAP2LPyDPSPEc2/unHkvcW6PEcy9WOMayBwsar8rjw1nTMrrJNb2skUuEO6lkg9nY0zF+q29fQBrvWJDQ0LJzGxN1NgpKy5hz+XlFh0dTj7Ed+N5By7+978/udy4ft3yOvjptvgQdekHui+C18u9DCHuzBl5XUX0ypP5wDWHXuO4iJNwlQ/xebDNbNkT0CW5Vyxs15JCM5WaS6i8pIziYuOGza6yN4dkZ+dY5o8//vidEo4kvnROylx1uZeWq/dKvubDFRP/OonY2xK9jcS1Fn+L+uXieYW/RVy2mFcGcn+VfT6UcbB9vRbyeS/ZitJyqiqvpHdGj/MINpSMwC9/9OgRZwO2FnyRObP/v73zbI/iuuL4+SZ5l574eWzANhjbodimuWCMTRGqSKIFTGzZpklCvRfUy6q3lYR6R11CiGIwCTF2HJu8cGLncUI+Qu7/Lme5O5rdnRG7QtLOi/MAy2o1s3N/99R7zjbnfXHtGPYZ9azHYkWrQyw+lo4Rdc4R73V8LlB7HlR7tseM8HwZtgu0NbBylmxDo+CimVqb7RQZEbVsdIeenbVnz17JBeIu8Ne18Szt/fpC36v27tM6M2KJ/8Tdfnpwf5Dsm97a3ELt9lZKV+yV5cKG3vUUFhbR/x4+pIcP/ytjk+3tl138L18woZ2BYvnngeH78N+RM4U/3tbSSpdbcSa6Qc7Tfdo+uVE765rQqWADeZH//PQTHT/+uOe3Xt8sSwJLzNgPiFWp/vivfvkbyhes4JxFB2ZkXu6QuY/lqjv07Cz4HQ8efCdz6sh5Ib/O9VmLsXdXYk28JfoCexh5Q6OMaOO5n8Z8Jrhol/U03Z2ddO7MuWXPht71QWeAC9Sf/PvHH+nO7TtCtzyO8xqpP+HzmZBAzR+uNl+Ca7uNMII1ovrjmDXeKez17o5O6unqptLiEnkuciWwoceIzVYl64Z+/OEHWT8xNTnl8l5Ps6hUNszGBi0xt2a5vo/rGFThNQzfUa/Gyqzgc7wxopcD3LL5NeoCF51d1NeNfn6t4rpfXtY+hxFGpqem6F+CDdTB//P776m87PFZEewNer2B/MGG2jMbf/JzwdrgHjTq64Hk96o9ZPg8hTqvHt8Lz13mP/3JiNbn2LD+Zdkbvbe7m/p7e2mwr5/2fbB/xdhVnnyR3wod8fVXX9H3gg2cpUItnjbvo/rr/tIbiBFyrxn+O17H80H8Hq/zzPpA5QPrFN+7NvanzZf7qr+hHiNYC2q9Beynmqpq6u/ppYG+PhoaGKATSrxnpbGhxwjOitz/8ktZm41zhziXG63UV7IO8adNpT5jNX8Y6HlFbf82sIG9Q9UTvuzf5o0RlQ+wAR9joFdw0T9Aw4ODFB8bv+LZ0Lv+I9HHJBf/gDx4IHs7REcdcVmb/vQ3+Ewm12FzTCxQ+cD9c19X5oNtTX4PnwH1Fx9aRtTvHmyUlZTSYH+/5AKzYqttNud5zJXmcxhhBDoDXHwH+fZb2QcF/VDU2N9i2DDiM6o9kHmPDGQ+eF2CAT37iuuq8D62S/Ea7zOeuFvMtfDv4tdiz8dKW2pkaIhGR0aEjVW16tjQYyT2Qrzk4u/fQL6hO7dvy55+7nwzb6LOfl+M/8G9LrneUT3LEAiM4J7V70+tm2JumBFtjZWe4P+0/qUngT2lPYsddyFOnk2+MjxMY1euSJ98zXPrViUbeowUFRbLHnN/+/preYb681u3nIxwbA82qLezVTyvyopfLS/BM/FWS4TnDNHG+OFfMBfjo6PSJ8e58tXicxjx1yGFBYUyrvXV/fvCd78vz4xEhEe67Cue6lD4nIC1Hpen4Nl42mu0dgL6PF6Mi5e2FLiYHB+TvofaH3y1suGOkUv5BbLfNXpw/PXePbr3l3uCEdeZsvgO9fQIvv+l7KvFvom2XtsXddxPaiPp6VB1D+d+fVq7yZ+CZ+POl9TOPoZfAd97fPQKTYyN0dQE5gsPOHvzBAIb7hhB3xvMTMDsBPSp+fPduxQeFuGyz0D/qjYq+4pLed3uZvlwDz+8jvWw1DrNXUxBjTlxvT+fYYJfvliOzexJ/F15epZgA763g4txmp6cFD75YECy4Y6RPPEdos/N3S/u0t07X8heZ9lZOQv0iN53btSH98WeyfUVar8Bs/EvPo+q97nq62rPHE92ihE+tDkOb73Q3V03+FfPMRsRdS/T9uOBX9FmtwtbClxM0Oz0lPQ9ApkNd4z88cRJ+uLOHVnHePvz27JPVHFRieydqX1GZvc7jq8/SR0w6wY+k7VYPrTv0euDw7FXdU6f3prkein18/h9vuYDgmvB/ZqN8en5IujhAd97SnAxMzVFV2emqbmxkdaueT7g2XDHSFhouOQCfTIxL/emkFZ764KegNoz+t7WtTb3tFj7yhf5d+179PrgaNezXq9Wzk9oe1FwjNoffKg5XCP2GcduwYbKR+ThKOljzExN0qzgYm52llqam8Re+DuLjZ95jv3u2L5LfHeTctY6+g2in+z46JjsC6XGBjkG7KmPqdnn6c1OUGv0eL2pfdGwz3uL/Xvig//P6Hrmehyt/uB9XuVZq4+eJC7lbb/huC2ekWpPwddISkySPgZsqbnZGbo2d5XS09KcbKzW/IYvGXn1lU1kb7HT/Ny8PIt47eqc7M+JmXlaPYI9ip+H3p7vy3oVrvE24j/o/SzY8SUf/Lna38t2l7seoE+S48Hn8J7jLk+IXhza2Dx8jfq6OpoRXFwFF1dnxd43R3GxcW7tCUvcM4L9BPFfcHF1ZlbsN7NCH89QeWk5rdHMINbLlfDeasafxM/4K2bM+7ragxOi1wcHHKnxJugrf8aytXVXRnQpz99QX4eu0MZuIVGR0bKGCj7GnOBiXnAxMT5GIcGhFhtP6JNAZ8xOzwg2poVenpK210DfgOzHqf1Z9DPduX2ns/eP3qxHb7aDP++Nc5qqf6uXP3ka+QozPjfPoOXvFzZucFDQgvfBnsrLyRXPb1raUvNz6NF9TcasYCNYbPiGkW1v7KDB/kGaHJ+kibEJmhgdl33RM9OzdOdruNvfvPkFgXzOHZyauX+tftaeA0UvYeQx2Me4Pj8nfMp5Ki4qcolJWlz4hhFwUFJUIn31McHG6MionB3W3dEl59Bonx3bLXrnE590/+SayOVeq8V5QaO9joz6aezrsX5TbT+pM3LzhC312Me4IbhAHDc0JMzSGX7m5HB4JPV0dtOVoREaGRym4YEhOX8yPzdfsLDWxQZwvD/c5Zm6s7/N1Dmyf7rc58bhnszkK8C9kXuCLYV9R7s/4DzPyPCQw8d4ZEvdunGd2tvaaN3aFyw2loiR555dRwV5BTQk2IDdBX+kv7ef+nr66Gj0MWdPC1U+jXHEvvT6QXDfZaN2CJ93M2q3+cMW8se1Yr17Ygl7jV48HfZvY0OD08e4Lri4eWOePr91gz6J+cRtDMYS/8W3IJhJ2S5sgn7BRV93L/V29Qjd0kMtjS20V+kZpsrpkycXcGLGtjK7J5t5n7avraf4kVldZ9QW1OunDy707NS1zz1PKckpjngtuLjm8DFu3bxBdbW1ls5YFrpkLSUnpkguuju6qUv4I52XO6mzvYMqyypp5443PXICG91ML1LOvRn9GaNrmXM1RvQNrtlovpM/16jvrcYp0H9Kjwv4GOfPnpfx2muP4rU3rgtb6uZ1mRNHHYSnZ2bJ0jIC2bL5daqqqJJcoO8kZmK229upraWNUpPTaMe2XR7XL+wGb7Pg1NyYkf0Ya9joujTDh5k+VBzLM+J7Mwvu3gsuTn/4pwU+xk3hY8CWSoi/uCA2ZXGxvDg5dDCE6mvqJRetza1kb7KTXdhbLQ3NcgaXXt4EwrPgkPv1NM/HTC2XmXVshg9wavQMK9fYeIp1c25VL7cHQT42OSlZngVf4GM8sqX+8Opmi4sVwgn888jwKKqx1cge+M2Cjab6Jmqsa6SG2gYqyC2g0OBw54w6VcAH9lH8yTNLWLjW0ajNhPcZtfvN8GHGboNwrlS1ybAHIJfqqdZz2+vbJRezmpoQh49xXXKxc8cuy5ZaQYy4cCLWf0TYYbKV2yQX0Ct11XVUW1VLtYKdmspqOnXiQ8HBJl1bg+u7eP1wztio7W9mDZvlw0xMgWsKoXNwP+ACtqSWf7ahgg4costt7c66cxcfQ9hSdTU1FheryOaCnggLCafy4rJHXNRQdUU1VZVXka3MRpWllZSZlkV7332fnvn9s25jQdw3DWsL9pgv17A/9Af3WgMX3PPLXS3n7nfepcSExAV156qPUWtxseo5efvN3ZSTmePkoqKkQnBTTmVFZVRaWEolBSUUfz6e9rzzHj3jxjZS+Yg9d0b69vg3+y68/vzJB/vQvN7ZXuJrgv7DNXmq/8dc6QTBDvrnOM7wudadc01IZkaG+GyLi0CxuyCvb91GH5+OkTqlrKhUsFEi2Cim4ktFVJRfRIV5hdJPOX/mAoUEhdJL61/2+HvYb1HtMd7jOU6K/2OG2CdmzlQ++Jw2n59Q389zIfizwQT8atWPcFdTg7zq/n0HZJ8Q9Hp29AlxnG2VdedKTQiYifk4xiWHYXEReJzAnnpv915KTUp14eJSziXKz86nvKw8ys3MpZyMHEpJSKFj0cfprV3v0IYXNxr+3WpfAp53zVxwzEjlg/NxWPtsIzEf/KeRfD9yQ+hPGfNRDFWWVzh7Eap9QtjH4Lrz9LR02rvnfUP62JLAsb0g69a8QKGHwigxLtGFi+z0bMoS/klmaiZlpGRQenI6pSWlUWpiKn106iPat/eAWMtv0ovPb/CaQ/GXbFi/kXbtfIuORB+VM8Dramqd/c7BBfdcc/YJgY/xqO68IP8ShRwKcTnf6mlPsSSwdQoEtRMfvLePPvv4DGWlCjZSBBvJgo0kwUaiYCMhlVIuplByfDIlxSVRYmwiJVxIoIvnL9LZmLN05PBRigg5TLvf3kO7BDvrX3hJ6hzt2S4jAr8J+YVNr26hHdt2yhrNyIhISktJo4K8S3KmUtejmUp9PT2y37mzr7OTi1GnjzE8NEj5eXkUrMOEpSssMcvKL37+a3rjte0UFhxOZz8565aL+HPxUvB3vJ4UnyRtMvCUIXQO9A90UW5mDuUL/QQbrjCvQPo88H/KhC9UUVpOtrJKqq6oohpbNdVV11JDbT011TVQc0MT2ZtaqK3FLue2drQ75lPyTCU5OwZcDKDf+ZBLL0L0Qj996rSsJTR7/5ZYYmatwB94ZeMmqV+ORh5z4QKsgBswBPsLthh0T7awz2Cr5Uku8iUX8HcQE0B8oKKknCrLKqiqwibzMnVVNVRfU0eNkotGwQVmfdup3d4m51N2yfmUXY6ZSj2OmUpsS2HWUlZGptQx6KOz2Pu0xBIzrHhaR5iTBf/jXWFPhQaF0cljp+jCmQvSb8nJyBZc5Ep/H75/UX6h5KJUcIH4WWWp4KLcRtWVVXKut+QCOqO+Ueb/W5tbBBetMmfH8yl7hS2Vm50jz68eP3qC9n9wQM4N9sW9WGKJv3nR2mcbN7wiBX78wf1BMkd96GAwBR8MkfHj0ENCgsMIeczw0AiZ92c/I+pwFG3ZtFXOqNy6+TW/XqsllvibmaVei0/791tiia/WrS/F+o4tscQSSyyxZHnJ/wFQSwECFwsUAAIACADaiD5bxtqOMcI/AAAAcQIABAAJAAAAAAAAAAAAAIAAAAAAZGF0YVVUBQAHJQ7caFBLBQYAAAAAAQABADsAAAD1PwAAAAA=</Data>
|
|
</Bitmap>
|
|
</BitmapList>
|
|
<SignalSpec>
|
|
<Description>Vehicle Speed Sensor (PID 0D) (Value [km/h])</Description>
|
|
<Equation>Int(({Vehicle Speed Sensor (PID 0D) (Value [km/h]) :in13-sig0-0}+2.5)/5)</Equation>
|
|
<Format>0</Format>
|
|
<Min>0</Min>
|
|
<Max>255</Max>
|
|
<Units>km/h</Units>
|
|
</SignalSpec>
|
|
</GraphicalDisplay>
|
|
<GraphicalDisplay>
|
|
<Key>gdp1</Key>
|
|
<Width>200</Width>
|
|
<Height>199</Height>
|
|
<Top>37</Top>
|
|
<Left>140</Left>
|
|
<BackColor>0</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>14</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<TransparentColor>16711935</TransparentColor>
|
|
<BitmapList>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #0</Name>
|
|
<Index>0</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPlt7x48ohj8AAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J33W5TH2se/f8l7zvWe6z0nlphmYmKLSYydqMSCit1YjhpAEQuoCCgiSpHem3RYdqlL71XBgqjYY4stMSbn9/POPTDr7AMoC7u4C88P98Wy9Xlm5jN3mfue+fvf/oG/q/Le5G//87+DFrW9VBkL494Wvl8VVSw1TtVrUkXlYXDjbuHCxVzc9rvDzc0d4RExSExKY5KKouIytJ6/iNa2i2hp7UBzSzuXpuYLaGw6j8bGNjQ0tqK+gUl9C6Ki4pnEITIyDocOHoGT016sWbMec+cuxOTPpph07WpfqmIJJgZ6zzfffI9Nm7bCy/skUs5lop6N7Y5LXWi/eBUXOjqZXMH5diYXLqPtwiXGxaU3XLQquGgiLtoMXNTVN6O2jkltE2pqGlFd04Dq6npUVdWjsrIOFRW1TGpQXl6NuLgk+Pmdwa6dzpjz/XyM++BDlRdVRpSHCeMnYaWDI3x8/HAuLRuXrlzncvHyNXRc7jJw0c656JS4YCK4aOsw6Azioqn5PGeDuGggLhqICyaCi9pGxgZx0WDgorJScFGDsrJqlJVWoVRfCb2+AvqScpQUl6O4qAwpyWk4cdwPG9dvwfSpX6usqDIsLvp7zc5uKQ4eOgJdfgkuX+3G5c4buNT5hgvOhuBC6Aziot2Yi4LCUsQnpCAuniQZe/fu57JnD4kbFxcXkn1wcd4HZ2dXLj5ML0Uw2yw8nElYNNcZxEU5cVHGuCit7GGjpMLARXFRKYoK9SgsKEEBu+4CXTHytUXIYEx7e53AimWr8Oknn6usqDIkXeHgsBZBweFoZuP6Slc3rhi4uNGHiw6Ji6TkdPifDsI+t0NYvnwVFiz4gescS1z/jOmzmB21AJuZbbdrpxOCg8KYvkhnXJQyLhgbggtdEXTaQujyCqDV5CMvNx+aHB1ys7U4yz6z1nEDPvl4ssqKKm/VFYKJFsZEZ9dNxsXNHi6u3uhhg7gQthTjIpeNt2Nevti48SfMmjXbau5v3AcT8f3sedixfRfTPb5cZ2g1BT1c5OoYG1rGRh5ysjTIzsxFdkYustJzEHgmGGtWr+vDisrJ2NUVU76YiuMn/FHJ7PvOa7cUXHQbuCDRMPuEfPBFC5fY3P2TLbV8mQOOHfVBSlIacjI1PVxk5CAzPZsxlIWM1Eykn8tAWko63A8ehv2SZSbZoaqMHi4cVq1FLPMBrl6/3cMFkz5cMImKTuCxKUvZSO9Lpn41A7t3OSMyLKqXi0zGRQZSmX2Wynz6c0mpSEk8h2jm92xctwkff/SZyskY4GLLlh2oqmnkXFzt5cJIZxATMcTEtlHHxEBC9tRmZiOGMttScJGckIJkNn8kxSUjMTYJCTGJcGI8kb5VORldXEyY8BHc3T3ReuHygFxomS+7afPYYWIg+WrKNLg47UVUeDQS4xgXsYmMjQTER8cjLioOsZGx8GC219czvlE5sXG/m3PhIXEhbKleLppbOxAYFMbX99T2M5YP/jUBS36wxwnm3wsuYiNiERMeg+iwaEQxu+yQ2yHMnD5L5cQG41FkR7VJXMg6o6Kqnq9njHVdMVghXbHPxQ3R4T1cRIZGIjIkAhFnwxEeHIYDrgfw0YefqJzYABd2dvaoqm1C1wBcbGY2lNp2Q5OPJn2Kndt3GbgICwpFWGAoQgNCEBJwFttY2/7rn+NVRqyQDfIbM7I0KhcjwQnTFTu2/huhgT1cnD0TjODTQQj2D4Qfs8eW2C1VdYkV6QzyMbpu3DH2Ma4x/6Ktg3GxXW03C8kkxgnpDOIi6FQAAv3OIODkaZzx9cdBZnNNnzpTZeQ9siFsKaWPQTkhqn8xckIc7P15D2eDi99pBDJegvwDsMFxg2pzjRAb4jHFpU74nu7XloqJTcIXihi9KiMj8+cswElmX5EuCT4dyOyuIGZ/BePEMR/MmPa1ysgI6Ixvv52DgqKyXp1h7GPYKexer2Pe3AZQ29Fy4rrXDdOlsU+6gnRGCPNJQplvEhYUwnz5UObTh8Fx1doB5zxVhs+Gk7OrwsfoyQnxOX6qjy1VWlqG//73v4iLS1Db0oL+x+vXr3k7O6xcbfQa6QtfrxOICA5DZEg4okIjEB0WCR9Pb3w86VNVl5jZnhK5Usq4lN0iY52xa8cO/pf6i/qNRJ7fVDGfZGfn8vZtbm7h/69auRKffTrZSJds2bAF0aGRiAmLQmxENOIiY7g+mTdnvsqImewpni+lyAmhdW9ZZ6xfu7bPd1G/yf2nivlkwfxFhvlH6I4P2Tz2z/8bhzmz5/DH4r20vniG+e1xkbGIj45DQkw8kmITsGPrDpWRYbCxZct2XqutzAlxcHA0vEfMV1992dcnJ72h7ENVzCNi7iEdonxN8CH3CeWr7Hfdj8ReNpLjE5GSkAxvZm/Ra6pPYhobVJOhzDunHEJlbGrRgkVv/d6gwGDejw8fPlLb2Yw+ObUp+R5vs1370+mrVqxGSnwSzjE2UpNSkJZ8DuHMd5/65XSVkUGwMWH8R7yGT5lfGxgUamRPkZ/Rn854mw9JrKjtPXyfnOYaU9pzj5OT0f+UIxwXFYv05FRkpKQhMzUdSXGJ+E7KE1UZ6Z8NXaG+Tw3f7p/39NEJQ53v1DYfnsj62NTYuWzjkk0V6B+ArNQMZKdlIicjC7mZ2Vj+4wrVJ+kvRsV0g65Ab8RFU0s7Vq5842sIfUG+oalxW7KT6XPqGB+ebP1pO2eD/pryOeov4oP8RfLh6blxvT5JTkY2YyMHmqxc5OVosGKZw5hnxChGxfQqxWrl2tbG5gt96jIofijrBBJ1zL4fG8tUpmitVvShHAMmcd7tjLxsDbQ5edDlapGfp4PHQY8xy4h8r8QAxaREbStJnq7IyNeQuVDOSUPRCSL2IuyE0b4+Iq8FyfE8um/hS8hxcGFDCZvUVF0hC/1GfzEusU4lhHRGvkaLAsZGoTYfRboCHHE/MuYY6Y8NeZ+QPO0bNkQ8/W3zGLW9KfMZ8dTVdc3wP62zj3a/XcS5le1Ec7qwU4XfTdwQE+K99J6hrh/Rd1D79tc/ZCtT38q6ZOXyVZyL4vxClBQUQV9YDM/DnmOGEfn+iA3yL+S9CDVaY71BbSivMw003k3xRaj/5f4mNsZCXIvaiMY93bu4X+W902tC1wzUXqb+5tv0O7GhtA0cVqzmXJQWlaCsWI/yklIcO3ps1Me1jONUk1BeWWe0F6FGW2hgo792G6x9q/LR/zwuYkfCpqJxa0k+TPEPaT2RxGBPO6xBGeOiXF+GitJyVJZVwIn5KKOVESUbebpio70INXlv2KC+HErO7WA/Q/0t21dknw2WrdFiX9H9UzsQG7J9Rc+LvBHxXhrjZCOZ2hemzDlkI5DIfuCaVY6ci6rySlRXVKGmshpr16wbdYz0ZaPIaL/zXAUb1EcklsxLH2v+ubB1lH74SPjnpugb+j1Z5ziuXsu4qEJtVQ3qqmtRX1OHdY7rRxUj8j0EBIYY7eucqykw8jdo7hJr3ZZmRBXrEcFGf/lcpDPqa2rRUFuHxrp6lDNd9vXMb0cFI/K10761hv3OL11FXUOrERvHvTxVRlQ2+HM/bd5sFNfavnUHmuob0NzQiJbGJlRVVOLzyV/adExLvuaNm7b2ctFzRgad/SL2O6d2UK4XqYyoekMZ+z3p64eWpma0MhuwraUV2ZnZhvnV1vgwiuMyDui8sZ6zY3rOVKIz+cR7KYbbX56hysjYZUPMm8oYZmJ8As63tuFC23m0n7+AyPBIm7SzZH9cX1pldKbSzp1v4nTviuHKjKg1TmOHDVnkWqsJ4z9EblYOOi6042J7By51XMTuXU42xYh8jRGRsUbnU/r7B/WZI971fcSIiNfLz1N8Us4HpTYX8Xy1Fso2+HgXG2KMyDkU38z6Do3MF7l88SKuXLqEzstXYLdosU34IvK17dzlbHQ+ZVa21mAv/rjUflC1G28TeW2L4o9kg4l4vlpzbv1iyhxG+kPO11q5YhXj4jKuXrmCrs5OtLW2Wr0vIrNLvrd8PmV1TSM+//wr/pq5/AiZj4HWgdVxaBmR80bE+joJrSOK52nO6u95c8lxnxPounoV17q6cP3aNSRIOUbWyIjsc2Tn6N6c23r+Ij+nUp43TM0pVPmwLpHbV+RzifV4sdYuakREf5u6Bj9Qn8t2QVFBIW5cu47uGzdws7sbe1z2WiUj8rV4eh5nbFzi+yrQmcZ+pwKM9KTwKYZaryRYUPmwDj5kX1DoDHrOXDmOwuag8aLsU9qTvKO9Hbe6b+L2rVu4zPyRL6dMtSo+ZLuKzjIWZ323tHWgoFA/YM4h3TPpaVNrnEQOCsW1BBP0HbL/Iednq2I+EW0q8yF0A7U9PTY3HzSH0vcLvUH7cZD/Kl4nnXGHsXH39h3cu3MX2jytVekQ+RoKi8r42cgtrR1obmln92bHn39bnjqNbVNrZUX+mxq/Gnm9QX2ltK/EY5kDc/Ah16coRY7vpCSn4N7du7h/7x4e3L+Pfa5uVsGI/NuurgcNXJAcPuJleE25X9i75ghVrFd/kJ6W9xOj+Yh8DRr/9FfodPqf3kt/SZ+bkiMt7KmB8iJpLMl7B01k/5Ov/uCXX/DwwQPcuH6dP2ctfFAuTHMvG03NF6DLL8b4cW9iuYNtE3X/BNtghNiQ7VfqN3puoDUqU/pV1OMO5jOzZs4yrI3sc92PRw8f4vGjR3jy+DEyMzLfqw6RfzMuPplz0dR8Ho1N5zG/164yhY+xJIuYn0ZrWh6HPHDE4wg8jx7rsSVi41CqL0VYaBhO+fnDz+8UTp70w+7dTvjRfjmzKaaPKT/nXUJ2ibx2WFhYiF+fPMHTX3/Fs6dPYW+/7L3wIfvky5Y5cDaIi8bGNgQHhxl0oMrGPzD3+/m89i3oTBDytTqeP0S5EbTue+PaNdy+eRP3797jcx/168sXL/DHH6/w119/cnn9xx/4/fff+PPPnj3FkyePkZ9fgNP+Z7Bt644+55GPNZHz976fPY9z8fzZM7x4/hxNjY3vRYfIv6XTFTM22tDA2Cgtq8Lk3rxjZf7lWJFxH0zAih9X4riXD99joJzpA6p/o9qe5sYmzkdpiR5pqWkICT5rpD/2ux3AhvUbea6qrD/Ky8q5XhF8PGQs3Wd+6J07d3Cz+yZqqmv4ehnlXoxFPuRxdjY4BC9ePMfLly/w228vue5VzukjpTu2b9/FuWhoaEV9QwtcXPYZ3tdfvHo0y9LF9jh80IPvBZjH7p32qSE+0s+lwZuN/W3M11wwb5EZxsM0rHVcz5nS5Go4H7R+fLWzE5cvXoK+uASeR44xn3DKmLHFKCYg1gk+nPgxmzvucZ376tXvbC55wJ8bKR0ifmP8uA+ZvqjmXFA9h15fyZ8TcTmRnzma41J0vsXa1ev42Ui05zLtJ0t8hAaFYMO6jey+Z1r8GiZOmMT3M6Ax0tjQyHNbqT6CdFV0ZAzsly4btWwQE6I+WF7zcmd+Hdmor1//gT//fM118UjoEPn7XVzcUM+4qKtrRm1dExwdN/SJz8k1zNR/o2XNbhKbj7Zt2cbPAKdzXxKi43A2IBibN2zBJx+/X5tyxXIHhIWEcT7qa+tRU1WNTMYsMTRauBDrKfIeAspY8PXr17n/9p///IVff30yIjpE1h2kL2qJjdom5OToDO+h2kg5j0R5H7a8JyjpC4dlq/gZrXT2JPHhsd8di+2WWN21kn3lcegwigqLUFFWgdJiPaIiojD7u7k22/4i9qucd+WxJx47OblwNkiIE/LlLOmrG+kO532ci5qaRlTXNMBxzZs9JfpbBxR7Gov7ssUzASkme9rXH0GnAjkf+1xcjc5ktVahueznXU583+ei/CLomF/kddTrves5U4VsdlErJ2pHlPaIsmaiu/sGZ4NsrMePH1lUh8i6o7i4vIeN6gZkZ+UZ3qM850EpxDrdoy2tA9JZku4HPJiPEY6QgLPwOnwM3/bWzttWXG0iDrsf4Xxo2NhKYv4S7TFlK9cv9hx6V+4prauLeJbTz86cDfJDSCgWaCk/RHyf45oNnIuq6npUVdVhzeo3uuNte+XKvomt9Mm8OQsQFhyO6PBozsfqFauNzrq3RZk2dQZCgkKQlZ6FtJQ0rkvk880sNbaFHUT9L9vc9JieIxtD1g/K/eXoPYOxzZVrCtevX+O+OsmDBw8sYmPJ35Wdnce4qEdlZR0yM9/URx5wcx3Sd4t8NyHC9rJ0fc27ZI+zKxLjkhAXFQ9vTx980VvfNVrkp81bOR90BmBESAQ/Q3Mk+FDuXyn2cqQ+Fj622MNxqL8nn6Hw824nvHr1isd6KeYr6tUtwcfSpcs5F5WVtaioqGG/7WKS7uhPqF3EWomcq2OJ+ppB2SFsLj3DfIxzSamcj61bto8qLozs9SnTcJbZjAkxCYiJiIGdtK+MpfgQezaK/hb7VyrtpuHwodz3n/IWiQ1aL+zs7DSrDpG/IzwsmnFRi/LyGuh0RYb1jqHqDqEnSK+KfXCF/WXO+prBytSvZiApIQXp5zIQExXH7avRyoaQnnNlD3A+SI9s/2mH2b6b5jqxfifbV6JWh0TYV+bkg4Rym4QO8T1xEr+9fMnX1F+8eMFz2czNx+TPpqCCcVFeXo2ysip4HvV5a8zKFBE5oUKXvA8+pk2diXPJacjKyEF4SOSYyQUUsnbNes5HSGAIs722meU7yV+guU8+Y2Ug+4r6V9hXpE+Ge1akvO8Jxa0of43yTp4/f4Z4M9aqi8/vd3NnXDA2SqtQqq/EjOmzDHME+QxDXSNXtp0l6jMHw0Z6aiZymW8VxOyNcRb2V61VKIZNfAT6B/K1TnMxIvvbQ/XPhyKyPkqIT+B5i5TD9vTpU0ycOPz6EPmz6WlZbCxXQq+vQEy08foFsSFqW03d61u0iznra0wRuvasjFxoNQUICQ7jcdCxyIaQhfPtOB/+vv7YsG6TzV0/sUZjhewQOd5FeTaU20s50rSeTrmg5uJjyeIfuc7Ql1SgpLgcqxx64uaUf081Ksr5QulLDGaMmqu+xhQhHZibo0VBfjHCQiPHPBtC5s9dyPnw9fbFOmnt15pF2DE09oQtQ/aVPD4vdnTw+hCqn6qpqRmWjSV/5ugRL5SUlDM2ylBcVGoYR2TjDeR7iFwAa80nodhCXl4Bu58yRIbHqGwohGITxIf3EW8ssbPOOh6xJiLGmXI+Jj7kc6m8vXw4G1RjSPU2X06ZZhY+cnN0fBwVFZbixPFTBjaUusOWJD4+hevElOR0lY0BZM7seZwPr8NemDt7vtVdHzHxrhoKmr9F3gnVBjx69JCzQXXqZ04HDJuPxT/Ycy6KCvUoLCjBD3ZLbZ4Pby9fvn5D+kPdE+Idca3V6zgfXsyG+Pwz26spITZoTyDxf1VVFR48+IWvibS2tAzJxpLfe9jDk3GhZzZ6Cfdj+9NbtiT29it4fgzxQX6VysC7xXmXC/x8/HBov7tN5tfI64W0988v9+/zvYBIZn83Z1h8ZGVquP+aryuCD7NHBR/y/iq2IlT7W6Kv4Hwc2O+hjv1BCvU36Y+g04HYtH6zzV2/vB86+RzEBe2XdffOHezd4zpkPqjenbjI11JedCFW9O6jO9z1wPclMTGJvGYlKSlNHfcmyjdff8f5iAgJt2iuliUZF4+bm5o4G3du3+Z1/abaWOJ9e1z2cS60zE7XavINfqzyfDhbkHXrNvFaeeJjpg32rzUI1UwSHwGnztjctcs5UFRvS/v13r55C7du3uQ1yoPlQ34PrQkQF3m5+Qg9G2543tbqZGkP4IrKOs6HvIeEKqYJ+R6kQ+Kj45idZXtrh0IW/7CUc0F7vnff6Mbq3joYU/ggXUFcaHJ10ORosa03b02cNS/va2/t7eG67yDf21HL7ER1nA9P/p+98/yLItn6+PlrNt29z7rGdXd1zboqZjGtGRUBURFQggRFEBCQNDBkhpyRZCAZwJwR07q62c3xfj7Pi+fNU7+S6lv2DgwMzdCt/eJ8gGZCh/OtOqfqBMT4go8ca7bucxDl/RHEZsgx4I8fPuJ9EVCLFPGLQ+VjIbsP4AIxSdWVdTRzxgs/X+4dJ+cB47uxZ6639VL05UGvBfCxfPkqU8c1kPDQcCopLKL9/vt1d26IV8I+uqgTLAsYEa+rrKikB/cf0AP2uqaGpkH7IOL/u339OBfVFbVUVfFynzgwIHOpPo+hxmCNpMQfO875QA1UU7e1kWlTZ3A+qpmOjX1/+HOIOvbUXm1qR/lyck0pWUQsvdrOQQ0g9J7qvddL93ruDao/m/y/2Jh4zgXivWOOvMjbtddzF4JzxfnhvO313pCvTc6rF/H/6uNaCXL+0BsUfMz/dJGp2xpKVGQU5yMkKGTYn6XO9RB1reRjjvLlhF2D14k4WbU+YZ9Q7Gmj/nEv4+Le3R7quXtX4WewfFSVMzbKqqmitIp2ee9W1sicWbfCeYtYANkOk/PIwLnWMbr794dyPvILSkyd1lhQowJ8NNafGHZ8jr1cKHUtKEf5DmDBkW2vrkXaw9i4e+cu3b19hw7sDx40HzOmz6aKsioqL62k8pIKpc8N+HNm70OO5Qfb4EB9jeoeaVrIhe6rnI9NGuUymPKypLDnBT58vHY57T/3x4d6DtEqH0iumY5eU6jJevvWLSq2FQ/aN/9s7QbGRSWVFVdQaVG5sk7hqM+No3shcjpEv4iR5GPLlh1083YvtZxqN3V5hGTl8lWcj9LiEqf0QcwR/eXSynURteJDjvtITEii2zdv8Xr6qDXpyEcXx328fNk1lzM2yqjEVqrYVs7GI8r9gOUeaCPJhzUrn/MRuD/E1OURlMqycjpz8hTNmzP0+F7ohMgZlHVF+KTymqxW+XIY38UY7+Pty+sV32By/dp13udpMGtYUYeiOReo4YHaNgP55oMRsc4lrk34TiJvUORbapUHNXHih3Sn5yHn41Wry6M3CQ0J5XxEHXJOX0VunMyM8EnVuXFa5MtBh0U874L5bnSDcXH96jXed2JBnx9hjw/5WI41l4qZT1tUUEx7d+9TuHO2ho983bIPJeoyqI8PV7Zu3cH5qK1rMnV4hGWR2xLOR0uT8e411nTBxVUmVy5fUdYDHPEBLmz5RVSYZ1NykBFzJcfR61mycwo5Hz5SfS5TRk7qa2vpXGcHfTpvge7PFWtY4aHByt/oBXGF2S+XL16isIPhDvlAnKYtj7GRa6MCpmfYCzLa8+rpfcz5MG0r10hkeCTnY5/fPkOcr2wH5eXk0aXuS3Sx6yLlZOU6XLuaN2cBrxuYn1PA6+oJPmADwXcSdUrwU+zX6Cle0c1tKeejte2cqbsukrVr1nE+cnNydHuOws+BDSX3oklNTmVsdFP3hS42D9b1u4Yl/t60fjPnIi8rj3KtuQN+p/AdBDN6iL0KDgnnfCQdTzN110UyfuxEzsfli92jfi7wc+UxXPwUe25q395vrz91ne/i67voEemIj42Mj9w+NnIyX4wHWLuSbTY9Sw7zmcDHLl8/U3ddKDVVVZwPrAmN9jzh6DVYwxL5hH579jE2ztP5s+cY4+cc8hEWHMa5QD3WqIj/1hA1Sj5Ux9luzsfChUtNvXWhJCUkcj68vXx0f65y7dF5cxdwLs52nKWz7Z1KzeX+9kAOBh2kbEsWZaVnUUjf3hr2BY3Sy7z3wRPOh6mzrpW9e/w4H5ERkbo/V8wdYq973tz5vEdjZ3sHdbS109y+fc7++ECvJGu6lTLTMik4MFjhzQi1fNzclnE+2joumDrrYlm+bAXnw1ZYaCw+2HzR0dZB7a3tvE+jPT7k35MTkikzNYP3S/La4a18nhHsK8FHaXmNqbMuFux9gI+a6irdn6sch446mu2Mi7bTrdR66gzt8vYdkI+MlAyyJFt4b9a1q170BMa+oBHqXYWERnA+jkTHmTrrYoGegY+bN64bwv+Qe922MjbOMDZOnzzNY7IG4gNcpB9Po7SkVIWP4caWuJqP4OBwU2dHQYzCh1rOMC7Q//pU80klVr8/PsAF+rSmMjtrjfuLuDGjxJaYfJh8DHb+kPcrTjWfopNNJ6mlqYW8d/oMyAfYSGFsJB87Tqv76sFpISKGWeQNyv1RtPqO1DQr58N3tzHiHF41qSgr43y4LVw0bD2BiJ7OIm9W7G3I/XXk40P1QcTv4KKlsZmaG5rIy9N7YP+ccZEcn0TH4xJp9YrV/Bj2HOUes/ZE3cdA/R5ci8gdFD1qRY6MVjWCqmpOcD7c3My9j9GQvNxczsfKNdn0rzGxTkl2wf/Su2Mt9P7kNvLc+zdNnXuV/75263e0cOVD5Th+it/F8cGK+2edig5CwEXTiUZqrG+knTu8BuQDXCTFJlDi0WO0qq8eDvTXXm0IWdS5TaKHnGBbjAvqPChH/d5NPozHx/ptz2ni9N91K2BKtlvARUNdA52oO0Ge2wfmI7GPDc5H3/wh52n0J/bmOMwVohejK/lY3dffyhTjzB9bPc8q8wd+vvGWO924/X+UntnFJSi0gh9bvCycikrv8t8hOC7+N1gZO27VS3FYDYyLE7X1VF9Tx/jYOSAfCTHxnA3MIcL/GM7+IPIjMZfJfMj2lchH1+L5xLDzNv3z0ZP2tlbOx4zpM4f0PqEHyDOV/Q/8LsZOjLWiBo7c/1b08hvK98k5tpD6mnqqq66j2qpa2tGX794fH+ACNhZ8kDXuL/gYTnyJyKN1hX9url8Zd/1KMDKQfy7G0eH659jLk/fzwEVtZQ3VVFTTdo8dA/vnjIsU5qNjfXdt3/oufH0j9DQw+TDXd52RmspqqmZsVJVX0bat2wfkA2u7WONNT0qlddL+ubzfqFfZvSeA84H8WlNfXSvjx03ifFw4r/+8NNhCcp0fcFFZVkkVpRXkseWffMgSFnyQ0o+nkiU5jYICggz1jMz4q9ETEX9lhPhEWT784GOqZFxUlJRTeXEZrVuzfkA+gvwPUEZKOmWmWiikr+aiUeaPSRM/5HxcunrL1FkXy47tnpyPDItF9+cK30P40zOmz6JyxkYZY6O0qJSmT5s1IB/BgUFkTcugrPRMCj0QYij/AyLyP0Q9blNc5PsFhXA+AgP01/NALViPFfG7qCMMLkpsJVRcWMzrk9jjQ6md6OlD2elWysnI4nYWjoENo+RHNTafNvMHR0GsGZmcD/eV+u+xgnwNkV+7bMkKKmFcFBcUUVG+jffvHIiPDes2cDZyM3Mor68+A/joL75d1H3DWpwe6jMkp1g4H0FBYabeulBEfYaJfTU6R0ugg47q6UCXxX7elk1bqYixYWNsFOYV/oMH9d/YM8+z5lB+Vi4VZOfRmPfG8eNynRL5p9iz0UvfKA8PT85HSan+83ReFUHOHfhob20d9XOBHg6lfgnircBFQW4BFeTkO+QD9a7ARSF7rY29Z/onL+pfGaUnJ3x0UR/O1F3XiK+PL+cjNTlFt+eorn8ljkeERTIuXtR6Cwvpf99M8PEB0y9wUcSYKmZzzrLFyxUf3Sg1TJB/Dj5W9e3fmDKykpaSyvnYsH6j7s9VvdaUxPvxvqhnFaiKQbfHBwR+SgmzyeC3bO3rLQN7zdn67bKf4or61FFH4jgfCYmppv6OsKB3FOpTg48J4yfp/nzVexW5vBdvDmVnZtP6dRvt2lbqY8eOxlOprYTKikoo+nD0sM9J3btBxJyp+xtoFceL+F3wgf5Rpg6PrKx2X8P5sBUYL2YBtngO4wK13rIsWbRoweJ++ZDlYPBBKi8upYqSMrKmZyrHjxyKcOo85LWt/vrjCD9Kq2vvvnSd9/9wd9d/f3YjS+KxRM7Hdo/tTn+GHJOIms4iflX0ihFj7HBzBiE+O3cqfsKcWfM4F6Ke1dSPpw3IhzjusWUbVZaUU1VZBVWXVw77HsInEusGgoOR7h91OOoo5+NYQrKpxyMk6O2M/mrgY/y4iZrwAf0Quaii7zF0R45pR86Es7oi+9Dr127gXGSkZpAlxWLXlrLHB/roVJdVUk15FdVWVtOsGbP5cfgfztT5ET2rxU/hd4wkH9Onz+Z8oD/nBLPPwYjI7l17OB+xMUeH9TkyH5gXxNwgdEQrXYFfLvseqH+YkWphbKRTuLR25YiPsWPG81h4xMTXVdXSxvWbFPaciTOxlyOIMUHu72wvh324Yisu53wEBBijtraR5K03/0VFBTbOx+JFzsUqCJ1Q53wIX1X079SKD6xdyXV4EuMTKT05ndKOp5Hntp0OfQ/5f/DP66tr6URNvdIDHmwMVOcH3Ive5vJxueeimC/FdYpjyAPTeo9l8+btnI/Os91mPJbGsnWzB+9/XpCX79T7+8sZtKf7g8kZBEfQM+Gv2BOswQr76j32/eAiNSmVUhJTlH0MR765kCj2/Q219dRYd4IK8wrs8oFrxPmI/pvCf9J6HhiOtJxqoyvXbpO//wFTrzWcO3Kt2ZyP4cRb9ZczKHq5yjaFI/8cdrtcLwSvx2fJ++WIIRRxJfAh5FpWH384dVB8KH1yNmympvoGaj7RSC0NTYy7CcocAU7FdakF5zkQw66WTZs8OB9t7efpnbfNOUSTe8rs7ZLCIsrKsOrmnKBz0Et5nBaCdTDopTxu7/Dw5LWmjzM2kuKTHPoe6v+DJ9QFQt2sk00tzDdfq5yH/N3gRKxH6fV5NjWfoUuXb9DBg/qvva/7ueONd8iSms75WLFspS7PEWM4WIBdI2ofCF0VrzkUdohzkRiXSH6++4bMBwRrV6hJitqkEWERypyI7xU9zI3wTOfPX8T56Oq+SlMN2G9UT+Lt6UN5Wbl8D9ko5wwbS9Q/4Tr87hjORUJsAruOY+TeV+dtML6H/JrYmFi+tt166jRVlJa/tE5mhHrVL68R2DgfVmueqefDGJexHgo+RB6RUURed/107gJKOMrYiDlG8dHxvH/iUHxzeZ+wjdlt7WdaqaO1TdlfhJ9jlFhFIRPGf0BnznTSufOX2NznZer7EOVNZlfBJgEfvn09AIwkBwL9ld/R1yY+Jp7ijsSxazo8aNtK/Tpw1XGmjTrb2ulsewft8d2rvMZo8wfEk90X8NHM/JEpU6abej8E2bJxK/Nlk3i861tvvmPoa4kKj6LYI7F0NOoobV6/ZcjvlzkqzC/kfQvPdZylYuaT2ePRSGK15lJnZxfl5xXxni6m7juW2TPnUmxULOdjik7y4IYi2DMX9g7swljGRczhGIo5FM1jsIYyd6gZwd7g+c5zvDd017kLNGGc/mOYBxLUaWpuOk1tbWcpIvywqf8OZOz7Eyj0QCjnY8M6/ed3OBLMFzGHYig6MpqORBxR7CBn+fiE2SFd585T9/kLdPFCl1L/HfntRqj5Y0/Q0xd8nD7VTls2bzM56EegO4F+gXTo4CEK2BtgyGtAvKC8px0REsG5gI3lIT17Z/mAoLb1pa5uutx9kSrKygf1fqz9Yk1Ny5hDLcVjqyfno4X5IqvMGPh/+uOMjX17/Okw819D94fqzt+EfmE/0NG+m7zWOm3KDIqKiOLXBOZnz5jrFBtqRvz9AujyxUt05dJlunr5Ck3ry0lX1/mFYK0Z5409Er3UbOhPwpl9BT4aG1rIbeESkwtJdm734jZ66IGDNHbMBF2eIxgR+4D4qd6Pg40jzx2wDwUbkaGRTttWaj6wNgourl25StevXqPIiEMv8enoPPUsYQcjOR9lJZX00eQpJhvwZ7ds5+uf4GPc+/pkQy2YRzAuQ8S4LNdMwO+CCwhyP5y1rey9D+tYN65dp5vXb1AX80XEcRH34mx8Cd4vYgDkfDG5tr18XGtB/nSGJYvqaxuppqqOVizXf32zEbOp3niHdnvv5nEX4GPu7E81+dz+4tHluHVZD+z1IxvKnIL3ihgPxa6Zt5BzAUYOM7vhk771fWfZUDOyedNWunXjBt2+eZPu3LrF45u1uHe4P+I6RL4Yfse9EvMQ/Bgt+4TYY+RYXCLno7K8mpYv1Wdc0UgK4qoi2FyKeG/wMW/OfM0+W+YD9oWIzUU8FJ4zjslxrbDR5ZheZ0WO3Q3YG8htK/jmQVI+kFZ8QLq7uuju7dvUc+cOs0dKleOIGXa2v5SIQxb153CfcFy+P+r8mJGSA4HBnI+y4nLy8vR5bdhATSfMF8gzjT96TPM1fDUfIk5Qfq7qHLrh8AGbX9bHyZM+4utVWNM9ymzGFcvcNWFDfIb4nKjDRxgbd+leTw/13rvHa1+L83E23kSubQI2BPOjwQdkl88ezkdxYQkfT5Hr8CqzsXTxMs4Fanhg3tCyPiiepbB3ZHtJ9NxzFR/bt+zgvhT2cOKj4/janFZ8yJ8zacJk6u25R/fv9dKD+/cpNSX1pTlE1Px1Zv6QfSxxf4R9JeZfV+nMsiUrOR8FuYWUnmxRbNVXSd5m3O/b689rnaF2INY9YWNp+R14biL3QuZD9PUWeaVqO1v0PtaCjX+/O4bHkcQxLhCPOJw9j8HYWCnJqfTw/gN69OAhPX74iNcQEuflDB9q/1zEILvKP+/X5mBz8vGEZMq15vEaMKiT9+Ybxo47EjJzxmzKTLfyuv7gY0df7vVICJ6nPX9b9AwfrH8+2DVRdS11xI3BdkQse1J8omI7asWGmpFFbksYFw/p80eP6Mnjz8mS/t+6KHLd+IHWFvSUXzigz8rGWF/v3ZyPjBQL8+2iaOb02cadM956l8cL1VbV8H5iqB2IWG8jnDvWoxz1Ascarjx3IM8jAb2Y4xJ5nmCAX6Dmc4e9z6upqqYnn39OT588oWdffMHG2hdMwAfpjw+57hd+GmmPBHH98OuQr3w8Lon8fP2UfGUjyDtvv0s+XruoqqKKTtSd4HwE+u83jG8l7C0xt/S396yeO1atXMNjKnlPzaRUJbZSazbUjKCey1PGxbOnT+nLZ8/Immnt9xzho6lz6/VUv2GwAttqjftazgf6w6ckHKcD/geUnBh9cvFvnpPQUN/Ac0CbG5rJkmahWTPmGO7+i7xV2eaGLSLGWfXYjOcFnyM1KYX5kGl0QOqlOdJ8QOrr6umrL7+kr7/6ir75+mt2bh+95Ic4uh6jCubsbczHAx+W5HTeays8JIyWLtJPfy3EO4SFhtPpk6fobEcntZ1pY75GCa1+BeLM7I23sE3UfHiyY2noM4temmkZDmuHas3IksXLOBfffvMNffftt5STnfOPdQtH86GhOWGce2334nyglxD6QaCvEHLrRiNOBfW9tmz2IFuBjccCXeq+SBfOXaDqympat+azV279DTom1yoBM2LsRW0r1H1DriPqR4cGhY743GHv8xsbG+n7776l599/Tz88f05zZs9TGBf1IvRc10QLee9/xtLGzzZRSmIyldlKqKq0gurYeIBeRGFsXsE4MlJ5WDOZnbR3zz6qKK/ge1J3bt3m8T/gIzU5lZbrtL6IlmMUbBKxhiyO++32o0zGRZbFyuuzfzJ1ukvYUDMye9Zcev6csfHDc/rxxx/oFJvP5fU7Z9Z7DT33z1tI+5nfW2or5nX1TjY289oWnW0dzCeu5WvjAf6BtHD+InJbuHjQn/vh5I+5rnszH/vwoShqaGikL5lt+wXzAR8/esz3osBHfW0d+Xjv4vbV63LPsWYl1+ydOmUa5yI7M4tys3IoPNRxXd2RnEPycvPop59+pJ9//ol++eVn2rTxv/m8qCX/OvEhyyKm/wF+AZSXncv5QP4lbB7EQN+6cZPHITxkev3k8WPqudtDjUznW5pb6DTjqa21ja5fv0Z///0X/fnHH/Tbb7/SLz//zMeg77//jtkV33A+7t65QwX5hbSHjZeTJrq2BrfYG5fXmEQtZfl14pi6759WgprpcuxGVGQU5TI7F/e9IDdf6Z/pKjbUjEz+4GN69uwp/frrL/w59vb28j1L8TqcuxFrOWgt2GfY6enF+90VFRZRO2NA8PHl02fcj4ONCg7++ON3zobMB7g52XKSzx/rP9uo9CEeLZH3IsTenhwrhOOweeS+SFrnyqljmlatXM1rD8G2teUVKLmuo8kHJCb6KP3+22/8uf755x9ksWQo/0MtoMHUfBc9D15HdqDrS5csp2VLV3A7asVyd1q5Qt9x9jIfok+s+J+InVL3vRlMDN1Q1v5l+wR7ORlpGbxWNGICcqzZyv6Oq9mwx8h9Nhb+xcYIMe7Nmzv/Jc4HYgRzL9a4hjIHi9rv6mOjGZPyOom9vWyRC4RnqeZjsDGmYv12oH0Ae71igwKDyMZsTdTYKS0qZuPyCkVHR5MP8d0Y78DFf/7zN5fr164pr4Of3h8foi79UPdF8Hq5lyHElTkjr6uIXnkyH7jn0GscF3ESzvIhPg+2WX/2BHRJ7hUL27W4wEYltmIqKy6l6KjoUbOrBppDMjIylfnjr7/+pNijcS9dkzpXXe6l5eyzku/5aMXEv04i9rZEbyNxr8Xfon65GK/wt4jLFvPKUJ6vus+HOg72Ra+FHN5LtrykjCrLKuj9MeN1wYaaEfjlDx8+5GzA1oIvMnfOp8p1idgxjDNyroezop5DTD5cx4jc50iMdSIvUJ0Pqs7tGYqI/jLCLvj/9s6rO6rriuP7m+QtPfFaNmAMxnYotmkuGGNThCqSaAETI9s0Saj3gnoZ9TaSUO+oSwhRDCYhxo5jkwcndpYT8hFy/mfYw5mrOzP3ihmQNPdhL8FoNHNn7vmdXc/e2hpYOUu2oVFw0UytzXaKjIhaMrpDz87avXuP5AJxF/jr2niW9vP6Qt+r9u6zOjNiif/E3X56YF+Q7Jve2txC7fZWSlfslaXCht71FBYW0f8ePqSHD/8rY5Pt7Zdd/C9fMKGdgWL554Hh+/C/kTOFP97W0kqXW3EmukHO033WPrlRO+ua0KlgA3mR//z0Ex079rjnt17fLEsCS8zYD4hVqf74r375G8oXrOCcRQdmZF7ukLmPpao79Ows+B0PHnwnc+rIeSG/zvVZi7F3l2NNvCX6AnsYeUOjjGjjuZ/GfCa4aJf1NN2dnXTuzLklz4be9UFngAvUn/z7xx/pzu07Qrc8jvMaqT/h85mQQM0frjRfgmu7jTCCNaL645g13ins9e6OTurp6qbS4hJ5LnI5sKHHiM1WJeuGfvzhB1k/MTU55fJcT7OoVDbMxgYtMbdmub6P6xhU4TUM31Gvxsqs4HW8MaKXA9y86XXqAhedXdTXjX5+reK6X1nSPocRRqanpuhfgg3Uwf/z+++pvOzxWRHsDXq9gfzBhtozGz/5vmBtcA8a9fFA8nvVHjJ8nkKdV4/vhecu809/MqL1Odave0X2Ru/t7qb+3l4a7OunvR/uWzZ2lSdf5LdCR3z91Vf0vWADZ6lQi6fN+6j+ur/0BmKE3GuG/43HcX8Qv8fjPLM+UPnAOsX3ro39afPlvupvqMcI1oJabwH7qaaqmvp7emmgr4+GBgbouBLvWW5s6DGCsyL3v/xS1mbj3CHO5UYr9ZWsQ/xpU6n3WM0fBnpeUdu/DWxg71D1hC/7t3ljROUDbMDHGOgVXPQP0PDgIMXHxi97NvSu/3D0UcnFPyAPHsjeDtFRh13Wpj/9DT6TyXXYHBMLVD7w+bmvK/PBtiY/h8+A+osPLSPqdw82ykpKabC/X3KBWbHVNpvzPOZy8zmMMAKdAS6+g3z7reyDgn4oauxvMWwY8RnVHsi8RwYyH7wuwYCefcV1VXge26V4jPcZT9wt5lr4vfix2POx0pYaGRqi0ZERYWNVrTg29BiJvRAvufj7N5Bv6M7t27KnnzvfzJuos98X439wr0uud1TPMgQCI/jM6ven1k0xN8yItsZKT/A7rX/pSWBPac9ix12Ik2eTrwwP09iVK9InX/XCmhXJhh4jRYXFssfc377+Wp6h/vzWLScjHNuDDertbBXPq7LiV0tLcE+81RLhPkO0MX74F8zF+Oio9Mlxrnyl+BxG/HVIYUGhjGt9df++8N3vyzMjEeGRLvuKpzoUPidgrcelKbg3nvYarZ2APo8X4+KlLQUuJsfHpO+h9gdfqWy4Y+RSfoHsd40eHH+9d4/u/eWeYMR1piy+Qz09gu//afbVYt9EW6/tizruJ7WR9HSouodzvz6t3eRPwb1x50tqZx/Dr4DvPT56hSbGxmhqAvOFB5y9eQKBDXeMoO8NZiZgdgL61Pz57l0KD4tw2Wegf1UblX3Fp3nd7mb5cA8/PI718LR1mruYghpz4np/PsMEv3yxHJvZk/i78nQvwQZ8bwcX4zQ9OSl88sGAZMMdI3niO0Sfm7tf3KW7d76Qvc6ys3IW6BG979yoD++LPZPrK9R+A2bjX3weVe911cfVnjme7BQjfGhzHN56obu7bvCvnmM2Iupepu3HA7+izW4XthS4mKDZ6SnpewQyG+4Y+ePxE/TFnTuyjvH257dln6jiohLZO1N7j8zudxxff5I6YNYNfCZrsXxon6PXB4djr+qcPr01yfVS6uvx83zNBwTXgs9rNsan54ughwd87ynBxczUFF2dmabmxkZaverFgGfDHSNhoeGSC/TJxLzcm0Ja7a0LegJqz+h7W9fa3NNi7Stf5N+1z9Hrg6Ndz3q9Wjk/oe1FwTFqf/Ch5nCN2GccuwUbKh+Rh6KkjzEzNUmzgou52VlqaW4Se+HvLDZ+5jn2u33bTvHdTcpZ6+g3iH6y46Njsi+UGhvkGLCnPqZm76c3O0Gt0eP1pvZFwz7vLfbviQ/+ndH1zPU4Wv3B+7zKs1YfPUlcytt+w3Fb3CPVnoKvkZSYJH0M2FJzszN0be4qpaelOdlYqfkNXzLy2qsbyd5ip/m5eXkW8drVOdmfEzPztHoEexTfD70935f1KlzjbcR/0PtbsONLPvh1te/Ldpe7HqBPkuPB6/Ce4y5PiF4c2tg8fI36ujqaEVxcBRdXZ8XeN0dxsXFu7QlL3DOC/QTxX3BxdWZW7DezQh/PUHlpOa3SzCDWy5Xw3mrGn8Tf+CtmzPu62oMTotcHBxyp8SboK3/GsrV1V0Z0Kc/fUB+HrtDGbiFRkdGyhgo+xpzgYl5wMTE+RiHBoRYbT+iTQGfMTs8INqaFXp6SttdA34Dsx6n9W/Qz3bFth7P3j96sR2+2gz8/G+c0Vf9WL3/yLPIVZnxunkHL3y9s3OCgoAXPgz2Vl5Mr7t+0tKXm59Cj+5qMWcFGsNjwDSNb39xOg/2DNDk+SRNjEzQxOi77omemZ+nO13C3v3nzCwL5nDs4NfP5tfpZew4UvYSRx2Af4/r8nPAp56m4qMglJmlx4RtGwEFJUYn01ccEG6Mjo3J2WHdHl5xDo713bLfonU980v2TayKXeq0W5wWN9joy6qexr8f6TbX9pM7IzRO21GMf44bgAnHc0JAwS2f4mZND4ZHU09lNV4ZGaGRwmIYHhuT8yfzcfMHCahcbwPH8cJd76s7+NlPnyP7pUp8bh89kJl8B7o18JthS2He0+wPO84wMDzl8jEe21K0b16m9rY3WrF5rsfGUGHnh+TVUkFdAQ4IN2F3wR/p7+6mvp4+ORB919rRQ5dMYR+xLrx8E9102aofweTejdps/bCF/XCvWuyeWsNfoxdNh/zY2NDh9jOuCi5s35unzWzfok5hP3MZgLPFffAuCmZTtwiboF1z0dfdSb1eP0C091NLYQnuUnmGqnDpxYgEnZmwrs3uymedp+9p6ih+Z1XVGbUG9fvrgQs9OXf3Ci5SSnOKI14KLaw4f49bNG1RXW2vpjCWhS1ZTcmKK5KK7o5u6hD/SebmTOts7qLKsknZsf8sjJ7DRzfQi5dyb0b8xupY5V2NE3+CajeY7+XWN+t5qnAL9p/S4gI9x/ux5Ga+99ihee+O6sKVuXpc5cdRBeLpnljxdRiCbN71BVRVVkgv0ncRMzHZ7O7W1tFFqchpt37rT4/qF3eBtFpyaGzOyH2MNG12XZvgw04eKY3lGfG9mwd1zwcWpj/60wMe4KXwM2FIJ8RcXxKYsLpYWJwcPhFB9Tb3korW5lexNdrILe6uloVnO4NLLm0B4Fhxyv57m+Zip5TKzjs3wAU6NnmHlGhtPsW7Orerl9iDIxyYnJcuz4At8jEe21B9e22RxsUw4gX8eGR5FNbYa2QO/WbDRVN9EjXWN1FDbQAW5BRQaHO6cUacK+MA+ip88s4SFax2N2kx4nlG73wwfZuw2COdKVZsMewByqZ5qPbe+sU1yMaupCXH4GNclFzu277RsqWXEiAsnYv1HhB0iW7lNcgG9UlddR7VVtVQr2KmprKaTxz8SHGzUtTW4vovXD+eMjdr+ZtawWT7MxBS4phA6B58HXMCW1PLPNlTQ/oN0ua3dWXfu4mMIW6qupsbiYgXZXNATYSHhVF5c9oiLGqquqKaq8iqyldmosrSSMtOyaM97H9Bzv3/ebSyI+6ZhbcEe8+Ua9of+4F5r4IJ7frmr5dz17nuUmJC4oO5c9TFqLS5WPCfvvLWLcjJznFxUlFQIbsqprKiMSgtLqaSghOLPx9Pud9+n59zYRiofsefOSN8e/2ffhdefP/lgH5rXO9tLfE3Qf7gmT/X/mCudINhB/xzHGT7XunOuCcnMyBCvbXERKHYX5I0tW+n0qRipU8qKSgUbJYKNYiq+VERF+UVUmFco/ZTzZy5QSFAovbzuFY/vw36Lao/xHs9xUvyOGWKfmDlT+eBz2nx+Qn0+z4Xg1wYT8KtVP8JdTQ3yqvv27pd9QtDr2dEnxHG2VdadKzUhYCbmdIxLDsPiIvA4gT31/q49lJqU6sLFpZxLlJ+dT3lZeZSbmUs5GTmUkpBCR6OP0ds736X1L20w/N5qXwKed81ccMxI5YPzcVj7bCMxH/zTSL4fuSH0p4z5OIYqyyucvQjVPiHsY3DdeXpaOu3Z/YEhfWxJ4NhekDWr1lLowTBKjEt04SI7PZuyhH+SmZpJGSkZlJ6cTmlJaZSamEofn/yY9u7ZL9byW/TSi+u95lD8JevXbaCdO96mw9FH5AzwuppaZ79zcME915x9QuBjPKo7L8i/RCEHQ1zOt3raUywJbJ0CQe3Eh+/vpc9On6GsVMFGimAjWbCRJNhIFGwkpFLKxRRKjk+mpLgkSoxNpIQLCXTx/EU6G3OWDh86QhEhh2jXO7tpp2Bn3dqXpc7Rnu0yIvCbkF/Y+Npm2r51h6zRjIyIpLSUNCrIuyRnKnU9mqnU19Mj+507+zo7uRh1+hjDQ4OUn5dHwTpMWLrCErOs/OLnv6Y3X99GYcHhdPaTs265iD8XLwX/xuNJ8UnSJgNPGULnQP9AF+Vm5lC+0E+w4QrzCqTPA/+nTPhCFaXlZCurpOqKKqqxVVNddS011NZTU10DNTc0kb2phdpa7HJua0e7Yz4lz1SSs2PAxQD6nQ+59CJEL/RTJ0/JWkKzn98SS8ysFfgDr27YKPXLkcijLlyAFXADhmB/wRaD7skW9hlstTzJRb7kAv4OYgKID1SUlFNlWQVVVdhkXqauqobqa+qoUXLRKLjArG87tdvb5HzKLjmfsssxU6nHMVOJbSnMWsrKyJQ6Bn10Fvs5LbHEDCue1hHmZMH/eE/YU6FBYXTi6Em6cOaC9FtyMrIFF7nS34fvX5RfKLkoFVwgflZZKrgot1F1ZZWc6y25gM6ob5T5/9bmFsFFq8zZ8XzKXmFL5WbnyPOrx44cp30f7pdzg33xWSyxxN+8aO2zDetflQI//sC+IJmjPnggmIIPhMj4cehBIcFhhDxmeGiEzPuznxF1KIo2b9wiZ1Ru2fS6X6/VEkv8zczTXovP+v0tscRX69aXYn3HllhiiSWWWLK05P9QSwECFwsUAAIACADaiD5be8ePKIY/AAAAcQIABAAJAAAAAAAAAAAAAIAAAAAAZGF0YVVUBQAHJQ7caFBLBQYAAAAAAQABADsAAAC5PwAAAAA=</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #1</Name>
|
|
<Index>1</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPltKQ2adzj8AAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J33W5TH2se/f8l7zvWe6z0nlphmYmKLSYydqMSCit1YjhpAEQuoCCgiSpHem3RYdqlL71XBgqjYY4stMSbn9/POPTDr7AMoC7u4C88P98Wy9Xlm5jN3mfue+fvf/oG/q/Le5G//87+DFrW9VBkL494Wvl8VVSw1TtVrUkXlYXDjbuHCxVzc9rvDzc0d4RExSExKY5KKouIytJ6/iNa2i2hp7UBzSzuXpuYLaGw6j8bGNjQ0tqK+gUl9C6Ki4pnEITIyDocOHoGT016sWbMec+cuxOTPpph07WpfqmIJJgZ6zzfffI9Nm7bCy/skUs5lop6N7Y5LXWi/eBUXOjqZXMH5diYXLqPtwiXGxaU3XLQquGgiLtoMXNTVN6O2jkltE2pqGlFd04Dq6npUVdWjsrIOFRW1TGpQXl6NuLgk+Pmdwa6dzpjz/XyM++BDlRdVRpSHCeMnYaWDI3x8/HAuLRuXrlzncvHyNXRc7jJw0c656JS4YCK4aOsw6Azioqn5PGeDuGggLhqICyaCi9pGxgZx0WDgorJScFGDsrJqlJVWoVRfCb2+AvqScpQUl6O4qAwpyWk4cdwPG9dvwfSpX6usqDIsLvp7zc5uKQ4eOgJdfgkuX+3G5c4buNT5hgvOhuBC6Aziot2Yi4LCUsQnpCAuniQZe/fu57JnD4kbFxcXkn1wcd4HZ2dXLj5ML0Uw2yw8nElYNNcZxEU5cVHGuCit7GGjpMLARXFRKYoK9SgsKEEBu+4CXTHytUXIYEx7e53AimWr8Oknn6usqDIkXeHgsBZBweFoZuP6Slc3rhi4uNGHiw6Ji6TkdPifDsI+t0NYvnwVFiz4gescS1z/jOmzmB21AJuZbbdrpxOCg8KYvkhnXJQyLhgbggtdEXTaQujyCqDV5CMvNx+aHB1ys7U4yz6z1nEDPvl4ssqKKm/VFYKJFsZEZ9dNxsXNHi6u3uhhg7gQthTjIpeNt2Nevti48SfMmjXbau5v3AcT8f3sedixfRfTPb5cZ2g1BT1c5OoYG1rGRh5ysjTIzsxFdkYustJzEHgmGGtWr+vDisrJ2NUVU76YiuMn/FHJ7PvOa7cUXHQbuCDRMPuEfPBFC5fY3P2TLbV8mQOOHfVBSlIacjI1PVxk5CAzPZsxlIWM1Eykn8tAWko63A8ehv2SZSbZoaqMHi4cVq1FLPMBrl6/3cMFkz5cMImKTuCxKUvZSO9Lpn41A7t3OSMyLKqXi0zGRQZSmX2Wynz6c0mpSEk8h2jm92xctwkff/SZyskY4GLLlh2oqmnkXFzt5cJIZxATMcTEtlHHxEBC9tRmZiOGMttScJGckIJkNn8kxSUjMTYJCTGJcGI8kb5VORldXEyY8BHc3T3ReuHygFxomS+7afPYYWIg+WrKNLg47UVUeDQS4xgXsYmMjQTER8cjLioOsZGx8GC219czvlE5sXG/m3PhIXEhbKleLppbOxAYFMbX99T2M5YP/jUBS36wxwnm3wsuYiNiERMeg+iwaEQxu+yQ2yHMnD5L5cQG41FkR7VJXMg6o6Kqnq9njHVdMVghXbHPxQ3R4T1cRIZGIjIkAhFnwxEeHIYDrgfw0YefqJzYABd2dvaoqm1C1wBcbGY2lNp2Q5OPJn2Kndt3GbgICwpFWGAoQgNCEBJwFttY2/7rn+NVRqyQDfIbM7I0KhcjwQnTFTu2/huhgT1cnD0TjODTQQj2D4Qfs8eW2C1VdYkV6QzyMbpu3DH2Ma4x/6Ktg3GxXW03C8kkxgnpDOIi6FQAAv3OIODkaZzx9cdBZnNNnzpTZeQ9siFsKaWPQTkhqn8xckIc7P15D2eDi99pBDJegvwDsMFxg2pzjRAb4jHFpU74nu7XloqJTcIXihi9KiMj8+cswElmX5EuCT4dyOyuIGZ/BePEMR/MmPa1ysgI6Ixvv52DgqKyXp1h7GPYKexer2Pe3AZQ29Fy4rrXDdOlsU+6gnRGCPNJQplvEhYUwnz5UObTh8Fx1doB5zxVhs+Gk7OrwsfoyQnxOX6qjy1VWlqG//73v4iLS1Db0oL+x+vXr3k7O6xcbfQa6QtfrxOICA5DZEg4okIjEB0WCR9Pb3w86VNVl5jZnhK5Usq4lN0iY52xa8cO/pf6i/qNRJ7fVDGfZGfn8vZtbm7h/69auRKffTrZSJds2bAF0aGRiAmLQmxENOIiY7g+mTdnvsqImewpni+lyAmhdW9ZZ6xfu7bPd1G/yf2nivlkwfxFhvlH6I4P2Tz2z/8bhzmz5/DH4r20vniG+e1xkbGIj45DQkw8kmITsGPrDpWRYbCxZct2XqutzAlxcHA0vEfMV1992dcnJ72h7ENVzCNi7iEdonxN8CH3CeWr7Hfdj8ReNpLjE5GSkAxvZm/Ra6pPYhobVJOhzDunHEJlbGrRgkVv/d6gwGDejw8fPlLb2Yw+ObUp+R5vs1370+mrVqxGSnwSzjE2UpNSkJZ8DuHMd5/65XSVkUGwMWH8R7yGT5lfGxgUamRPkZ/Rn854mw9JrKjtPXyfnOYaU9pzj5OT0f+UIxwXFYv05FRkpKQhMzUdSXGJ+E7KE1UZ6Z8NXaG+Tw3f7p/39NEJQ53v1DYfnsj62NTYuWzjkk0V6B+ArNQMZKdlIicjC7mZ2Vj+4wrVJ+kvRsV0g65Ab8RFU0s7Vq5842sIfUG+oalxW7KT6XPqGB+ebP1pO2eD/pryOeov4oP8RfLh6blxvT5JTkY2YyMHmqxc5OVosGKZw5hnxChGxfQqxWrl2tbG5gt96jIofijrBBJ1zL4fG8tUpmitVvShHAMmcd7tjLxsDbQ5edDlapGfp4PHQY8xy4h8r8QAxaREbStJnq7IyNeQuVDOSUPRCSL2IuyE0b4+Iq8FyfE8um/hS8hxcGFDCZvUVF0hC/1GfzEusU4lhHRGvkaLAsZGoTYfRboCHHE/MuYY6Y8NeZ+QPO0bNkQ8/W3zGLW9KfMZ8dTVdc3wP62zj3a/XcS5le1Ec7qwU4XfTdwQE+K99J6hrh/Rd1D79tc/ZCtT38q6ZOXyVZyL4vxClBQUQV9YDM/DnmOGEfn+iA3yL+S9CDVaY71BbSivMw003k3xRaj/5f4mNsZCXIvaiMY93bu4X+W902tC1wzUXqb+5tv0O7GhtA0cVqzmXJQWlaCsWI/yklIcO3ps1Me1jONUk1BeWWe0F6FGW2hgo792G6x9q/LR/zwuYkfCpqJxa0k+TPEPaT2RxGBPO6xBGeOiXF+GitJyVJZVwIn5KKOVESUbebpio70INXlv2KC+HErO7WA/Q/0t21dknw2WrdFiX9H9UzsQG7J9Rc+LvBHxXhrjZCOZ2hemzDlkI5DIfuCaVY6ci6rySlRXVKGmshpr16wbdYz0ZaPIaL/zXAUb1EcklsxLH2v+ubB1lH74SPjnpugb+j1Z5ziuXsu4qEJtVQ3qqmtRX1OHdY7rRxUj8j0EBIYY7eucqykw8jdo7hJr3ZZmRBXrEcFGf/lcpDPqa2rRUFuHxrp6lDNd9vXMb0cFI/K10761hv3OL11FXUOrERvHvTxVRlQ2+HM/bd5sFNfavnUHmuob0NzQiJbGJlRVVOLzyV/adExLvuaNm7b2ctFzRgad/SL2O6d2UK4XqYyoekMZ+z3p64eWpma0MhuwraUV2ZnZhvnV1vgwiuMyDui8sZ6zY3rOVKIz+cR7KYbbX56hysjYZUPMm8oYZmJ8As63tuFC23m0n7+AyPBIm7SzZH9cX1pldKbSzp1v4nTviuHKjKg1TmOHDVnkWqsJ4z9EblYOOi6042J7By51XMTuXU42xYh8jRGRsUbnU/r7B/WZI971fcSIiNfLz1N8Us4HpTYX8Xy1Fso2+HgXG2KMyDkU38z6Do3MF7l88SKuXLqEzstXYLdosU34IvK17dzlbHQ+ZVa21mAv/rjUflC1G28TeW2L4o9kg4l4vlpzbv1iyhxG+kPO11q5YhXj4jKuXrmCrs5OtLW2Wr0vIrNLvrd8PmV1TSM+//wr/pq5/AiZj4HWgdVxaBmR80bE+joJrSOK52nO6u95c8lxnxPounoV17q6cP3aNSRIOUbWyIjsc2Tn6N6c23r+Ij+nUp43TM0pVPmwLpHbV+RzifV4sdYuakREf5u6Bj9Qn8t2QVFBIW5cu47uGzdws7sbe1z2WiUj8rV4eh5nbFzi+yrQmcZ+pwKM9KTwKYZaryRYUPmwDj5kX1DoDHrOXDmOwuag8aLsU9qTvKO9Hbe6b+L2rVu4zPyRL6dMtSo+ZLuKzjIWZ323tHWgoFA/YM4h3TPpaVNrnEQOCsW1BBP0HbL/Iednq2I+EW0q8yF0A7U9PTY3HzSH0vcLvUH7cZD/Kl4nnXGHsXH39h3cu3MX2jytVekQ+RoKi8r42cgtrR1obmln92bHn39bnjqNbVNrZUX+mxq/Gnm9QX2ltK/EY5kDc/Ah16coRY7vpCSn4N7du7h/7x4e3L+Pfa5uVsGI/NuurgcNXJAcPuJleE25X9i75ghVrFd/kJ6W9xOj+Yh8DRr/9FfodPqf3kt/SZ+bkiMt7KmB8iJpLMl7B01k/5Ov/uCXX/DwwQPcuH6dP2ctfFAuTHMvG03NF6DLL8b4cW9iuYNtE3X/BNtghNiQ7VfqN3puoDUqU/pV1OMO5jOzZs4yrI3sc92PRw8f4vGjR3jy+DEyMzLfqw6RfzMuPplz0dR8Ho1N5zG/164yhY+xJIuYn0ZrWh6HPHDE4wg8jx7rsSVi41CqL0VYaBhO+fnDz+8UTp70w+7dTvjRfjmzKaaPKT/nXUJ2ibx2WFhYiF+fPMHTX3/Fs6dPYW+/7L3wIfvky5Y5cDaIi8bGNgQHhxl0oMrGPzD3+/m89i3oTBDytTqeP0S5EbTue+PaNdy+eRP3797jcx/168sXL/DHH6/w119/cnn9xx/4/fff+PPPnj3FkyePkZ9fgNP+Z7Bt644+55GPNZHz976fPY9z8fzZM7x4/hxNjY3vRYfIv6XTFTM22tDA2Cgtq8Lk3rxjZf7lWJFxH0zAih9X4riXD99joJzpA6p/o9qe5sYmzkdpiR5pqWkICT5rpD/2ux3AhvUbea6qrD/Ky8q5XhF8PGQs3Wd+6J07d3Cz+yZqqmv4ehnlXoxFPuRxdjY4BC9ePMfLly/w228vue5VzukjpTu2b9/FuWhoaEV9QwtcXPYZ3tdfvHo0y9LF9jh80IPvBZjH7p32qSE+0s+lwZuN/W3M11wwb5EZxsM0rHVcz5nS5Go4H7R+fLWzE5cvXoK+uASeR44xn3DKmLHFKCYg1gk+nPgxmzvucZ376tXvbC55wJ8bKR0ifmP8uA+ZvqjmXFA9h15fyZ8TcTmRnzma41J0vsXa1ev42Ui05zLtJ0t8hAaFYMO6jey+Z1r8GiZOmMT3M6Ax0tjQyHNbqT6CdFV0ZAzsly4btWwQE6I+WF7zcmd+Hdmor1//gT//fM118UjoEPn7XVzcUM+4qKtrRm1dExwdN/SJz8k1zNR/o2XNbhKbj7Zt2cbPAKdzXxKi43A2IBibN2zBJx+/X5tyxXIHhIWEcT7qa+tRU1WNTMYsMTRauBDrKfIeAspY8PXr17n/9p///IVff30yIjpE1h2kL2qJjdom5OToDO+h2kg5j0R5H7a8JyjpC4dlq/gZrXT2JPHhsd8di+2WWN21kn3lcegwigqLUFFWgdJiPaIiojD7u7k22/4i9qucd+WxJx47OblwNkiIE/LlLOmrG+kO532ci5qaRlTXNMBxzZs9JfpbBxR7Gov7ssUzASkme9rXH0GnAjkf+1xcjc5ktVahueznXU583+ei/CLomF/kddTrves5U4VsdlErJ2pHlPaIsmaiu/sGZ4NsrMePH1lUh8i6o7i4vIeN6gZkZ+UZ3qM850EpxDrdoy2tA9JZku4HPJiPEY6QgLPwOnwM3/bWzttWXG0iDrsf4Xxo2NhKYv4S7TFlK9cv9hx6V+4prauLeJbTz86cDfJDSCgWaCk/RHyf45oNnIuq6npUVdVhzeo3uuNte+XKvomt9Mm8OQsQFhyO6PBozsfqFauNzrq3RZk2dQZCgkKQlZ6FtJQ0rkvk880sNbaFHUT9L9vc9JieIxtD1g/K/eXoPYOxzZVrCtevX+O+OsmDBw8sYmPJ35Wdnce4qEdlZR0yM9/URx5wcx3Sd4t8NyHC9rJ0fc27ZI+zKxLjkhAXFQ9vTx980VvfNVrkp81bOR90BmBESAQ/Q3Mk+FDuXyn2cqQ+Fj622MNxqL8nn6Hw824nvHr1isd6KeYr6tUtwcfSpcs5F5WVtaioqGG/7WKS7uhPqF3EWomcq2OJ+ppB2SFsLj3DfIxzSamcj61bto8qLozs9SnTcJbZjAkxCYiJiIGdtK+MpfgQezaK/hb7VyrtpuHwodz3n/IWiQ1aL+zs7DSrDpG/IzwsmnFRi/LyGuh0RYb1jqHqDqEnSK+KfXCF/WXO+prBytSvZiApIQXp5zIQExXH7avRyoaQnnNlD3A+SI9s/2mH2b6b5jqxfifbV6JWh0TYV+bkg4Rym4QO8T1xEr+9fMnX1F+8eMFz2czNx+TPpqCCcVFeXo2ysip4HvV5a8zKFBE5oUKXvA8+pk2diXPJacjKyEF4SOSYyQUUsnbNes5HSGAIs722meU7yV+guU8+Y2Ug+4r6V9hXpE+Ge1akvO8Jxa0of43yTp4/f4Z4M9aqi8/vd3NnXDA2SqtQqq/EjOmzDHME+QxDXSNXtp0l6jMHw0Z6aiZymW8VxOyNcRb2V61VKIZNfAT6B/K1TnMxIvvbQ/XPhyKyPkqIT+B5i5TD9vTpU0ycOPz6EPmz6WlZbCxXQq+vQEy08foFsSFqW03d61u0iznra0wRuvasjFxoNQUICQ7jcdCxyIaQhfPtOB/+vv7YsG6TzV0/sUZjhewQOd5FeTaU20s50rSeTrmg5uJjyeIfuc7Ql1SgpLgcqxx64uaUf081Ksr5QulLDGaMmqu+xhQhHZibo0VBfjHCQiPHPBtC5s9dyPnw9fbFOmnt15pF2DE09oQtQ/aVPD4vdnTw+hCqn6qpqRmWjSV/5ugRL5SUlDM2ylBcVGoYR2TjDeR7iFwAa80nodhCXl4Bu58yRIbHqGwohGITxIf3EW8ssbPOOh6xJiLGmXI+Jj7kc6m8vXw4G1RjSPU2X06ZZhY+cnN0fBwVFZbixPFTBjaUusOWJD4+hevElOR0lY0BZM7seZwPr8NemDt7vtVdHzHxrhoKmr9F3gnVBjx69JCzQXXqZ04HDJuPxT/Ycy6KCvUoLCjBD3ZLbZ4Pby9fvn5D+kPdE+Idca3V6zgfXsyG+Pwz26spITZoTyDxf1VVFR48+IWvibS2tAzJxpLfe9jDk3GhZzZ6Cfdj+9NbtiT29it4fgzxQX6VysC7xXmXC/x8/HBov7tN5tfI64W0988v9+/zvYBIZn83Z1h8ZGVquP+aryuCD7NHBR/y/iq2IlT7W6Kv4Hwc2O+hjv1BCvU36Y+g04HYtH6zzV2/vB86+RzEBe2XdffOHezd4zpkPqjenbjI11JedCFW9O6jO9z1wPclMTGJvGYlKSlNHfcmyjdff8f5iAgJt2iuliUZF4+bm5o4G3du3+Z1/abaWOJ9e1z2cS60zE7XavINfqzyfDhbkHXrNvFaeeJjpg32rzUI1UwSHwGnztjctcs5UFRvS/v13r55C7du3uQ1yoPlQ34PrQkQF3m5+Qg9G2543tbqZGkP4IrKOs6HvIeEKqYJ+R6kQ+Kj45idZXtrh0IW/7CUc0F7vnff6Mbq3joYU/ggXUFcaHJ10ORosa03b02cNS/va2/t7eG67yDf21HL7ER1nA9P/p+9836L6tr6+PpX7nPvm+L13hhrTGJi16jYu7ETRUBUBJQiRREEBISBgQEGYei9Y6HYQOwNscVouun1/gHv/m7Zk+3JNIYzw4yeH9YDHGbO7DNnfc5ea+9VEOMLPgoM+R6fgyjvjyA2Q44Bf/TgIe+LgFqkiF8cKh8L2PcALhCTVFvdQDOmP/fz5d5xch4wPht75p62Xoq+POi1AD6WLVul6bgKEhMVQ2XFJbQvZJ/HjQ3xSthHF3WCZQEj4nXVVdV0/959us9e19rc6rAPIv6/KyiYc1FbVU81VS/2iQMDMpfKcQw1BsuVknL0GOcDNVA13VZHpn4wnfNRy3Rs7NvDn0OUsaeWalPby5eTa0rJImLplXYOagCh99TA3QG623/Xof5s8v+SElM4F4j3Tjz8PG/XUs9dCMaK8WHclnpvyNcm59WL+H/lcbUEOX/oDQo+5n20UNNtFSU+Lp7zERkeOexzKXM9RF0r+Zi9fDlh1+B1Ik5WqU/YJxR72qh/PMC4uHunn/rv3DHz4ygfNZWMjYpaqiqvoZ0Bu8xrZM6sW2HcIhZAtsPkPDJwrnaM7r59UZyP40Vlmk6rLKhRAT5aGpuGHZ9jKRdKWQvKXr4DWLBn2ytrkfYzNu7cvkN3bt2m/fsiHOZj+rRZVFVRQ5Xl1VRZVmXucwP+nNn7kGP5wTY4UF6jskeaGnKh9wrnY5NKuQyavCiZ7H6Bj0D/nU77z9b4UM4hauUDyTXT0WsKNVlv3bxJpaZSh33zj9duYFxUU0VpFZWXVJrXKez1ubH3XYicDtEvwpV8bNmynW7cGqD2k12aLrtIVixbxfkoLy1zSh/EHGEtl1aui6gWH3LcR1pqOt26cZPX00etSXs+ujge6B/ErrmSsVFBZaZys23lbDyi3A9Y7oHmSj4Mecc5H2H7IjVddqFUV1TS6RMnae7socf3QidEzqCsK8Inlddk1cqXw/NdPOMDA4J4veLrTK5dvcb7PDmyhhV/MIFzgRoeqG1jyzd3RMQ6l7g24TuJvEGRb6lWHtTEie/S7f4HnI+XrS6Pp0lUZBTnI/6gc/oqcuNkZoRPqsyNUyNfDjos4nnnz/Oh64yLa1eu8r4T8wf9CEt8yMcKDEYqZT5tSVEp7dm118ydszV85OuWfShRl0F5fLiydet2zkd9Q6umwy6WhT6LOR/trd73XWNNF1xcYXL50mXzeoA9PsCF6XgJFReazDnIiLmS4+g9WfILijkfgVJ9Lk1cJ4319XTuTDd9NHe+x48Va1gxURHmv9EL4jKzXy5d7KPoAzF2+UCcpqmQsWE0URHTM+wFedv96h94xPnQbCv3SFxMHOdjb/BerxivbAcVFhRSX28fXey5SAV5RrtrV3Nnz+d1A48XFPG6eoIP2EDwnUSdEvwU+zWeFK/o47OE89HReU7TXTfJ2jXrOB/GggKPGdO//u8jeu2NlTTqv1H07zFJ9NbEBnp7cidN/ej+C71odBk6xkYv9V7oYfNgg9U1LPH3pvWbOReFeYVkNBhtjkH4DoIZT4i9ioiM4XykH8vSdNdNMn7sRM7HpYu9bvvMf/5zCtf/N0bv5vr/3/ElXP8nfPglTZz2q02RzxO8J4R6zvfw9V30iLTHx0bGh3GQjYLcAvPalWyzebIUMJ8JfOwMCtZ0141SV1PD+cCakGp2ENP/10dt5fo/eqye6//Y9y7b1X8IOMHrwQ3eD45wPnCFNSyRTxi8ey9j4zydP3uOMX7OLh/REdGcC9RjjY/9q4aot+RDdZ/t5XwsWLBE01s3SnpqGucjwD/QaRsI+gxxRP8h4vV4L86Bc+Gc9j5Xrj06d858zsXZ7rN0tuuMueaytT2QA+EHKF+fR3nZeRQ5uLeGfUFv6WU+cP8x50PTWffKnt3BnI+42DirNpDwARyxgSCYK/B6zB14P84FUWMNS+x1z50zj/doPNPVTd2dXTRncJ/TGh/olWTINlBuVi5FhEWYefOGWj4+Pks5H53dFzSddbMsW7qc81Fe0UfjptxzSP/xOks20D/+McalY32BDzZfdHd2U1dHF+/TaIkP+feM1AzK1eXwfkn+2wPM5/MG+0rwUV5Zp+msmwV7H+CjqfnO32wgzBtDtYFcKXIcOupodjEuOk91UMfJ07QzIMgmHzmZOaTP0PPerGtXPe8JjH1Bb6h3FRkVy/k4nJCs6aybBXoGPm5cv6aKDeRKARtyr9sOxsZpxsapE6d4TJYtPsBF9rEsykrXmfkYbmyJu/mIiIjRdHYERPDhbeM+zbhA/+uTbSfMsfrW+AAX6NOqY3bWmpXP48a8JbZE40Pjw9H5Q96vONl2kk60nqD21nYK2BFokw+wkcnYyDh6jFYP1oNTQ0QMs8gblPujqPUZuiwD5yNol3fEObxsUlVRwfnwWbBw2HoCET2dRd6s2H+W++vIx4fqg4jfwUV7Sxu1NbeSv1+Abf+ccZGRkk7HktNo9fLV/Bhib+Ues5ZE2cdA+R5ci8gdFD1qRY6MWjWCauqaOB8+Ptrex0hIodGoKh/4XcSBiJgm6JXcn03uPyZE2RPZkhilHmvgorWphVoaW2jHdn+bfICL9KRUSjtylFYN1sOB/lqqDSGLcoyih5xgW1y3Mg/KXr93jY9Xmw8R4yfqFjiSVyfPL9ZEPge4aG5opqaGJvLbZpuPtEE2OB+D84ecp2FNLM1xuB7Bujv5WD3Y30oT7+FD6ICSD2V9G0f4UOZYWRI5x6qZcdFU30iNdQ2Mjx02+UhNTOFsYA4R/sdw9gfBPeYymQ/ZvhL56Grcn0Q2bs0/Hznp6uzgfEyfNmNI7xN6AAaUfAhu8KwVNXBk+0r08hvK58k5tpDGukZqqG2g+pp62j6Y726ND3ABGws+yJqVz/kYTnyJyKN1h3+urV957/qVYMSWfy6eo8P1z7GXJ+/ngYv66jqqq6qlbb7bbfvnjItM5qNjfXft4PoufH1v6Gmg8aGt7zojddW1VMvYqKmsoU+2brPJB9Z2scabna6jddL+ubzf6Kmya3co5wP5tZq+ulfGj5vE+bhw3vPz0mALyXV+wEV1RTVVlVeR75a/8yFLdMQByj6mI31GFoWHhnvVPdLir0ZORPyVqdi7nk3vvvM+VTMuqsoqqbK0gtatWW+Tj/CQ/ZSTmU25Oj1FDtZc9Jb5Y9LEdzkffVduajrrZtm+zY/zkaPXe/xY4XsIf3r6tJlUydioYGyUl5TTtKkzbfIRERZOhqwcysvOpaj9kV7lf0BE/oeox62Jm3y/8EjOR1io5/U8UArWY0X8LuoIg4syUxmVFpfy+iSW+DDXTvQLpPxsAxXk5HE7C8fAhrfkR7W0ndLyB0dADDm5nI+VKzy/xwryNUR+7dLFy6mMcVFaVEIlx028f6ctPjas28DZMOYWUOFgfQbwYS2+XezFYC3OE+ozZGTqOR/h4dGa3rpRRH2GiYM1OkdKoIP26ulAl8V+3pZNW6mEsWFibBQXFv+NB+Xf2DMvNBTQ8TwjFeUX0pi3xvHjcp0S+afYs/GUvlG+vn6cj7LyGk1v3STIuQMfXR0dIz4W6KElPRWxKcq9aMRbgYsiYxEVFRy3ywfqXYGLYvZaE3vPtA+f17/ylp6c8NFFfThNd90jQYFBnA9dRqbHjlHU+cXzXI5HiY2OY1w8r/UWHWl930zw8Q7TL3BRwpgqZXPO0kXLzD66t9QwQf45+Fg1uH+jiWslK1PH+diwfqPHj1W51pTO+/E+r2cVpohBt8QHBH5KGbPJ4LdsHewtA3vN2frtsp/ijvrU8YeTOR+paTpNf10s6B2F+tTgY8L4SR4/XuVehZH34i2g/Nx8Wr9uo0XbSnns6JEUKjeVUUVJGSUcShj2mJS9G0TMmbK/gVpxvIjfBR/oH6XpsGtl9co1nA9TkffFLMAWL2BcoNZbnj6PFs5fZJUPWQ5EHKDK0nKqKqsgQ3au+fjhg7FOjUNe27LWH0f4UWpde2/fNd7/Y+VKz+/P7s2SdjSN87HNd5vT55BjEpHvIeJXRa8Y8Ywdbs4gJHDHDrOfMHvmXM6FqGf1wftTbfIhjvtu+YSqyyqppqKKaiurh/0dwicS6waCA1f3jzoUf4TzcTQ1Q9NjFwl6O6O/GvgYP26iKnxAP0Ququh77EjOoKMi+9Dr127gXOTockifqbdoS1niA310aiuqqa6yhuqra2nm9Fn8OPwPZ+r8iJ7V4qejeS7DkWnTZnE+0J9zgtbnwCWya+duzkdS4pFhnUfmA/OCmBuEjqilK/DLZd8D9Q9zdHrGRjbFSGtX9vgYO2Y8j4VHTHxDTT1tXL/JzJ4zcSaWcgTxTJD7O1vKYR+umEorOR+hod5RW9ub5I3X/00lRSbOx6KFzsUqWMoZhN4LX1X071SLD6xdyXV40lLSKDsjm7KOZZHfJzvs+h7y/+CfN9bWU1Ndo7kHPNiwVecH3Ive5vJxZb683KtTmT+p5j3cvHkb5+PM2V4tHktl2brZl/c/Lyo87tT7reUMWtJ9R3IGwRH0TPgrlgRrsMK+eot9PrjQpesoMy3TvI9hzzcXEs8+v7m+kVoamqi4sMgiH7hGjEf03xT+k9rzwHCk/WQnXb56i0JC9mt6reLcYTTkcz6GE29lLWdQ9HKVbQp7/jnsdmX9BVHvRLwGMYQirgQ+hFzL6v13P3CID3OfnA2bqbWxmdqaWqi9uZVxN8E8R4BTcV1KwThtMexu2bTJl/PR2XWeRr2pzSGqfKfM3i4rLqG8HIPHjAk6B72Un9NCsA4GvZSf29t9/Xit6WOMjfSUdLu+h/L/4Al1gVA360RrO/PN15rHIX82OBHrUZ56P1vbTlPfpet04ECcpt/DnTteG0V6XTbnY/nSFR45RjzDwQLsGlH7QOiqeM3B6IOci7TkNAoO2jtkPiBYu0JNUtQmjY2ONc+J+FzRw9wb7um8eQs5Hz29V+gDL+w36kkS4BdIhXlGvofsLWOGjSXqn3AdHj2Gc5GalMqu4yitHKzz5ojvIb8mKTGJr213nDxFVeWVL6yTeUO96hfXCEycD4OhUNPzYTyXsR4KPkQekbeIvO760Zz5lHqEsZF4lFISUnj/xKH45vI+YSez27pOd1B3R6d5fxF+jrfEKgqZMP4dOn36DJ0738fmPn9N34corzO7CjYJ+Aga7AHgTbI/LMT8O/rapCSmUPLhZHZNhxy2rZSvA1fdpzvpTGcXne3qpt1Be8yv8bb5A+LHvhfw0cb8kSlTpml6PwTZsnEr82XTebzrG6+P8upriY+Jp6TDSXQk/ghtXr9lyO+XOSo+Xsz7Fp7rPkulzCezxKM3icFgpDNneuh4YQnv6aLpvn2ZNWMOJcUncT6meEge3FAEe+bC3oFdmMS4SDyUSIkHE3gM1lDmDiUj2Bs8f+Yc7w3dc+4CTRjn+THMtgR1mtpaT1Fn51mKjTmk6b8dGfv2BIraH8X52LDO8/M77Anmi8SDiZQQl0CHYw+b7SBn+fiQ2SE9585T7/kLdPFCj7n+O/LbvaHmjyVBT1/wcepkF23Z/InGgRWB7oQFh9HBAwcpdE+oV14D4gXlPe3YyFjOBWwsX+neO8sHBLWt+3p66VLvRaqqqHTo/Vj7xZqamjGHaorvVj/ORzvzRVZpMfB/98cZG3t3h9Ah5r9G7YvyOH8T+oX9QHv7bvJa69Qp0yk+Np5fE5ifNX2OU2woGQkJDqVLF/voct8lunLpMk0dzElX1vmFYK0Z48YeiafUbLAmMcy+Ah8tze3ks2CxxoUkO7b5cxs9av8BGjtmgkeOEYyIfUD8VO7HwcaR5w7Yh4KNuKg4p20rJR9YGwUXVy9foWtXrlJc7MEX+LQ3Tk+W6ANxnI+Ksmp6b/IUjQ34s1u28fVP8DHubc9kQymYR/BchojnslwzAb8LLiDI/XDWtrL0PqxjXb96jW5cu049zBcRx0Xci7PxJXi/iAGQ88Xk2vbycbUF+dM5+jxqrG+hupoGWr7M8+ubucymem0U7QrYxeMuwMecWer0KbcWjy7Hrct6YKkf2VDmFLxXxHiY7Zq5CzgXYOQQsxs+HFzfd5YNJSObN22lm9ev060bN+j2zZs8vlmN7w7fj7gOkS+G3/FdiXkIfoyafUIsMXI0OY3zUV1ZS8uWeGZckSsFcVWxbC5FvDf4mDt7nmrnlvmAfSFicxEPhfuMY3JcK2x0OabXWZFjd0P3hHHbCr55uJQPpBYfkN6eHrpz6xb1377N7JFy83HEDDvbX0rEIYv6c/iecFz+fpT5Ma6S/WERnI+K0kry9wt8ZdhATSfMF8gzTTlyVPU1fCUfIk5Qvq/KHLrh8AGbX9bHyZPe4+tVWNM9wmzG5UtXqsKGOIc4T/yhw4yNO3S3v58G7t7lta/FeJyNN5Frm4ANwfxI8AHZGbib81FaXMafp8h1eJnZWLJoKecCNTwwb6hZHxT3Utg7sr0keu65i49tW7ZzXwp7OCkJyXxtTi0+5PNMmjCZBvrv0r27A3T/3j3SZepemENEzV9n5g/ZxxLfj7CvxPzrLp1ZungF56PIWEzZGXqzrfoyyZuM+717QnitM9QOxLonbCw1PwP3TeReyHyIvt4ir1RpZ4vex2qw8Z/RY3gcSTLjAvGIw9nzcMTGyszQ0YN79+nh/Qf06MFDXkNIjMsZPpT+uYhBdpd/btXmYHPysdQMMhoKeQ0Y1Ml7/TXvjjsSMmP6LMrNNvC6/uBj+2DutSsE99OSvy16hjvqnzu6JqqspY64MdiOiGVPT0kz245qsaFkZKHPYsbFA/r04UN6/OhT0mf/VRdFrhtva23Bk/ILbfqs7BkbFLCL85GTqWe+XTzNmDbLe+eMN0bzeKH6mjreTwy1AxHr7Q1jx3qUvV7gWMOV5w7keaSiF3NyGs8TDA0OU33usHS+uppaevzpp/Tk8WN6+tln7Fn7nAn4INb4kOt+4ac37ZEgrh9+HfKVjyWnU3BQsDlf2Rtk1JujKdB/J9VU1VBTQxPnIyxkn9f4VsLeEnOLtb1n5dyxasUaHlPJe2qm68yxlWqzoWQE9VyeMC6ePnlCnz99SoZcg9UxwkdT5tZ7Uv0GRwW21ZqVazkf6A+fmXqM9ofsN+fEeCYX/+E5Cc2NzTwHtK25jfRZepo5fbbXff8ib1W2uWGLiOes8tmM+wWfQ5eeyXzILNov9dJ0NR+QxoZG+uLzz+nLL76gr778ko3tvRf8EHvX462COfsT5uOBD31GNu+1FRMZTUsWek5/LcQ7REfF0KkTJ+ls9xnqPN3JfI0yWv0SxJlZet7CNlHy4ceOZaHPLHppZuXYrR2qNiOLFy3lXHz91Vf0zddfU0F+wd/WLezNh17NCePcf5s/5wO9hNAPAn2FkFs3EnEqqO+1ZbMvmYpMPBaor/ciXTh3gWqra2ndmo9fuvU36JhcqwTMiGcvaluh7htyHVE/Oio8yuVzh6Xzt7S00LfffE3Pvv2Wvnv2jGbPmmtmXNSL8OS6JmrIW/8dSxs/3kSZaRlUYSqjmvIqamDPA/QiimbzCp4jrsrDmsHspD2791JVZRXfk7p98xaP/wEfugwdLfPQ+iJqPqNgk4g1ZHE8eFcw5TIu8vQGXp/9ww+muYUNJSOzZs6hZ88YG989o++//45OsvlcXr9zZr3Xq+f+uQtoH/N7y02lvK7eiZY2XtviTGc384nr+dp4aEgYLZi3kHwWLHL4vO9Ofp/regDzsQ8djKfm5hb6nNm2nzEf8NHDR3wvCnw01jdQYMBObl+9Kt851qzkmr0fTJnKucjPzSNjXgHFRNmvq+vKOaTQWEg//PA9/fjjD/TTTz/Spo1/5fOilvyrxIcsC5n+hwaHUmG+kfOB/EvYPIiBvnn9Bo9DeMD0+vGjR9R/p59amM63t7XTKcZTZ0cnXbt2lf788w/6/bff6JdffqaffvyRP4O+/fYbZld8xfm4c/s2FR0vpt3seTlpontrcIu9cXmNSdRSll8njin7/qklqJkux27Ex8WTkdm5+N6LjMfN/TPdxYaSkcnvvE9Pnz6hn3/+id/HgYEBvmcpXoexe2MtB7UF+ww7/Px5v7uS4hLqYgwIPj5/8pT7cbBRwcFvv/3K2ZD5ADcn2k/w+WP9xxvNfYhHSuS9CLG3J8cK4ThsHrkvktq5csqYplUrVvPaQ7BtTYVF5lzXkeQDkphwhH795Rd+X3///TfS63PM/0MtIEdqvoueB68iO9D1JYuX0dIly7kdtXzZSlqx3LPj7GU+RJ9Y8T8RO6Xse+NIDN1Q1v5l+wR7OTlZObxWNGICCgz55v0dd7NhiZF77Fn4B3tGiOfe3DnzXuDcFiOYe7HGNZQ5WNR+Vx4byZiUV0ks7WWLXCDcSyUfjsaYivVbW/sAlnrFhoeFk4nZmqixU15Syp7Ly806OpJ8iM/G8w5c/O9/f3K5dvWq+XXw063xIerSD3VfBK+XexlC3Jkz8qqK6JUn84HvHHqN4yJOwlk+xPlgm1mzJ6BLcq9Y2K6lRSYqM5VSRWk5JcQnjJhdZWsOycnJNc8ff/zxOyUdSX7hmpS56nIvLWfvlfydj1RM/KskYm9L9DYS37X4W9QvF88r/C3issW8MpT7q+zzoYyDfd5roYD3kq0sq6Dqiip6e8x4j2Dj/9s7z/YoriuOn2+Sd+mJn8cGbIOxHappLhhjU4QqkmgBE1u2aZJQ7wX13stKQr2jLiFEMZiEWHYcm7xwYudxQj5C7v8uZ7k7mt2dEbtC0s6L8wDLajWzc3/31HuOlhH45fPz85IN2FrwRbZv2+G4L64dwz6jnvVYrGh1iMXH0jGizjnivY7PBWrPg2rP9pgRni/DdoG2BlbOkq1vEFw0UUuTjcLDIpaN7tCzs/bt2y+5QNwF/ro2nqW9X2/oe9XefVZnRizxnbjaTw8fDJB901uamqnN1kKpir2yXNjQu578/AL636NH9OjRf2Vssq3tqpP/5Q0mtDNQLP/cP3wf/jtypvDHW5tb6GoLzkTXy3m6z9onN2pn3RA6FWwgL/Kfn36ikyef9PzW65tliX+JGfsBsSrVH//VL39DuYIVnLNox4zMq+0y97FcdYeenQW/4+HD72ROHTkv5Ne5Pmsx9u5KrIm3RF9gDyNvaJQRbTz306jPBBdtsp6mq6ODLpy7sOzZ0Ls+6AxwgfqTf//4I927e0/olidxXiP1J3w+E+Kv+cPV5ktwbbcRRrBGVH8cs8Y7hL3e1d5B3Z1dVFxYJM9FrgQ29BipqKiUdUM//vCDrJ+YnJh0eq+7WVQqG2Zjg5aYW7Nc38d1DKrwGobvqFdjZVbwOZ4Y0csBbtm8jTrBRUcn9Xahn1+LuO5Xl7XPYYSRqclJ+pdgA3Xw//z+eyoteXJWBHuDXm8gX7Ch9szGn/xcsDa4B436uj/5vWoPGT5Poc6rx/fCc5f5T18yovU5Nqx/VfZG7+nqor6eHhro7aMDHxxcMXaVO1/kt0JHfP3VV/S9YANnqVCLp837qP66r/QGYoTca4b/jtfxfBC/x+s8s95f+cA6xfeujf1p8+Xe6m+oxwjWglpvAfupurKK+rp7qL+3lwb7++mUEu9ZaWzoMYKzIvNffilrs3HuEOdyI5X6StYhvrSp1Ges5g/9Pa+o7d8GNrB3qHrCm/3bPDGi8gE24GP09wgu+vppaGCAYqNjVzwbetd/LPKE5OIfkIcPZW+HyIhjTmvTl/4Gn8nkOmyOifkrH7h/7uvKfLCtye/hM6C+4kPLiPrdg42SomIa6OuTXGBWbFVFheM85krzOYwwAp0BLr6DfPut7IOCfihq7G8xbBjxGdUeyLxH+jMfvC7BgJ59xXVVeB/bpXiN9xl33C3mWvh38WvRF6OlLTU8OEgjw8PCxqpcdWzoMRJ9KVZy8fdvIN/Qvbt3ZU8/V76ZJ1Fnvy/G/+Bel1zvqJ5l8AdGcM/q96fWTTE3zIi2xkpP8H9a/9KdwJ7SnsWOuRQjzyZfGxqi0WvXpE++5oV1q5INPUYK8gtlj7m/ff21PEP9+Z07DkY4tgcb1NPZKp5XZcWvlpfgmXiqJcJzhmhj/PAvmIuxkRHpk+Nc+WrxOYz465D8vHwZ1/pqfl747vPyzEhYaLjTvuKuDoXPCVjrcXkKno27vUZrJ6DP4+WYWGlLgYuJsVHpe6j9wVcrG64YuZKbJ/tdowfHXx88oAd/eSAYcZ4pi+9QT4/g+1/Kvlrsm2jrtb1Rx/20NpKeDlX3cO7Xp7WbfCl4Nq58Se3sY/gV8L3HRq7R+OgoTY5jvnC/ozePP7DhihH0vcHMBMxOQJ+aP9+/T6EhYU77DPSvaqOyr7iU1+1qlg/38MPrWA9LrdNcxRTUmBPX+/MZJvjli+XYzJ7E35W7Zwk24HvbuRijqYkJ4ZMP+CUbrhjJEd8h+tzc/+I+3b/3hex1lpmRtUCP6H3nRn14b+yZXF+h9hswG//i86h6n6u+rvbMcWenGOFDm+Pw1Avd1XWDf/UcsxFR9zJtPx74Fa02m7ClwMU4zUxNSt/Dn9lwxcgfT52mL+7dk3WMdz+/K/tEFRYUyd6Z2mdkdr/j+PrT1AGzbuAzWYvlQ/sevT44HHtV5/TprUmul1I/j9/nbT4guBbcr9kYn54vgh4e8L0nBRfTk5N0fXqKmhoaaO2aF/2eDVeMhASHSi7QJxPzcm8LabG1LOgJqD2j72lda3NPi7WvvJF/175Hrw+Odj3r9Wrl/IS2FwXHqH3Bh5rDNWKfcewWbKh8hB+NkD7G9OQEzQguZmdmqLmpUeyFv7PY+Jn72O+unXvEdzchZ62j3yD6yY6NjMq+UGpskGPA7vqYmn2enuwEtUaP15vaFw37vKfYvzs++P+Mrmeux9HqD97nVZ61+uhp4lKe9huO2+IZqfYUfI2E+ATpY8CWmp2Zphuz1yk1JcXBxmrNb3iTkddf20S2ZhvNzc7Js4g3rs/K/pyYmafVI9ij+Hno7fnerFfhGm8j/oPez4Idb/LBn6v9vWx3ueoB+jQ5HnwO7zmu8oToxaGNzcPXqKutpWnBxXVwcX1G7H2zFBMd49KesMQ1I9hPEP8FF9enZ8R+MyP08TSVFpfSGs0MYr1cCe+tZvxJ/IyvYsa8r6s9OCF6fXDAkRpvgr7yZSxbW3dlRJfy/A31degKbewWEhEeKWuo4GPMCi7mBBfjY6MUFBhssfGUPgl0xszUtGBjSujlSWl79ff2y36c2p9FP9PdO3c7ev/ozXr0ZDv48t44p6n6t3r5k2eRrzDjc/MMWv5+YeMGBgQseB/sqZysbPH8pqQtNTeLHt03ZMwKNoLFhncY2fHGLhroG6CJsQkaHx2n8ZEx2Rc9PTVDd76Gq/3Nk1/gz+fcwamZ+9fqZ+05UPQSRh6DfYybc7PCp5yjwoICp5ikxYV3GAEHRQVF0lcfFWyMDI/I2WFd7Z1yDo322bHdonc+8Wn3T66JXO61WpwXNNrryKifxr4e6zfV9pM6IztH2FJPfIxbggvEcYODQiyd4WNOjoaGU3dHF10bHKbhgSEa6h+U8ydzs3MFC2udbAD7+0Odnqkr+9tMnSP7p8t9bhzuyUy+AtwbuSfYUth3tPsDzvMMDw3afYzHttSdWzeprbWV1q19yWJjiRh54fl1lJeTR4OCDdhd8Ef6evqot7uXjkeecPS0UOXTKHvsS68fBPddNmqH8Hk3o3abL2whX1wr1rs7lrDX6MXTYf821Nc7fIybgovbt+bo8zu36JOoT1zGYCzxXXwLgpmUbcIm6BNc9Hb1UE9nt9At3dTc0Ez7lZ5hqpw9fXoBJ2ZsK7N7spn3afvauosfmdV1Rm1BvX764ELPTl37wouUlJhkj9eCixt2H+PO7VtUW1Nj6YxloUvWUmJ8kuSiq72LOoU/0nG1gzra2qm8pJx273rTLSew0c30IuXcm9GfMbqWOVdjRN/gmo3mO/lzjfreapwC/af0uICPcfH8RRmvvfE4XnvrprClbt+UOXHUQbh7ZpYsLSOQLZu3U2VZpeQCfScxE7PN1katza2UnJhCu3bscbt+YTd4mgWn5saM7MdYw0bXpRk+zPSh4lieEd+bWXD1XnBx9sM/LfAxbgsfA7ZUXOzlBbEpi4vlxcmRw0FUV10nuWhpaiFbo41swt5qrm+SM7j08iYQngWH3K+7eT5marnMrGMzfIBTo2dYucbGXaybc6t6uT0I8rGJCYnyLPgCH+OxLfWH1zdbXKwQTuCfh4dGUHVFteyB3yTYaKxrpIbaBqqvqae87DwKDgx1zKhTBXxgH8WfPLOEhWsdjdpMeJ9Ru98MH2bsNgjnSlWbDHsAcqnuaj13bN8puZjR1ITYfYybkovdu/ZYttQKYsSJE7H+w0KOUkVpheQCeqW2qpZqKmuoRrBTXV5FZ059KDjYpGtrcH0Xrx/OGRu1/c2sYbN8mIkpcE0hdA7uB1zAltTyzzZUwKEjdLW1zVF37uRjCFuqtrra4mIV2VzQEyFBoVRaWPKYi2qqKquiytJKqiipoPLickpPyaD9775Pz/3+eZexIO6bhrUFe8yba9gX+oN7rYEL7vnlqpZz7zvvUnxc/IK6c9XHqLG4WPWcvP3mXspKz3JwUVZUJrgppZKCEirOL6aivCKKvRhL+955j55zYRupfERfOCd9e/ybfRdef77kg31oXu9sL/E1Qf/hmtzV/2OudJxgB/1z7Gf4nOvOuSYkPS1NfLbFhb/YXZDtW3fQx2ejpE4pKSgWbBQJNgqp8EoBFeQWUH5OvvRTLp67REEBwfTK+lfd/h72W1R7jPd4jpPi/5gh9omZM5UPPqfN5yfU9/NcCP5sMAG/WvUjXNXUIK968MAh2ScEvZ7tfULsZ1tl3blSEwJmoj6OcsphWFz4Hyewp97bu5+SE5KduLiSdYVyM3MpJyOHstOzKSsti5LikuhE5El6a887tOHljYZ/t9qXgOddMxccM1L54Hwc1j7bSMwH/2kk34/cEPpTRn0UReWlZY5ehGqfEPYxuO48NSWV9u9735A+tsR/bC/IujUvUfCREIqPiXfiIjM1kzKEf5KenE5pSWmUmphKKQkplByfTB+d+YgO7D8k1vKb9PKLGzzmUHwlG9ZvpD2736JjkcflDPDa6hpHv3NwwT3XHH1C4GM8rjvPy71CQUeCnM63uttTLPFvnQJB7cQH7x2gzz4+RxnJgo0kwUaiYCNBsBEv2IhLpqTLSZQYm0gJMQkUHx1PcZfi6PLFy3Q+6jwdO3qcwoKO0t6399Eewc76l16ROkd7tsuIwG9CfmHT61to147dskYzPCycUpJSKC/nipyp1Pl4plJvd7fsd+7o6+zgYsThYwwNDlBuTg4F6jBh6QpLzLLyi5//mt7YtpNCAkPp/CfnXXIReyFWCv6O1xNiE6RNBp7ShM6B/oEuyk7Polyhn2DD5efkSZ8H/k+J8IXKikupoqScqsoqqbqiimqraqi+po4aa+upqb6RbI3N1Npsk3Nb29vs8yl5ppKcHQMu+tHvfNCpFyF6oZ89c1bWEpq9f0ssMbNW4A+8tnGT1C/Hw084cQFWwA0Ygv0FWwy6J1PYZ7DVciQXuZIL+DuICSA+UFZUSuUlZVRZViHzMrWV1VRXXUsNkosGwQVmfduozdYq51N2yvmUnfaZSt32mUpsS2HWUkZautQx6KOz2Pu0xBIzrLhbR5iTBf/jXWFPBQeE0OkTZ+jSuUvSb8lKyxRcZEt/H75/QW6+5KJYcIH4WXmx4KK0gqrKK+Vcb8kFdEZdg8z/tzQ1Cy5aZM6O51P2CFsqOzNLnl89efwUHfzgkJwb7I17scQSX/Oitc82bnhNCvz4wwcDZI76yOFACjwcJOPHwUeEBIYQ8pihwWEy789+RsTRCNqyaaucUbl18zafXqsllviamaVei8/691tiibfWrTfF+o4tscQSSyyxZHnJ/wFQSwECFwsUAAIACADaiD5bSkNmnc4/AAAAcQIABAAJAAAAAAAAAAAAAIAAAAAAZGF0YVVUBQAHJQ7caFBLBQYAAAAAAQABADsAAAABQAAAAAA=</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #2</Name>
|
|
<Index>2</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPlvLgX/ZCUAAAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J33W5TH2se/f8l7zvWe6z0nlphmYmKLSYydqMSCit1YjhpAEQuoCCgiSpHem3RYdqlL71XBgqjYY4stMSbn9/POPTDr7AMoC7u4C88P98Wy9Xlm5jN3mfue+fvf/oG/q/Le5G//87+DFrW9VBkL494Wvl8VVSw1TtVrUkXlYXDjbuHCxVzc9rvDzc0d4RExSExKY5KKouIytJ6/iNa2i2hp7UBzSzuXpuYLaGw6j8bGNjQ0tqK+gUl9C6Ki4pnEITIyDocOHoGT016sWbMec+cuxOTPpph07WpfqmIJJgZ6zzfffI9Nm7bCy/skUs5lop6N7Y5LXWi/eBUXOjqZXMH5diYXLqPtwiXGxaU3XLQquGgiLtoMXNTVN6O2jkltE2pqGlFd04Dq6npUVdWjsrIOFRW1TGpQXl6NuLgk+Pmdwa6dzpjz/XyM++BDlRdVRpSHCeMnYaWDI3x8/HAuLRuXrlzncvHyNXRc7jJw0c656JS4YCK4aOsw6Azioqn5PGeDuGggLhqICyaCi9pGxgZx0WDgorJScFGDsrJqlJVWoVRfCb2+AvqScpQUl6O4qAwpyWk4cdwPG9dvwfSpX6usqDIsLvp7zc5uKQ4eOgJdfgkuX+3G5c4buNT5hgvOhuBC6Aziot2Yi4LCUsQnpCAuniQZe/fu57JnD4kbFxcXkn1wcd4HZ2dXLj5ML0Uw2yw8nElYNNcZxEU5cVHGuCit7GGjpMLARXFRKYoK9SgsKEEBu+4CXTHytUXIYEx7e53AimWr8Oknn6usqDIkXeHgsBZBweFoZuP6Slc3rhi4uNGHiw6Ji6TkdPifDsI+t0NYvnwVFiz4gescS1z/jOmzmB21AJuZbbdrpxOCg8KYvkhnXJQyLhgbggtdEXTaQujyCqDV5CMvNx+aHB1ys7U4yz6z1nEDPvl4ssqKKm/VFYKJFsZEZ9dNxsXNHi6u3uhhg7gQthTjIpeNt2Nevti48SfMmjXbau5v3AcT8f3sedixfRfTPb5cZ2g1BT1c5OoYG1rGRh5ysjTIzsxFdkYustJzEHgmGGtWr+vDisrJ2NUVU76YiuMn/FHJ7PvOa7cUXHQbuCDRMPuEfPBFC5fY3P2TLbV8mQOOHfVBSlIacjI1PVxk5CAzPZsxlIWM1Eykn8tAWko63A8ehv2SZSbZoaqMHi4cVq1FLPMBrl6/3cMFkz5cMImKTuCxKUvZSO9Lpn41A7t3OSMyLKqXi0zGRQZSmX2Wynz6c0mpSEk8h2jm92xctwkff/SZyskY4GLLlh2oqmnkXFzt5cJIZxATMcTEtlHHxEBC9tRmZiOGMttScJGckIJkNn8kxSUjMTYJCTGJcGI8kb5VORldXEyY8BHc3T3ReuHygFxomS+7afPYYWIg+WrKNLg47UVUeDQS4xgXsYmMjQTER8cjLioOsZGx8GC219czvlE5sXG/m3PhIXEhbKleLppbOxAYFMbX99T2M5YP/jUBS36wxwnm3wsuYiNiERMeg+iwaEQxu+yQ2yHMnD5L5cQG41FkR7VJXMg6o6Kqnq9njHVdMVghXbHPxQ3R4T1cRIZGIjIkAhFnwxEeHIYDrgfw0YefqJzYABd2dvaoqm1C1wBcbGY2lNp2Q5OPJn2Kndt3GbgICwpFWGAoQgNCEBJwFttY2/7rn+NVRqyQDfIbM7I0KhcjwQnTFTu2/huhgT1cnD0TjODTQQj2D4Qfs8eW2C1VdYkV6QzyMbpu3DH2Ma4x/6Ktg3GxXW03C8kkxgnpDOIi6FQAAv3OIODkaZzx9cdBZnNNnzpTZeQ9siFsKaWPQTkhqn8xckIc7P15D2eDi99pBDJegvwDsMFxg2pzjRAb4jHFpU74nu7XloqJTcIXihi9KiMj8+cswElmX5EuCT4dyOyuIGZ/BePEMR/MmPa1ysgI6Ixvv52DgqKyXp1h7GPYKexer2Pe3AZQ29Fy4rrXDdOlsU+6gnRGCPNJQplvEhYUwnz5UObTh8Fx1doB5zxVhs+Gk7OrwsfoyQnxOX6qjy1VWlqG//73v4iLS1Db0oL+x+vXr3k7O6xcbfQa6QtfrxOICA5DZEg4okIjEB0WCR9Pb3w86VNVl5jZnhK5Usq4lN0iY52xa8cO/pf6i/qNRJ7fVDGfZGfn8vZtbm7h/69auRKffTrZSJds2bAF0aGRiAmLQmxENOIiY7g+mTdnvsqImewpni+lyAmhdW9ZZ6xfu7bPd1G/yf2nivlkwfxFhvlH6I4P2Tz2z/8bhzmz5/DH4r20vniG+e1xkbGIj45DQkw8kmITsGPrDpWRYbCxZct2XqutzAlxcHA0vEfMV1992dcnJ72h7ENVzCNi7iEdonxN8CH3CeWr7Hfdj8ReNpLjE5GSkAxvZm/Ra6pPYhobVJOhzDunHEJlbGrRgkVv/d6gwGDejw8fPlLb2Yw+ObUp+R5vs1370+mrVqxGSnwSzjE2UpNSkJZ8DuHMd5/65XSVkUGwMWH8R7yGT5lfGxgUamRPkZ/Rn854mw9JrKjtPXyfnOYaU9pzj5OT0f+UIxwXFYv05FRkpKQhMzUdSXGJ+E7KE1UZ6Z8NXaG+Tw3f7p/39NEJQ53v1DYfnsj62NTYuWzjkk0V6B+ArNQMZKdlIicjC7mZ2Vj+4wrVJ+kvRsV0g65Ab8RFU0s7Vq5842sIfUG+oalxW7KT6XPqGB+ebP1pO2eD/pryOeov4oP8RfLh6blxvT5JTkY2YyMHmqxc5OVosGKZw5hnxChGxfQqxWrl2tbG5gt96jIofijrBBJ1zL4fG8tUpmitVvShHAMmcd7tjLxsDbQ5edDlapGfp4PHQY8xy4h8r8QAxaREbStJnq7IyNeQuVDOSUPRCSL2IuyE0b4+Iq8FyfE8um/hS8hxcGFDCZvUVF0hC/1GfzEusU4lhHRGvkaLAsZGoTYfRboCHHE/MuYY6Y8NeZ+QPO0bNkQ8/W3zGLW9KfMZ8dTVdc3wP62zj3a/XcS5le1Ec7qwU4XfTdwQE+K99J6hrh/Rd1D79tc/ZCtT38q6ZOXyVZyL4vxClBQUQV9YDM/DnmOGEfn+iA3yL+S9CDVaY71BbSivMw003k3xRaj/5f4mNsZCXIvaiMY93bu4X+W902tC1wzUXqb+5tv0O7GhtA0cVqzmXJQWlaCsWI/yklIcO3ps1Me1jONUk1BeWWe0F6FGW2hgo792G6x9q/LR/zwuYkfCpqJxa0k+TPEPaT2RxGBPO6xBGeOiXF+GitJyVJZVwIn5KKOVESUbebpio70INXlv2KC+HErO7WA/Q/0t21dknw2WrdFiX9H9UzsQG7J9Rc+LvBHxXhrjZCOZ2hemzDlkI5DIfuCaVY6ci6rySlRXVKGmshpr16wbdYz0ZaPIaL/zXAUb1EcklsxLH2v+ubB1lH74SPjnpugb+j1Z5ziuXsu4qEJtVQ3qqmtRX1OHdY7rRxUj8j0EBIYY7eucqykw8jdo7hJr3ZZmRBXrEcFGf/lcpDPqa2rRUFuHxrp6lDNd9vXMb0cFI/K10761hv3OL11FXUOrERvHvTxVRlQ2+HM/bd5sFNfavnUHmuob0NzQiJbGJlRVVOLzyV/adExLvuaNm7b2ctFzRgad/SL2O6d2UK4XqYyoekMZ+z3p64eWpma0MhuwraUV2ZnZhvnV1vgwiuMyDui8sZ6zY3rOVKIz+cR7KYbbX56hysjYZUPMm8oYZmJ8As63tuFC23m0n7+AyPBIm7SzZH9cX1pldKbSzp1v4nTviuHKjKg1TmOHDVnkWqsJ4z9EblYOOi6042J7By51XMTuXU42xYh8jRGRsUbnU/r7B/WZI971fcSIiNfLz1N8Us4HpTYX8Xy1Fso2+HgXG2KMyDkU38z6Do3MF7l88SKuXLqEzstXYLdosU34IvK17dzlbHQ+ZVa21mAv/rjUflC1G28TeW2L4o9kg4l4vlpzbv1iyhxG+kPO11q5YhXj4jKuXrmCrs5OtLW2Wr0vIrNLvrd8PmV1TSM+//wr/pq5/AiZj4HWgdVxaBmR80bE+joJrSOK52nO6u95c8lxnxPounoV17q6cP3aNSRIOUbWyIjsc2Tn6N6c23r+Ij+nUp43TM0pVPmwLpHbV+RzifV4sdYuakREf5u6Bj9Qn8t2QVFBIW5cu47uGzdws7sbe1z2WiUj8rV4eh5nbFzi+yrQmcZ+pwKM9KTwKYZaryRYUPmwDj5kX1DoDHrOXDmOwuag8aLsU9qTvKO9Hbe6b+L2rVu4zPyRL6dMtSo+ZLuKzjIWZ323tHWgoFA/YM4h3TPpaVNrnEQOCsW1BBP0HbL/Iednq2I+EW0q8yF0A7U9PTY3HzSH0vcLvUH7cZD/Kl4nnXGHsXH39h3cu3MX2jytVekQ+RoKi8r42cgtrR1obmln92bHn39bnjqNbVNrZUX+mxq/Gnm9QX2ltK/EY5kDc/Ah16coRY7vpCSn4N7du7h/7x4e3L+Pfa5uVsGI/NuurgcNXJAcPuJleE25X9i75ghVrFd/kJ6W9xOj+Yh8DRr/9FfodPqf3kt/SZ+bkiMt7KmB8iJpLMl7B01k/5Ov/uCXX/DwwQPcuH6dP2ctfFAuTHMvG03NF6DLL8b4cW9iuYNtE3X/BNtghNiQ7VfqN3puoDUqU/pV1OMO5jOzZs4yrI3sc92PRw8f4vGjR3jy+DEyMzLfqw6RfzMuPplz0dR8Ho1N5zG/164yhY+xJIuYn0ZrWh6HPHDE4wg8jx7rsSVi41CqL0VYaBhO+fnDz+8UTp70w+7dTvjRfjmzKaaPKT/nXUJ2ibx2WFhYiF+fPMHTX3/Fs6dPYW+/7L3wIfvky5Y5cDaIi8bGNgQHhxl0oMrGPzD3+/m89i3oTBDytTqeP0S5EbTue+PaNdy+eRP3797jcx/168sXL/DHH6/w119/cnn9xx/4/fff+PPPnj3FkyePkZ9fgNP+Z7Bt644+55GPNZHz976fPY9z8fzZM7x4/hxNjY3vRYfIv6XTFTM22tDA2Cgtq8Lk3rxjZf7lWJFxH0zAih9X4riXD99joJzpA6p/o9qe5sYmzkdpiR5pqWkICT5rpD/2ux3AhvUbea6qrD/Ky8q5XhF8PGQs3Wd+6J07d3Cz+yZqqmv4ehnlXoxFPuRxdjY4BC9ePMfLly/w228vue5VzukjpTu2b9/FuWhoaEV9QwtcXPYZ3tdfvHo0y9LF9jh80IPvBZjH7p32qSE+0s+lwZuN/W3M11wwb5EZxsM0rHVcz5nS5Go4H7R+fLWzE5cvXoK+uASeR44xn3DKmLHFKCYg1gk+nPgxmzvucZ376tXvbC55wJ8bKR0ifmP8uA+ZvqjmXFA9h15fyZ8TcTmRnzma41J0vsXa1ev42Ui05zLtJ0t8hAaFYMO6jey+Z1r8GiZOmMT3M6Ax0tjQyHNbqT6CdFV0ZAzsly4btWwQE6I+WF7zcmd+Hdmor1//gT//fM118UjoEPn7XVzcUM+4qKtrRm1dExwdN/SJz8k1zNR/o2XNbhKbj7Zt2cbPAKdzXxKi43A2IBibN2zBJx+/X5tyxXIHhIWEcT7qa+tRU1WNTMYsMTRauBDrKfIeAspY8PXr17n/9p///IVff30yIjpE1h2kL2qJjdom5OToDO+h2kg5j0R5H7a8JyjpC4dlq/gZrXT2JPHhsd8di+2WWN21kn3lcegwigqLUFFWgdJiPaIiojD7u7k22/4i9qucd+WxJx47OblwNkiIE/LlLOmrG+kO532ci5qaRlTXNMBxzZs9JfpbBxR7Gov7ssUzASkme9rXH0GnAjkf+1xcjc5ktVahueznXU583+ei/CLomF/kddTrves5U4VsdlErJ2pHlPaIsmaiu/sGZ4NsrMePH1lUh8i6o7i4vIeN6gZkZ+UZ3qM850EpxDrdoy2tA9JZku4HPJiPEY6QgLPwOnwM3/bWzttWXG0iDrsf4Xxo2NhKYv4S7TFlK9cv9hx6V+4prauLeJbTz86cDfJDSCgWaCk/RHyf45oNnIuq6npUVdVhzeo3uuNte+XKvomt9Mm8OQsQFhyO6PBozsfqFauNzrq3RZk2dQZCgkKQlZ6FtJQ0rkvk880sNbaFHUT9L9vc9JieIxtD1g/K/eXoPYOxzZVrCtevX+O+OsmDBw8sYmPJ35Wdnce4qEdlZR0yM9/URx5wcx3Sd4t8NyHC9rJ0fc27ZI+zKxLjkhAXFQ9vTx980VvfNVrkp81bOR90BmBESAQ/Q3Mk+FDuXyn2cqQ+Fj622MNxqL8nn6Hw824nvHr1isd6KeYr6tUtwcfSpcs5F5WVtaioqGG/7WKS7uhPqF3EWomcq2OJ+ppB2SFsLj3DfIxzSamcj61bto8qLozs9SnTcJbZjAkxCYiJiIGdtK+MpfgQezaK/hb7VyrtpuHwodz3n/IWiQ1aL+zs7DSrDpG/IzwsmnFRi/LyGuh0RYb1jqHqDqEnSK+KfXCF/WXO+prBytSvZiApIQXp5zIQExXH7avRyoaQnnNlD3A+SI9s/2mH2b6b5jqxfifbV6JWh0TYV+bkg4Rym4QO8T1xEr+9fMnX1F+8eMFz2czNx+TPpqCCcVFeXo2ysip4HvV5a8zKFBE5oUKXvA8+pk2diXPJacjKyEF4SOSYyQUUsnbNes5HSGAIs722meU7yV+guU8+Y2Ug+4r6V9hXpE+Ge1akvO8Jxa0of43yTp4/f4Z4M9aqi8/vd3NnXDA2SqtQqq/EjOmzDHME+QxDXSNXtp0l6jMHw0Z6aiZymW8VxOyNcRb2V61VKIZNfAT6B/K1TnMxIvvbQ/XPhyKyPkqIT+B5i5TD9vTpU0ycOPz6EPmz6WlZbCxXQq+vQEy08foFsSFqW03d61u0iznra0wRuvasjFxoNQUICQ7jcdCxyIaQhfPtOB/+vv7YsG6TzV0/sUZjhewQOd5FeTaU20s50rSeTrmg5uJjyeIfuc7Ql1SgpLgcqxx64uaUf081Ksr5QulLDGaMmqu+xhQhHZibo0VBfjHCQiPHPBtC5s9dyPnw9fbFOmnt15pF2DE09oQtQ/aVPD4vdnTw+hCqn6qpqRmWjSV/5ugRL5SUlDM2ylBcVGoYR2TjDeR7iFwAa80nodhCXl4Bu58yRIbHqGwohGITxIf3EW8ssbPOOh6xJiLGmXI+Jj7kc6m8vXw4G1RjSPU2X06ZZhY+cnN0fBwVFZbixPFTBjaUusOWJD4+hevElOR0lY0BZM7seZwPr8NemDt7vtVdHzHxrhoKmr9F3gnVBjx69JCzQXXqZ04HDJuPxT/Ycy6KCvUoLCjBD3ZLbZ4Pby9fvn5D+kPdE+Idca3V6zgfXsyG+Pwz26spITZoTyDxf1VVFR48+IWvibS2tAzJxpLfe9jDk3GhZzZ6Cfdj+9NbtiT29it4fgzxQX6VysC7xXmXC/x8/HBov7tN5tfI64W0988v9+/zvYBIZn83Z1h8ZGVquP+aryuCD7NHBR/y/iq2IlT7W6Kv4Hwc2O+hjv1BCvU36Y+g04HYtH6zzV2/vB86+RzEBe2XdffOHezd4zpkPqjenbjI11JedCFW9O6jO9z1wPclMTGJvGYlKSlNHfcmyjdff8f5iAgJt2iuliUZF4+bm5o4G3du3+Z1/abaWOJ9e1z2cS60zE7XavINfqzyfDhbkHXrNvFaeeJjpg32rzUI1UwSHwGnztjctcs5UFRvS/v13r55C7du3uQ1yoPlQ34PrQkQF3m5+Qg9G2543tbqZGkP4IrKOs6HvIeEKqYJ+R6kQ+Kj45idZXtrh0IW/7CUc0F7vnff6Mbq3joYU/ggXUFcaHJ10ORosa03b02cNS/va2/t7eG67yDf21HL7ER1nA9P/p+98/6KItv2+P5X7rr3TfB6R8c4zoyOOWPC7JgRERAVASUHUUQEhIYmIzknSaIEE5gzYhpHJ+rMOMEJ76311vvlne+RU3Msu+mmKZpurR/2AooOVd37U2fvfXZAji/4yM7IcugaxH/91xwa9kEIjRhXS+Om/EYlFc9fyQF/eP8Bn4uAXqTIX+wvH/PZ5wAukJNUVVFL06a+9PPl2XFyHTDeG3vmjhYvxVwezFoAH66uK3Qd10DCQ8KpOL+Q9vjtcZhz+sc/RtJ7w3fSB2MKafTEu5wJWRJS/ofnL4nHV5RX0L279+hez11qrG+02gcR/9/h48u5qCqvocryV+fEgQGxbynXlQvpbw7WYErc4SOcD/RA1XVbG5k8aSrno4rp2KgPB76GqHNPTfWmNlUv9857y2n4KCON+uTSazxMc3lB/iF/UWjUDQrYk/ianYMeQJg91XOnh+5037FqPpv8v9iYOM4F8r1j9r+s2zU1cxeCc8XagfM2NXtDvja5rl7k/6uPayWo+cNsUPAxd84CXbc1lOjIaM5HcGDwgF9LXesh+lrJx/C3x7ZI2ujeQFt9nnL9VzPx+ZY/KDz6EXn5ZHGdU+sT9gnFnjb6H/cwLu7c7qbu27cVfqzlo7KMsVFaReUllbTda4cSI7MlboXrF7kAsh0m15EhV1frHN09e0I4H0fzinWd1ljQowJ8NNQdG3B+jqlaKOiGv38UvTtsM7eZFq76/TUeYEfhf3jMiBGTLNr26l6k3YyN27du0+2bt2jvniCr+Zg6ZQaVl1ZSWUkFlRWXK3NuwJ8tex9yLj9yLMGBuqZDPSNNCznXdZnzsUGjWgZdXpVk9n2BD2/P7TY931StKPzqf4+MpfnL7r/GAwT+tuvKEioo7LLpPeWe6Zg1hZ6sN2/coKKCIqt9889Xr2NcVFBpUTmVFJYpcQpLc24sfRaipkPMixhMPjZt2krXb/ZQc0u7rsuDJMtcV3A+SoqKbdIHYTM1tvwv1/uxn33zGg+T59zjPsa1m/+nPHcg9XJy3kdCfCLdvH6D99NHr0lLPro47u3pw665jLFRSsUFJYptZWs+ojwPWJ6BNph8ZGQe5XwE7AnWdXkQpaK0jE4eb6HZM63P74U9BJ03FWeCXxF58L85M99//0KJyWpVL4f7u7jHe3v58H7F15hcvXKVz3myJoYVHXWAc4EeHuht05dvbo2IOJe4NuE7ibpBUW+pVR3UuHEf063u+5yPN60vj6NJSHAI5yM6yry+ir2IDye0mbSZcBz/x+OEbWGqNk6LejnosMjnnTfXha4xLq5evsLnTszr9SNM8SEfy87IoSLm0xbmFdGuHbsV7mzt4SNiXLg22YcSfRnUxwcqmzdv5XzU1DbqOjzIssBlEeejufHvz/qf/5yo7EWYspkQj8X6gXVkKM8dMV1wcZnJpYuXlFo+S3yAi4KjhZSfW6DUICPnSs6jd2TJys7nfHhL/bl0GTypq6mhM6c6yHVFkcm9CDAC/wLMgJ2hPFfEsMJDgpS/MQviErNfLp6/QGGh4Rb5QJ5mQS5jI6eA8pieYS/I2b6v7p6HnA/dtrKPRIZHcj7C9j14xWZCHAo2k6Odr2wH5Wbn0oWuC3S+8zxlZ+ZYjF3NnjmP9w08mp3H++oJPmADwc8WfUrwU/Q3dKR8RReXxZyP1rYzuu7aSVavWsP5yMtr4jYTcj0c7RxFDxDYUPIsGkOSgbHRRV3nOtk6WGs2hiX+3rB2I+ciNzOXcjJy+nxP4TsIZhwh9yooOJzzkXgkRdddO8mYUeM4HxfPdw35ucDPle/h4qfYc1P79r67/KjzbCeP72JGpCU+1jM+cnrZyE7PVmJXss3myJLNfCbwsd3HV9ddO0p1ZSXnAzGhoV4nLD0GMSxRT+i7czdj4yydPX2GMX7GIh9hQWGcC/RjjY74u4eos9RDdZzu4nzMn79Y11s7SmJ8AufDy9Pb4c9V7j06e9Y8zsXpjtN0uv2U0nPZ3B5IaGAoZRkzKTM1k4J799awL+gss8x77j3ifOg6a1/ZtdOX8xEZEenw54q1Q+x1z541l89oPNXeQR1t7TSrd5/THB+YlZSRmkHpKekUFBCk8OYMvXxcXJZwPto6zuk6a2dxXbKU81GQn+9cfLD1oqOtg9pb2/mcRlN8yL8nxSdRuiGNz0vy3OqlvJ4z2FeCj5Kyal1n7SxzZs/jfFRXVTr8ucp56Oij2c64aDvRSq0tJ2m7l0+ffKQlp5Exychns65e8XImMPYFnaHfVXBIBOdj/4FDus7aWaBn4OP6tatO4X/Is25bGRsnGRsnjp/gOVl98QEuUo+kUEqiQeFjoLkl9uYjKChc19khEGfhQy0nGReYf93SdFzJ1TfHB7jAnFYDs7NWLX9ZU+UsuSU6Hzof1q4f8n5FS1MLHW88Ts2NzeS1zbtPPsBGMmMj6fARWtnbD04LETUwom5Qno+i1XsYUjI4Hz69OZW62FfKS0s5Hy7zFwxYTyBipjNEzCnEcXm+jny8vz6I+B1cNDc0UVN9I3l6ePXtnzMukuIS6cihBFq5dCU/hj1HecasKVHPMVA/B9ciagfFjFpRI6NVj6DK6mOcDxcXfe9jKCQ3J0dTPvC7yAMR++DQK3k+mzx/TIh6JrIpyZFmrIGLxmMN1FDXQNu2evbJB7hIjI2nhIOHaUVvPxzor7pHiVrU5yhmyAm2xXWr66AszXvX+Xi7+RA5fqJvgTV1dfL6Yk7k1wAX9bX1dKz2GHm4981HQi8bnI/e9UOu0zAnptY4XI9g3Z58rOydb6WL8/AhdEDNh7q/jTV8qGusTImch1XPuDhWU0d11bWMj2198hEfE8fZwBoi/I+B7A+Ce6xlMh+yfSXq0bX4fmLYeev++dBJe1sr52PqlGn9ep7QAzCg5kNwg3ut6IEj21dill9/3k+usYXUVddRbVUt1VTW0Nbevlvm+AAXsLHgg6xa/pKPgeSXiDpae/jnevzKeeNXgpG+/HNxHx2of469PHk/D1zUVFRTdXkVubtt7ds/Z1wkMx8d8d3VvfFd+PrOMNNA50OP79oi1RVVVMXYqCyrpC2b3fvkA7FdxHhTEw20Rto/l/cbHVV27PTnfKC+VtdX+8qY0eM5H+fOOn5dGmwhuc8PuKgoraDyknJy2/Q6H7KEBYVS6hEDGZNSKNA/0Km+Iz3/auhE5F85Q36iLB9/9ClVMC7Ki8uorKiU1qxa2ycfgX57KS05ldINRgru7bnoLOvH+HEfcz4uXL6h66ydZau7B+cjzWh0+HOF7yH86alTplMZY6OUsVFSWEJTJk/vk4+ggEDKSEmjzNR0Ctkb7FT+B0TUf4h+3LrYyfcLDOZ8BPg7zswDc4J4rMjfRR9hcFFcUExF+UW8P4kpPpTeiR7elJWaQdlpmdzOwjGw4Sz1UQ1NJ/T6wSGQjLR0zsfyZY4/YwX1GqK+dsmipVTMuCjKK6TCowV8fmdffKxbs46zkZOeTbm9/RnAh7n8drEXg1icI/RnSEo2cj4CA8N0vbWjiP4M43p7dA6VQAct9dOBLov9vE0bNlMhY6OAsZGfm/8aD+q/sWeem5FNRzNzKC8rl0aOGM2Py31K5J9iz8ZR5ka5uXlwPopLHL9O500R1NyBj/bW1iE/F+hhf/qXIN8KXOTl5FFe9lGLfKDfFbjIZ48tYM+Z8tnL/lfOMpMTPrroD6frrn3Ex9uH82FISnbYc1T3vxLHI8IiGRcve72FBZvfNxN8fMT0C1wUMqaK2JqzZKGr4qM7Sw8T1J+DjxW9+ze6DK6kJBs4H+vWrnf4c1XHmhL5PN6X/awCVDnopviAwE8pZjYZ/JbNvbNlYK/Z2r9d9lPs0Z86ev8hzkd8gkHX30EWzI5Cf2rwMXbMeIc/X/VeRQ6fxZtNWelZtHbNepO2lfrY4YNxVFJQTKWFxXRg34EBn5N6doPIOVPPN9Aqjxf5u+AD86N0HR5cWbl8FeejIM/5chZgi2czLtDrLdOYSQvmLTTLhyyhQaFUVlRC5cWllJGarhzfHxVh03nIsS1z83GEH6XVtXdduMrnfyxf7vjz2Z1ZEg4ncD7c3dxtfg05JxH1HiJ/VcyKEffYgdYMQry3bVP8hJnTZ3MuRD+rSZ9O7pMPcdxt0xaqKC6jytJyqiqrGPBnCJ9IxA0EB4M9P2pf9EHOx+H4JF2PB0kw2xnz1cDHmNHjNOED+iFqUcXcY2tqBq0V2Ydeu3od5yLNkEbGZKNJW8oUH5ijU1VaQdVllVRTUUXTp87gx+F/2NLnR8ysFj+trXMZiEyZMoPzgfmcY/U5B4MiO7bv5HzExhwc0OvIfGBdEGuD0BGtdAV+uex7oP9hmsHI2EilcCl2ZYmPUSPH8Fx45MTXVtbQ+rUbFPZsyTMxVSOIe4I839lUDftApaCojPPh7+8cvbWdSd57999UmFfA+Vi4wLZcBVM1g9B74atCP8T+mhZ8IHYl9+FJiEug1KRUSjmSQh5btln0PeT/wT+vq6qhY9V1ygx4sNFXnx9wL2aby8fV9fLyrE51/aSW3+HGje6cj1Onu/R8LI1l80Y3Pv88L/eoTc83VzNoSvetqRkER9Az4a+YEsRghX01gr0/uDAkGig5IVnZx7DkmwuJZu9fX1NHDbXHKD83zyQfuEacj5i/KfwnrdeBgUhzSxtdunKT/Pz26nqt4dqRk5HF+RhIvpW5mkExy1W2KSz557Db1f0XRL8T8RjkEIq8EvgQci+rTz+eZBUfypycdRupsa6emo41UHN9I+NurLJGgFNxXWrBefbFsL1lwwY3zkdb+1ka9r6+hmjymTJ7uzi/kDLTMhzmnKBz0Ev5Pi0EcTDopXzf3urmwXtNH2FsJMYlWvQ91P8HT+gLhL5ZxxubmW++WjkP+b3BiYhHOer32dh0ki5cvEahoY7fe9/h1453hpHRkMr5WLpkmUOeI+7hYAF2jeh9IHRVPCYqLIpzkXAogXx9dvebDwhiV+hJit6kEWERypqI9xUzzJ3hO507dwHno7PrMk1ywnmjjiReHt6Um5nD95Cd5ZxhY4n+J1yHh4/kXMTHxrPrOEzLe/u8WeN7yI+JjYnlse3WlhNUXlL2SpzMGfpVvxojKOB8ZGTk6no+gPsy4qHgQ9QROYvIcdc5s+ZR/EHGRsxhijsQx+cn9sc3l/cJ25jd1n6ylTpa25T9Rfg5zpKrKGTsmI/o5MlTdObsBbb2eer63k95l9lVsEnAh0/vDABnkr0BfsrvmGsTFxNHh/YfYte0z2rbSv04cNVxso1OtbXT6fYO2umzS3mMs60fEA/2uYCPJuaPTJw4Rdf7fsim9ZuZL5vI813fe3eYU19LdHg0xe6PpYPRB2nj2k39fr7MUf7RfD638EzHaSpiPpkpHp1JMjJy6NSpTjqaW8hnuui6b1lmTJtFsdGxnI+JDlIH1x/Bnrmwd2AXxjIuYvbFUEzUAZ6D1Z+1Q80I9gbPnjrDZ0N3njlHY0c7fg5zX4I+TU2NJ6it7TRFhO/T9d+CjPpwLIXsDeF8rFvj+PUdlgTrRUxUDB2IPED7I/YrdpCtfHzG7JDOM2ep6+w5On+uU+n/jvp2Z+j5Y0ow0xd8nGhpp00bt+gcmBHoToBvAEWFRpH/Ln+nvAbkC8p72hHBEZwL2Fhu0ndvKx8Q9La+0NlFF7vOU3lpmVXPR+wXMTUtcw61FLfNHpyPZuaLrNBz4F/3xxkbu3f60T7mv4bsCXE4fxP6hf1AS/tucqx18sSpFB0Rza8JzM+YOssmNtSM+Pn608XzF+jShYt0+eIlmtxbk67u8wtBrBnnjT0SR+nZYE7CmX0FPhrqm8ll/iKdC0m2uXtyGz1kbyiNGjnWIc8RjIh9QPxU78fBxpHXDtiHgo3IkEibbSs1H4iNgosrly7T1ctXKDIi6hU+LZ2nI0tYaCTno7S4gj6ZMFFnA/7sJnce/wQfoz90TDbUgnUE92WIuC/LPRPwu+ACgtoPW20rU89DHOvalat0/eo16mS+iDgu8l5szS/B80UOgFwvJve2l49rLaifTjNmUl1NA1VX1tJSV8fvbzZoNtU7w2iH1w6edwE+Zs2Yo8nrmstHl/PWZT0wNY+sP2sKnityPBS7ZvZ8zgUY2cfshs964/u2sqFmZOOGzXTj2jW6ef063bpxg+c3a/HZ4fMR1yHqxfA7PiuxDsGP0XJOiClGDh9K4HxUlFWR62LHzCsaTEFeVQRbS5HvDT5mz5yr2WvLfMC+ELm5yIfC94xjcl4rbHQ5p9dWkXN3/XcFcNsKvnmgVA+kFR+Qrs5Oun3zJnXfusXskRLlOHKGbZ0vJfKQRf85fE44Ln8+6vqYwZK9AUGcj9KiMvL08H5r2EBPJ6wXqDONO3hY8xi+mg+RJyh/r+oauoHwAZtf1scJ4z/h8SrEdA8ym3HpkuWasCFeQ7xO9L79jI3bdKe7m3ru3OG9r8X52JpvIvc2ARuC+aHgA7Ldeyfnoyi/mN9PUevwJrOxeOESzgV6eGDd0LI/KL5LYe/I9pKYuWcvPtw3beW+FPZw4g4c4rE5rfiQX2f82AnU032H7t7poXt375Ih2fDKGiJ6/tqyfsg+lvh8hH0l1l976cySRcs4H3k5+ZSaZFRs1TdJ3mfc797lx3udoXcg4p6wsbR8D3xvovZC5kPM9RZ1pWo7W8w+1oKN/wwfyfNIDjEukI84kD0Pa2ys5CQD3b97jx7cu08P7z/gPYTEednCh9o/FznI9vLPzdocbE0+Ep9EORm5vAcM+uS9+45z5x0JmTZ1BqWnZvC+/uBja2/t9WAIvk9T/raYGW6tf25tTFTdSx15Y7AdkcueGJeg2I5asaFmZIHLIsbFffriwQN69PALMqb+3RdF7hvfV2zBkeoL+/RZ2T3Wx2sH5yMt2ch8u2iaNmWG864Z7w3n+UI1ldV8nhh6ByLX2xnOHfEoS7PAEcOV1w7UecRjFvOhBF4n6O8boPnaYer1qiur6NEXX9DjR4/oyZdfsnvtSybgg5jjQ+77hZ/OtEeCvH74dahXPnIokXx9fJV6ZWeQYe8PJ2/P7VRZXknHao9xPgL89jiNbyXsLbG2mNt7Vq8dK5at4jmVfKZmokHJrdSaDTUj6OfymHHx5PFj+urJE8pIzzB7jvDR1LX1jtS/wVqBbbVq+WrOB+bDJ8cfob1+e5WaGMfk4j+8JqG+rp7XgDbVN5ExxUjTp850us9f1K3KNjdsEXGfVd+b8X3B5zAkJjMfMoX2SrM0B5sPSF1tHX391Vf0zddf07fffMPO7ZNX/BBL1+OsgjV7C/PxwIcxKZXP2goPDqPFCxxnvhbyHcJCwunE8RY63XGK2k62MV+jmFa+AXlmpu63sE3UfHiwYymYM4tZmilpFnuHas3IooVLOBffffstff/dd5Sdlf1a3MLSeujUnDDOPd09OR+YJYR5EJgrhNq6ochTQX+vTRvdqCCvgOcCXeg6T+fOnKOqiipas+rzNy7+Bh2Te5WAGXHvRW8r9H1DrSP6R4cEhgz62mHq9RsaGujp99/Rs6dP6Ydnz2jmjNkK46JfhCP3NdFCRnwwitZ/voGSE5KotKCYKkvKqZbdDzCLKIytK7iPDFYd1jRmJ+3auZvKy8r5ntStGzd5/g/4MCQZyNVB+4toeY+CTSJiyOK47w5fSmdcZBozeH/2zyZNsQsbakZmTJ9Fz54xNn54Rj/++AO1sPVcjt/ZEu916rV/9nzaw/zekoIi3lfveEMT721xqq2D+cQ1PDbu7xdA8+cuIJf5C61+3Y8nfMp13Yv52Puioqm+voG+Yrbtl8wHfPjgId+LAh91NbXk7bWd21dvy2eOmJXcs3fSxMmci6z0TMrJzKbwEMt9dQdzDcnNyaWffvqRnj//iX7++TltWP93PS96yb9NfMiygOm/v68/5WblcD5QfwmbBznQN65d53kI95leP3r4kLpvd1MD0/nmpmY6wXhqa22jq1ev0J9//kG/v3hBv/76C/38/Dm/Bz19+j2zK77lfNy+dYvyjubTTna/HD/Ovj24xd64HGMSvZTlx4lj6rl/Wgl6psu5G9GR0ZTD7Fx87nk5R5X5mfZiQ83IhI8+pSdPHtMvv/zMv8eenh6+Zykeh3N3xl4OWgv2GbZ5ePJ5d4X5hdTOGBB8fPX4CffjYKOCgxcvfuNsyHyAm+PNx/n6sfbz9coc4qESeS9C7O3JuUI4DptHnoukda2cOqdpxbKVvPcQbNuC3Dyl1nUo+YDEHDhIv/36K/9ef//9BRmNacr/0AvImp7vYubB28gOdH3xIldasngpt6OWui6nZUsdO89e5kPMiRX/E7lT6rk31uTQ9Sf2L9sn2MtJS0njvaKRE5CdkaXs79ibDVOM3GX3wj/YPULc92bPmvsK530xgrUXMa7+rMGi97v62FDmpLxNYmovW9QC4btU82FtjqmI3/a1D2BqVmxgQCAVMFsTPXZKCovYfXmpoqNDyYd4b9zvwMVff/3J5eqVK8rj4Keb40P0pe/vvggeL88yhNizZuRtFTErT+YDnzn0GsdFnoStfIjXg21mzp74//bO9D+q8orj5z/pu262tVVABVELCLK5IKIsIStJ2ApSjcqWhOz7QvZ9XyYJ2XeyJ4SwCNJS0VqlL2y1H1ta/4I+v2c4wzM3d2buDTMhydwX5wMMk8nce5/vc9bnHKwldVYsbNe6qhqqr6mjxroGSoxPfGJ2lTsdUlhY5NAfP/74P0pJTnW6Ju1ZdXWW1kKflXrPn1RNvD8J57Z4thHfa/439y/n/Qr/5rps1itmnq92zoe2DtY+a6FMzpJtqm8kW2Mz/e63q5YEG1pG4Jffu3dPsgFbC77Ils1bHdfFtWPYZ9SzHgsVrQ6x+Fg8RtQ5R7zX8blA7XlQ7dkeM8LzZdgu0NbAylmy9Q2CiyZqabJReFjEktEdenbW7t17JBeIu8Bf18aztNfrDX2v2rtP6syIJb4TV/vpgX0Bsm96S1MztdlaKFWxV5YKG3rfJz+/gP774AE9ePAfGZtsa7vk5H95gwntDBTLP/cP34f/jpwp/PHW5ha61IIz0fVynu6T9smN2llXhU4FG8iL/PuHH+jYsUc9v/X6ZlniX2LGfkCsSvXHf/HzpyhXsIJzFu2YkXmpXeY+lqru0LOz4Hfcv/+NzKkj54X8OtdnLcTeXY418ZboC+xh5A2NMqKN534c9Yngok3W03R1dNDZ02eXPBt63w86A1yg/uRf339Pt2/dFrrlUZzXSP0Jn8+E+Gv+cKX5ElzbbYQRrBHVH8es8Q5hr3e1d1B3ZxcVFxbJc5HLgQ09RioqKmXd0PfffSfrJyYnJp3e624WlcqG2digJebWLNf3cR2DKryG4Tvq1ViZFXyOJ0b0coCbNm6mTnDR0Um9Xejn1yK+90tL2ucwwsjU5CT9U7CBOvh/fPstlZY8OiuCvUGvN5Av2FB7ZuNPfi5YG9yDRn3dn/xetYcMn6dQ59XjvvDcZf7Tl4xofY51a1+SvdF7urqor6eHBnr7aO97+5aNXeXOF/mV0BFffvEFfSvYwFkq1OJp8z6qv+4rvYEYIfea4b/jdTwfxO/xOs+s91c+sE5x37WxP22+3Fv9DfUYwVpQ6y1gP1VXVlFfdw/19/bSYH8/HVfiPcuNDT1GcFbk3uefy9psnDvEudxIpb6SdYgvbSr1Gav5Q3/PK2r7t4EN7B2qnvBm/zZPjKh8gA34GP09gou+fhoaGKDY6Nhlz4be9z8ceVRy8XfI/fuyt0NkxGGntelLf4PPZHIdNsfE/JUPXD/3dWU+2Nbk9/AZUF/xoWVEvfdgo6SomAb6+iQXmBVbVVHhOI+53HwOI4xAZ4CLbyBffy37oKAfihr7WwgbRnxGtQcy75H+zAevSzCgZ19xXRXex3YpXuN9xh13C/ku/Lv4tehz0dKWGh4cpJHhYWFjVa44NvQYiT4fK7n421eQr+j2rVuyp58r38yTqLPfF+J/cK9LrndUzzL4AyO4ZvX+qXVTzA0zoq2x0hP8n9a/dCewp7RnsWPOx8izyZeHhmj08mXpk696ds2KZEOPkYL8Qtlj7q9ffinPUH9686aDEY7twQb1dLaK51VZ8aulJXgmnmqJ8Jwh2hg//AvmYmxkRPrkOFe+UnwOI/46JD8vX8a1vrh3T/ju9+SZkbDQcKd9xV0dCp8TsNbj0hQ8G3d7jdZOQJ/HCzGx0pYCFxNjo9L3UPuDr1Q2XDFyMTdP9rtGD46/3L1Ld/98VzDiPFMW91BPj+D+L2ZfLfZNtPXa3qjjflwbSU+Hqns49+vT2k2+FDwbV76kdvYx/Ar43mMjl2l8dJQmxzFfuN/Rm8cf2HDFCPreYGYCZiegT82f7tyh0JAwp30G+le1UdlXXMzv7WqWD/fww+tYD4ut01zFFNSYE9f78xkm+OUL5djMnsT3yt2zBBvwve1cjNHUxITwyQf8kg1XjOSIe4g+N3c+u0N3bn8me51lZmTN0yN699yoD++NPZPrK9R+A2bjX3weVe9z1dfVnjnu7BQjfGhzHJ56obv63uBfPcdsRNS9TNuPB35Fq80mbClwMU4zU5PS9/BnNlwx8ofjJ+iz27dlHeOtT2/JPlGFBUWyd6b2GZnd7zi+/jh1wKwb+EzWQvnQvkevDw7HXtU5fXprkuul1M/j93mbDwi+C67XbIxPzxdBDw/43pOCi+nJSboyPUVNDQ20etVzfs+GK0ZCgkMlF+iTiXm5N4S02Frm9QTUntH3tK61uaeF2lfeyL9r36PXB0e7nvV6tXJ+QtuLgmPUvuBDzeEasc84dgs2VD7CD0VIH2N6coJmBBezMzPU3NQo9sJfW2z8xH3sd/u2neLeTchZ6+g3iH6yYyOjsi+UGhvkGLC7PqZmn6cnO0Gt0eP1pvZFwz7vKfbvjg/+P6PrmetxtPqD93mVZ60+epy4lKf9huO2eEaqPQVfIyE+QfoYsKVmZ6bp6uwVSk1JcbCxUvMb3mTklZc3kK3ZRnOzc/Is4tUrs7I/J2bmafUI9ih+Hnp7vjfrVbjG24j/oPezYMebfPDnan8v212ueoA+To4Hn8N7jqs8IXpxaGPz8DXqamtpWnBxBVxcmRF73yzFRMe4tCcscc0I9hPEf8HFlekZsd/MCH08TaXFpbRKM4NYL1fCe6sZfxI/46uYMe/rag9OiF4fHHCkxpugr3wZy9bWXRnRpTx/Q30dukIbu4VEhEfKGir4GLOCiznBxfjYKAUFBltsPKZPAp0xMzUt2JgSenlS2l79vf2yH6f2Z9HPdMe2HY7eP3qzHj3ZDr68Ns5pqv6tXv7kSeQrzPjcPIOW7y9s3MCAgHnvgz2Vk5Utnt+UtKXmZtGj+6qMWcFGsNjwDiNbX9tOA30DNDE2QeOj4zQ+Mib7oqenZujO13C1v3nyC/z5nDs4NXP9Wv2sPQeKXsLIY7CPcW1uVviUc1RYUOAUk7S48A4j4KCooEj66qOCjZHhETk7rKu9U86h0T47tlv0zic+7v7JNZFLvVaL84JGex0Z9dPY12P9ptp+Umdk5whb6pGPcV1wgThucFCIpTN8zMmh0HDq7uiiy4PDNDwwREP9g3L+ZG52rmBhtZMNYH9/qNMzdWV/m6lzZP90qc+NwzWZyVeAeyPXBFsK+452f8B5nuGhQbuP8dCWunn9GrW1ttKa1c9bbCwSI88+s4bycvJoULABuwv+SF9PH/V299KRyKOOnhaqfBxlj33p9YPgvstG7RA+72bUbvOFLeSL74r17o4l7DV68XTYvw319Q4f45rg4sb1Ofr05nX6KOojlzEYS3wX34JgJmWbsAn6BBe9XT3U09ktdEs3NTc00x6lZ5gqp06cmMeJGdvK7J5s5n3avrbu4kdmdZ1RW1Cvnz640LNTVz/7HCUlJtnjteDiqt3HuHnjOtXW1Fg6Y0noktWUGJ8kuehq76JO4Y90XOqgjrZ2Ki8ppx3bX3fLCWx0M71IOfdm9GeMrmXO1RjRN/jORvOd/LlGfW81ToH+U3pcwMc4d+acjNdefRivvX5N2FI3rsmcOOog3D0zSxaXEcimjVuosqxScoG+k5iJ2WZro9bmVkpOTKHtW3e6Xb+wGzzNglNzY0b2Y6xho+vSDB9m+lBxLM+I780suHovuDj1/h/n+Rg3hI8BWyou9sK82JTFxdLi5OCBIKqrrpNctDS1kK3RRjZhbzXXN8kZXHp5EwjPgkPu1908HzO1XGbWsRk+wKnRM6xcY+Mu1s25Vb3cHgT52MSERHkWfJ6P8dCW+v0rGy0ulgkn8M/DQyOouqJa9sBvEmw01jVSQ20D1dfUU152HgUHhjpm1KkCPrCP4k+eWcLCtY5GbSa8z6jdb4YPM3YbhHOlqk2GPQC5VHe1nlu3bJNczGhqQuw+xjXJxY7tOy1bahkx4sSJWP9hIYeoorRCcgG9UltVSzWVNVQj2Kkur6KTx98XHGzQtTW4vovXD+eMjdr+ZtawWT7MxBS4phA6B9cDLmBLavlnGypg/0G61NrmqDt38jGELVVbXW1xsYJsLuiJkKBQKi0sechFNVWVVVFlaSVVlFRQeXE5padk0J6336Wnf/OMy1gQ903D2oI95s017Av9wb3WwAX3/HJVy7nrrbcpPi5+Xt256mPUWFyseE7efH0XZaVnObgoKyoT3JRSSUEJFecXU1FeEcWei6Xdb71DT7uwjVQ+os+elr49/s2+C68/X/LBPjSvd7aX+DtB/+E7uav/x1zpOMEO+ufYz/A5151zTUh6Wpr4bIsLf7G7IFte3UofnoqSOqWkoFiwUSTYKKTCiwVUkFtA+Tn50k85d/o8BQUE04trX3L7e9hvUe0x3uM5Tor/Y4bYJ2bOVD74nDafn1Dfz3Mh+LPBBPxq1Y9wVVODvOq+vftlnxD0erb3CbGfbZV150pNCJiJ+jDKKYdhceF/nMCeemfXHkpOSHbi4mLWRcrNzKWcjBzKTs+mrLQsSopLoqORx+iNnW/RuhfWG/7dal8CnnfNXHDMSOWD83FY+2wjMR/8p5F8P3JD6E8Z9UEUlZeWOXoRqn1C2MfguvPUlFTas/tdQ/rYEv+xvSBrVj1PwQdDKD4m3omLzNRMyhD+SXpyOqUlpVFqYiqlJKRQcnwyfXDyA9q7Z79Yy6/TC8+t85hD8ZWsW7uedu54gw5HHpEzwGuraxz9zsEF91xz9AmBj/Gw7jwv9yIFHQxyOt/qbk+xxL91CgS1E++9s5c++fA0ZSQLNpIEG4mCjQTBRrxgIy6Zki4kUWJsIiXEJFB8dDzFnY+jC+cu0JmoM3T40BEKCzpEu97cTTsFO2uff1HqHO3ZLiMCvwn5hQ2vbKLtW3fIGs3wsHBKSUqhvJyLcqZS58OZSr3d3bLfuaOvs4OLEYePMTQ4QLk5ORSow4SlKywxy8rPfvpLem3zNgoJDKUzH51xyUXs2Vgp+DteT4hNkDYZeEoTOgf6B7ooOz2LcoV+gg2Xn5MnfR74PyXCFyorLqWKknKqKquk6ooqqq2qofqaOmqsraem+kayNTZTa7NNzm1tb7PPp+SZSnJ2DLjoR7/zQadehOiFfurkKVlLaPb6LbHEzFqBP/Dy+g1SvxwJP+rEBVgBN2AI9hdsMeieTGGfwVbLkVzkSi7g7yAmgPhAWVEplZeUUWVZhczL1FZWU111LTVILhoEF5j1baM2W6ucT9kp51N22mcqddtnKrEthVlLGWnpUsegj85Cr9MSS8yw4m4dYU4W/I+3hT0VHBBCJ46epPOnz0u/JSstU3CRLf19+P4FufmSi2LBBeJn5cWCi9IKqiqvlHO9JRfQGXUNMv/f0tQsuGiROTueT9kjbKnszCx5fvXYkeO07739cm6wN67FEkt8zYvWPlu/7mUp8OMP7AuQOeqDBwIp8ECQjB8HHxQSGELIY4YGh8m8P/sZEYciaNOGV+WMylc3bvbpd7XEEl8zs9hr8Un/fkss8da69aZY99gSSyyxxBJLlpb8H1BLAQIXCxQAAgAIANqIPlvLgX/ZCUAAAABxAgAEAAkAAAAAAAAAAAAAgAAAAABkYXRhVVQFAAclDtxoUEsFBgAAAAABAAEAOwAAADxAAAAAAA==</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #3</Name>
|
|
<Index>3</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPluNzSfw6D8AAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J33X9TH1sc/f8lz731yb649xhJj12jsxBJFVOzG8qgBFLGAioAiogLSe5Nel7r0XhUsCJbYYostUZP7+33mDMw6+wWUhV1g4fvDecF+t35n5j2nzDkzf//bF/i7KgMmf/uf/+2xqO2lynAY9+bw+aqoYqpxqv4mVVQeejbuli5dzsXhsCMcHBwREBiKqOh4JnHIzStEw5VraGi8hvqGZtTVN3GprbuKmtorqKlpRHVNA6qqmVTVIzg4gkk4goLCcezoCdjYHMSGDZuxcOFSTJo4xaDfrvalKqZgorvXzJ37PbZt2wkX17OIvZyEKja2m6+3ounaLVxtbmFyE1eamFy9gcar1xkX1z9y0aDgopa4aNRxUVlVh4pKJhW1KC+vQVl5NcrKqlBaWoWSkkoUF1cwKUdRURnCw6Ph4XEB+/baYsH3izFyxFiVF1X6lYfRo8ZhrZU13Nw8cDk+Bddv3uZy7UYbmm+06rho4ly0SFwwEVw0Nut0BnFRW3eFs0FcVBMX1cQFE8FFRQ1jg7io1nFRUiK4KEdhYRkKC0pRoC2BVlsMbX4R8vOKkJdbiNiYeJw57YGtm3dgxrTZKiuq9ImLrp6zsFiJo8dOQJOVjxu37uJGyx1cb/nIBWdDcCF0BnHRpM9Fdk4BIiJjER5BEoODBw9zOXCAxIGLnR3JIdjZHoKtrT0XN6aXApltFhDAxD+E6wziooi4KGRcFJS0s5FfrOMiL7cAuTla5GTnI5v97mxNHrIyc5HImHZ1OQPL1esw4evJKiuq9EpXWFlthLdPAOrYuL7Zehc3dVzc6cRFs8RFdEwCPM9745DDMaxZsw5LlvzAdY4pfv/MGXOYHbUE25ltt2+vDXy8/Zm+SGBcFDAuGBuCC00uNJk50GRkIzM9CxlpWUhP1SAtJROX2Hs2Wm/B1+Mnqayo8kldIZioZ0y0tN5jXNxr5+LWnXY2iAthSzEu0th4O+Xijq1bf8KcOfMHzf2NHDEG389fhD279zHd4851RmZ6djsXaRrGRiZjIwOpyelISUpDSmIakhNS4XXBBxvWb+rEisrJ8NUVU76ZhtNnPFHC7PuWtl8UXNzVcUGSzuwT8sGXLV1hdvdPttSa1VY4ddINsdHxSE1Kb+ciMRVJCSmMoWQkxiUh4XIi4mMT4Hj0OFatWG2QHarK0OHCat1GhDEf4Nbt++1cMOnEBZPgkEgemzKVjTRQMm3qTOzfZ4sg/+AOLpIYF4mIY/ZZHPPpL0fHITbqMkKY37N10zaM/2qiyskw4GLHjj0oLa/hXNzq4EJPZxATocTEriHHRHdC9tR2ZiP6MdtScBETGYsYNn9Eh8cgKiwakaFRsGE8kb5VORlaXIwe/RUcHZ3RcPVGt1xkMl922/bhw0R3MnXKdNjZHERwQAiiwhkXYVGMjUhEhEQgPDgcYUFhcGK21+yZc1VOzNzv5lw4SVwIW6qDi7qGZnh5+/P1PbX99GXEv0djxQ+rcIb594KLsMAwhAaEIsQ/BMHMLjvmcAyzZsxROTHDeBTZUY0SF7LOKC6t4usZw11X9FRIVxyyc0BIQDsXQX5BCPINROClAAT4+OOI/RF8NfZrlRMz4MLCYhVKK2rR2g0X25kNpbZd7+SrcROwd/c+HRf+3n7w9/KD30Vf+F68hF2sbf/95SiVkUHIBvmNicnpKhf9wQnTFXt2/h/8vNq5uHTBBz7nveHj6QUPZo+tsFip6pJBpDPIx2i980Dfx2hj/kVjM+Nit9puJpJxjBPSGcSF97mL8PK4gItnz+OCuyeOMptrxrRZKiMDyIawpZQ+BuWEqP5F/wlxcPDnA5wNLh7n4cV48fa8iC3WW1Sbq5/YEP9TXOqM+/kubanQsGh8o4jRq9I/snjBEpxl9hXpEp/zXszu8mb2lw/OnHLDzOmzVUb6QWd8990CZOcWdugMfR/DQmH3upxy5TaA2o6mE/uDDpghjX3SFaQzfJlP4sd8E39vX+bL+zGf3h/W6zZ2O+ep0nc2bGztFT5Ge06I2+lznWypgoJC/Pe//0V4eKTalib0Pz58+MDb2Wrter3nSF+4u5xBoI8/gnwDEOwXiBD/ILg5u2L8uAmqLjGyPSVypZRxKYtl+jpj3549/C/1F/UbiTy/qWI8SUlJ4+1bV1fPH69buxYTJ0zS0yU7tuxAiF8QQv2DERYYgvCgUK5PFi1YrDJiJHuK50spckJo3VvWGZs3buz0WdRvcv+pYjxZsniZbv4RumMsm8e+/NdILJi/gP8vXkvrixeY3x4eFIaIkHBEhkYgOiwSe3buURnpAxs7duzmtdrKnBArK2vda8R8NfXbzj456Q1lH6piHBFzD+kQ5XOCD7lPKF/lsP1hRHWwERMRhdjIGLgye4ueU30Sw9igmgxl3jnlECpjU8uWLPvk53p7+fB+fPr0mdrORvTJqU3J9/iU7dqVTl9nuR6xEdG4zNiIi45FfMxlBDDffdq3M1RGesDG6FFf8Ro+ZX6tl7efnj1FfkZXOuNTPiSxorZ3331ymmsMac8DNjZ6jylHODw4DAkxcUiMjUdSXAKiw6MwT8oTVRnpmg1NjrZTDd/+nw900gm9ne/UNu+byPrY0Ni5bOOSTeXleRHJcYlIiU9CamIy0pJSsOZHS9Un6SpGxXSDJlurx0VtfRPWrv3oawh9Qb6hoXFbspPpfeoY75vs/Gk3Z4P+GvI+6i/ig/xF8uHp2sgOnyQ1MYWxkYr05DRkpKbDcrXVsGdEL0bF9CrFauXa1pq6q53qMih+KOsEEnXMDoyNZShTtFYr+lCOAZPY7rdFRko6MlMzoEnLRFaGBk5HnYYtI/K9EgMUkxK1rSQZmlw9X0PmQjkn9UYniNiLsBOG+vqIvBYkx/PovoUvIcfBhQ0lbFJDdYUs9B1dxbjEOpUQ0hlZ6ZnIZmzkZGYhV5ONE44nhh0jXbEh7xOSkfmRDRFP/9Q8Rm1vyHxGPLW2tuke0zr7UPfbRZxb2U40pws7VfjdxA0xIV5Lr+nt+hF9BrVvV/1DtjL1raxL1q5Zx7nIy8pBfnYutDl5cD7uPGwYke+P2CD/Qt6LMD1TX29QG8rrTN2Nd0N8Eep/ub+JjeEQ16I2onFP9y7uV3nv9JzQNd21l6Hf+Sn9TmwobQMry/Wci4LcfBTmaVGUX4BTJ08N+biWfpxqHIpKKvX2IkzPzNGx0VW79dS+Vfnoeh4XsSNhU9G4NSUfhviHtJ5IorOnrTagkHFRpC1EcUERSgqLYcN8lKHKiJKNDE2e3l6E6Rkf2aC+7E3ObU/fQ/0t21dkn/WUraFiX9H9UzsQG7J9RddF3oh4LY1xspEM7QtD5hyyEUhkP3DDOmvORWlRCcqKS1FeUoaNGzYNOUY6s5Grt995moIN6iMSU+alDzf/XNg6Sj+8P/xzQ/QNfZ+sc6zXb2RclKKitByVZRWoKq/EJuvNQ4oR+R4uevnq7euclp6t52/Q3CXWuk3NiCqDRwQbXeVzkc6oKq9AdUUlaiqrUMR02exZ3w0JRuTfTvvW6vY7v34LldUNemycdnFWGVHZ4Nd+2r5dL661e+ce1FZVo666BvU1tSgtLsHkSd+adUxL/s1bt+3s4KL9jAw6+0Xsd07toFwvUhlR9YYy9nvW3QP1tXVoYDZgY30DUpJSdPOrufGhF8dlHNB5Y+1nx7SfqURn8onXUgy3qzxDlZHhy4aYN5UxzKiISFxpaMTVxitounIVQQFBZmlnyf64tqBU70ylvXs/xuk+F8OVGVFrnIYPG7LItVajR41FWnIqmq824VpTM643X8P+fTZmxYj8GwODwvTOp/T09O40R3zu84gREa+Xr1N8Us4HpTYX8Xy1Fso8+PgcG2KMyDkUc+fMQw3zRW5cu4ab16+j5cZNWCxbbha+iPzb9u6z1TufMjklU2cv/rhyVY9qNz4l8toWxR/JBhPxfLXmfPCLIXMY6Q85X2ut5TrGxQ3cunkTrS0taGxoGPS+iMwu+d7y+ZRl5TWYPHkqf85YfoTMR3frwOo4NI3IeSNifZ2E1hHFdZqzurpuLDntdgatt26hrbUVt9vaECnlGA1GRmSfIyVV8/Hc1ivX+DmV8rxhaE6hysfgErl9RT6XWI8Xa+2iRkT0t6Fr8N31uWwX5Gbn4E7bbdy9cwf37t7FAbuDg5IR+bc4O59mbFzn+yrQmcYe5y7q6UnhU/S2XkmwoPIxOPiQfUGhM+iasXIchc1B40XZp7QneXNTE365ew/3f/kFN5g/8u2UaYOKD9muorOMxVnf9Y3NyM7RdptzSPdMetrQGieRg0JxLcEEfYbsf8j52aoYT0SbynwI3UBtT/8bmw+aQ+nzhd6g/TjIfxXPk854wNh4eP8BHj14iMyMzEGlQ+TfkJNbyM9Grm9oRl19E7s3C379U3nqNLYNrZUV+W9q/Kr/9Qb1ldK+Ev/LHBiDD7k+RSlyfCc2JhaPHj7E40eP8OTxYxyydxgUjMjfbW9/VMcFyfETLrrnlPuFfW6OUGXw6g/S0/J+YjQfka9B45/+Cp1Oj+m19Jf0uSE50sKe6i4vksaSvHfQGPaYfPUnv/6Kp0+e4M7t2/zaYOGDcmHqOtiorbsKTVYeRo38GMvtaZuo+yeYByPEhmy/Ur/Rte7WqAzpV1GP25P3zJk1R7c2csj+MJ49fYrnz57hxfPnSEpMGlAdIn9neEQM56K27gpqaq9gcYddZQgfw0mWMT+N1rScjjnhhNMJOJ881W5LhIWjQFsAfz9/nPPwhIfHOZw964H9+23w46o1zKaYMaz8nM8J2SXy2mFOTg5+e/ECL3/7Da9evsSqVasHhA/ZJ1+92oqzQVzU1DTCx8dfpwNVNr7Awu8X89o37wveyMrU8Pwhyo2gdd87bW24f+8eHj98xOc+6te3b97g/ft3+OuvP7l8eP8ef/zxO7/+6tVLvHjxHFlZ2TjveQG7du7pdB75cBM5f+/7+Ys4F69fvcKb169RW1MzIDpE/i6NJo+x0YhqxkZBYSkmdeQdK/Mvh4uMHDEalj+uxWkXN77HQBHTB1T/RrU9dTW1nI+CfC3i4+Lh63NJT38cdjiCLZu38lxVWX8UFRZxvSL4eMpYesz80AcPHuDe3XsoLyvn62WUezEc+ZDH2SUfX7x58xpv377B77+/5bpXOaf3l+7YvXsf56K6ugFV1fWwszuke11X8eqhLCuXr8Lxo058L8AMdu+0Tw3xkXA5Hq5s7O9ivuaSRcuMMB6mY6P1Zs5Uelo654PWj2+1tODGtevQ5uXD+cQp5hNOGTa2GMUExDrB2DHj2dzxiOvcd+/+YHPJE36tv3SI+I5RI8cyfVHGuaB6Dq22hF8TcTmRnzmU41J0vsXG9Zv42Ui05zLtJ0t8+Hn7Ysumrey+Z5n8N4wZPY7vZ0BjpKa6hue2Un0E6aqQoFCsWrl6yLJBTIj6YHnNy5H5dWSjfvjwHn/++YHr4v7QIfLn29k5oIpxUVlZh4rKWlhbb+kUn5NrmKn/hsqa3Tg2H+3asYufAU7nvkSGhOPSRR9s37IDX48fWJvSco0V/H39OR9VFVUoLy1DEmOWGBoqXIj1FHkPAWUs+Pbt29x/+89//sJvv73oFx0i6w7SFxXERkUtUlM1utdQbaScR6K8D3PeE5T0hdXqdfyMVjp7kvhwOuyI5RYrBt1vJfvK6dhx5ObkoriwGAV5WgQHBmP+vIVm2/4i9qucd+WxJ/63sbHjbJAQJ+TLmdJX19Mdtoc4F+XlNSgrr4b1ho97SnS1Dij2NBb3ZY5nAlJM9ry7J7zPeXE+DtnZ653JOliF5rKf99nwfZ9zs3KhYX6Ry0mXAddzhgrZ7KJWTtSOKO0RZc3E3bt3OBtkYz1//sykOkTWHXl5Re1slFUjJTlD9xrlOQ9KIdbpHs1pHZDOknQ84sR8jAD4XrwEl+On8F1H7bx5xdXG4LjjCc5HOhtb0cxfoj2mzOX3iz2HPpd7SuvqIp5l87MtZ4P8EBKKBZrKDxGfZ71hC+eitKwKpaWV2LD+o+741F65sm9iLn2yaMES+PsEICQghPOx3nK93ln35ijTp82Er7cvkhOSER8bz3WJfL6Zqca2sIOo/2Wbm/6na2RjyPpBub8cvaYntrlyTeH27Tbuq5M8efLEJDaW/FkpKRmMiyqUlFQiKeljfeQRB/tefbbIdxMibC9T19d8Tg7Y2iMqPBrhwRFwdXbDNx31XUNFftq+k/NBZwAG+gbyMzT7gw/l/pViL0fqY+Fjiz0ce/t98hkKP++3wbt373isl2K+ol7dFHysXLmGc1FSUoHi4nL23XYG6Y6uhNpFrJXIuTqmqK/pkR3C5tILzMe4HB3H+di5Y/eQ4kLPXp8yHZeYzRgZGonQwFBYSPvKmIoPsWej6G+xf6XSbuoLH8p9/ylvkdig9cKWlhaj6hD5MwL8QxgXFSgqKodGk6tb7+it7hB6gvSq2AdX2F/GrK/pqUybOhPRkbFIuJyI0OBwbl8NVTaEtJ8re4TzQXpk9097jPbZNNeJ9TvZvhK1OiTCvjImHySU2yR0iPuZs/j97Vu+pv7mzRuey2ZsPiZNnIJixkVRURkKC0vhfNLtkzErQ0TkhApdMhB8TJ82C5dj4pGcmIoA36BhkwsoZOOGzZwPXy9fZnvtMspnkr9Ac598xkp39hX1r7CvSJ/09axIed8TiltR/hrlnbx+/QoRRqxVF+8/7ODIuGBsFJSiQFuCmTPm6OYI8hl6u0aubDtT1Gf2hI2EuCSkMd/Km9kbI03srw5WoRg28eHl6cXXOo3FiOxv99Y/N1T++a/FevooMiKS5y1SDtvLly8xZkzf60Pk9ybEJ7OxXAKtthihIfrrF8SGqG01dK9v0S7GrK8xROi3JyemITM9G74+/jwOOhzZELJ0sQXnw9PdE1s2bTOr3/7FFzMxerwHJs5swzyL93rxLsqzodxeypGm9XTKBTUWHyuW/8h1hja/GPl5RVhn1R43p/x7qlFRzhdKX6InY9RY9TWGCOnAtNRMZGflwd8vaNizIWTxwqWcD3dXd2yS1n4Hq3w5whLjJsXim7nvdDJ59hOMGrNcb3xea27m9SFUP1VeXt4nG0t+z8kTLsjPL2JsFCIvt0A3jsjG6873ELkAgzWfhGILGRnZ7H4KERQQqrKhEIpNEB+uJ1yxwmLw1fH84x/jMWqcE9cVMhdfTy3GiDHte9iS/yGfS+Xq4sbZoBpDqrf5dsp0o/CRlqrh4yg3pwBnTp/TsaHUHeYkERGxXCfGxiSobHQjC+Yv4ny4HHfBwvmLB8VvIr+iK10xZkIAt6+Ur6f5W+SdUG3As2dPORtUp37h/MU+87H8h1Wci9wcLXKy8/GDxUqz58PVxZ2v35D+UPeE+Exca/0mzocLsyEmTxyYmhLSFaQTJkxv0OOCHtN1er679xIbtCeQeFxaWoonT37layIN9fW9srHk1x53cmZcaJmNns/92K70ljnJqlWWPD+G+CC/SmXg82K7zw4ebh44dtixX/NrSB+QriD9IHNB10iP9PRz5PVC2vvn18eP+V5AJPPnLegTH8lJ6dx/zdLkwo3Zo4IPeX8VcxGq/c3XFnM+jhx2Usd+T/1f1t+kP7zPe2Hb5u0m/z7SCeRHyEyQn0H+xqd0RXci74dOPgdxQftlPXzwAAcP2PeaD6p3Jy6yMikvOgeWHfvo9nU9cKAkNDSK16xER8er495AmTt7Hucj0DfAJLlapCvIh+hKV1B8yhiMi//rams5Gw/u3+d1/YbaWOJ1B+wOcS4ymZ2emZ6l82OV58OZg2zatI3XyhMfs0yYizeUhWomiY+L5y78P3vn/RfF1f3x89ek+E2eJMaSprFrVOzd2IkiICoCSpGiCAICwsLCAktZeu9YKDawd8QeTTf9SXn+gO/9XLmb62Qby7Ds6PxwXsCw5c7Mec89595TVPvM18dsoXcmNP5rrsA+hi1/212RY6CQb4t6vY8fPqJHDx/yHGVX+ZBfgz0BcNFY30JZmUbrca3lyaIGcFf3Wc6HXENClyHqMvM9MIcU5pmZneX+3iFsJLGPJ3MBTsDLSJ/HwgWLOReo+f7g/gNaM5gHMxQ+MFeAi4b6Zmqoa6Jtg3Frote8XNfe2+9rSGg4r+3YxOxEXc+HJ4jxBR8Fpvwh5yDa28eztzY7XBE5I9iHQ2yGHAP+8P4D3hcBtUgRvzhUPuaz6wAuEJNUV9NI06c99/Pl3nFyHjC+G3vm3rZeir486LUAPpYuXanruAoSExVD5SWltDdkr0tzhbN9PDUF8UqIcxJ1gmUBI/+sO9XQvbv36B57XVtLm8s+iPj/zqBgzkVddQPVVr/YJw4MyFwqxzHUGKyRlJQjRzkfqIGq67Y6MmXyNM5HHdOxse/ZnkPEPp7sb+N3HFPOFcrYU1u1qZ3ly8k1pWQRsfRKOwc1gNB7auDOAN3pv+NSfzb5f0mJKZwLxHsnHnqet2ur5y4EY8X4MG5bvTfkc5Pz6kX8v/K4WoKcP/QGBR9zP1ug67aKEh8Xz/mIDI98Ya5wZx9Pmesh6lrJx5zlywm7Bq8TcbJKfcI+odjTRv3jAcbFndv91H/7tpUfV/morWJsVNZRdUUt7QjYaV0jc2fdCuPG+EWOh7DD5DwycK52jO7evVGcj6Licl2nVRbUqAAfrU3N9Nbbs+yuzbqyj2crF0pZC8pZvgNYcGbbK2uR9jM2bt+6Tbdv3qJ9eyNc5mPa1JlUXVlLVRU1VFVebe1zA/7c2fuQY/nBNjhQnqOyR5oacq7vMudjo0q5DLq8KJnsfoGPvZH9bu3j2coVtTeHqJUPJNdMR68p1GS9eeMGlVnKXPbNP1+znnFRQ5Vl1VRRWmVdp3DW58bZtRA5HaJfxEjysXnzNrp+c4A6jnfrujxCsnzpSs5HdVXPkPfxoA9ijrCXSyvXRVSLDznuIy01nW5ev8Hr6aPWpDMfXRwP9A+iirIqxkYllVsqrLaVu/GIcj9guQfaSPJhyivifITtjdR1eQSlprKKTh47TnNmDT2+FzohcgZlXRE+qbwmq1a+HJ7v4hkfGBDE6xVfY3L1ylXe58mVNaz4AwmcC9TwQG0bR765KyLWucS5Cd9J5A2KfEu18qAmTPiIbvXf53y8bHV5vE2iIqM4H/EH3NNXkRsnMyN8UmVunBr5ctBhEc87b64PXWNcXL18hfedmDfoR9jiQz5WYDJTGfNpS4vLaPfOPVbu3K3hI5+37EOJugzK48OVLVu2cT4aGtt0HR5hWeCziPPR0aa9a401XXBxmcmli5es6wHO+AAXlqJSKim0WHOQEXMlx9F7s+QXlHA+AqX6XLqMnDQ1NNCZUz302Zx5Xj9WrGHFREVY/0YviEvMfrl4/gJF749xygfiNC2FjA2zhYqZnmEvSGv3q3/gIedDt608I3ExcZyPPcF7NDFe2Q4qLCikC30X6HzveSrIMztdu5ozax6vG1hUUMzr6gk+YAPBdxJ1SvBT7Nd4U7yij89izkdn1xlddz0ka1av5XyYCwq8dozCz4ENJfeiMWQYGBt91Heul82DjXbXsMTfG9dt4lwU5hWS2WR2+J3CdxDMeEPsVURkDOcj/WiWrrseknFjJ3A+Lp7vG/WxwM+Vn+Hip9hzU/r2wbtDqPdsL1/fRY9IZ3xsYHyYB9koyH3+PMDalWyzebMUMJ8JfOwICtZ114NSX1vL+cCa0GjPE85egzUskU8YvGsPY+MsnT19hjF+xikf0RHRnAvUY42P/aeGqFbyoXpO93E+5s9frOutByU9NY3zEeAf6PVjlWuPzpk9j3Nxuuc0ne4+Za25bG8PZH/4fso35lFedh5FDu6tYV9QK73MB+495nzoOutZ2b0rmPMRFxvn9WPF3CH2uufMnst7NJ7q7qGerm6aPbjPaY8P9EoyZZsoNyuXIsIirLxpoZaPj88SzkdXzzldZz0sS5cs43xYSkq0xQebL3q6eqi7s5v3abTFh/x7RmoG5RpyeL8k/20B1s/Tgn0l+Kioqtd11sOCvQ/wUV9X6/VjlePQUUezm3HRdaKTOo+fpB0BQQ75yMnMIWOGkfdmXbPyeU9g7Atqod5VZFQs5+NQQrKusx4W6Bn4uH7tqib8D7nXbSdj4yRj48SxEzwmyxEf4CL7aBZlpRusfAw3tsTTfERExOg6OwqiFT6UcpJxgf7Xx9uPUaD/Dod8gAv0aTUwO2v1iudxY1qJLdH50Plwdf6Q9yuOtx+nY23HqKOtgwK2BzrkA2xkMjYyjhylVYP14NQQEcMs8gbl/ihqfYchy8T5CNqpjTiHl02qKys5Hz7zFwxbTyCip7PImxV7G3J/Hfn4UH0Q8Tu46Ghtp/aWNvL3C3DsnzMuMlLS6WhyGq1atoofw56j3GPWlij7GCjfg3MRuYOiR63IkVGrRlBtfTPnw8dH3/sYDSk0m1XlA7+LOBCxDw69kvuzyf3HhCh7ItsSs9RjDVy0NbdSa1Mrbd/m75APcJGelEpph4/QysF6ONBfW7UhZFGOUfSQE2yL81bmQTnr967z8WrzIWL8RN0CV/Lq5PnFnsifAS5aGluoubGZ/LY65iNtkA3Ox+D8Iedp2BNbcxzOR7DuST5WDfa30kU7fAgdUPKhrG/jCh/KHCtbIsdhtTAumhuaqKm+kfGx3SEfqYkpnA3MIcL/GM7+ILjHXCbzIdtXIh9djfuTyMat++ejJ91dnZyPaVOnD+l9Qg/AgJIPwQ2etaIGjmxfiV5+Q/k+OccW0lTfRI11jdRQ20DbBvPd7fEBLmBjwQdZveI5H8OJLxF5tJ7wz/X1K+2uXwlGHPnn4jk6XP8ce3nyfh64aKipp/rqOtrqu82xf864yGQ+OtZ31wyu78LX10JPA50PfX3XHamvqaM6xkZtVS19sWWrQz6wtos13ux0A62V9s/l/UZvlZ27QjkfyK/V9dWzMu79iZyPc2e9Py8NtpBc5wdc1FTWUHVFNflu/jcfskRH7KfsowYyZmRReGi4pu6RHn81eiLir7QQnyjLRx98QjWMi+ryKqoqq6S1q9c55CM8ZB/lZGZTrsFIkYM1F7Uyf0yc8BHn48LlG7rOeli2bfXjfOQYjV4/Vvgewp+eNnUGVTE2KhkbFaUVNHXKDId8RISFkykrh/KycylqX6Sm/A+IyP8Q9bh18ZDvFx7J+QgL3ev1Y8V6rIjfRR1hcFFuKaeykjJen8QWH9baiX6BlJ9tooKcPG5n4RjY0Ep+VGv7CT1/cBTElJPL+Vix3Pt7rCBfQ+TXLlm0jMoZF2XFpVRaZOH9Ox3xsX7tes6GObeACgfrM4APe/HtYi8Ga3HeUJ8hI9PI+QgPj9b11oMi6jNMGKzROVoCHXRWTwe6LPbzNm/cQqWMDQtjo6Sw5F88KP/GnnmhqYCK8sxUnF9I777zPj8u1ymRf4o9G2/pG+Xr68f5KK/w/jydl0WQcwc+ujs7R30s0MOh1C9BvBW4KDYXU3FBkVM+UO8KXJSw11rYe6Z++rz+lVZ6csJHF/XhdN31jAQFBnE+DBmZXjtGZf0rcTw2Oo5x8bzWW3Sk/X0zwccHTL/ARSljqozNOUsWLrX66FqpYYL8c/CxcnD/RpeRlaxMA+dj/boNXj9W5VpTOu/H+7yeVZgiBt0WHxD4KeXMJoPfsmWwtwzsNXfrt8t+iifqU8cfSuZ8pKYZdP0dYUGfY9SnBh/jx030+vEq9yrMvBdvAeXn5tO6tRts2lbKY0cOp1CFpZwqS8sp4WDCsMek7N0gYs6U/Q3UiuNF/C74QP8oXYdHVlatWM35sBRrL2YBtngB4wK13vKMebRg3kK7fMiyP2I/VZVVUHV5JZmyc63HDx2IdWsc8tqWvf44wo9S69z7Llzl/T9WrPD+/uxalrQjaZyPrb5b3f4MOSYR+R4iflX0ihHP2OHmDEICt2+3+gmzZszhXIh6VpM/meKQD3Hcd/MXVFNeRbWV1VRXVTPsawifSKwbCA5Gun/UwfjDnI8jqRm6Ho+QoLcz+quBj3HvT1CFD+iHyEUVfY9dyRl0VWQfet2a9ZyLHEMOGTONNm0pW3ygj05dZQ3VV9VSQ00dzZg2kx+H/+FOnR/Rs1r8dDXPZTgydepMzgf6c47X+xyMiOzcsYvzkZR4eFifI/OBeUHMDUJH1NIV+OWy74H6hzkGI2Mjm2KktStnfIx9dxyPhUdMfGNtA21Yt9HKnjtxJrZyBPFMkPs728phH65Yyqo4H6Gh2qitrSV54/X/o9JiC+dj4QL3YhVs5QxC74WvKvp3qsUH1q7kOjxpKWmUnZFNWUezyO+L7U59D/l/8M+b6hqoub7J2gMebDiq8wPuRW9z+bgyX17u1anMn1TzHm7atJXzcep0nx6PpbJs2eTL+58XFxa59X57OYO2dN+VnEFwBD0T/ootwRqssK/eYd8PLgzpBspMy7TuYzjzzYXEs+9vaWii1sZmKikstskHzhHjEf03hf+k9jwwHOk43kWXrtykkJB9ul6rOHeYTfmcj+HEW9nLGRS9XGWbwpl/DrtdWX9B1DsRr0EMoYgrgQ8h17L65KPJLvFh7ZOzfhO1NbVQe3MrdbS0Me7GW+cIcCrOSykYpyOGPS0bN/pyPrq6z9KYN/U5RJVryuzt8pJSyssxec2YoHPQS/k5LQTrYNBL+bm9zdeP15o+ythIT0l36nso/w+eUBcIdbOOtXUw33yNdRzyd4MTsR7lrfezrf0kXbh4jfbv9/7a+14/d7w2hoyGbM7HsiXLvXKMeIaDBdg1ovaB0FXxmgPRBzgXaclpFBy0Z8h8QLB2hZqkqE0aGx1rnRPxvaKHuRbu6dy5CzgfvX2XabIG+416kwT4BVJhnpnvIWtlzLCxRP0TrsNvvcu5SE1KZedxhFYM1nlzxfeQX5OUmMTXtjuPn6DqiqoX1sm0UK/6xTUCC+fDZCrU9XwYz2Wsh4IPkUekFZHXXT+bPY9SDzM2Eo9QSkIK7584FN9c3ifsYnZb98lO6unssu4vws/RSqyikPHjPqCTJ0/RmbMX2Nznr+v7EOV1ZlfBJgEfQYM9ALQk+8JCrL+jr01KYgolH0pm53TQZdtK+Tpw1XOyi051ddPp7h7aFbTb+hqtzR8QP3ZdwEc780cmTZqq6/0QZPOGLcyXTefxrm+8PkbT5xIfE09Jh5LocPxh2rRu85DfL3NUUlTC+xae6TlNZcwns8WjlsRkMtOpU71UVFjKe7rouu9cZk6fTUnxSZyPSV6SBzcUwZ65sHdgFyYxLhIPJlLigQQegzWUuUPJCPYGz546w3tD9545R+Pf9/4YZkeCOk3tbSeoq+s0xcYc1PXfiYx9bzxF7YvifKxf6/35Hc4E80XigURKiEugQ7GHrHaQu3x8yuyQ3jNnqe/sOTp/rtda/x357Vqo+WNL0NMXfJw43k2bN32hc2BHoDthwWF0YP8BCt0dqslzQLygvKcdGxnLuYCN5Svde3f5gKC29YXePrrYd56qK6tcej/WfrGmpmbMoZriu8WP89HBfJGVegz8v/1xxsaeXSF0kPmvUXujvM7fhH5hP9DZvpu81jpl0jSKj43n5wTmZ06b7RYbSkZCgkPp4vkLdOnCRbp88RJNGcxJV9b5hWCtGePGHom31GywJzHMvgIfrS0d5DN/kc6FJNu3+nMbPWrffhr77nivHCMYEfuA+Kncj4ONI88dsA8FG3FRcW7bVko+sDYKLq5cukxXL1+huNgDL/DpbJzeLNH74zgfleU19PGHk3Q24M9u3srXP8HH++95JxtKwTyC5zJEPJflmgn4XXABQe6Hu7aVrfdhHevalat0/eo16mW+iDgu4l7cjS/B+0UMgJwvJte2l4+rLcifzjHmUVNDK9XXNtKypd5f32zEbKrXxtDOgJ087gJ8zJ75mSqfay8eXY5bl/XAVj+yocwpeK+I8bDaNXPmcy7AyEFmN3w6uL7vLhtKRjZt3EI3rl2jm9ev060bN3h8sxrXDtdHnIfIF8PvuFZiHoIfo2afEFuMHElO43zUVNXR0sXeGVc0koK4qlg2lyLeG3zMmTVXtc+W+YB9IWJzEQ+F+4xjclwrbHQ5ptddkWN3Q3eHcdsKvnm4lA+kFh+Qvt5eun3zJvXfusXskQrrccQMu9tfSsQhi/pzuE44Ll8fZX7MSMm+sAjOR2VZFfn7Bb4ybKCmE+YL5JmmHD6i+hq+kg8RJyjfV2UO3XD4gM0v6+OHEz/m61VY0z3MbMZlS1aowob4DPE58QcPMTZu053+fhq4c4fXvhbjcTfeRK5tAjYE86PBB2RH4C7OR1lJOX+eItfhZWZj8cIlnAvU8MC8oWZ9UNxLYe/I9pLouecpPrZu3sZ9KezhpCQk87U5tfiQP2fi+A9poP8O3b0zQPfu3iVDpuGFOUTU/HVn/pB9LHF9hH0l5l9P6cySRcs5H8XmEsrOMFpt1ZdJ3mTc79kdwmudoXYg1j1hY6n5HbhvIvdC5kP09RZ5pUo7W/Q+VoONt996l8eRJDMuEI84nD0PV2yszAwD3b97jx7cu08P7z/gNYTEuNzhQ+mfixhkT/nndm0ONicfTc0gs6mQ14BBnbzXX9N23JGQ6dNmUm62idf1Bx/bBnOvR0JwP23526JnuKv+uatrospa6ogbg+2IWPb0lDSr7agWG0pGFvgsYlzcp0cPHtDjh4/ImP1PXRS5bryjtQVvyi906LOyZ2xQwE7OR06mkfl28TR96kztzhlvvMXjhRpq63k/MdQORKy3FsaO9ShnvcCxhivPHcjzSEUv5uQ0nicYGhym+txh6/Pqa+vo8aNH9OTxY3r65ZfsWfucCfgg9viQ637hp5b2SBDXD78O+cpHk9MpOCjYmq+sBRnz5lsU6L+DaqtrqbmxmfMRFrJXM76VsLfE3GJv71k5d6xcvprHVPKemukGa2yl2mwoGUE9lyeMi6dPntBXT5+SKddkd4zw0ZS59d5Uv8FVgW21esUazgf6w2emHqV9IfusOTHeycXbPCehpamF54C2t7STMctIM6bN0tz1F3mrss0NW0Q8Z5XPZtwv+ByG9EzmQ2bRPqmX5kjzAWlqbKKvv/qKvvn6a/r2m2/Y2D5+wQ9xdj5aFczZXzAfD3wYM7J5r62YyGhavMB7+msh3iE6KoZOHDtOp3tOUdfJLuZrlNOqlyDOzNbzFraJkg8/diwLfWbRSzMrx2ntULUZWbRwCefiu2+/pe+/+44K8gv+tW7hbD7UNCeMc/+t/pwP9BJCPwj0FUJu3WjEqaC+1+ZNvmQptvBYoAt95+ncmXNUV1NHa1d//tKtv0HH5FolYEY8e1HbCnXfkOuI+tFR4VEjPnfY+vzW1lb64fvv6NkPP9CPz57RrJlzrIyLehHeXNdEDXnnP2Npw+cbKTMtgyot5VRbUU2N7HmAXkTRbF7Bc2Sk8rCmMztp9649VF1Vzfekbt24yeN/wIchw0BLvbS+iJrPKNgkYg1ZHA/eGUy5jIs8o4nXZ/908lSPsKFkZOaM2fTsGWPjx2f0008/0nE2n8vrd+6s92p67p8zn/Yyv7fCUsbr6h1rbee1LU519TCfuIGvjYeGhNH8uQvIZ/5Clz/3ow8/4boewHzsgwfiqaWllb5itu2XzAd8+OAh34sCH00NjRQYsIPbV6/KNcealVyzd/KkKZyL/Nw8MucVUEyU87q6IzmHFJoL6eeff6JffvmZfv31F9q44Z98XtSSf5X4kGUB0//Q4FAqzDdzPpB/CZsHMdA3rl3ncQj3mV4/fviQ+m/3UyvT+Y72DjrBeOrq7KKrV6/Q33//RX/+8Qf9/vtv9Osvv/Bn0A8/fM/sim85H7dv3aLiohLaxZ6XEyd4tga32BuX15hELWX5deKYsu+fWoKa6XLsRnxcPJmZnYvrXmwusvbP9BQbSkY+/OATevr0Cf3226/8Pg4MDPA9S/E6jF2LtRzUFuwzbPfz5/3uSktKqZsxIPj46slT7sfBRgUHf/zxX86GzAe4OdZxjM8f6z7fYO1DPFoi70WIvT05VgjHYfPIfZHUzpVTxjStXL6K1x6CbWspLLbmuo4mH5DEhMP0399/5/f1zz//IKMxx/o/1AJypea76HnwKrIDXV+8aCktWbyM21HLlq6g5cu8O85e5kP0iRX/E7FTyr43rsTQDWXtX7ZPsJeTk5XDa0UjJqDAlG/d3/E0G7YYucuehX+xZ4R47s2ZPfcFzh0xgrkXa1xDmYNF7XflsdGMSXmVxNZetsgFwr1U8uFqjKlYv3W0D2CrV2x4WDhZmK2JGjsVpWXsubzMqqOjyYf4bjzvwMX//vc3l6tXrlhfBz/dHh+iLv1Q90XwermXIcSTOSOvqoheeTIfuObQaxwXcRLu8iE+D7aZPXsCuiT3ioXtWlZsoXJLGVWWVVBCfMKo2VWO5pCcnFzr/PHXX39S0uHkF85Jmasu99Jy917J13y0YuJfJRF7W6K3kbjW4m9Rv1w8r/C3iMsW88pQ7q+yz4cyDvZ5r4WC/2/vPNujuK44fr5J3qUnTmzANhjbAQymuWCMTRGqSKIFTGzZpklCvRfUey8rCfWOuoQQxWASYtlxbPLCiZ3HCfkIuf8rznJ3NLs7I3bFSjsvzgMsq9XMzv3dU+85cpZsU30j2Rqb6fe/W+MTbGgZgV8+Pz8v2YCtBV9k29bt9vvi2jHsM+pZj6WKVodYfCwfI+qcI97r+Fyg9jyo9myPGeH5MmwXaGtg5SzZ+gbBRRO1NNkoPCzCZ3SHnp21d+8+yQXiLvDXtfEs7f16Qt+r9u7TOjNiiffE2X566ECA7Jve0tRMbbYWSlXsFV9hQ+968vML6H8PH9LDh/+Vscm2tisO/pcnmNDOQLH8c//wffjvyJnCH29tbqErLTgTXS/n6T5tn9yonXVd6FSwgbzIf378kU6ceNzzW69vliX+JWbsB8SqVH/8Fz//FeUKVnDOoh0zMq+0y9yHr+oOPTsLfseDB9/KnDpyXsivc33WUuzdlVgTb4m+wB5G3tAoI9p47idRnwou2mQ9TVdHB50/e97n2dC7PugMcIH6k3//8APdvXNX6JbHcV4j9Sd8PhPir/nD1eZLcG23EUawRlR/HLPGO4S93tXeQd2dXVRcWCTPRa4ENvQYqaiolHVDP3z/vayfmJyYdHivq1lUKhtmY4OWmFuzXN/HdQyq8BqG76hXY2VW8DnuGNHLAW7ZvJU6wUVHJ/V2oZ9fi7jul33a5zDCyNTkJP1LsIE6+H9+9x2Vljw+K4K9Qa83kDfYUHtm409+Llgb3INGfd2f/F61hwyfp1Dn1eN74bnL/Kc3GdH6HBvWvyx7o/d0dVFfTw8N9PbR/vcPrBi7ypUv8muhI7768kv6TrCBs1SoxdPmfVR/3Vt6AzFC7jXDf8freD6I3+N1nlnvr3xgneJ718b+tPlyT/U31GMEa0Gtt4D9VF1ZRX3dPdTf20uD/f10Uon3rDQ29BjBWZH5L76Qtdk4d4hzuZFKfSXrEG/aVOozVvOH/p5X1PZvAxvYO1Q94cn+be4YUfkAG/Ax+nsEF339NDQwQLHRsSueDb3rPxp5XHLxD8iDB7K3Q2TEUYe16U1/g89kch02x8T8lQ/cP/d1ZT7Y1uT38BlQb/GhZUT97sFGSVExDfT1SS4wK7aqosJ+HnOl+RxGGIHOABffQr75RvZBQT8UNfa3FDaM+IxqD2TeI/2ZD16XYEDPvuK6KryP7VK8xvuMK+6Wci38u/i16AvR0pYaHhykkeFhYWNVrjo29BiJvhgrufj715Cv6e6dO7KnnzPfzJ2os9+X4n9wr0uud1TPMvgDI7hn9ftT66aYG2ZEW2OlJ/g/rX/pSmBPac9ix1yMkWeTrw4N0ejVq9InX/PculXJhh4jBfmFssfc3776Sp6h/uz2bTsjHNuDDerubBXPq7LiV74leCbuaonwnCHaGD/8C+ZibGRE+uQ4V75afA4j/jokPy9fxrW+nJ8Xvvu8PDMSFhrusK+4qkPhcwLWevRNwbNxtddo7QT0ebwUEyttKXAxMTYqfQ+1P/hqZcMZI5dz82S/a/Tg+Ov9+3T/L/cFI44zZfEd6ukRfP/L2VeLfRNtvbYn6rif1EbS06HqHs79+rR2kzcFz8aZL6mdfQy/Ar732MhVGh8dpclxzBfut/fm8Qc2nDGCvjeYmYDZCehT8+d79yg0JMxhn4H+VW1U9hWX87qdzfLhHn54HethuXWas5iCGnPien8+wwS/fKkcm9mT+Lty9SzBBnzvBS7GaGpiQvjkA37JhjNGcsR3iD439z6/R/fufi57nWVmZC3SI3rfuVEf3hN7JtdXqP0GzMa/+Dyq3ueqr6s9c1zZKUb40OY43PVCd3bd4F89x2xE1L1M248HfkWrzSZsKXAxTjNTk9L38Gc2nDHyx5On6PO7d2Ud453P7sg+UYUFRbJ3pvYZmd3vOL7+JHXArBv4TNZS+dC+R68PDsde1Tl9emuS66XUz+P3eZoPCK4F92s2xqfni6CHB3zvScHF9OQkXZueoqaGBlq75nm/Z8MZIyHBoZIL9MnEvNxbQlpsLYt6AmrP6Ltb19rc01LtK0/k37Xv0euDo13Per1aOT+h7UXBMWpv8KHmcI3YZxy7BRsqH+FHIqSPMT05QTOCi9mZGWpuahR74W8sNn7iOva7c8du8d1NyFnr6DeIfrJjI6OyL5QaG+QYsKs+pmafpzs7Qa3R4/Wm9kXDPu8u9u+KD/4/o+uZ63G0+oP3eZVnrT56kriUu/2G47Z4Rqo9BV8jIT5B+hiwpWZnpun67DVKTUmxs7Fa8xueZOTVVzaRrdlGc7Nz8izi9Wuzsj8nZuZp9Qj2KH4eenu+J+tVuMbbiP+g97Ngx5N88Odqfy/bXc56gD5Jjgefw3uOszwhenFoY/PwNepqa2lacHENXFybEXvfLMVExzi1Jyxxzgj2E8R/wcW16Rmx38wIfTxNpcWltEYzg1gvV8J7qxl/Ej/jrZgx7+tqD06IXh8ccKTGm6CvvBnL1tZdGdGlPH9DfR26Qhu7hUSER8oaKvgYs4KLOcHF+NgoBQUGW2w8oU8CnTEzNS3YmBJ6eVLaXv29/bIfp/Zn0c90145d9t4/erMe3dkO3rw3zmmq/q1e/uRp5CvM+Nw8g5a/X9i4gQEBi94HeyonK1s8vylpS83Nokf3dRmzgo1gseEZRra/vpMG+gZoYmyCxkfHaXxkTPZFT0/N0J2v4Wx/c+cX+PM5d3Bq5v61+ll7DhS9hJHHYB/jxtys8CnnqLCgwCEmaXHhGUbAQVFBkfTVRwUbI8MjcnZYV3unnEOjfXZst+idT3zS/ZNrIn29VovzgkZ7HRn109jXY/2m2n5SZ2TnCFvqsY9xU3CBOG5wUIilM7zMyZHQcOru6KKrg8M0PDBEQ/2Dcv5kbnauYGGtgw2w8P5Qh2fqzP42U+fI/qmvz43DPZnJV4B7I/cEWwr7jnZ/wHme4aHBBR/jkS11++YNamttpXVrX7DYWCZGnnt2HeXl5NGgYAN2F/yRvp4+6u3upWORx+09LVT5JGoh9qXXD4L7Lhu1Q/i8m1G7zRu2kDeuFevdFUvYa/Ti6bB/G+rr7T7GDcHFrZtz9Nntm/Rx1MdOYzCWeC++BcFMyjZhE/QJLnq7eqins1volm5qbmimfUrPMFXOnDq1iBMztpXZPdnM+7R9bV3Fj8zqOqO2oF4/fXChZ6eufe55SkpMWojXgovrCz7G7Vs3qbamxtIZPqFL1lJifJLkoqu9izqFP9JxpYM62tqpvKScdu18wyUnsNHN9CLl3JvRnzG6ljlXY0Tf4JqN5jv5c4363mqcAv2n9LiAj3Hh3AUZr73+KF5784awpW7dkDlx1EG4emaWLC8jkC2bt1FlWaXkAn0nMROzzdZGrc2tlJyYQju373a5fmE3uJsFp+bGjOzHWMNG16UZPsz0oeJYnhHfm1lw9l5wceaDPy3yMW4JHwO2VFzspUWxKYsL3+Lk8KEgqquuk1y0NLWQrdFGNmFvNdc3yRlcenkTCM+CQ+7X1TwfM7VcZtaxGT7AqdEzrFxj4yrWzblVvdweBPnYxIREeRZ8kY/xyJb6w6ubLS5WCCfwz8NDI6i6olr2wG8SbDTWNVJDbQPV19RTXnYeBQeG2mfUqQI+sI/iT55ZwsK1jkZtJrzPqN1vhg8zdhuEc6WqTYY9ALlUV7We27ftkFzMaGpCFnyMG5KLXTt3W7bUCmLEgROx/sNCjlBFaYXkAnqltqqWaiprqEawU11eRadPfiA42KRra3B9F68fzhkbtf3NrGGzfJiJKXBNIXQO7gdcwJbU8s82VMDBw3Sltc1ed+7gYwhbqra62uJiFdlc0BMhQaFUWljyiItqqiqrosrSSqooqaDy4nJKT8mgfe+8R8/89lmnsSDum4a1BXvMk2vYG/qDe62BC+755ayWc8/b71B8XPyiunPVx6ixuFj1nLz1xh7KSs+yc1FWVCa4KaWSghIqzi+morwiir0QS3vffpeecWIbqXxEnz8rfXv8m30XXn/e5IN9aF7vbC/xNUH/4Zpc1f9jrnScYAf9cxbO8DnWnXNNSHpamvhsiwt/sbsg217bTh+diZI6paSgWLBRJNgopMLLBVSQW0D5OfnST7lw9iIFBQTTS+tfdvl72G9R7THe4zlOiv9jhtgnZs5UPvicNp+fUN/PcyH4s8EE/GrVj3BWU4O86oH9B2WfEPR6XugTsnC2VdadKzUhYCbqoyiHHIbFhf9xAnvq3T37KDkh2YGLy1mXKTczl3Iycig7PZuy0rIoKS6JjkeeoDd3v00bXtxo+HerfQl43jVzwTEjlQ/Ox2Hts43EfPCfRvL9yA2hP2XUh1FUXlpm70Wo9glhH4PrzlNTUmnf3vcM6WNL/Mf2gqxb8wIFHw6h+Jh4By4yUzMpQ/gn6cnplJaURqmJqZSSkELJ8cn04ekPaf++g2Itv0EvPr/BbQ7FW7Jh/UbavetNOhp5TM4Ar62usfc7Bxfcc83eJwQ+xqO687zcyxR0OMjhfKurPcUS/9YpENROvP/ufvr0o7OUkSzYSBJsJAo2EgQb8YKNuGRKupREibGJlBCTQPHR8RR3MY4uXbhE56LO0dEjxygs6AjteWsv7RbsrH/hJalztGe7jAj8JuQXNr26hXZu3yVrNMPDwiklKYXyci7LmUqdj2Yq9XZ3y37n9r7Odi5G7D7G0OAA5ebkUKAOE5ausMQsKz/76S/p9a07KCQwlM59fM4pF7HnY6Xg73g9ITZB2mTgKU3oHOgf6KLs9CzKFfoJNlx+Tp70eeD/lAhfqKy4lCpKyqmqrJKqK6qotqqG6mvqqLG2nprqG8nW2EytzTY5t7W9bWE+Jc9UkrNjwEU/+p0POvQiRC/0M6fPyFpCs/dviSVm1gr8gVc2bpL65Vj4cQcuwAq4AUOwv2CLQfdkCvsMtlqO5CJXcgF/BzEBxAfKikqpvKSMKssqZF6mtrKa6qprqUFy0SC4wKxvG7XZWuV8yk45n7JzYaZS98JMJbalMGspIy1d6hj00VnqfVpiiRlWXK0jzMmC//GOsKeCA0Lo1PHTdPHsRem3ZKVlCi6ypb8P378gN19yUSy4QPysvFhwUVpBVeWVcq635AI6o65B5v9bmpoFFy0yZ8fzKXuELZWdmSXPr544dpIOvH9Qzg32xL1YYom3edHaZxs3vCIFfvyhAwEyR334UCAFHgqS8ePgw0ICQwh5zNDgMJn3Zz8j4kgEbdn0mpxR+drmrV69Vkss8TYzy70Wn/bvt8QST61bT4r1HVtiiSWWWGKJb8n/AVBLAQIXCxQAAgAIANqIPluNzSfw6D8AAABxAgAEAAkAAAAAAAAAAAAAgAAAAABkYXRhVVQFAAclDtxoUEsFBgAAAAABAAEAOwAAABtAAAAAAA==</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #4</Name>
|
|
<Index>4</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPlvwTvpjB0AAAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J33W9THvsfff8k959yck9g11sRuYuxEJYqo2I3ligEUsYCKgCKiAtJ773WpS+9VwYIgmlhiiy1Rk/M893nuL+fOZ2DW2aXIwi6y8P3h/cD23e/Maz5lPjPz9799hr8r+mT623/9d7+lXC9Fo6Hfm8L7K1JkrH6qfCdFCg/963crV67mcjjqCAcHRwQEhiIqOoEpHnn5RWi8eh2NTdfR0NiC+oZmrrr6a6itu4ra2ibU1DaiuoapugHBwRFM4QgKCseJ46dgY3MYmzdvw9KlKzF92iy9vrvSloqMwURvz1m06Dvs3LkHLq7nERuXjGrWt1tutKH5+m1ca2lluoWrzUzXbqLp2g3GxY0PXDTqcFFHXDRpuKiqrkdlFVNlHSoqalFeUYPy8mqUlVWjtLQKJSWVTBUoLi5HeHg0PDwuwfqALZZ8txxjx0xUeFE0pDyMHzcJGyyt4ObmgbiEVNy4dYfr+s12tNxs03DRzLlolbhgElw0tWhsBnFRV3+Vs0Fc1BAXNcQFk+CispaxQVzUaLgoLRVcVKCoqBxFhWUoVJdCrS6BuqAYBfnFyM8rQmxMAs6d9cCObbsxd/YChRVFg+Kip8fMzNbi+IlTUGUX4Obtu7jZ2oEbrR+44GwILoTNIC6atbnIyS1ERGQswiNIMTh8+CjXoUMkBy47O9IR2Nkega2tPZcbs0uBzDcLCGDyD+E2g7goJi6KGBeFpZ1sFJRouMjPK0Rerhq5OQXIYd87R5WP7Kw8JDGmXV3OwWLdRkz9cobCiqIB2QpLyy3w9glAPevXt9ru4paGi45uXLRIXETHJMLzojeOOJzA+vUbsWLF99zmGOP7z5u7kPlRK7CL+XbWB2zg4+3P7EUi46KQccHYEFyo8qDKyoUqMwdZGdnITM9GRpoK6alZuMJes8VqO76cMl1hRVGftkIw0cCYaG27x7i418nF7Y5ONogL4UsxLtJZfzvj4o4dO37EwoWLh83vGztmAr5bvAz791kz2+PObUZWRk4nF+kqxkYWYyMTaSkZSE1OR2pSOlIS0+B1yQebN23txorCyei1FbNmzsbZc54oZf59a/vPOlzc1XBBymD+CcXgq1auMbnfT77U+nWWOHPaDbHRCUhLzujkIikNyYmpjKEUJMUnIzEuCQmxiXA8fhLma9bp5YcqGjlcWG7cgjAWA9y+80snF0zduGAKDonkuSlj+UifSrO/noeD1rYI8g/u4iKZcZGEeOafxbOYPi46HrFRcQhhcc+OrTsxZfI0hZNRwMXu3ftRVlHLubjdxYWWzSAmQomJvSOOid5E/tQu5iP6Md9ScBETGYsYNn5Eh8cgKiwakaFRsGE8kb1VOBlZXIwfPxmOjs5ovHazVy6yWCy7c9foYaI3fT1rDuxsDiM4IARR4YyLsCjGRiQiQiIQHhyOsKAwODHfa8G8RQonJh53cy6cJC6EL9XFRX1jC7y8/fn8nnL9tDXmi/FY8705zrH4XnARFhiG0IBQhPiHIJj5ZSccTmD+3IUKJyaYjyI/qkniQrYZJWXVfD5jtNuK/opsxRE7B4QEdHIR5BeEIN9ABF4JQICPP47ZH8PkiV8qnJgAF2Zm5iirrENbL1zsYj6Ucu0GpsmTpuLAPmsNF/7efvD38oPfZV/4Xr6CvezafvH5OIWRYcgGxY1JKRkKF0PBCbMV+/f8D/y8Orm4cskHPhe94ePpBQ/mj60xW6vYkmFkMyjGaOu4rx1jtLP4oqmFcbFPuW5G0iTGCdkM4sL7wmV4eVzC5fMXccndE8eZzzV39nyFkU/IhvCldGMMqglR4ouhE3Fw+KdDnA0uj4vwYrx4e17Gdqvtis81RGyI/ykvdc79Yo++VGhYNGbq5OgVDY2WL1mB88y/Ilvic9GL+V3ezP/ywbkzbpg3Z4HCyBDYjG++WYKcvKIum6EdY5jp+L0uZ1y5D6BcR+PJ/rAD5kp9n2wF2QxfFpP4sdjE39uXxfJ+LKb3h9XGLb2OeYoGz4aNrb1OjNFZE+J29kI3X6qwsAj/+c9/EB4eqVxLI8Yf79+/59fZcsMmrcfIXri7nEOgjz+CfAMQ7BeIEP8guDm7YsqkqYotMbA/JWqldPNSZqu0bYb1/v38L7UXtRtJHt8UGU6pqen8+tbXN/DbGzdswLSp07Vsye7tuxHiF4RQ/2CEBYYgPCiU25NlS5YrjBjIn+L1Ujo1ITTvLduMbVu2dHsvaje5/RQZTiuWr9KMP8J2TGTj2Of/Gosli5fw/8VzaX7xEovbw4PCEBESjsjQCESHRWL/nv0KI4NgY/fufXyttm5NiKWlleY5Yrz6+qvuMTnZDd02VGQYibGHbIjuY4IPuU2oXuWo/VFEdbERExGF2MgYuDJ/ix5TYhL92KA1Gbp151RDqJubWrViVZ/v6+3lw9vxyZOnynU2YExO15Rij758155s+kaLTYiNiEYcYyM+OhYJMXEIYLH77K/mKoz0g43x4ybzNXy69bVe3n5a/hTFGT3ZjL5iSGJFud6Dj8lprNHneh6ysdG6TTXC4cFhSIyJR1JsApLjExEdHoVvpTpRhZGe2VDlqrut4Tv406FuNmGg451yzQcn2R7rmzuXfVzyqbw8LyMlPgmpCclIS0pBenIq1v9gocQkPeWomG1Q5ai1uKhraMaGDR9iDWEvKDbUN29LfjK9Tunjg9OeH/dxNuivPq+j9iI+KF6kGJ7uG9sVk6QlpTI20pCRko7MtAxYrLMc9Yxo5aiYXaVcrby2tbb+Wrd1GZQ/lG0CSemzn8bH0pcpmqsVbSjngEm2B22RmZqBrLRMqNKzkJ2pgtNxp1HLiPxbiQHKSYm1raRMVZ5WrCFzoTsmDcQmiNyL8BNG+vyIPBck5/Pod4tYQs6DCx9K+KT62gpZ9Bk95bjEPJUQ2YzsjCzkMDZys7KRp8rBKcdTo46RntiQ9wnJzPrAhsin9zWO0bXXZzwjntra2jW3aZ59pMftIs+te51oTBd+qoi7iRtiQjyXnjPQ+SN6D7q+PbUP+crUtrIt2bB+I+ciPzsXBTl5UOfmw/mk86hhRP59xAbFF/JehBlZ2naDrqE8z9Rbf9cnFqH2l9ub2BgNeS26RtTv6beL36v72+kxYWt6u176fmZf9p3Y0PUNLC02cS4K8wpQlK9GcUEhzpw+M+LzWtp5qkkoLq3S2oswIytXw0ZP162//q3CR8/juMgdCZ+K+q0x+dAnPqT5RJLGn7bcjCLGRbG6CCWFxSgtKoENi1FGKiO6bGSq8rX2IszI/MAGteVAam77+xpqb9m/Iv+sv2yNFP+Kfj9dB2JD9q/oflE3Ip5LfZx8JH3bQp8xh3wEkhwHbt5oxbkoKy5FeUkZKkrLsWXz1hHHSHc28rT2O0/XYYPaiGTMuvTRFp8LX0c3Dh+K+Fwfe0OfJ9scq01bGBdlqCyrQFV5JaorqrDVatuIYkT+DZe9fLX2dU7PyNGKN2jsEnPdxmZE0fCRYKOnei6yGdUVlaiprEJtVTWKmS1bMP+bEcGI/N1p31rNfuc3bqOqplGLjbMuzgojChv8vh937dLKa+3bsx911TWor6lFQ20dykpKMWP6Vyad05K/846de7q46Dwjg85+Efud03XQnS9SGFHshm7u97y7Bxrq6tHIfMCmhkakJqdqxldT40Mrj8s4oPPGOs+O6TxTic7kE8+lHG5PdYYKI6OXDTFu6uYwoyIicbWxCdearqL56jUEBQSZpJ8lx+PqwjKtM5UOHPiQp/tYDldmRFnjNHrYkCWvtRo/biLSU9LQcq0Z15tbcKPlOg5a25gUI/J3DAwK0zqf0tPTu9sY8bH3I0ZEvl6+n/KTcj0oXXORz1fWQpkGHx9jQ/QRuYZi0cJvUctikZvXr+PWjRtovXkLZqtWm0QsIn+3A9a2WudTpqRmafzFH9aa92vtRl+S57Yo/0g+mMjnK2vOh7/0GcPIfsj1WhssNjIubuL2rVtoa21FU2PjsI9FZHYp9pbPpyyvqMWMGV/zxwwVR8h89DYPrPRD40iuGxHz6ySaRxT305jV0/2G0lm3c2i7fRvtbW24096OSKnGaDgyIsccqWmqD+e2Xr3Oz6mUxw19awoVPoaX5Osr6rnEfLyYaxdrRER76zsH31uby35BXk4uOtrv4G5HB+7dvYtDdoeHJSPyd3F2PsvYuMH3VaAzjT0uXNaykyKmGOh6JcGCwsfw4EOOBYXNoPsMVeMofA7qL7ptSnuStzQ34+e79/DLzz/jJotHvpo1e1jxIftVdJaxOOu7oakFObnqXmsO6TeTndZ3jZOoQaG8lmCC3kOOP+T6bEWGk7imMh/CNtC1p/8NzQeNofT+wm7QfhwUv4rHyWbcZ2w8+OU+Ht5/gKzMrGFlQ+TvkJtXxM9GbmhsQX1DM/ttZvz+vurUqW/ru1ZW1L8p+auhtxvUVrr+lfhf5sAQfMjrU3Ql53diY2Lx8MEDPHr4EI8fPcIRe4dhwYj82fb2xzVckE6ectE8prtf2MfGCEXD136QnZb3E6PxiGIN6v/0V9h0uk3Ppb9kz/WpkRb+VG91kdSX5L2DJrDbFKs//vVXPHn8GB137vD7hgsfVAtT38VGXf01qLLzMW7sh1xuf6+Jsn+CaTBCbMj+K7Ub3dfbHJU+7SrW4/bnNQvnL9TMjRyxP4qnT57g2dOneP7sGZKTkj+pDZE/MzwihnNRV38VtXVXsbzLr9KHj9GkVSxOozktpxNOOOV0Cs6nz3T6EmHhKFQXwt/PHxc8POHhcQHnz3vg4EEb/GC+nvkUc0dVnPMxkV8izx3m5ubit+fP8eK33/DyxQuYm6/7JHzIMfm6dZacDeKitrYJPj7+GhuosPEZln63nK99877kjewsFa8fotoImvftaG/HL/fu4dGDh3zso3Z98/o13r17i7/++pPr/bt3+OOP3/n9L1++wPPnz5CdnYOLnpewd8/+bueRjzbJ9XvfLV7GuXj18iVev3qFutraT2JD5M9SqfIZG02oYWwUFpVhelfdsW795WjR2DHjYfHDBpx1ceN7DBQze0Dr32htT31tHeejsECNhPgE+Ppc0bIfRx2OYfu2HbxWVbYfxUXF3K4IPp4wlh6xOPT+/fu4d/ceKsor+HwZ1V6MRj7kfnbFxxevX7/Cmzev8fvvb7jt1R3Th8p27NtnzbmoqWlEdU0D7OyOaJ7XU756JGvtanOcPO7E9wLMZL+d9qkhPhLjEuDK+v5eFmuuWLbKAP1hDrZYbeNMZaRncD5o/vh2aytuXr8BdX4BnE+dYTHhrFHji1FOQMwTTJwwhY0dD7nNffv2DzaWPOb3DZUNEZ8xbuxEZi/KORe0nkOtLuX3ibycqM8cyXkpOt9iy6at/Gwk2nOZ9pMlPvy8fbF96w72u+cb/TtMGD+J72dAfaS2ppbXttL6CLJVIUGhMF+7bsSysWjxIUyb147QqP/VmvNyZHEd+ajv37/Dn3++57Z4KGyI/P52dg6oZlxUVdWjsqoOVlbbu+Xn5DXM1H4jZc5uEhuP9u7ey88Ap3NfIkPCceWyD3Zt340vp3xan9JivSX8ff05H9WV1agoK0cyY5YYGilcLFhgiS+/LsHMRW+5Zix43C0XfOfOHR6//fvff+G3354PiQ2RbQfZi0pio7IOaWkqzXNobaRcR6K7F4Ip7wlK9sJy3UZ+RiudPUl8OB11xGqzNcPuu5J/5XTiJPJy81BSVILCfDWCA4Ox+NulJnv9J0+ej9kL4zRckMZP8cA//jFF0/fEc21s7DgbJOKEYjljxupatsP2COeioqIW5RU1sNr8YU+JnuYBxZ7GghNTPBOQcrIX3T3hfcGL83HEzl7rTNbhKhrLfrK24fs+52XnQcXiIpfTLp/czumrxcs8uZ0QXJD9+Oyzed1idfn23bsdnA3ysZ49e2pUGyLbjvz84k42ymuQmpKpeY7uOQ+6Ih+LfC1TmgeksyQdjzmxGCMAvpevwOXkGXzTtXbetPJqE3DS8RTnI4P5vtEsXqI9pob79/58jAWmzmnUcEHxBt3X2/NpXl3ks2x+suVsUBxColygseIQ8X5Wm7dzLsrKq1FWVoXNmz7Yjr72ypVjE1PpU8uWrIC/TwBCAkI4H5ssNmmddW+KmjN7Hny9fZGSmIKE2ARuS+TzzYwhub6a2l/2uel/uo98DLGWmuR2NhyTZ2ZqxRjjJjl99LN05xTu3GnnsTrp8ePHRvGx5PdKTc1kXFSjtLQKyckf1kcec7Af0HuLejch4XsZe33Nx3TI1h5R4dEID46Aq7MbZnat7xop+nHXHs4HnQEY6BvIz9AcCj50968UezlSG1ObUyyxdFU8vjV7p2FjwtQATYzRH8lnKPx00AZv377luV7K+Yr16sbgY+3a9ZyL0tJKlJRUsM+208t29CS6LmKuRK7VMcb6mn75IWwsvcRijLjoeM7Hnt37RhQXWv76rDm4wnzGyNBIhAaGwkzaV8ZYfIg9G0V7i/0raRw0twjm/pMcY/zzX8v1/jzdff+pbpHYoPnC1tZWg9oQ+T0C/EMYF5UoLq6ASpWnme8YqO0QdoLsqtgHV/hfhlxf01/N/noeoiNjkRiXhNDgcO5fjVQ2hDrPlT3G+SA7su/H/QZ7bxrrxPyd7F+JtTokatdpM3dj1foOrRijoub/BvXZVNskbIj7ufP4/c0bPqf++vVrXstmaD6mT5uFEsZFcXE5iorK4Hzarc+clT4SNaHClnwKPubMno+4mASkJKUhwDdo1NQCCm3ZvI3z4evly3yvvQZ5T8rl09gnn7Ei+1fkM+2xvqcVY1C+luzJYM+KlPc9obwV1a9R3cmrVy8RYcC16uL1Rx0cGReMjcIyFKpLMW/uQs0YQTHDQOfIda+dMdZn9oeNxPhkpLPYypv5G2ONHK8OV1EOm/jw8vTic52GYkQ+61bE5zTnLccYc7/JQsfdt5r43BBnTsj1TZERkbxukWrYXrx4gQkTBr8+RH5tYkIK68ulUKtLEBqiPX9BbIi1rfru9S38K0Our9FH9N1TktKRlZEDXx9/ngcdjWwIrVxuxvnwdPfE9q07Df7+X4zb1S3G6CtfOxBfhPoK+SHyXDTV2VBtL9VI03w61YIaio81q3/gNkNdUIKC/GJstOzMm1P9Pa1R0R0vdGOJ/vRRQ62v0UdkA9PTspCTnQ9/v6BRz4bQ8qUrOR/uru7YKs39DkY0l6dbEzJmgq1BYx0an6nvCV+G/Cu5f15vaeHrQ2j9VEVFxaB8LPk1p0+5oKCgmLFRhPy8Qk0/Ih+vt9hDrAMbrvUklFvIzMxhv6cIQQGhChs6otwE8eF6yhVrzAa+jodiDMrP9lYTMlhbIcZj+qs7HhMf8rlUri5unA1aY0jrbb6aNccgfKSnqXg/ysstxLmzFzRs6NoOU1JERCy3ibExiQobvWjJ4mWcD5eTLli6WP88K83nyTUhNN+nWxMy2NjmY2soaPwWdSe0NuDp0yecDVqnfuni5UHzsfp7c85FXq4auTkF+N5srcnz4erizudvyH4oe0J8JK+1aSvnw4X5EDOm9W9Nib41IcYUsUF7AonbZWVlePz4Vz4n0tjQMCAfS37uSSdnxoWa+egFPI7tyW6ZkszNLXh9DPFBcZXCwMdla20HDzcPnDjq2Gd9DdmGgdSEGFvyfCHt/fPro0d8LyDS4m+XDIqPlOQMHr9mq/LgxvxRwYe8v4qpiNb+FqhLOB/Hjn76djMVUXuT/fC+6IWd23b1GGNQTCHHGPrWhBhT8n7oFHMQF7Rf1oP793H4kP2A+aD17sRFdhbVRefComsf3cHOB/4/e+f9F9W1tfH116S9uTeJsaRp7BoVezc2JIqAqAgoRYoiKAgIA0MdytB7x0KxgdgbYo+mm36Tm/sHvPvZsifbk2FmGA7DOXp+WB/wOMzsmdnfs9fae61njZXl5RXxmpXi4nJj3g/Tpn06g/ORZTK/kKuFPSg1ckI8wbj4ve/CBc7Gl48f87r+4fpY4nFBu0M4F43MT2+sb7bFscr+cHqwDRu8ea08+Jgyirl4L7OhZhJ8pCQm83hC3q8FIzjb0OrY5Rwo1NtCr/fxw0f06OFDXqPsKh/yY3AmAC4a6popI91su663OlloAHd2neN8yBoShg3PEHtgDSnItdCOXRdfyAnR0/tYtHAJ5wKa7w/uP6C1g3Uww+EDawW4qK9rovraRto2mLcmes3LuvZa/zyCQ8K4tmMj8xONeT4yQ44v+CjIq6QpM8o1E2PYM/l8BLkZcg74w/sPeF8EaJEif3G4fCxgnwO4QE5SbXUDzZj+PM6Xe8fJ+gt4bZyZa22/FH150GsBfCxbtsqY4ypYdGQ0lRWX0N7gvZobG/KVcI4udIJlAyN/7ztV07279+gee1xrc6vLMYj4/52BQZyL2qp6qql6sU8cGJC5VI5juDlYo2lJR49xPqCBasxtdWzqlOmcj1o2x8a9N/I4VJl7ak+b2lm9nKwpJZvIpVf6OdAAQu+pgTsDdKf/jkv92eT/O5KQxLlAvnfCoef+pb2euzCMFePDuO313pDfm9w7SuT/K6+rZaj5Q29Q8DHvs4XG3FbR4mLjOB8RYREjfi45V1v4KPK9HuasXk74NXicyJNVziecE4ozbegfDzAu7tzup/7bt238uMpHTSVjo6KWqspraIf/TtsemTv7Vhi3yAWQ/TC5jgycq52ju3dvJOejsKjMmNMqGzQqwEdLY9OI83OUfAge5Nw9Z/UOYMGZb6/UIu1nbNy+dZtu37xF+/aGu8zH9GmzqKqihirLq6myrMrW5wb8uXP2Iefyg21woHyPyh5patj53sucj00q1TIY9qKls+8LfAT47XA7fh6KD+UaolY9kKyZjl5T0GS9eeMGlVpLXY7NP1+7gXFRTRWlVVReUmnTSnLW58bZZyFqOkS/iNHkw9t7G12/OUDtJ7qMuTxKtmLZKs5HeWmZW/NBrBH2+JB9KjX5kPM+UpJT6eb1G1xPH1qTzmJ0cT3AL5C950rGRgWVWcttvpW7+YhyP2C5B9po8pGTW8j5CN0bYczlUbTqiko6dfwEzZ09/DNzzAmh6SPPFRGTynuyatXL4f4u7vEB/oFcr/gas6tXrvI+T67sYcUdiOdcQMMD2jaOYnNXTOxzifcmYidRNyj0kNSqg5o48SO61X+f8/Gy6fJozSIjIjkfcQfcm6+iNk5mRsSkyto4NerlMIdFPu/8eV50jXFx9fIV3ndi/mAcYY8P+Vp+joVKWUxbUlRKu3fusXHnroaP/L7lGEroMiivj9S2bNnG+ahvaDXm8CjbQq/FnI/2Vv191tjTBReXmV26eMm2H+CMD3BhLSyh4gKrrQYZOVdyHr2WLS+/mPMRIOlzGTZ61lhfT2dPd9Nnc+drfqzYw4qODLf9G70gLjH/5eKFPoraH+2UD+RpWgsYGxYrFbF5hrMgvX1f/QMPOR+Gb+UZi42O5XzsCdqji/HKflBBfgH19fbRhZ4LlJ9rcbp3NXf2fK4bWJhfxHX1BB/wgRA7CZ0S/BTnNVrKV/TyWsL56Og8a8xdD9naNes4H5b8fM2OUcQ58KHkXjSmNBNjo5d6z/ewdbBhyD0s8e9N6zdzLgpyC8iSY3H4miJ2EMxoIfcqPCKa85F6LMOYux6y8eMmcj4uXugd87EgzpXv4eKnOHNTxvZBu4Op51wP399Fj0hnfGxkfFgG2cjPfn4/wN6V7LNp2fJZzAQ+dgQGGXPXg1ZXU8P5wJ7QWK8Tzh6DPSxRTxi0aw9j4xydO3OWMX7WKR9R4VGcC+ixxsX8rSGql3qo7jO9nI8FC5YY89aDlpqcwvnw9wvQ/Fhl7dG5c+ZzLs50n6EzXadtmstDnYHsD9tPeeZcys3MpYjBszWcC+qll/nAvcecD2POetZ27wrifMTGxGp+rFg7xFn33DnzeI/G013d1N3ZRXMGzzmH4gO9knIycyg7I5vCQ8NtvOlBy8fLaynno7P7vDFnPWzLli7nfFiLi/XFB1svuju7qauji/dptMeH/Htachplm7J4vyS/bf6259ODfyX4KK+sM+ashw1nH+CjrrZG82OV89Cho9nFuOg82UEdJ07RDv9Ah3xkpWeROc3Me7OuXfW8JzDOBfWgdxURGcP5OBSfaMxZDxvmGfi4fu2qLuIPuddtB2PjFGPj5PGTPCfLER/gIvNYBmWkmmx8jDS3xNN8hIdHG3N2DEwvfCjtFOMC/a9PtB235eoPxQe4QJ9WE/Oz1qx8njeml9wSgw+DD1fXD/m84kTbCTreepzaW9vJf3uAQz7ARjpjI+3oMVo9qAenhokcZlE3KPcvVes1TBk5nI/AnfrIc3jZrKqigvPhtWDhiOcJDOd6sraCONuQ+9/K14cbg4jfwUV7Sxu1NbeSn6+/4/iccZGWlErHElNo9fLV/BrOHOUes/ZM2cdA+Td4L6J2UPSoFTUyamkE1dQ1cT68vIyzj7GwAotFVT7wu8gDEefgmFdy/1u5/5gwZU9ke2aReqyBi9amFmppbKHt2/wc8gEuUo8kU8rho7RqUA8H89eeNoRsyjGKHnKCbfG+lXVQGKvBh8HHUHyIHD+hW+BKXZ28vgxl8nOAi+aGZmpqaCLfrY75SBlkg/MxuH7IdRpDmb01Du9HsO5JPlYP9rcyTD98iDmg5EOpb+MKH8oaK3sm52E1My6a6hupsa6B8bHdIR/JCUmcDawhIv4YyfkguMdaJvMh+1eiHl2N7yeBjduIz8fOujo7OB/Tp80Y1t+JeQAGlHwIbnCvFRo4sn8levkN5/XkGltYY10jNdQ2UH1NPW0brHcfig9wAR8LMcialc/5GEl+iaij9UR8buxf6Xf/SjDiKD4X99GRxuc4y5PP88BFfXUd1VXV0lafbY7jc8ZFOovRsb+7dnB/F7G+HnoaGHwY+7vuWF11LdUyNmoqa+iLLVsd8oG9XezxZqaaaJ10fi6fN2rVdu4K4XygvtaYr5618e9P4nycP6f9ujT4QrLOD7iorqimqvIq8vH+Jx+yRYXvp8xjJjKnZVBYSJiuviMj/2rsTORf6SE/UbaPPviEqhkXVWWVVFlaQevWrHfIR1jwPspKz6Rsk5kiBjUX9bJ+TJr4Eeej7/INY8562LZt9eV8ZJnNmh8rYg8RT0+fNpMqGRsVjI3yknKaNnWmQz7CQ8MoJyOLcjOzKXJfhK7iD5io/xB63IZ5KPYLi+B8hIZor+eB0rAfK/J3oSMMLsqsZVRaXMr1SezxYdNO9A2gvMwcys/K5X4WroENvdRHtbSdNOoHx8BysrI5HytXaL/HCuo1RH3t0sXLqYxxUVpUQiWFVt6/0xEfG9Zt4GxYsvOpYFCfAXwMld8uzmKwF6cFfYa0dDPnIywsypi3HjShzzBxUKNzrAxz0JmeDuayOM/z3rSFShgbVsZGcUHxP3hQ/htn5gU5+VSYa6GivAJ69533+XVZp0T+Kc5stNI3ysfHl/NRVq79Op2XxVBzBz66OjrGfCyYh8PRL0G+FbgoshRRUX6hUz6gdwUuitljrexvpn36XP9KLz05EaMLfThj7nrGAgMCOR+mtHTNjlGpfyWux0TFMi6ea71FRQx9bib4+IDNL3BRwpgqZWvO0kXLbDG6XjRMUH8OPlYNnt8YNrqWkW7ifGxYv1HzY1XuNaXyfrzP9axCFTno9viAIU4pYz4Z4pYtg71l4K+5q98uxyme0KeOO5TI+UhOMRnzd5QNvaOgTw0+JoyfpPnxKs8qLCyOyGfxRF52Hq1ft9Gub6W8dvRwEpVby6iipIziD8aPeEzK3g0i50zZ30CtPF7k74IP9I8y5vDo2uqVazgf1iL95SzAF89nXEDrLdecSwvnLxqSD9n2h++nytJyqiqroJzMbNv1Qwdi3BqHvLc1VH8cEUep9d57+67y/h8rV2q/P7ueLeVoCudjq89Wt59DzklEvYfIXxW9YsQ9dqQ1g7CA7dttccLsmXM5F0LPasonUx3yIa77eH9B1WWVVFNRRbWV1SP+DBETiX0DwcFo9486GHeY83E0Oc2Yx6Nk6O2M/mrgY/z7E1XhA/ND1KKKvseu1Ay6anIMvX7tBs5FlimLzOlmu76UPT7QR6e2oprqKmuovrqWZk6fxa8j/nBH50f0rBY/Xa1zGYlNmzaL84H+nBOMPgejYjt37OJ8HEk4PKLnkfnAuiDWBjFH1JoriMvl2AP6h1kmM2Mjk6KlvStnfIx7dzzPhUdOfENNPW1cv8nGnjt5JvZqBHFPkPs726thH6lZSys5HyEh+tDW1pO98fr/UUmRlfOxaKF7uQr2agYx70WsKvp3qsUH9q5kHZ6UpBTKTMukjGMZ5PvFdqexh/x/iM8ba+upqa7R1gMebDjS+QH3ore5fF1ZLy/36lTWT6r5HW7evJXzcfpMr5GPpbJt2ezD+58XFRS69fdD1Qzam/uu1AyCI8wzEa/YM+zBCv/qHfb64MKUaqL0lHTbOYaz2FxYHHv95vpGamloouKCIrt84D1iPKL/poif1F4HRmLtJzrp0pWbFBy8z5jXKq4dlpw8zsdI8q2GqhkUvVxln8JZfA6/Xam/IPROxGOQQyjyShBDyFpWn3w0xSU+bH1yNmym1sZmamtqofbmVsbdBNsaAU7F+1IaxumIYU/bpk0+nI/OrnP01pvGGqLKZ8r87bLiEsrNytHMmDDnMC/l+7Qw7INhXsr37W0+vlxr+hhjIzUp1Wnsofx/8ARdIOhmHW9tZ7H5Wts45NcGJ2I/SqvfZ2vbKeq7eI3279e+9r7m147X3iKzKZPzsXzpCk2OEfdwsAC/RmgfiLkqHnMg6gDnIiUxhYIC9wybDxj2rqBJCm3SmKgY25qI1xU9zPXwnc6bt5Dz0dN7mabosN+olszfN4AKci38DFkvY4aPJfRP+Bx++13ORfKRZPY+jtLKQZ03V2IP+TFHEo7wve2OEyepqrzyhX0yPehVv7hHYOV85OQUGPN8BPdl7IeCD1FHpBeT910/mzOfkg8zNhKOUlJ8Eu+fOJzYXD4n7GR+W9epDuru6LSdLyLO0UuuorAJ4z+gU6dO09lzfWzt8zPm+zDtdeZXwScBH4GDPQD0ZPtCg22/o69NUkISJR5KZO/poMu+lfJx4Kr7VCed7uyiM13dtCtwt+0xels/YL7scwEfbSwemTx5mjHvh2HeG7ewWDaV57u+8fpbun4vcdFxdOTQETocd5g2r/ce9t/LHBUXFvO+hWe7z1Api8ns8agny8mx0OnTPVRYUMJ7uhhz37nNmjGHjsQd4XxM1kgd3HAMZ+bC34FfeIRxkXAwgRIOxPMcrOGsHUpGcDZ47vRZ3hu65+x5mvC+9nOYHRl0mtpaT1Jn5xmKiT5ozH8nNu69CRS5L5LzsWGd9us7nBnWi4QDCRQfG0+HYg7Z/CB3+fiU+SE9Z89R77nzdOF8j03/HfXtetD8sWfo6Qs+Tp7oIu/NXxgcDGGYO6FBoXRg/wEK2R2iy/eAfEH5TDsmIoZzAR/LR/ru3eUDBm3rvp5euth7gaoqKl36e+z9Yk9NzZxDNc1niy/no53FIquMHPh/xuOMjT27gukgi18j90ZqLt7E/MJ5oLNzN3mvderk6RQXE8ffE5ifNX2OW2woGQkOCqGLF/roUt9FunzxEk0drElX6vzCsNeMceOMRCuaDUNZNPOvwEdLczt5LVhscCHZ9q1+3EeP3Lefxr07QZNjBCPiHBA/ledx8HHktQP+oWAjNjLWbd9KyQf2RsHFlUuX6erlKxQbc+AFPp2NU8sWtT+W81FRVk0ffzjZYAPxrPdWvv8JPt5/T5tsKA3rCO7LMHFfljUT8LvgAobaD3d9K3t/h32sa1eu0vWr16iHxSLiush7cTe/BH8vcgDkejFZ216+rrahfjrLnEuN9S1UV9NAy5dpX99s1Hyq196inf47ed4F+Jgz6zNVnneofHQ5b12eB/b6kQ1nTcHfihwPm18zdwHnAowcZH7Dp4P7++6yoWRk86YtdOPaNbp5/TrdunGD5zer8dnh8xHvQ9SL4Xd8VmIdQhyjZp8Qe4wcTUzhfFRX1tKyJdrMKxpNQ15VDFtLke8NPubOnqfac8t8wL8QubnIh8L3jGtyXit8dDmn112Tc3dDdody3wqxeZhUD6QWH7Denh66ffMm9d+6xfyRctt15Ay7219K5CEL/Tl8Trgufz7K+pjRsn2h4ZyPitJK8vMNeGXYgKYT1gvUmSYdPqr6Hr6SD5EnKH+vyhq6kfABn1+ejx9O+pjvV2FP9zDzGZcvXakKG+I5xPPEHTzE2LhNd/r7aeDOHa59Lcbjbr6JrG0CNgTzY8EHbEfALs5HaXEZv5+i1uFlZmPJoqWcC2h4YN1QUx8U36Xwd2R/SfTc8xQfW7238VgKZzhJ8Yl8b04tPuTnmTThQxrov0N37wzQvbt3yZRuemENEZq/7qwfcowlPh/hX4n111NzZuniFZyPIksxZaaZbb7qy2RvMu737A7mWmfQDsS+J3wsNV8D35uovZD5EH29RV2p0s8WvY/VYONfb7/L80gSGRfIRxzJmYcrPlZ6monu371HD+7dp4f3H3ANITEud/hQxuciB9lT8fmQPgdbk48lp5Elp4BrwEAn7/XX9J13JGzG9FmUnZnDdf3Bx7bB2uvRMHyf9uJt0TPc1fjc1T1RpZY68sbgOyKXPTUpxeY7qsWGkpGFXosZF/fp0YMH9PjhIzJn/q2LIuvGO9pb0FJ9ocOYld1jA/13cj6y0s0stoujGdNm6XfNeONtni9UX1PH+4lBOxC53noYO/ajnPUCxx6uvHagziMZvZgTU3idYEhQqOprh73nq6uppcePHtGTx4/p6ZdfsnvtcyYQgwzFh6z7hZ96OiNBXj/iOtQrH0tMpaDAIFu9sh7srTffpgC/HVRTVUNNDU2cj9DgvbqJrYS/JdaWoc6elWvHqhVreE4l76mZarLlVqrNhpIR6Lk8YVw8ffKEvnr6lHKyc4YcI2I0ZW29lvQbXDX4VmtWruV8oD98evIx2he8z1YTo00u/sVrEpobm3kNaFtzG5kzzDRz+mzdff6iblX2ueGLiPus8t6M7wsxhyk1ncWQGbRP6qU52nzAGhsa6euvvqJvvv6avv3mGza2j1+IQ5y9H70a1uwvWIwHPsxpmbzXVnREFC1ZqJ3+Wsh3iIqMppPHT9CZ7tPUeaqTxRpltPolyDOzd7+Fb6Lkw5ddy0CfWfTSzMhyqh2qNiOLFy3lXHz37bf0/XffUX5e/j/2LZyth7rmhHHut9WP84FeQugHgb5CqK0bizwV6Ht5b/Yha5GV5wL19V6g82fPU211La1b8/lLt/+GOSZrlYAZce+FthV031DrCP3oyLDIUV877D1/S0sL/fD9d/Tshx/ox2fPaPasuTbGhV6ElnVN1LB3/j2ONn6+idJT0qjCWkY15VXUwO4H6EUUxdYV3EdGqw5rBvOTdu/aQ1WVVfxM6taNmzz/B3yY0ky0TKP6Imreo+CTiD1kcT1oZxBlMy5yzTlcn/3TKdM8woaSkVkz59CzZ4yNH5/RTz/9SCfYei7v37mz36vrtX/uAtrL4t5yaynX1Tve0sa1LU53drOYuJ7vjYcEh9KCeQvJa8Eil5/3ow8/4XPdn8XYBw/EUXNzC33FfNsvWQz48MFDfhYFPhrrGyjAfwf3r16Vzxx7VrJm75TJUzkXedm5ZMnNp+hI57q6o7mGFFgK6Oeff6JffvmZfv31F9q08e96XmjJv0p8yLaQzf+QoBAqyLNwPlB/CZ8HOdA3rl3neQj32bx+/PAh9d/upxY259vb2ukk46mzo5OuXr1Cf/31X/rzjz/o999/o19/+YXfg3744XvmV3zL+bh96xYVFRbTLna/nDTRsxrc4mxc3mMSWsry48Q1Zd8/tQya6XLuRlxsHFmYn4vPvchSaOuf6Sk2lIx8+MEn9PTpE/rtt1/59zgwMMDPLMXjMHY9ajmobThn2O7rx/vdlRSXUBdjQPDx1ZOnPI6DjwoO/vjjP5wNmQ9wc7z9OF8/1n++0daHeKxMPosQZ3tyrhCuw+eR+yKpXSunzGlatWI11x6Cb2stKLLVuo4lH7CE+MP0n99/59/rn3/+QWZzlu3/oAXkiua76HnwKrKDub5k8TJaumQ596OWL1tJK5ZrO89e5kP0iRX/J3KnlH1vXMmhG87ev+yf4CwnKyOLa0UjJyA/J892vuNpNuwxcpfdC//L7hHivjd3zrwXOHfECNZe7HENZw0W2u/Ka2OZk/Iqmb2zbFELhO9SyYerOaZi/9bROYC9XrFhoWFkZb4mNHbKS0rZfXm5bY6OJR/itXG/Axf/+99f3K5euWJ7HOL0ofgQuvTDPRfB4+VehjBP1oy8qiZ65cl84DPHvMZ1kSfhLh/i+eCbDeVPYC7JvWLhu5YWWanMWkoVpeUUHxc/Zn6VozXk/9s70/+oyiuOn/+k77rZ1lYBFUQtIMjmgoiyhKwkYStINSpbErLvC9n3fZkkZN/JnhDCIkhLRWuVvrDVfmxp/Qv6/J7hDM/c3Jm5N8yEJHNfnA8wTCZz732+z1mfcwoLixz648cf/0cpyalO16Q9q67O0lros1Lv+ZOqifcn4dwWzzbie83/5v7lvF/h31yXzXrFzPPVzvnQ1sHaZy2UyVmyTfWNZGtspt/9dtWSYEPLCPzye/fuSTZga8EX2bJ5q+O6uHYM+4x61mOhotUhFh+Lx4g654j3Oj4XqD0Pqj3bY0Z4vgzbBdoaWDlLtr5BcNFELU02Cg+LWDK6Q8/O2r17j+QCcRf469p4lvZ6vaHvVXv3SZ0ZscR34mo/PbAvQPZNb2lqpjZbC6Uq9spSYUPv++TnF9B/HzygBw/+I2OTbW2XnPwvbzChnYFi+ef+4fvw35EzhT/e2txCl1pwJrpeztN90j65UTvrqtCpYAN5kX//8AMdO/ao57de3yxL/EvM2A+IVan++C9+/hTlClZwzqIdMzIvtcvcx1LVHXp2FvyO+/e/kTl15LyQX+f6rIXYu8uxJt4SfYE9jLyhUUa08dyPoz4RXLTJepqujg46e/rskmdD7/tBZ4AL1J/86/vv6fat20K3PIrzGqk/4fOZEH/NH640X4Jru40wgjWi+uOYNd4h7PWu9g7q7uyi4sIieS5yObChx0hFRaWsG/r+u+9k/cTkxKTTe93NolLZMBsbtMTcmuX6Pq5jUIXXMHxHvRors4LP8cSIXg5w08bN1AkuOjqptwv9/FrE935pSfscRhiZmpykfwo2UAf/j2+/pdKSR2dFsDfo9QbyBRtqz2z8yc8Fa4N70Kiv+5Pfq/aQ4fMU6rx63Beeu8x/+pIRrc+xbu1Lsjd6T1cX9fX00EBvH+19b9+ysavc+SK/Ejriyy++oG8FGzhLhVo8bd5H9dd9pTcQI+ReM/x3vI7ng/g9XueZ9f7KB9Yp7rs29qfNl3urv6EeI1gLar0F7Kfqyirq6+6h/t5eGuzvp+NKvGe5saHHCM6K3Pv8c1mbjXOHOJcbqdRXsg7xpU2lPmM1f+jveUVt/zawgb1D1RPe7N/miRGVD7ABH6O/R3DR109DAwMUGx277NnQ+/6HI49KLv4OuX9f9naIjDjstDZ96W/wmUyuw+aYmL/ygevnvq7MB9ua/B4+A+orPrSMqPcebJQUFdNAX5/kArNiqyoqHOcxl5vPYYQR6Axw8Q3k669lHxT0Q1Fjfwthw4jPqPZA5j3Sn/ngdQkG9OwrrqvC+9guxWu8z7jjbiHfhX8XvxZ9LlraUsODgzQyPCxsrMoVx4YeI9HnYyUXf/sK8hXdvnVL9vRz5Zt5EnX2+0L8D+51yfWO6lkGf2AE16zeP7VuirlhRrQ1VnqC/9P6l+4E9pT2LHbM+Rh5Nvny0BCNXr4sffJVz65ZkWzoMVKQXyh7zP31yy/lGepPb950MMKxPdigns5W8bwqK361tATPxFMtEZ4zRBvjh3/BXIyNjEifHOfKV4rPYcRfh+Tn5cu41hf37gnf/Z48MxIWGu60r7irQ+FzAtZ6XJqCZ+Nur9HaCejzeCEmVtpS4GJibFT6Hmp/8JXKhitGLubmyX7X6MHxl7t36e6f7wpGnGfK4h7q6RHc/8Xsq8W+ibZe2xt13I9rI+npUHUP5359WrvJl4Jn48qX1M4+hl8B33ts5DKNj47S5DjmC/c7evP4AxuuGEHfG8xMwOwE9Kn50507FBoS5rTPQP+qNir7iov5vV3N8uEefngd62GxdZqrmIIac+J6fz7DBL98oRyb2ZP4Xrl7lmADvredizGampgQPvmAX7LhipEccQ/R5+bOZ3fozu3PZK+zzIyseXpE754b9eG9sWdyfYXab8Bs/IvPo+p9rvq62jPHnZ1ihA9tjsNTL3RX3xv8q+eYjYi6l2n78cCvaLXZhC0FLsZpZmpS+h7+zIYrRv5w/AR9dvu2rGO89ekt2SeqsKBI9s7UPiOz+x3H1x+nDph1A5/JWigf2vfo9cHh2Ks6p09vTXK9lPp5/D5v8wHBd8H1mo3x6fki6OEB33tScDE9OUlXpqeoqaGBVq96zu/ZcMVISHCo5AJ9MjEv94aQFlvLvJ6A2jP6nta1Nve0UPvKG/l37Xv0+uBo17Ner1bOT2h7UXCM2hd8qDlcI/YZx27BhspH+KEI6WNMT07QjOBidmaGmpsaxV74a4uNn7iP/W7ftlPcuwk5ax39BtFPdmxkVPaFUmODHAN218fU7PP0ZCeoNXq83tS+aNjnPcX+3fHB/2d0PXM9jlZ/8D6v8qzVR48Tl/K033DcFs9ItafgayTEJ0gfA7bU7Mw0XZ29QqkpKQ42Vmp+w5uMvPLyBrI122hudk6eRbx6ZVb258TMPK0ewR7Fz0Nvz/dmvQrXeBvxH/R+Fux4kw/+XO3vZbvLVQ/Qx8nx4HN4z3GVJ0QvDm1sHr5GXW0tTQsuroCLKzNi75ulmOgYl/aEJa4ZwX6C+C+4uDI9I/abGaGPp6m0uJRWaWYQ6+VKeG8140/iZ3wVM+Z9Xe3BCdHrgwOO1HgT9JUvY9nauisjupTnb6ivQ1doY7eQiPBIWUMFH2NWcDEnuBgfG6WgwGCLjcf0SaAzZqamBRtTQi9PSturv7df9uPU/iz6me7YtsPR+0dv1qMn28GX18Y5TdW/1cufPIl8hRmfm2fQ8v2FjRsYEDDvfbCncrKyxfObkrbU3Cx6dF+VMSvYCBYb3mFk62vbaaBvgCbGJmh8dJzGR8ZkX/T01Azd+Rqu9jdPfoE/n3MHp2auX6uftedA0UsYeQz2Ma7NzQqfco4KCwqcYpIWF95hBBwUFRRJX31UsDEyPCJnh3W1d8o5NNpnx3aL3vnEx90/uSZyqddqcV7QaK8jo34a+3qs31TbT+qM7BxhSz3yMa4LLhDHDQ4KsXSGjzk5FBpO3R1ddHlwmIYHhmiof1DOn8zNzhUsrHayAezvD3V6pq7sbzN1juyfLvW5cbgmM/kKcG/kmmBLYd/R7g84zzM8NGj3MR7aUjevX6O21lZas/p5i41FYuTZZ9ZQXk4eDQo2YHfBH+nr6aPe7l46EnnU0dNClY+j7LEvvX4Q3HfZqB3C592M2m2+sIV88V2x3t2xhL1GL54O+7ehvt7hY1wTXNy4Pkef3rxOH0V95DIGY4nv4lsQzKRsEzZBn+Cit6uHejq7hW7ppuaGZtqj9AxT5dSJE/M4MWNbmd2TzbxP29fWXfzIrK4zagvq9dMHF3p26upnn6OkxCR7vBZcXLX7GDdvXKfamhpLZywJXbKaEuOTJBdd7V3UKfyRjksd1NHWTuUl5bRj++tuOYGNbqYXKefejP6M0bXMuRoj+gbf2Wi+kz/XqO+txinQf0qPC/gY586ck/Haqw/jtdevCVvqxjWZE0cdhLtnZsniMgLZtHELVZZVSi7QdxIzMdtsbdTa3ErJiSm0fetOt+sXdoOnWXBqbszIfow1bHRdmuHDTB8qjuUZ8b2ZBVfvBRen3v/jPB/jhvAxYEvFxV6YF5uyuFhanBw8EER11XWSi5amFrI12sgm7K3m+iY5g0svbwLhWXDI/bqb52OmlsvMOjbDBzg1eoaVa2zcxbo5t6qX24MgH5uYkCjPgs/zMR7aUr9/ZaPFxTLhBP55eGgEVVdUyx74TYKNxrpGaqhtoPqaesrLzqPgwFDHjDpVwAf2UfzJM0tYuNbRqM2E9xm1+83wYcZug3CuVLXJsAcgl+qu1nPrlm2SixlNTYjdx7gmudixfadlSy0jRpw4Ees/LOQQVZRWSC6gV2qraqmmsoZqBDvV5VV08vj7goMNurYG13fx+uGcsVHb38waNsuHmZgC1xRC5+B6wAVsSS3/bEMF7D9Il1rbHHXnTj6GsKVqq6stLlaQzQU9ERIUSqWFJQ+5qKaqsiqqLK2kipIKKi8up/SUDNrz9rv09G+ecRkL4r5pWFuwx7y5hn2hP7jXGrjgnl+uajl3vfU2xcfFz6s7V32MGouLFc/Jm6/voqz0LAcXZUVlgptSKikooeL8YirKK6LYc7G0+6136GkXtpHKR/TZ09K3x7/Zd+H150s+2Ifm9c72En8n6D98J3f1/5grHSfYQf8c+xk+57pzrglJT0sTn21x4S92F2TLq1vpw1NRUqeUFBQLNooEG4VUeLGACnILKD8nX/op506fp6CAYHpx7Utufw/7Lao9xns8x0nxf8wQ+8TMmcoHn9Pm8xPq+3kuBH82mIBfrfoRrmpqkFfdt3e/7BOCXs/2PiH2s62y7lypCQEzUR9GOeUwLC78jxPYU+/s2kPJCclOXFzMuki5mbmUk5FD2enZlJWWRUlxSXQ08hi9sfMtWvfCesO/W+1LwPOumQuOGal8cD4Oa59tJOaD/zSS70duCP0poz6IovLSMkcvQrVPCPsYXHeempJKe3a/a0gfW+I/thdkzarnKfhgCMXHxDtxkZmaSRnCP0lPTqe0pDRKTUyllIQUSo5Ppg9OfkB79+wXa/l1euG5dR5zKL6SdWvX084db9DhyCNyBnhtdY2j3zm44J5rjj4h8DEe1p3n5V6koINBTudb3e0plvi3ToGgduK9d/bSJx+epoxkwUaSYCNRsJEg2IgXbMQlU9KFJEqMTaSEmASKj46nuPNxdOHcBToTdYYOHzpCYUGHaNebu2mnYGft8y9KnaM922VE4Dchv7DhlU20fesOWaMZHhZOKUkplJdzUc5U6nw4U6m3u1v2O3f0dXZwMeLwMYYGByg3J4cCdZiwdIUlZln52U9/Sa9t3kYhgaF05qMzLrmIPRsrBX/H6wmxCdImA09pQudA/0AXZadnUa7QT7Dh8nPypM8D/6dE+EJlxaVUUVJOVWWVVF1RRbVVNVRfU0eNtfXUVN9ItsZmam22ybmt7W32+ZQ8U0nOjgEX/eh3PujUixC90E+dPCVrCc1evyWWmFkr8AdeXr9B6pcj4UeduAAr4AYMwf6CLQbdkynsM9hqOZKLXMkF/B3EBBAfKCsqpfKSMqosq5B5mdrKaqqrrqUGyUWD4AKzvm3UZmuV8yk75XzKTvtMpW77TCW2pTBrKSMtXeoY9NFZ6HVaYokZVtytI8zJgv/xtrCnggNC6MTRk3T+9Hnpt2SlZQousqW/D9+/IDdfclEsuED8rLxYcFFaQVXllXKut+QCOqOuQeb/W5qaBRctMmfH8yl7hC2VnZklz68eO3Kc9r23X84N9sa1WGKJr3nR2mfr170sBX78gX0BMkd98EAgBR4IkvHj4INCAkMIeczQ4DCZ92c/I+JQBG3a8KqcUfnqxs0+/a6WWOJrZhZ7LT7p32+JJd5at94U6x5bYoklllhiydKS/wNQSwECFwsUAAIACADaiD5b8E76YwdAAAAAcQIABAAJAAAAAAAAAAAAAIAAAAAAZGF0YVVUBQAHJQ7caFBLBQYAAAAAAQABADsAAAA6QAAAAAA=</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #5</Name>
|
|
<Index>5</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPluo2TYWEEAAAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J33X1TH3sc/f8lz731yb2LXGBN7SWKMjahEERXs9bEAilhARUARUQHpXUB6XWBh6b0qWBAsiSW22BJjcn/PM9+BWWcPoCwsZeH88H3Bnj17ds+cec+3zsw///EJ/qnKoMk//ud/eyxqe6kyEvq9OVxfFVX6q5+qv0kVlYee9bslS5ZxcTrkDCcnZwQFh+NSTAKTeGjzCtFw5RoaGq+hvqEZdfVNXGrrrqKm9gpqahpRXdOAqmomVfUIDY1iEomQkEgcPXIcdnYHsG7dBnz//RJM+WKqUb9dfZaq9AcT3Z3z9dffYfPm7XBzP4O4y8moYn27+Xormq7dwtXmFiY3caWJydUbaLx6nXFx/T0XDQouaomLRj0XlVV1qKhkUlGL8vIalJVXo6ysCqWlVSgpqURxcQWTchQVlSEyMgZeXuexZ7c9Fny3CKNHjVd5UWVAeRg7ZgJWW9vAw8MLlxNScf3mbS7XbrSh+UarnosmzkWLxAUTwUVjs15nEBe1dVc4G8RFNXFRTVwwEVxU1DA2iItqPRclJYKLchQWlqGwoBQFuhLodMXQ5RchP68IedpCxMUm4PQpL2zasBWzZsxVWVGlT1x09Z6FxQocOXocmux83Lh1Fzda7uB6y3suOBuCC6EziIsmQy5ycgsQFR2HyCiSWBw4cIjL/v0kTlwcHEgOwsH+IOztHbl4ML0UzGyzoCAmgWFcZxAXRcRFIeOioKSdjfxiPRd52gJoc3XIzclHDvvdOZo8ZGdpkcSYdnc7DauVazD58y9VVlTpla6wtraFr18Q6li/vtl6Fzf1XNzpxEWzxEVMbCK8z/nioNNRrFq1BosX/8B1Tn/8/tmz5jE7ajG2MNtuz247+PkGMn2RyLgoYFwwNgQXGi00WbnQZOYgKyMbmenZyEjTID01CxfZZ2xtNuLzSVNUVlT5oK4QTNQzJlpa7zEu7rVzcetOOxvEhbClGBfprL+ddPPEpk3bMG/e/CFzf6NHjcN38xdi1849TPd4cp2RlZHTzkW6hrGRxdjIRFpKBlKT05GalI6UxDT4nPfDurXrO7GicjJydcXUr2bg1GlvlDD7vqXtJwUXd/VckGQw+4R88KVLlpvd/ZMttWqlNU6e8EBcTALSkjPauUhKQ3JiKmMoBUnxyUi8nISEuEQ4HzkGy+UrjbJDVRk+XFivsUUE8wFu3f65nQsmnbhgEhoWzWNT/WUjDZbMmD4be/fYIyQwtIOLZMZFEuKZfRbPfPrLMfGIu3QZYczv2bR+MyZN/ELlZARwsXXrLpSW13AubnVwYaAziIlwYmLHsGOiOyF7aguzEQOYbSm4iI2OQywbP2IiY3EpIgbR4Zdgx3gifatyMry4GDt2IpydXdFw9Ua3XGQxX3bzlpHDRHcyfepMONgdQGhQGC5FMi4iLjE2ohEVFoXI0EhEhETAhdlec2d/rXJi5n4358JF4kLYUh1c1DU0w8c3kOf31PYzlFGfjcXyHyxxmvn3gouI4AiEB4UjLDAMocwuO+p0FHNmzVM5McN4FNlRjRIXss4oLq3i+YyRrit6KqQrDjo4ISyonYuQgBCE+Acj+GIQgvwCcdjxMCaO/1zlxAy4sLCwRGlFLVq74WILs6HUtuudTJwwGbt37tFzEegbgECfAARc8If/hYvYwdr2s0/HqIwMQTbIb0xKyVC5GAhOmK7Ytf3/EODTzsXF837wO+cLP28feDF7bLnFClWXDCGdQT5G6537hj5GG/MvGpsZFzvVdusnmcA4IZ1BXPievQAfr/O4cOYcznt64wizuWbNmKMyMohsCFtK6WNQTYjqXwycEAcH9u3nbHDxOgcfxouv9wVstNmo2lwDxIb4n+JSpz3PdWlLhUfE4CtFjF6VgZFFCxbjDLOvSJf4nfNhdpcvs7/8cPqkB2bPnKsyMgA645tvFiBHW9ihMwx9DAuF3et20p3bAGo79p84HnDCLKnvk64gneHPfJIA5psE+vozXz6A+fSBsFlj2+2Yp0rf2bCzd1T4GO01IR6nznaypQoKCvH3338jMjJabct+9D/evXvH29l69VqD90hfeLqdRrBfIEL8gxAaEIywwBB4uLpj0oTJqi4xsT0laqWUcSmLpYY6Y8+uXfwvPS96biTy+KaK6SQ1NZ23b11dPX+9ZvVqfDF5ioEu2bpxK8ICQhAeGIqI4DBEhoRzfbJwwSKVERPZU7xeSlETQnlvWWdssLXtdC16bvLzU8V0snjRUv34I3THeDaOffqf0VgwfwH/X5xL+cXzzG+PDIlAVFgkosOjEBMRjV3bd6mM9IGNrVt38rnaypoQa2sb/TlivJo+rbNPTnpD+QxVMY2IsYd0iPI9wYf8TKhe5ZDjIVzqYCM26hLiomPhzuwtek/1SYxjg+ZkKOvOqYZQGZtaunjpB6/r6+PHn+OTJ0/VdjahT05tSr7Hh2zXrnT6Gqu1iIuKwWXGRnxMHBJiLyOI+e4zps1SGekBG2PHTORz+JT1tT6+AQb2FPkZXemMD/mQxIra3n33yWmsMaY999vZGbymGuHI0AgkxsYjKS4ByfGJiIm8hG+lOlGVka7Z0OTqOs3h27tvfyed0NvxTm3zvomsj42Nncs2LtlUPt4XkBKfhNSEZKQlpSA9ORWrfrRSfZKuYlRMN2hydAZc1NY3YfXq976G0BfkGxobtyU7mT6n9vG+yfZtOzkb9NeYz9HzIj7IXyQfno6N7vBJ0pJSGRtpyEhJR2ZaBqxWWo94RgxiVEyvUqxWnttaU3e107wMih/KOoFE7bODY2MZyxTlasUzlGPAJPZ77ZGZmoGstExo0rOQnamByxGXEcuIfK/EAMWkxNxWkkyN1sDXkLlQjkm90Qki9iLshOGeH5FzQXI8j+5b+BJyHFzYUMImNVZXyELf0VWMS+SphJDOyM7IQg5jIzcrG1pNDo47Hx9xjHTFhrxOSGbWezZEPP1D4xi1vTHjGfHU2tqmf0159uHut4s4t7KdaEwXdqrwu4kbYkKcS+f0Nn9E16D27er5kK1Mz1bWJatXreFc5GXnIj9HC11uHlyPuY4YRuT7IzbIv5DXIszIMtQb1IZynqm7/m6ML0LPX37exMZIiGtRG1G/p3sX96u8d3pP6Jru2svY7/yQfic2lLaBtdVazkWBNh+FeToU5Rfg5ImTwz6uZRinmoCikkqDtQgzsnL1bHTVbj21b1U+uh7HRexI2FTUb/uTD2P8Q8onkujtaet1KGRcFOkKUVxQhJLCYtgxH2W4MqJkI1OTZ7AWYUbmezboWfam5rann6HnLdtXZJ/1lK3hYl/R/VM7EBuyfUXHRd2IOJf6ONlIxj4LY8YcshFIZD9w3RobzkVpUQnKiktRXlIG23Xrhx0jndnQGqx3nq5gg54RSX/WpY80/1zYOko/fCD8c2P0DX2frHNs1toyLkpRUVqOyrIKVJVXYr3NhmHFiHwPF3z8DdZ1Ts/IMfA3aOwSue7+ZkSVoSOCja7quUhnVJVXoLqiEjWVVShiumzunG+GBSPyb6d1a/XrnV+/hcrqBgM2Trm5qoyobPBj27ZsMYhr7dy+C7VV1airrkF9TS1Ki0vw5ZRpZh3Tkn/zps3bO7ho3yOD9n4R651TOyjzRSojqt5Qxn7PeHqhvrYODcwGbKxvQGpyqn58NTc+DOK4jAPab6x975j2PZVoTz5xLsVwu6ozVBkZuWyIcVMZw7wUFY0rDY242ngFTVeuIiQoxCztLNkf1xWUGuyptHv3+zjdx2K4MiPqHKeRw4Ys8lyrsWPGIz0lDc1Xm3CtqRnXm69h7x47s2JE/o3BIREG+1N6e/t2GiM+dj1iRMTr5eMUn5TrQanNRTxfnQtlHnx8jA3RR+Qaiq/nfYsa5ovcuHYNN69fR8uNm7BYuswsfBH5t+3eY2+wP2VKapbeXvxxhWWP5m58SOTcFsUfyQYT8Xx1zvnQF2PGMNIfcr3Waqs1jIsbuHXzJlpbWtDY0DDkfRGZXfK95f0py8pr8OWX0/l7pvIjZD66ywOr/bB/RK4bEfl1EsojiuM0ZnV13FRyyuM0Wm/dQltrK263tSFaqjEaiozIPkdqmub9vq1XrvF9KuVxw9iaQpWPoSVy+4p6LpGPF7l2MUdEPG9jc/CyfDrKChO/yuTXl+0CbU4u7rTdxt07d3Dv7l3sdzgwJBmRf4ur6ynGxnW+rgLtaex19oKBnhQ+RW/nKwkWVD6GBh+yLyh0Bh0zVY3j2Ele+Orrt1wWLA4xeI/WJG9uasJPd+/h559+wg3mj0ybOmNI8SHbVbSXsdjru76xGTm5um5rDkl/kJ42do6TqEGhuJZggq4h+x9yfbYqphPRpjIfQjdQ29P/puLjX/+ahM+nF+vZmDAljh+j9TjIfxXnkc64z9h48PN9PLz/AFmZWUNKh8i/IVdbyPdGrm9oRl19E9MPFvz4h+rUqW8bO1dW1L+p8auB1xv0rJT2lfhf5qAvfPz7P4vwxew2zsWXcx9j1Dj7TufI8Z242Dg8fPAAjx4+xONHj3DQ0WlIMCJ/t6PjET0XJMeOu+nfU64XphSys2gMUmNOQ19/kJ6W1xOj8Yh8Der/9FfodHpN59Jf0uc9rZEeM8FFrzOIEWKlq3iWvHbQOPaafPXHv/yCJ48f487t2/zYUOGDamHqOtiorbsKTXYexox+H8vtadur6yeYByPEhmy/0nOjY93lqHryXMl2IhtKsEH+OB370GfmzZmnz40cdDyEp0+e4NnTp3j+7BmSk5IHVYfI3xkZFcu5qK27gpraK1jUYVcZw8dIkqXMT6OclstRFxx3OQ7XEyfb57pGRKJAV4DAgECc9fKGl9dZnDnjhb177fCj5SpmU8walu1BOmLyzAY9G6RDevI5skvk3GFubi5+ff4cL379FS9fvICl5cpB4UP2yVeutOZsEBc1NY3w8wvU60CVjU/w/XeL+Nw33/O+yM7S8Pohqo2gvO+dtjb8fO8eHj14yMc+eq5vXr/GH3+8xV9//cnl3R9/4Pfff+PHX758gefPnyE7OwfnvM9jx/ZdnfYjNzch34J8DOFrUCzXmM/L9XvfzV/IuXj18iVev3qF2pqaQdEh8ndpNHmMjUZUMzYKCksxpaPuWFl/OVJk9KixsPpxNU65efA1BoqYPqD5bzS3p66mlvNRkK9DQnwC/P0uGuiPQ06HsXHDJl6rKuuPosIirlcEH08YS4+YH3r//n3cu3sP5WXlPF9GtRfm1FbjJgfpdQbFqj5mT3XHh9zPLvr54/XrV3jz5jV+++0N173KMX2gdMfOnXs4F9XVDaiqroeDw0H9eRTrG0lxpBXLLHHsiAtfCzCT3TutU0N8JF5OgDvr+zu27cTihX33r6ZPmwlbmw2cqYz0DM4H5Y9vtbTgxrXr0OXlw/X4SeYTTh2ybUUcyPYUcdIXf4hiAiJPMH7cJDZ2POQ69+3b39lY8pgfGygdIr5jzOjxTF+UcS5oPodOV8KP0Xs0For6zOEcl6L9LWzXrud7I9Gay7SeLPER4OuPjes3sfue0/9j8NgJfD0D6iM11TW8tpXmR5CuCgsJh+WKlUOqzch+ku2pz8Zs6fW1iAkxP1jOeTkzv45s1Hfv/sCff77junggdIh8fQcHJ1QxLior61BRWQsbm40GTIu9U8Rvp+c3XHJ2E9h4tGPrDr4HOO37Eh0WiYsX/LBl41Z8PmlwbUqrVdYI9A/kfFRVVKG8tAzJjFliaLDbTc6Fk/745JPZvbqOyKfIawgo58jfvn2b+2///e9f+PXX5wOiQ2TdQfqigtioqEVamkZ/Ds2NlOtIlPdhzmuCkr6wXrmG79FKe08SHy6HnLHMYvmQ+61kX7kcPQZtrhbFhcUoyNMhNDgU87/9flDsKYrXKnPhxl5HrMWoHHflvif+t7Nz4GyQECfky/Wnr26gO+wPci7Ky2tQVl4Nm3Xv15ToKg8o1jQW92WOewJSTPacpzd8z/pwPg46OBrsyTpUhcayfXvs+LrP2mwtNMwvcjvhNmB6rie58J4I2exirpyYO6K0R5RzJu7evcPZIBvr2bOn/apDZN2Rl1fUzkZZNVJTMvXnKPd5UAqxTvdoTnlA2kvS+bAL8zGC4H/hItyOncQ3HXPnzSuuNg7HnI9zPjJY34ph/hKtMdWf30ksfCwX3lMRaw59rPaU8uoinmW3z56zQX4ICcUC+8sPEdezWbeRc1FaVoXS0kqsW/ted3xorVzZNzGXPrVwwWIE+gUhLCiM87HWaq3BXvfmKDNnzIa/rz9SElOQEJfAdYm8v5mp7Ck5F75j33O4u/vqn79sc9P/dIxsDFk/KNeXo3N6Ypsrcwq3b7dxX53k8ePH/WJjyddKTc1kXFShpKQSycnv50cednLs1bVFvZsQYXv19/yaj8l+e0dcioxBZGgU3F098FXH/K7hItu2bOd80B6Awf7BfA9NU9lTcuyWfHJ5/oFy/UqxliM9Y+FjizUce/sb5D0U9u21w9u3b3msl2K+Yr56f/CxYsUqzkVJSQWKi8vZdzsYpTu6EmoXkSuRa3VMOb/GKDuEjaXnmY9xOSae87F9685hxYWBvT51Ji4ymzE6PBrhweGwkNaV6VX8YsyWLnPhMh9izUbxvMX6lUq7qS98KNf9p7pFYoPyhS0tLSbVIfI1ggLDGBcVKCoqh0aj1ec7eqs7hJ4gvSrWwRX2l6nm1xgjM6bPRkx0HBIvJyE8NJLbV8OVDb2PwPdwOsz5ID2yc9uuXl1HzoWT/iAbi8Y6kb8TfIgaYHFM2Fem5IOEapuEDvE8fQa/vXnDc+qvX7/mtWym5mPKF1NRzLgoKipDYWEpXE94fDBmZYyImlChSwaDj5kz5uBybAJSktIQ5B8ybGsBuxPbdRs4H/4+/sz22mGUr9FdLpz8BRr75D1WurOv6PkK+4r0SV/3ipTXPaG4FdWvUd3Jq1cvEWXCueri84ecnBkXjI2CUhToSjB71jy9rUg+Q29z5Mq2M/X8zJ6ykRifjHTmW/kye2O0if1VcxGKYRMfPt4+PNf5sfN7kgsXa/nI+qM3/nlvRNZH0VHRvG6RathevHiBceP6Pj9E/mxiQgrryyXQ6YoRHmaYvyA2xNxWY9f6Fu1iqvk1xgr99pSkdGRl5MDfL5DHQUciG0KWLLLgfHh7emPj+s3dnqfMhfcldmtKIdaor5AdIse7qM6GanupRpry6VQLaio+li/7kesMXX4x8vOKsMa6PW5O9fc0R0U5Xih9iZ700b7Or+mNkA5MT8tCTnYeAgNCRjwbQhZ9v4Tz4enuifVS7lfYU6bIhZtahB1DfU/YMmRfyf3zWnMznx9C86fKy8v7ZGPJnzlx3A35+UWMjULkaQv0/YhsvO58D1ELMFTrSSi2kJmZw+6nECFB4SobCqHYBPHhftwdyy3a5/HIuXCS3ubCTakrxHhMf5XjMfEh70vl7ubB2aA5hjTfZtrUmSbhIz1Nw/uRNrcAp0+d1bOh1B3mJFFRcVwnxsUmqmx0IwvmL+R8uB1zw1ILF5Plwk0lxMTH5lDQ+C3qTmhuwNOnTzgbNE/9/LkLfeZj2Q+WnAttrg65Ofn4wWKF2fPh7ubJ8zekP9Q1IT4S11q7nvPh7uqDBcvu92he+FASYoPWBBKvS0tL8fjxLzwn0lBf3ysbSz73mIsr40LHbPR87sd2pbfMSSwtrXh9DPFBfpXKwMfFfo8DvDy8cMw5wCzra+R8Ia3988ujR3wtIJL53y7oEx8pyRncf83WaOHB7FHBh7y+irkIzf3N1xVzPg4fclH7fg+Fnrcb80F9z/lg84YtZvf75fXQyecgLmi9rAf37+PAfsde80Hz3YmL7Cyqi86FVcc6un3NBw6W/D97590XRbL18fNqNj177+51DZt0zboq5uyakFUEREVACRIUQUBAGBjiIAw5ZwwEE4g5IebVzW6+G+4LeOpXUrNl7wwzDM3Qrf3H+QDNhOru8+06p+qE/PwinrNSXFxu6P0wZdonMzgf2SazarFanmZc/N534QJn44vHj3le/3BtLPG6oN0hnItGZqc31jfb/Fhlfzg9yIYN3jxXHnxM0eH91YIgZxJ8pCal6G7scgwU8m1Rr/fxw0f06OFDnqPsKh/ya7AnAC4a6popM+PvuAG95cmiBnBn1znOh1xDwpDhCXwPzCGFeRZmZ3nr9jwWLVzCuUDN9wf3H9DawTyY4fCBuQJc1Nc1UX1tI20bjFsTvebluvZavx7BIWG8tmMjsxMNPR+ZIMYXfBTk5o95rr0zkfdHEJshx4A/vP+A90VALVLELw6XjwXsOoALxCTVVjfQjOnP/Xy5d5ycB4zvxp651tZL0ZcHvRbAx7JlqwwdV0GiI6OprLiE9gbv1dzYEK+EfXRRJ1gWMCJeV11VTffu3qN77HWtza0u+yDi/zsDgzgXtVX1VFP1Yp84MCBzqRzHcGOwRlOSjxzlfKAGqqHb6sjUKdM5H7VMx8b9Z+RziDL2FHql1CFn+XJyTSlZRCy90s5BDSD0nhq4M0B3+u+41J9N/l9iQjLnAvHeCYee5+3a67kLwVgxPozbXu8N+dzkvHoR/688rpYg5w+9QcHHvE8XGrqtosTFxnE+IsIiRvxZylwPUddKPuYsX07YNXidiJNV6hP2CcWeNuofDzAu7tzup/7bt238uMpHTSVjo6KWqspraIf/TtsamTvrVhi3iAWQ7TA5jwycqx2ju3dvJOfjWFGZodMqC2pUgI+WxqYRx+fYy4VS1oJylu8AFpzZ9spapP2Mjdu3btPtm7do395wl/mYPm0WVVXUUGV5NVWWVdn63IA/d/Y+5Fh+sA0OlOeo7JGmhpzvvcz52ORCLoMhw5cMdr/AR4DfDrf9Z0d8KOcQtfKB5Jrp6DWFmqw3b9ygUmupy775Z2s3MC6qqaK0ispLKm3rFM763Di7FiKnQ/SLGE0+vL230fWbA9R+osvQ5VGSFctWcT7KS8vc0gcxRzjKpZXrIqrFhxz3kZqSRjev3+D19FFr0pmPLo4H+AWyc65kbFRQmbXcZlu5G48o9wOWe6CNJh+5ecc4H6F7IwxdHkWprqikU8dP0NzZw4/nhU6InEFZV4RPKq/JqpUvh+e7eMYH+AfyesXXmFy9cpX3eXJlDSvuQDznAjU8UNtmKN/cFRHrXOLchO8k8gZFvqVaeVATJ35It/rvcz5etro8WpPIiEjOR9wB9/RV5MbJzAifVJkbp0a+HHRYxPPOn+dF1xgXVy9f4X0n5g/6Efb4kI8V5FqolPm0JUWltHvnHht37tbwkc9b9qFEXQbl8ZHKli3bOB/1Da2GDo+yLPRazPlob9XftcaaLri4zOTSxUu29QBnfIAL67ESKi602nKQEXMlx9FrWfILijkfAVJ9LkNGTxrr6+ns6W76dO58zY8Va1jRkeG2v9EL4hKzXy5e6KOo/dFO+UCcprWQsWGxUhHTM+wF6e1+9Q885HwYtpVnJDY6lvOxJ2iPLsYr20GFBYXU19tHF3ouUEGexena1dzZ83ndwGMFRbyunuADNhB8J1GnBD/Ffo2W4hW9vJZwPjo6zxq66yFZu2Yd58NSUKDZMQo/BzaU3IvGlG5ibPRS7/keNg82OFzDEn9vWr+Zc1GYV0iWXMuQ3yl8B8GMFmKvwiOiOR9pRzMN3fWQjB83kfNx8ULvmI8Ffq78DBc/xZ6b0rcP2h1MPed6+PouekQ642Mj48MyyEZBzvPnAdauZJtNy1LAfCbwsSMwyNBdD0pdTQ3nA2tCYz1POHsN1rBEPmHQrj2MjXN07sxZxvhZp3xEhUdxLlCPNS7m7xqiesmH6j7Ty/lYsGCJobcelLSUVM6Hv1+A5scq1x6dO2c+5+JM9xk603XaVnPZ0R7I/rD9lG/Oo7ysPIoY3FvDvqBeepkP3HvM+TB01rOye1cQ5yM2JlbzY8XcIfa6586Zx3s0nu7qpu7OLpozuM/piA/0SsrNyqWczBwKDw238aaHWj5eXks5H53d5w2d9bAsW7qc82EtLtYXH2y+6O7spq6OLt6n0R4f8u/pKemUY8rm/ZL8tvnbPk8P9pXgo7yyztBZDwv2PsBHXW2N5scqx6GjjmYX46LzZAd1nDhFO/wDh+QjOyObzOlm3pt17arnPYGxL6iHelcRkTGcj0PxSYbOeligZ+Dj+rWruvA/5F63HYyNU4yNk8dP8pisofgAF1lHMykzzWTjY6SxJZ7mIzw82tDZMRC98KGUU4wL9L8+0XbcFqvviA9wgT6tJmZnrVn5PG5ML7ElBh8GH67OH/J+xYm2E3S89Ti1t7aT//aAIfkAGxmMjfQjR2n1YD04NUTEMIu8Qbk/ilrfYcrM5XwE7tRHnMPLJlUVFZwPrwULR6wnENHTWeTNir0Nub+OfHy4Poj4HVy0t7RRW3Mr+fn6D+2fMy7Sk9PoaFIqrV6+mh/DnqPcY9aeKPsYKN+DcxG5g6JHrciRUatGUE1dE+fDy8vY+xgLKbRYVOUDv4s4ELEPDr2S+7PJ/ceEKHsi2xOL1GMNXLQ2tVBLYwtt3+Y3JB/gIi0xhVIPH6FVg/VwoL/2akPIohyj6CEn2BbnrcyDctbv3eDj1eZDxPiJugWu5NXJ84sjkT8DXDQ3NFNTQxP5bh2aj9RBNjgfg/OHnKfhSOzNcTgfwbon+Vg92N/KEP3wIXRAyYeyvo0rfChzrOyJHIfVzLhoqm+kxroGxsf2IflISUjmbGAOEf7HSPYHwT3mMpkP2b4S+ehq3J8ENm7DPx876ers4HxMnzZjWO8TegAGlHwIbvCsFTVwZPtK9PIbzvfJObaQxrpGaqhtoPqaeto2mO/uiA9wARsLPsialc/5GEl8icij9YR/bqxf6Xf9SjAylH8unqMj9c+xlyfv54GL+uo6qquqpa0+24b2zxkXGcxHx/ru2sH1Xfj6euhpYPBhrO+6I3XVtVTL2KiprKHPt2wdkg+s7WKNNyvNROuk/XN5v1GrsnNXCOcD+bWGvnpWxr83ifNx/pz289JgC8l1fsBFdUU1VZVXkY/3P/mQJSp8P2UdNZE5PZPCQsJ0dY+M+KuxExF/pYf4RFk+fP9jqmZcVJVVUmVpBa1bs35IPsKC91F2RhblmMwUMVhzUS/zx6SJH3I++i7fMHTWw7Jtqy/nI9ts1vxY4XsIf3r6tJlUydioYGyUl5TTtKkzh+QjPDSMcjOzKS8rhyL3RejK/4CI/A9Rj9sQD/l+YRGcj9AQ7fU8UArWY0X8LuoIg4syaxmVFpfy+iT2+LDVTvQNoPysXCrIzuN2Fo6BDb3kR7W0nTTyB8dAcrNzOB8rV2i/xwryNUR+7dLFy6mMcVFaVEIlx6y8f+dQfGxYt4GzYckpoMLB+gzgw1F8u9iLwVqcFuozpGeYOR9hYVGG3npQRH2GiYM1OsdKoIPO6ulAl8V+nvemLVTC2LAyNooLi//Bg/Jv7JkX5hbQsTwLFeUX0rvvvMePy3VK5J9iz0YrfaN8fHw5H2Xl2s/TeVkEOXfgo6ujY8zHAj0cTv0SxFuBiyJLERUVHHPKB+pdgYti9lore8+0T57Xv9JLT0746KI+nKG7npHAgEDOhyk9Q7NjVNa/EsdjomIZF89rvUVFON43E3y8z/QLXJQwpkrZnLN00TKbj66XGibIPwcfqwb3bwwZXcnMMHE+NqzfqPmxKtea0ng/3uf1rEIVMej2+IDATyljNhn8li2DvWVgr7lbv132UzxRnzruUBLnIyXVZOjvKAt6R6E+NfiYMH6S5ser3Kuw8F68BZSfk0/r1220a1spjx05nEzl1jKqKCmj+IPxIx6TsneDiDlT9jdQK44X8bvgA/2jDB0eXVm9cg3nw1qkv5gF2OIFjAvUessz59HC+Ysc8iHL/vD9VFlaTlVlFZSblWM7fuhAjFvjkNe2HPXHEX6UWufe23eV9/9YuVL7/dn1LKlHUjkfW322uv0Zckwi8j1E/KroFSOesSPNGYQEbN9u8xNmz5zLuRD1rKZ8PHVIPsRxH+/Pqbqskmoqqqi2snrE1xA+kVg3EByMdv+og3GHOR9HUtINPR4lQW9n9FcDH+Pfm6gKH9APkYsq+h67kjPoqsg+9Pq1GzgX2aZsMmeY7dpS9vhAH53aimqqq6yh+upamjl9Fj8O/8OdOj+iZ7X46Wqey0hk2rRZnA/055xg9DkYFdm5YxfnIzHh8Ig+R+YD84KYG4SOqKUr8Mtl3wP1D7NNZsZGFkVLa1fO+Bj37ngeC4+Y+Iaaetq4fpONPXfiTOzlCOKZIPd3tpfDPlKxllZyPkJC9FFbW0/yxuv/RyVFVs7HooXuxSrYyxmE3gtfVfTvVIsPrF3JdXhSk1MpKz2LMo9mku/n2536HvL/4J831tZTU12jrQc82Biqzg+4F73N5ePKfHm5V6cyf1LNe7h581bOx+kzvUY8lsqyZbMP739eVHjMrfc7yhm0p/uu5AyCI+iZ8FfsCdZghX31Dvt+cGFKM1FGaoZtH8OZby4kjn1/c30jtTQ0UXFhkV0+cI4Yj+i/KfwnteeBkUj7iU66dOUmBQfvM/RaxbnDkpvP+RhJvJWjnEHRy1W2KZz557DblfUXRL0T8RrEEIq4EvgQci2rjz+c4hIftj45GzZTa2MztTW1UHtzK+Nugm2OAKfivJSCcQ7FsKdl0yYfzkdn1zl6601jDlHlmjJ7u6y4hPKyczUzJugc9FJ+TgvBOhj0Un5ub/Px5bWmjzI20pLTnPoeyv+DJ9QFQt2s463tzDdfaxuH/N3gRKxHafV+trador6L12j/fu3X3tf83PHaW2Q2ZXE+li9dockx4hkOFmDXiNoHQlfFaw5EHeBcpCalUlDgnmHzAcHaFWqSojZpTFSMbU7E94oe5nq4p/PmLeR89PRepik67DeqJfH3DaDCPAvfQ9bLmGFjifonXIfffpdzkZKYws7jCK0crPPmiu8hvyYxIZGvbXecOElV5ZUvrJPpoV71i2sEVs5Hbm6hoecjeC5jPRR8iDwivYi87vrpnPmUcpixkXCEkuOTef/E4fjm8j5hJ7Pbuk51UHdHp21/EX6OXmIVhUwY/z6dOnWazp7rY3Ofn6Hvw5TXmV0FmwR8BA72ANCT7AsNtv2OvjbJCcmUdCiJndNBl20r5evAVfepTjrd2UVnurppV+Bu22v0Nn9AfNl1AR9tzB+ZPHmaoffDEO+NW5gvm8bjXd94/S1dn0tcdBwlHkqkw3GHafN672G/X+ao+Fgx71t4tvsMlTKfzB6PepLcXAudPt1DxwpLeE8XQ/edy6wZcygxLpHzMVkjeXDDEeyZC3sHdmEi4yLhYAIlHIjnMVjDmTuUjGBv8Nzps7w3dM/Z8zThPe3HMA8lqNPU1nqSOjvPUEz0QUP/nci4/0ygyH2RnI8N67Sf3+FMMF8kHEig+Nh4OhRzyGYHucvHJ8wO6Tl7jnrPnacL53ts9d+R366Hmj/2BD19wcfJE13kvflzgwMHAt0JDQqlA/sPUMjuEF2eA+IF5T3tmIgYzgVsLB/p3rvLBwS1rft6euli7wWqqqh06f1Y+8Wampoxh2qKzxZfzkc780VWGTHw//THGRt7dgXTQea/Ru6N1Jy/Cf3CfqCzfTd5rXXq5OkUFxPHzwnMz5o+xy02lIwEB4XQxQt9dKnvIl2+eImmDuakK+v8QrDWjHFjj0QrNRscSTSzr8BHS3M7eS1YbHAhyfatftxGj9y3n8a9O0GTYwQjYh8QP5X7cbBx5LkD9qFgIzYy1m3bSskH1kbBxZVLl+nq5SsUG3PgBT6djVPLErU/lvNRUVZNH30w2WAD/qz3Vr7+CT7e+4822VAK5hE8lyHiuSzXTMDvggsIcj/cta3svQ/rWNeuXKXrV69RD/NFxHER9+JufAneL2IA5Hwxuba9fFxtQf50tjmPGutbqK6mgZYv0359s1GzqV57i3b67+RxF+BjzqxPVflcR/Hocty6rAf2+pENZ07Be0WMh82umbuAcwFGDjK74ZPB9X132VAysnnTFrpx7RrdvH6dbt24weOb1bh2uD7iPES+GH7HtRLzEPwYNfuE2GPkSFIq56O6spaWLdFmXNFoCuKqYthcinhv8DF39jzVPlvmA/aFiM1FPBTuM47Jca2w0eWYXndFjt0N2R3KbSv45mFSPpBafEB6e3ro9s2b1H/rFrNHym3HETPsbn8pEYcs6s/hOuG4fH2U+TGjJftCwzkfFaWV5Ocb8MqwgZpOmC+QZ5p8+Ijqa/hKPkScoHxflTl0I+EDNr+sjx9M+oivV2FN9zCzGZcvXakKG+IzxOfEHTzE2LhNd/r7aeDOHV77WozH3XgTubYJ2BDMjwUfkB0BuzgfpcVl/HmKXIeXmY0li5ZyLlDDA/OGmvVBcS+FvSPbS6Lnnqf42Oq9jftS2MNJjk/ia3Nq8SF/zqQJH9BA/x26e2eA7t29S6YM0wtziKj56878IftY4voI+0rMv57SmaWLV3A+iizFlJVuttmqL5O8ybjfszuY1zpD7UCse8LGUvM7cN9E7oXMh+jrLfJKlXa26H2sBhv/evtdHkeSxLhAPOJI9jxcsbEy0k10/+49enDvPj28/4DXEBLjcocPpX8uYpA95Z87tDnYnHw0JZ0suYW8Bgzq5L3+mr7jjoTMmD6LcrJyeV1/8LFtMPd6NAT3056/LXqGu+qfu7omqqyljrgx2I6IZU9LTrXZjmqxoWRkoddixsV9evTgAT1++IjMWX/XRZHrxg+1tqCl/MIhfVb2jA3038n5yM4wM98ujmZMm6XfOeONt3m8UH1NHe8nhtqBiPXWw9ixHuWsFzjWcOW5A3keKejFnJTK8wRDgkJVnzvsfV5dTS09fvSInjx+TE+/+II9a58zAR/EER9y3S/81NMeCeL64dchX/loUhoFBQbZ8pX1IG+9+TYF+O2gmqoaampo4nyEBu/VjW8l7C0xtzjae1bOHatWrOExlbynZprJFlupNhtKRlDP5Qnj4umTJ/Tl06eUm5PrcIzw0ZS59Vqq3+CqwLZas3It5wP94TNSjtK+4H22nBhtcvEvnpPQ3NjMc0DbmtvInGmmmdNn6+76i7xV2eaGLSKes8pnM+4XfA5TWgbzITNpn9RLc7T5gDQ2NNJXX35JX3/1FX3z9ddsbB+94Ic4Ox+9Cubsz5mPBz7M6Vm811Z0RBQtWaid/lqId4iKjKaTx0/Qme7T1Hmqk/kaZbT6JYgzs/e8hW2i5MOXHctEn1n00szMdlo7VG1GFi9ayrn49ptv6Ltvv6WC/IJ/rFs4mw91zQnj3G+rH+cDvYTQDwJ9hZBbNxZxKqjv5b3Zh6xFVh4L1Nd7gc6fPU+11bW0bs1nL936G3RMrlUCZsSzF7WtUPcNuY6oHx0ZFjnqc4e9z29paaHvv/uWnn3/Pf3w7BnNnjXXxrioF6HluiZqyDv/HkcbP9tEGanpVGEto5ryKmpgzwP0Iopi8wqeI6OVhzWD2Um7d+2hqsoqvid168ZNHv8DPkzpJlqm0foiaj6jYJOINWRxPGhnEOUwLvLMubw++ydTpnmEDSUjs2bOoWfPGBs/PKMff/yBTrD5XF6/c2e9V9dz/9wFtJf5veXWUl5X73hLG69tcbqzm/nE9XxtPCQ4lBbMW0heCxa5/LkffvAx13V/5mMfPBBHzc0t9CWzbb9gPuDDBw/5XhT4aKxvoAD/Hdy+elWuOdas5Jq9UyZP5Vzk5+SRJa+AoiOd19UdzTmk0FJIP/30I/3880/0yy8/06aNf+fzopb8q8SHLAuZ/ocEhVBhvoXzgfxL2DyIgb5x7TqPQ7jP9Prxw4fUf7ufWpjOt7e100nGU2dHJ129eoX++utP+uP33+m3336lX37+mT+Dvv/+O2ZXfMP5uH3rFhUdK6Zd7Hk5aaJna3CLvXF5jUnUUpZfJ44p+/6pJaiZLsduxMXGkYXZubjuRZZjtv6ZnmJDycgH739MT58+oV9//YXfx4GBAb5nKV6HseuxloPagn2G7b5+vN9dSXEJdTEGBB9fPnnK/TjYqODg99//y9mQ+QA3x9uP8/lj/WcbbX2Ix0rkvQixtyfHCuE4bB65L5LauXLKmKZVK1bz2kOwba2FRbZc17HkA5IQf5j++9tv/L7+8cfvZDZn2/6HWkCu1HwXPQ9eRXag60sWL6OlS5ZzO2r5spW0Yrm24+xlPkSfWPE/ETul7HvjSgzdcNb+ZfsEeznZmdm8VjRiAgpy8237O55mwx4jd9mz8E/2jBDPvblz5r3A+VCMYO7FGtdw5mBR+115bCxjUl4lsbeXLXKBcC+VfLgaYyrWb4faB7DXKzYsNIyszNZEjZ3yklL2XF5u09Gx5EN8N5534OJ///uLy9UrV2yvg5/uiA9Rl364+yJ4vdzLEOLJnJFXVUSvPJkPXHPoNY6LOAl3+RCfB9vMkT0BXZJ7xcJ2LS2yUpm1lCpKyyk+Ln7M7Kqh5pDs7Bzb/PHnn39Q4uGkF85Jmasu99Jy9179f3vn2R7FdcXx803yLj1xYgO2wdgOYDDNBWNsilBFEi1gYss2TRLqvaDee1lJqHfUJYQoBpMQy45jkxdO7DxOyEfI/d/lLHdHs7szYldI2nlxHkmr1Wp35v7uqfcc9Zo/rZp4fxLObfFsI77W/DP3L+f9Cj9zXTbrFTP3VzvnQ1sHa5+1UCZnyTbVN5KtsZl+/7s1y4INLSPwy+fn5yUbsLXgi2zbut3xubh2DPuMetZjsaLVIRYfS8eIOueI9zo+F6g9D6o922NGeL4M2wXaGlg5S7a+QXDRRC1NNgoPi1g2ukPPztq7d5/kAnEX+OvaeJb283pD36v27tM6M2KJ78TVfnroQIDsm97S1ExtthZKVeyV5cKG3vvJzy+g/z18SA8f/lfGJtvarjj5X95gQjsDxfLP/cP34e+RM4U/3trcQldacCa6Xs7Tfdo+uVE767rQqWADeZH//PgjnTjxuOe3Xt8sS/xLzNgPiFWp/vgvfv4ryhWs4JxFO2ZkXmmXuY/lqjv07Cz4HQ8efCtz6sh5Ib/O9VmLsXdXYk28JfoCexh5Q6OMaOO5n0R9Krhok/U0XR0ddP7s+WXPht77g84AF6g/+fcPP9DdO3eFbnkc5zVSf8LnMyH+mj9cbb4E13YbYQRrRPXHMWu8Q9jrXe0d1N3ZRcWFRfJc5EpgQ4+RiopKWTf0w/ffy/qJyYlJp+e6m0WlsmE2NmiJuTXL9X1cx6AKr2H4jno1VmYFr+OJEb0c4JbNW6kTXHR0Um8X+vm1iPf98rL2OYwwMjU5Sf8SbKAO/p/ffUelJY/PimBv0OsN5As21J7Z+Mr3BWuDe9Coj/uT36v2kOHzFOq8elwXnrvMX33JiNbn2LD+Zdkbvaeri/p6emigt4/2v39gxdhV7nyRXwsd8dWXX9J3gg2cpUItnjbvo/rrvtIbiBFyrxn+Ho/j/iB+j8d5Zr2/8oF1iuuujf1p8+Xe6m+oxwjWglpvAfupurKK+rp7qL+3lwb7++mkEu9ZaWzoMYKzIvNffCFrs3HuEOdyI5X6StYhvrSp1Hus5g/9Pa+o7d8GNrB3qHrCm/3bPDGi8gE24GP09wgu+vppaGCAYqNjVzwbeu//aORxycU/IA8eyN4OkRFHndamL/0NPpPJddgcE/NXPvD5ua8r88G2Jj+Hz4D6ig8tI+q1BxslRcU00NcnucCs2KqKCsd5zJXmcxhhBDoDXHwL+eYb2QcF/VDU2N9i2DDiM6o9kHmP9Gc+eF2CAT37iuuq8Dy2S/EY7zPuuFvMe+H/xY9FX4iWttTw4CCNDA8LG6ty1bGhx0j0xVjJxd+/hnxNd+/ckT39XPlmnkSd/b4Y/4N7XXK9o3qWwR8YwWdWr59aN8XcMCPaGis9we+0/qU7gT2lPYsdczFGnk2+OjREo1evSp98zXPrViUbeowU5BfKHnN/++oreYb6s9u3HYxwbA82qKezVTyvyopfLS/BPfFUS4T7DNHG+OFfMBdjIyPSJ8e58tXicxjx1yH5efkyrvXl/Lzw3eflmZGw0HCnfcVdHQqfE7DW4/IU3Bt3e43WTkCfx0sxsdKWAhcTY6PS91D7g69WNlwxcjk3T/a7Rg+Ov96/T/f/cl8w4jxTFtdQT4/g+i9lXy32TbT12t6o435SG0lPh6p7OPfr09pNvhTcG1e+pHb2MfwK+N5jI1dpfHSUJscxX7jf0ZvHH9hwxQj63mBmAmYnoE/Nn+/do9CQMKd9BvpXtVHZV1zK9+1qlg/38MPjWA9LrdNcxRTUmBPX+/MZJvjli+XYzJ7E18rdvQQb8L3tXIzR1MSE8MkH/JINV4zkiGuIPjf3Pr9H9+5+LnudZWZkLdAjetfcqA/vjT2T6yvUfgNm4198HlXvddXH1Z457uwUI3xocxyeeqG7et/gXz3HbETUvUzbjwd+RavNJmwpcDFOM1OT0vfwZzZcMfLHk6fo87t3ZR3jnc/uyD5RhQVFsnem9h6Z3e84vv4kdcCsG/hM1mL50D5Hrw8Ox17VOX16a5LrpdTX4+d5mw8I3gs+r9kYn54vgh4e8L0nBRfTk5N0bXqKmhoaaO2a5/2eDVeMhASHSi7QJxPzcm8JabG1LOgJqD2j72lda3NPi7WvvJF/1z5Hrw+Odj3r9Wrl/IS2FwXHqH3Bh5rDNWKfcewWbKh8hB+JkD7G9OQEzQguZmdmqLmpUeyFv7HY+In72O/OHbvFtZuQs9bRbxD9ZMdGRmVfKDU2yDFgd31Mzd5PT3aCWqPH603ti4Z93lPs3x0f/Duj65nrcbT6g/d5lWetPnqSuJSn/YbjtrhHqj0FXyMhPkH6GLClZmem6frsNUpNSXGwsVrzG95k5NVXNpGt2UZzs3PyLOL1a7OyPydm5mn1CPYovh96e74361W4xtuI/6D3t2DHm3zw62r/L9tdrnqAPkmOB6/De46rPCF6cWhj8/A16mpraVpwcQ1cXJsRe98sxUTHuLQnLHHNCPYTxH/BxbXpGbHfzAh9PE2lxaW0RjODWC9XwnurGX8Sf+OrmDHv62oPToheHxxwpMaboK98GcvW1l0Z0aU8f0N9HLpCG7uFRIRHyhoq+Bizgos5wcX42CgFBQZbbDyhTwKdMTM1LdiYEnp5Utpe/b39sh+n9m/Rz3TXjl2O3j96sx492Q6+/Gyc01T9W738ydPIV5jxuXkGLV9f2LiBAQELngd7KicrW9y/KWlLzc2iR/d1GbOCjWCx4R1Gtr++kwb6BmhibILGR8dpfGRM9kVPT83Qna/han/z5Bf48zl3cGrm82v1s/YcKHoJI4/BPsaNuVnhU85RYUGBU0zS4sI7jICDooIi6auPCjZGhkfk7LCu9k45h0Z779hu0Tuf+KT7J9dELvdaLc4LGu11ZNRPY1+P9Ztq+0mdkZ0jbKnHPsZNwQXiuMFBIZbO8DEnR0LDqbuji64ODtPwwBAN9Q/K+ZO52bmChbVONoD9+aFO99SV/W2mzpH90+U+Nw6fyUy+Atwb+UywpbDvaPcHnOcZHhq0+xiPbKnbN29QW2srrVv7gsXGEjHy3LPrKC8njwYFG7C74I/09fRRb3cvHYs87uhpoconUfbYl14/CO67bNQO4fNuRu02X9hCvnivWO/uWMJeoxdPh/3bUF/v8DFuCC5u3Zyjz27fpI+jPnYZg7HEd/EtCGZStgmboE9w0dvVQz2d3UK3dFNzQzPtU3qGqXLm1KkFnJixrczuyWaep+1r6y5+ZFbXGbUF9frpgws9O3Xtc89TUmKSPV4LLq7bfYzbt25SbU2NpTOWhS5ZS4nxSZKLrvYu6hT+SMeVDupoa6fyknLatfMNt5zARjfTi5Rzb0b/xuha5lyNEX2D92w038mva9T3VuMU6D+lxwV8jAvnLsh47fVH8dqbN4QtdeuGzImjDsLdPbNkaRmBbNm8jSrLKiUX6DuJmZhttjZqbW6l5MQU2rl9t9v1C7vB0yw4NTdmZD/GGja6Ls3wYaYPFcfyjPjezIKr54KLMx/8aYGPcUv4GLCl4mIvLYhNWVwsL04OHwqiuuo6yUVLUwvZGm1kE/ZWc32TnMGllzeB8Cw45H7dzfMxU8tlZh2b4QOcGj3DyjU27mLdnFvVy+1BkI9NTEiUZ8EX+BiPbKk/vLrZ4mKFcAL/PDw0gqorqmUP/CbBRmNdIzXUNlB9TT3lZedRcGCoY0adKuAD+yi+8swSFq51NGoz4XlG7X4zfJix2yCcK1VtMuwByKW6q/Xcvm2H5GJGUxNi9zFuSC527dxt2VIriBEnTsT6Dws5QhWlFZIL6JXaqlqqqayhGsFOdXkVnT75geBgk66twfVdvH44Z2zU9jezhs3yYSamwDWF0Dn4POACtqSWf7ahAg4epiutbY66cycfQ9hStdXVFheryOaCnggJCqXSwpJHXFRTVVkVVZZWUkVJBZUXl1N6Sgbte+c9eua3z7qMBXHfNKwt2GPeXMO+0B/caw1ccM8vV7Wce95+h+Lj4hfUnas+Ro3Fxarn5K039lBWepaDi7KiMsFNKZUUlFBxfjEV5RVR7IVY2vv2u/SMC9tI5SP6/Fnp2+Nn9l14/fmSD/aheb2zvcTvCfoP78ld/T/mSscJdtA/x36Gz7nunGtC0tPSxGtbXPiL3QXZ9tp2+uhMlNQpJQXFgo0iwUYhFV4uoILcAsrPyZd+yoWzFykoIJheWv+y2//Dfotqj/Eez3FS/I4ZYp+YOVP54HPafH5CfT7PheDXBhPwq1U/wlVNDfKqB/YflH1C0OvZ3ifEfrZV1p0rNSFgJuqjKKcchsWF/3ECe+rdPfsoOSHZiYvLWZcpNzOXcjJyKDs9m7LSsigpLomOR56gN3e/TRte3Gj4f6t9CXjeNXPBMSOVD87HYe2zjcR88Fcj+X7khtCfMurDKCovLXP0IlT7hLCPwXXnqSmptG/ve4b0sSX+Y3tB1q15gYIPh1B8TLwTF5mpmZQh/JP05HRKS0qj1MRUSklIoeT4ZPrw9Ie0f99BsZbfoBef3+Axh+Ir2bB+I+3e9SYdjTwmZ4DXVtc4+p2DC+655ugTAh/jUd15Xu5lCjoc5HS+1d2eYol/6xQIaifef3c/ffrRWcpIFmwkCTYSBRsJgo14wUZcMiVdSqLE2ERKiEmg+Oh4irsYR5cuXKJzUefo6JFjFBZ0hPa8tZd2C3bWv/CS1Dnas11GBH4T8gubXt1CO7fvkjWa4WHhlJKUQnk5l+VMpc5HM5V6u7tlv3NHX2cHFyMOH2NocIByc3IoUIcJS1dYYpaVn/30l/T61h0UEhhK5z4+55KL2POxUvA9Hk+ITZA2GXhKEzoH+ge6KDs9i3KFfoINl5+TJ30e+D8lwhcqKy6lipJyqiqrpOqKKqqtqqH6mjpqrK2npvpGsjU2U2uzTc5tbW+zz6fkmUpydgy46Ee/80GnXoTohX7m9BlZS2j281tiiZm1An/glY2bpH45Fn7ciQuwAm7AEOwv2GLQPZnCPoOtliO5yJVcwN9BTADxgbKiUiovKaPKsgqZl6mtrKa66lpqkFw0CC4w69tGbbZWOZ+yU86n7LTPVOq2z1RiWwqzljLS0qWOQR+dxX5OSywxw4q7dYQ5WfA/3hH2VHBACJ06fpounr0o/ZastEzBRbb09+H7F+TmSy6KBReIn5UXCy5KK6iqvFLO9ZZcQGfUNcj8f0tTs+CiRebseD5lj7ClsjOz5PnVE8dO0oH3D8q5wd74LJZY4mtetPbZxg2vSIEff+hAgMxRHz4USIGHgmT8OPiwkMAQQh4zNDhM5v3Zz4g4EkFbNr0mZ1S+tnmrT9+rJZb4mpmlXotP+/9bYom31q03xbrGllhiiSWWWLK85P9QSwECFwsUAAIACADaiD5bqNk2FhBAAAAAcQIABAAJAAAAAAAAAAAAAIAAAAAAZGF0YVVUBQAHJQ7caFBLBQYAAAAAAQABADsAAABDQAAAAAA=</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #6</Name>
|
|
<Index>6</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPlvuLOMBkj8AAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J3nW5TXusbvv+TsfZ19nb1jTdNobNHE2IlKLKjY+1EDKGIBFQFFRCnSe5PeZoCBofeqYEHsLbbYEmOyz4fz5eSsZ8Ea17yAMjDgDLwf7gt4mfKW9VtPWc9a6+9/+wf+ruqj6W//8Z99lnq/VI2Edm8Nn69K1WC1U/WcVKk89K3dLVy4mMvlgCtcXFwRGhaF+IQUpmToCkvQfOESmlsuoam5DY1NrVwNjRdR33AB9fUtqKtvRm0dU20TIiJimWIQHh6Dw4eOwsFhH9asWY+5cxdiwpeTTDp39VmqGgwmenvNrFnfY9OmbfDwPIWk8+moZW277XIHWi9dw8W2dqaruNDKdPEKWi5eZlxcfsdFs4KLBuKixcBFTW0jqmuYqhtQVVWPyqo6VFbWoqKiFuXlNSgrq2aqQmlpJWJiEuDjcxa7dzlizvfzMeqTcSovqoaUhzGjx2OlnT28vHxwPiUTl6/e4Lp05TrarnQYuGjlXLRLXDAJLlraDDaDuGhovMDZIC7qiIs64oJJcFFdz9ggLuoMXJSXCy6qUFJSiZLiChTry6HXl0FfVIqiwlIU6kqQlJiCkyd8sHH9Fkyb8o3KiqoBcdHT/2xsluLQ4aPQ5hXhyrVbuNJ+E5fb33HB2RBcCJtBXLQac5FfUIzYuCTExJISsW/fAa69e0kuXE5OpP1wctwPR0dnLi9ml8KYbxYayhQSyW0GcVFKXJQwLorLO9koKjNwUagrhq5Aj4L8IuSz887XFiJPo0MaY9rT4yRWLFuFLz6fqLKiql+2ws5uLQICQ9HI2vXVjlu4auDiZjcu2iQuEhJT4XsmAPtdDmP58lVYsOAHbnMG4/ynT5vJ/KgF2Mx8u927HBAYEMLsRSrjophxwdgQXGh10GoKoM3NhyYnD7nZecjJ0iI7U4Nz7D1r7Tfg888mqKyoeq+tEEw0MSbaO24zLm53cnHtZicbxIXwpRgX2ay9HffwxsaNWzFz5myLub5Rn4zF97PnYeeO3cz2eHObocnJ7+QiW8vY0DA2cpGVkYPM9GxkpmUjIzUL/mcDsWb1um6sqJyMXFsx6aspOHHSF+XMv2+/fkfBxS0DF6Qc5p9QDL5o4RKru37ypZYvs8PxY15ISkhBVnpOJxdpWUhPzWQMZSAtOR2p59OQkpQK10NHYLtkmUl+qKrhw4XdqrWIZjHAtRt3O7lg6sYFU0RkHM9NDZaP9LE05evp2LPbEeEhEV1cpDMu0pDM/LNkFtOfT0hGUvx5RLK4Z+O6Tfjs0y9VTkYAF1u27ERFVT3n4loXF0Y2g5iIIia2DzsmehP5U5uZjxjMfEvBRWJcEhJZ/5EQk4j46ATERcXDgfFE9lblZHhxMWbMp3B1dUfzxSu9cqFhseymzSOHid709aSpcHLYh4jQSMTHMC6i4xkbcYiNjEVMRAyiw6Phxnyvb6bPUjmx8ribc+EmcSF8qS4uGpvb4B8Qwsf31PtnrE/+NQZLfrDFSRbfCy6iw6IRFRqFyJBIRDC/7LDLYcyYNlPlxArzUeRHtUhcyDajrKKWj2eMdFvRV5Gt2O/kgsjQTi7Cg8MRHhSGsHOhCA0MwUHng/h03OcqJ1bAhY2NLSqqG9DRCxebmQ+l3rv+6dPxX2DXjt0GLkICghHiH4xgvyAE+Z3DdnZv//XP0SojFsgGxY1pGTkqF0PBCbMVO7f9N4L9O7k4dzYQgWcCEOjrDx/mjy2xWaraEguyGRRjdNy8ZxxjXGfxRUsb42KHet8GSeMZJ2QziIuA037w9zkLv1NncNbbF4eYzzVtygyVkY/IhvCllDEG1YSo8cXQiTjY99NezgaXzxn4M14CfP2wwX6D6nMNERvid8pLnfQ+06MvFRWdgK8UOXpVQ6P5cxbgFPOvyJYEnvFnflcA878CcfK4F6ZP/UZlZAhsxrffzkG+rqTLZhjHGDYKv9fjuCf3AdT7OHhy3ueCaVLbJ1tBNiOIxSTBLDYJCQhisXwwi+lDYL9qba99nqqBs+Hg6KyIMTprQrxOnO7mSxUXl+Cvv/5CTEycei8HMf54+/Ytv892K1cb/Y/shbfHSYQFhiA8KBQRwWGIDAmHl7snPhv/hWpLzOxPiVopZV7KZpGxzdi9cyf/Sc+LnhtJ7t9UmU+Zmdn8/jY2NvG/V61ciS+/mGBkS7Zs2ILI4HBEhUQgOiwSMeFR3J7MmzNfZcRM/hSvl1LUhNC4t2wz1q9d2+2z6LnJz0+V+bRg/iJD/yNsxzjWj/3zv0Zhzuw5/HfxWhpfPMvi9pjwaMRGxiAuKhYJ0XHYuW2nysgA2NiyZQefq62sCbGzsze8RvRXX0/uHpOT3VA+Q1Xmkeh7yIYo/yf4kJ8J1asccD6A+C42EmPjkRSXCE/mb9H/1JjENDZoToay7pxqCJW5qUULFr33cwP8A/lzfPz4iXqfzRiT0z2l2ON9vmtPNn3VitVIik3AecZGckISUhLPI5TF7lMmT1MZ6QMbY0Z/yufwKetr/QOCjfwpijN6shnviyGJFfV+Dzwmp77GlPu518HB6G+qEY6JiEZqYjLSklKQnpyKhJh4fCfViaqM9MyGtkDfbQ7fnp/2drMJ/e3v1Hs+MMn22NTcuezjkk/l7+uHjOQ0ZKakIystA9npmVj+4wo1JukpR8VsgzZfb8RFQ1MrVq58F2sIe0Gxoal5W/KT6X1qGx+Ytm3dwdmgn6a8j54X8UHxIsXwdGxUV0ySlZbJ2MhCTkY2crNysGKZ3YhnxChHxewq5Wrlua31jRe7zcug/KFsE0hqm/04PpapTNFYrXiGcg6Y5LjHEbmZOdBk5UKbrUFerhZuh9xGLCPytRIDlJMSc1tJuVqdUawhc6Hsk/pjE0TuRfgJw318RB4LkvN5dN0ilpDz4MKHEj6pqbZCFn1HTzkuMU4lRDYjL0eDfMZGgSYPOm0+jroeHXGM9MSGvE5IruYdGyKf/r5+jO69Kf0Z8dTRcd3wN42zD/e4XeS5lfeJ+nThp4q4m7ghJsRr6TX9HT+iz6D729PzIV+Znq1sS1YuX8W5KMwrQFG+DvqCQrgfcR8xjMjXR2xQfCGvRZijMbYbdA/lcabe2rspsQg9f/l5ExsjIa9F94jaPV27uF7ltdP/hK3p7X6Z+p3vs+/EhtI3sFuxmnNRrCtCSaEepUXFOH7s+LDPaxnnqcajtLzGaC3CHE2BgY2e7ltf/VuVj577cZE7Ej4VtdvB5MOU+JDGE0kGf9puDUoYF6X6EpQVl6K8pAwOLEYZrowo2cjVFhqtRZiT+44Nepb9qbnt63voecv+FflnfWVruPhXdP10H4gN2b+i46JuRLyW2jj5SKY+C1P6HPIRSHIcuGaVPeeiorQclWUVqCqvxNo164YdI93Z0Bmtd56tYIOeEWkw69JHWnwufB1lHD4U8XlfNXGyE/748/+MbI796rWMiwpUV1ShprIatVU1WGe/flgxIl+Dn3+Q0brO2Tn5RvEG9V1irHuwGVFlOfpkrCO+mvUG9lv/6JbrIptRW1WNuuoa1NfUopTZsm9mfDssGJHPndatNax3fvkaauqajdg44eGuMjKC2SCNn5DEj23dvNkor7Vj20401Nahsa4eTfUNqCgrx8QJk606pyWf88ZN27q46Nwjg/Z+Eeud031QjhepjIxcNoSUud9T3j5oamhEM/MBW5qakZmeaehfrY0Pozwu44D2G+vcO6ZzTyXak0+8lnK4PdUZqoyMXDZEv6nMYcbHxuFCcwsutlxA64WLCA8Nt0o/S47H9cUVRnsq7dr1Lk/3oRyuzIg6x2nksCFLnms1ZvQ4ZGdkoe1iKy61tuFy2yXs2e1gVYzI5xgWHm20P6Wvb0C3PuJDn0eMiHy9fJzyk3I9KOU9RD5fnQs1PNgQbUSuoZg18zvUs1jkyqVLuHr5MtqvXIXNosVWEYvI57Zrt6PR/pQZmRqDv/jjUts+zd14n+SxLco/kg8m8vnqnPPhwYYQ2Q+5XmvlilWMiyu4dvUqOtrb0dLcbPGxiMwuxd7y/pSVVfWYOPFr/j9zxREyH72NA6ttcnAk142I8XUSjSOK49Rnycdnz/PtFxu96YTXSXRcu4brHR24cf064qQaI0tkRI45MrO07/ZtvXCJ71Mp+0Wm1hSqfFiW5Psr6rnEeLwYaxdzROi4m3uNWdigz5f9Al1+AW5ev4FbN2/i9q1b2Ou0zyIZkc/F3f0EY+MyX1eB9jT2Oe1nZCdFTNHf+UqCBZUPy+BDjgWFzaBjooarvz6VLFGnrXymtCZ5W2sr7ty6jbt37uAKi0cmT5piUXzIfhXtZSz2+m5qaUN+gb7XmkO6ZrLTps5xEjUolNcSTNBnyPGHXJ+tynwS91Tmg9qtmCNAv8t8yGzYrbvYr++kPpQ+X9gNWo+D4lfxf7IZ9xgb9+/ew4N796HJ1ViUDZHPoUBXwvdGbmpuQ2NTK7s2G378fXXq1LZNnSsr6t/U/NXQ2w16Vkr/Svwu1/oW6P/XiI3+5Ofl+SlKyfmdpMQkPLh/Hw8fPMCjhw+x39nFIhiRv9vZ+ZCBC9KRox6G/ynXC/tQH6HKcu0H2Wl5PTHqjyjWoPZPP+lv2W4cP/U/3J6bUiMt/Kne6iKpLclrB41lf1Os/ujnn/H40SPcvHGDH7MUPqgWprGLjYbGi9DmFWL0qHe53L7eE3X9BOtghNiQ/Vd6bnSMfirjDXG8r58v5uP25T0zZ8w0jI3sdz6AJ48f4+mTJ3j29CnS09I/qg2RvzMmNpFz0dB4AfUNFzC/y68yhY+RpEUsTqMxLbfDbjjqdhTux453+hLRMSjWFyMkOASnfXzh43Map075YM8eB/xou5z5FNMs+rrMEYvLcc6HRH6JPHZYUFCAX549w/NffsGL589ha7vso/Ahx+TLltlxNoiL+voWBAaGGGygysY/MPf7+XzuW8DZAORptLx+iGojaNz35vXruHv7Nh7ef8D7Pnqur1+9wu+/v8Gff/7B9fb33/Hbb7/y4y9ePMezZ0+Rl5ePM75nsX3bzm77kVs7G6ZKrt/7fvY8zsXLFy/w6uVLNNTXfxQbIn+XVlvI2GhBHWOjuKQCE7rqjpX1lyNFoz4ZgxU/rsQJDy++xkApswc0/43m9jTWN3A+iov0SElOQVDgOSP7ccDlIDas38hrVWX7UVpSyu2K4OMxY+khi0Pv3buH27duo6qyio+XUe3FSGJD8CG3s3OBQXj16iVev36FX399zW2vsk8fKtuxY8duzkVdXTNq65rg5LTf8Lqe8tXDWUsX2+LIITe+FmAuu3Zap4b4SD2fAk/W9rezWHPBvEVmaA9TsdZ+PWcqJzuH80Hjx9fa23Hl0mXoC4vgfvQ4iwknDXs2hC9GOQExTjBu7Ges73jAbe6bN7+xvuQRPzZUNkR8x+hR45i9qORc0HwOvb6cHxN5OTE/czjnpWh/i7Wr1/G9kWjNZVpPlvgIDgjChnUb2XXPGPRzGDtmPF/PgNpIfV09r22l+RFkqyLDo2C7dNmwZYOYEPOD5TEvVxbXkY/69u3v+OOPt9wWD4UNkT/fyckFtYyLmppGVNc0wN5+Q7f8nDyHmZ7fcBmzG8/6o+1btvM9wGnfl7jIGJzzC8TmDVvw+Wcf16dcsdwOIUEhnI/a6lpUVVQinTFLDA0XNsQ4i7yGgDIXfOPGDR6//fvff+KXX54NiQ2RbQfZi2pio7oBWVlaw2tobqRcR6K8DmteE5Tshd2yVXyPVtp7kvhwO+CKxTZLLO5cyb9yO3wEugIdykrKUFyoR0RYBGZ/N9dq2RC5X2W/K7c98buDgxNng0ScUCw3mLG6ke1w3M+5qKqqR2VVHezXvFtToqdxQLGmsbgua9wTkHKyZ7x9EXDan/Ox38nZaE9WSxX1ZT/tduDrPuvydNCyuMjjmEe/7dzHYoN8djFXTuzLo/RHlHMmbt26ydkgH+vp0yeDakNk21FYWNrJRmUdMjNyDa9R7vOgFLFO12hN44C0l6TrQTcWY4QiyO8cPI4cx7ddc+etK682Fkdcj3I+cljbSmDxEq0xZS0+lVhz6EO1pzSuLvJZDj85cjYoDiFRLnCw4hDxefZrNnAuKiprUVFRgzWr39mO962VK8cm1tKm5s1ZgJDAUESGRnI+Vq9YbbTXvTVq6pTpCAoIQkZqBlKSUrgtkfc3Gww25Ppqev6yz02/0zHyMWT7oFxfjl7TF99cOaZw48Z1HquTHj16NCg+lvxZmZm5jItalJfXID393VpFB12c+/XZot5NSPheyvk1Q21z9jo6Iz4mATERsfB098JXXfO7hou2bt7G+aA9AMOCwvgemoNlN2Q+lOtXirUc6RmLGFus4djfa5P3UPhpjwPevHnDc72U8xXz1QeDj6VLl3MuysurUVZWxb7bySTb0ZPovoixErlWR55fI2qoh8QPYX3pWRZjnE9I5nxs27JjWHFh5K9PmopzzGeMi4pDVFgUbKR1ZczpU8l8iDUbxfMW61cq/aaB8KFc95/qFokNGi9sb283qw2RPyM0JJJxUY3S0ipotTrDeEd/bYewE2RXxTq4wv8y1xripmjK19OREJeE1PNpiIqI4f7VcGXD0P75Hk4HOR9kR3Zs3Wk2NqivE+N3sn8l5uqQhH9lTj5IVNskbIj3yVP49fVrPqb+6tUrXstmbj4mfDkJZYyL0tJKlJRUwP2Y13tzVqZI1IQKW/Ix+Jg6ZQbOJ6YgIy0LoUHhFl8LaG6tXbOe8xHkH8R8r+1msRsUL1DfJ++x0pt/Rc9X+FdkTwa6V6S87gnlrah+jepOXr58gVgzzlUX7z/g4sq4YGwUV6BYX47p02Ya+giKGfo7Rq68d8r5mUPBB7GRmpyObBZbBTB/Y1Qf4tXhKMphEx/+vv7YtUdrljyV2Bt1oPF5fyTbo7jYOF63SDVsz58/x9ixA58fIr83NSWDteVy6PVliIo0Hr8gNsTcVlPX+hb3RZ5fQ8fpb+pb6Kep82tMEZ17Rlo2NDn5CAoM4XnQkciG0ML5NpwPX29fbNsWYnXnT6xRWyE/RM53UZ0N1fZSjTSNp1MtqLn4WLL4R24z9EVlKCosxSq7zrw51d/THBVlf6GMJfrSRnuaR6OM2c0tsoHZWRrk5xUiJDh8xLMhNH/uQs6Ht6c31kljv5Ys4cdQ2xO+DPlXcvu81NbG54fQ/KmqqqoB+Vjye44d9UBRUSljowSFumJDOyIfr7fYQ9QCWGo9CeUWcnPz2fWUIDw0SmVDIcpNEB+eRz2xxMYy5/GIMRHRzpT9MfEh70vl6eHF2aA5hjTfZvKkqWbhIztLy9uRrqAYJ0+cNrChtB3WpNjYJG4TkxJTVTZ60ZzZ8zgfHkc8MHf2fIs7P2LiQ3MoqP8WdSc0N+DJk8ecDZqnfvaM34D5WPyDLedCV6BHQX4RfrBZavV8eHp48/Ebsh/qmhAfyGutXsf58GA+xMQvJ1nd+RMbtCaQ+LuiogKPHv3Mx0Sam5r65WPJrz3i5s640DMfvYjHsT3ZLWuSre0KXh9DfFBcpTLwYTnudoKPlw8OH3C1yvoaebyQ1v75+eFDvhYQafZ3cwbER0Z6Do9f87Q6eDF/VPAhr69iLaK5v0X6Ms7HwQNuatvvo+h5k/0IOOOPTes3W935y+uhU8xBXNB6Wffv3cO+vc795oPmuxMXeRqqiy7Aiq51dAc6HvixFBUVz+esJCSkqO3eRM365jvOR1hQ6HtrtSyZcfF7Y0MDZ+Pe3bt8Xr+pPpZ43V6n/ZwLDfPTNTl5hjhWuT+cNWjduk18rjzxMcMKn68liOZMEh9+p89a3bnLNVA035bW6717+w7u3L7N5yj3lQ/5NTQmQFzk/j975/0XxdU18PPXpL15nhhjSdPYNSr2bmxIEAFREVCKFEUQEBAWFhZYysLC0jsWig3sHbHFaLrpT8rzB7z3XPbMc51sYxmWGZ0fzgcYttyZOd+559x7SmMb5OUapeNay5PFGsA9vec5H2INCV1GJuh74BxSWmRmdpa/Zs9j6ZLlnAus+f7o4SPYYM+DGQkfOFcgF02NrdDU0AI77HFr1GterGuv9usRERnNazu2MDtR1/PRCcb4Ih8lpuJxz7V3J+L+CMZmiDHgjx8+4n0RsBYpxi+OlI/F7DogFxiT1FDXDLNnDfv5FE8jCsWg4Z652tZLsS8P9lpAPlauXKvruAKSEJcA1opK2B+xX3Vjw3gl3EenOsGiICP0urraOnhw/wE8YK/raOvw2Aeh/+8OC+dcNNQ2QX3tiz3bkQGRS/k4RhqDNZaScew45wNroOq6rYzMmD6L89HAdGziu6OfQ+Sxp45qU7vLlxNrSolCsfRyOwdrAGHvqaF7Q3Bv8J5H/dnE/6WlZnAuMN479chw3q6jnrsoOFYcH47bUe8N8dzEvHqK/5cfV0ow5w97gyIfCz9douu2gpKclMz5iI2OHfVnyXM9qK6VeMxdvhzZNfg6ipOV6xPuE9KeNtY/HmJc3Ls7CIN370r8eMpHvY2xUdMAtdX1sCtkt7RG5s26FY6bYgFEO0zMI0POlY7R3b8/jvNRVm7VdVphwRoVyEd7S+uo43Mc5ULJa0G5y3dAFtzZ9vJapIOMjbt37sLd23fgwP4Yj/mYNXMu1NbUg626DmzWWqnPDfLnzd6HGMuPbCMH8nOU90hTQi4MXOV8bN0aoOv0GEguu1/IR2jwLq/9Z2d8yOcQpfKBxJrp2GsKa7LevnULqixVHvvmn23YzLiog5qqWqiutEnrFO763Li7FpTTQf0ixpIPf/8dcPP2EHSd7NV1eYxk9cq1nI/qKqtX+kBzhLNcWrEuolJ8iHEfWZnZcPvmLV5PH2tNuvPR6XhocBg7ZxtjowaslmrJtvI2HlHsByz2QBtLPkxFZZyPqP2xui6PodTV2OD0iZOwYN7I43tRJyhnUNQV8knFNVml8uXw+U7P+NCQMF6v+AaT69eu8z5PnqxhJR9K4VxgDQ+sbePKN/dEaJ2Lzo18J8obpHxLpfKgpkz5EO4MPuR8vGx1edQmcbFxnI/kQ97pK+XGicyQTyrPjVMiXw51mOJ5Fy30gxuMi+tXr/G+E4vsfoQjPsRjJSYzVDGftrK8Cvbu3idx520NH/G8RR+K6jLIj49Wtm/fwfloau7QdXiMZYnfMs5HV4f2rjWu6SIXV5lcuXxFWg9wxwdyYSmrhIpSC2zdPBxHgDFXYhy9mqW4pILzESrU59Jl7KSlqQnOnemDTxcsUv1YcQ0rIS5G+ht7QVxh9svli5cg/mCCWz4wTtNSytgwW6Cc6RnuBWntfg0OPeZ86LaVbyQpIYnzsS98nybGK9pBpSWlcGngElzsvwglRWa3a1cL5i3idQPLSsp5XT3iA20g9J2oTgn+pP0aNcUr+vkt53x095zTdddHsmH9Rs6HuaREtWMkPwdtKLEXjSHHwNgYgIEL/WwebHa6hkV/b920jXNRWlQKZpPZ5XeS70DMqCH2KiY2gfORfTxP110fyaSJUzgfly8OjPtY0M8Vn+H0k/bc5L59+N4I6D/fz9d3sUekOz62MD7MdjZKCoefB7h2JdpsapYS5jMhH7vCwnXd9aE01tdzPnBNaLznCXevwTUsyicM37OPsXEezp89xxg/55aP+Jh4zgXWY01O/F8NUa3kQ/WdHeB8LF68XNdbH0p2ZhbnIyQ4VPVjFWuPLpi/iHNxtu8snO09I9VcdrYHcjD6IBQbi6Aovwhi7XtruC+olV7mQw+ecD50nfWt7N0TzvlISkxS/Vhx7qC97gXzF/IejWd6+6Cvpxfm2/c5nfGBvZJM+SYozCuEmKgYiTct1PLx81vB+ejpu6DrrI9l5YpVnA9LRYW2+GDzRV9PH/R29/I+jY74EH/PycyBQkMB75cUvCNE+jwt2FfER7WtUddZHwvufSAfjQ31qh+rGIeOdTR7GRc9p7qh++Rp2BUS5pKPgtwCMOYYeW/WDWuHewLjvqAW6l3FxiVyPo6kpOs662NBPUM+bt64rgn/Q+x1283YOM3YOHXiFI/JcsUHcpF/PA/ysg0SH6ONLfE1HzExCbrOjoNohQ+5nGZcYP/rk50npFh9Z3wgF9in1cDsrPVrhuPGtBJbovOh8+Hp/CHuV5zsPAknOk5AV0cXhOwMdckHspHL2Mg5dhzW2evBKSEUw0x5g2J/FKW+w5Bn4nyE7dZGnMPLJrU1NZwPv8VLRq0nKNTTmfJmaW9D7K8jHh+pD0K/Ixdd7Z3Q2dYBwUEhrv1zxkVORjYcT8+CdavW8WO45yj2mHUk8j4G8vfguVDuIPWopRwZpWoE1Te2cj78/PS9j/GQUrNZUT7wd4oDoX1w1CuxP5vYf4xE3hPZkZiFHmvIRUdrO7S3tMPOHcEu+UAustMyIevoMVhrr4eD+uuoNoQo8jFSDzlim85bngflrt+7zserzQfF+FHdAk/y6sT5xZmIn4FctDW3QWtzKwQFuuYjy84G58M+f4h5Gs7E0RyH50Os+5KPdfb+Vrpohw/SATkf8vo2nvAhz7FyJGIcVhvjorWpBVoamxkfO13ykZmawdnAOYT8j9HsDyL3OJeJfIj2FeWjK3F/Utm4df98/KS3p5vzMWvm7BG9j/QAGZDzQdzgs5Zq4Ij2FfXyG8n3iTm2KC2NLdDc0AxN9U2ww57v7owP5AJtLPRB1q8Z5mM08SWUR+sL/1xfv9Lu+hUx4so/p+foaP1z3MsT9/OQi6a6RmisbYDAgB2u/XPGRS7z0XF9d4N9fRd9fS30NND50Nd3vZHGugZoYGzU2+rh8+2BLvnAtV1c483PNsBGYf9c3G9Uq+zeE8n5wPxaXV99K5Pem8r5uHBe/XlpaAuJdX6Qi7qaOqitroUA/3/yIUp8zEHIP24AY04eREdGa+oe6fFX4ycUf6WF+ERRPnz/Y6hjXNRabWCrqoGN6ze55CM64gAU5OZDocEIsfaai1qZP6ZO+ZDzcenqLV1nfSw7AoM4HwVGo+rHir4H+dOzZs4BG2OjhrFRXVkNM2fMcclHTFQ0mPIKoCi/EOIOxGrK/0Ch/A+qx62Lj3y/6FjOR1Sk+noeyAXXYyl+F+sIIxdWixWqKqp4fRJHfEi1E4NCoTjfBCUFRdzOwmPIhlbyo9o7T+n5g+MgpoJCzsea1ervsYL5GpRfu2LZKrAyLqrKK6GyzML7d7riY/PGzZwNc2EJlNrrMyAfzuLbaS8G1+LUUJ8hJ9fI+YiOjtf11odC9Rmm2Gt0jpegDrqrp4O6TPt5/lu3QyVjw8LYqCit+AcP8r9xz7zUVAJlRWYoLy6FCe+8x4+LdUrEn7Rno5a+UQEBQZwPa7X683ReFsGcO+Sjt7t73MeCejiS+iUYb4VclJvLobykzC0fWO8Kuahgr7Ww98z8ZLj+lVZ6cqKPTvXhdN31jYSFhnE+DDm5qh2jvP4VHU+MT2JcDNd6i491vm9GfLzP9Au5qGRMVbE5Z8XSlZKPrpUaJph/jnyste/f6DK2kpdr4Hxs3rRF9WOVrzVl8368w/WsomQx6I74QEE/xcpsMvRbttt7y6C95m39dtFP8UV96uQj6ZyPzCyDrr9jLNg7CutTIx+TJ01V/XjlexVm3ou3BIoLi2HTxi0ObSv5sWNHM6DaYoWaSiukHE4Z9ZjkvRso5kze30CpOF6M30U+sH+UrsNjK+vWrOd8WMq1F7OAtngJ4wJrvRUZi2DJoqVO+RDlYMxBsFVVQ621Bkz5hdLxI4cSvRqHuLblrD8O+VFKnfvApeu8/8eaNervz65lyTqWxfkIDAj0+jPEmETM96D4VeoVQ8/Y0eYMooTu3Cn5CfPmLOBcUD2r6R/PcMkHHQ/w/xzqrDaor6mFBlvdqK8h+kS0bkAcjHX/qMPJRzkfxzJzdD0eI8HezthfDfmY9N4URfhA/aBcVOp77EnOoKci+tCbNmzmXBQYCsCYa3RoSzniA/voNNTUQaOtHprqGmDOrLn8OPof3tT5oZ7V9NPTPJfRyMyZczkf2J9zst7nYExk9649nI+01KOj+hyRD5wXaG4gHVFKV9AvF30PrH9YYDAyNvIhQVi7csfHxAmTeCw8xsQ31zfBlk1bJfa8iTNxlCOIzwSxv7OjHPbRiqXKxvmIjNRGbW0tyRuv/x9Ulls4H0uXeBer4ChnEPWefFXq36kUH7h2JdbhycrIgvycfMg7ngdBn+9063uI/0P/vKWhCVobW6Qe8MiGqzo/yD31NhePy/PlxV6d8vxJJe/htm2BnI8zZwf0eCyFZfu2AN7/vLy0zKv3O8sZdKT7nuQMIkeoZ+SvOBJcgyX76h32/ciFIdsAuVm50j6GO9+cJJl9f1tTC7Q3t0JFablDPvAccTzUf5P8J6XngdFI18keuHLtNkREHND1WsG5w2wq5nyMJt7KWc4g9XIVbQp3/jna7fL6C1TvhF6DMYQUV4I+hFjL6uMPp3vEh9QnZ/M26Ghpg87Wduhq62DcTZbmCOSUzksuOE5XDPtatm4N4Hz09J6Ht97U5xBFrimzt60VlVBUYFLNmFDnUC/F5zQJroOhXorP7R0BQbzW9HHGRnZGtlvfQ/5/5AnrAmHdrBMdXcw33yCNQ/xu5ITWo9R6Pzs6T8Olyzfg4EH1195X/dzx2ltgNORzPlatWK3KMeIzHFlAu4ZqH5Cu0msOxR/iXGSlZ0F42L4R84GCa1dYkxRrkybGJ0pzIn4v9TDXwj1duHAJ56N/4CpM12C/UTVJSFAolBaZ+R6yVsaMNhbVP+E6/PYEzkVmWiY7j2Owxl7nzRPfQ3xNWmoaX9vuPnkKaqttL6yTaaFe9YtrBBbOh8lUquv5KJ7LuB6KfFAekVZEXHf9dP4iyDzK2Eg9BhkpGbx/4kh8c3GfsIfZbb2nu6Gvu0faX0Q/RyuxiiSTJ70Pp0+fgXPnL7G5L1jX9xHK68yuQpsE+Qiz9wDQkhyIipB+x742GakZkH4knZ3TYY9tK/nrkKu+0z1wpqcXzvb2wZ6wvdJrtDZ/oASx64J8dDJ/ZNq0mbrej0D8t2xnvmw2j3d94/W3NH0uyQnJkHYkDY4mH4Vtm/xH/H6Ro4qyCt638FzfWahiPpkjHrUkJpMZzpzph7LSSt7TRdd99zJ39nxIS07jfExTSR7cSAT3zMneQbswjXGRejgVUg+l8BiskcwdckZwb/D8mXO8N3T/uQsw+T31xzC7EqzT1NlxCnp6zkJiwmFd/93IxHcnQ9yBOM7H5o3qz+9wJzhfpB5KhZSkFDiSeESyg7zl4xNmh/SfOw8D5y/AxQv9Uv13zG/XQs0fR4I9fZGPUyd7wX/b5zoHTgR1Jyo8Cg4dPASReyM1eQ4YLyjuaSfGJnIu0MYKEO69t3ygYG3rS/0DcHngItTW2Dx6P6794pqakjGHSkrA9iDORxfzRdbqMfD/9McZG/v2RMBh5r/G7Y9Tnb+J+oX7ge723cS11hnTZkFyYjI/J2R+7qz5XrEhZyQiPBIuX7wEVy5dhquXr8AMe066vM4vCq4147hxj0QtNRucSQKzr5CP9rYu8Fu8TOdCkJ2BwdxGjztwECZOmKzKMSIjtA+IP+X7cWjjiHMH2ofERlJckte2lZwPXBtFLq5duQrXr16DpMRDL/DpbpxqlviDSZyPGmsdfPTBNJ0N9Gf9A/n6J/Lx3rvqZEMuOI/gcxmFnstizQT8nbhAwdwPb20rR+/Ddawb167Dzes3oJ/5InSc4l68jS/B91MMgJgvJta2F48rLZg/XWAsgpamdmisb4ZVK9Vf32zMbKrX3oLdIbt53AXyMX/up4p8rrN4dDFuXdQDR/3IRjKn4HspxkOyaxYs5lwgI4eZ3fCJfX3fWzbkjGzbuh1u3bgBt2/ehDu3bvH4ZiWuHV4fOg/KF8Pf8VrRPIR+jJJ9Qhwxciw9i/NRZ2uAlcvVGVc0loJxVYlsLsV4b+RjwbyFin22yAfaFxSbi/FQeJ/xmBjXija6GNPrrYixu5F7o7hthb55tJAPpBQfKAP9/XD39m0YvHOH2SPV0nGMGfa2vxTFIVP9ObxOeFy8PvL8mLGSA1ExnI+aKhsEB4W+MmxgTSecLzDPNOPoMcXX8OV8UJygeF/lOXSj4QNtflEfP5j6EV+vwjXdo8xmXLVijSJs0GfQ5yQfPsLYuAv3Bgdh6N49XvuaxuNtvIlY2wTZIObHgw+UXaF7OB9VFVb+PMVch5eZjeVLV3AusIYHzhtK1gfFe0n2jmgvUc89X/ER6L+D+1K4h5ORks7X5pTiQ/ycqZM/gKHBe3D/3hA8uH8fDLmGF+YQqvnrzfwh+lh0fci+ovnXVzqzYtlqzke5uQLyc4ySrfoyyZuM+317I3itM6wdiOueaGMp+R143yj3QuSD+npTXqnczqbex0qw8a+3J/A4knTGBcYjjmbPwxMbKzfHAA/vP4BHDx7C44ePeA0hGpc3fMj9c4pB9pV/7tTmYHPy8cwcMJtKeQ0YrJP3+mvajjsimT1rLhTmm3hdf+Rjhz33eiwE76cjf5t6hnvqn3u6JiqvpY5xY2g7Yix7dkaWZDsqxYackSV+yxgXD+GLR4/gyeMvwJj/v7ooYt14V2sLasovdOmzsmdsWMhuzkdBrpH5dskwe+Zc7c4Zb7zN44Wa6ht5PzGsHYix3loYO65HuesFjmu44tyBeR6Z2Is5PYvnCUaGRyk+dzj6vMb6BnjyxRfw9MkTePbll+xZO8wE+iDO+BDrfuFPLe2RYFw/+nWYr3w8PRvCw8KlfGUtyFtvvg2hwbugvrYeWptbOR9REfs141uRvUVzi7O9Z/ncsXb1eh5TyXtqZhuk2Eql2ZAzgvVcnjIunj19Cl89ewamQpPTMaKPJs+tV1P9Bk8Fbav1azZwPrA/fG7mcTgQcUDKiVEnF//iOQltLW08B7SzrROMeUaYM2ue5q4/5a2KNjfaIvSclT+b8X6hz2HIzmU+ZB4cEHppjjUfKC3NLfD1V1/BN19/Dd9+8w0b20cv+CHuzkergnP258zHQz6MOfm811ZCbDwsX6Ke/loY7xAflwCnTpyEs31noOd0D/M1rLDuJYgzc/S8RdtEzkcQO5aHfWaxl2ZegdvaoUozsmzpCs7Fd99+C99/9x2UFJf8Y93C3XyoaU4Y58GBwZwP7CWE/SCwrxDm1o1HnArW9/LfFgCWcguPBbo0cBEunLsADXUNsHH9Zy/d+hvqmFirBJmhZy/WtsK6b5jriPWj46LjxnzucPT57e3t8MP338HzH36AH58/h3lzF0iMU70INdc1UULe+fdE2PLZVsjNyoEaixXqq2uhmT0PsBdRPJtX8DkyVnlYs5mdtHfPPqi11fI9qTu3bvP4H+TDkGOAlSqtL6LkMwptElpDpuPhu8OhkHFRZDTx+uyfTJ/pEzbkjMydMx+eP2ds/PgcfvrpRzjJ5nNx/c6b9V5Nz/0LFsN+5vdWW6p4Xb0T7Z28tsWZnj7mEzfxtfHIiChYvHAJ+C1e6vHnfvjBx1zXQ5iPffhQMrS1tcNXzLb9kvmAjx895ntRyEdLUzOEhuzi9tWrcs1xzUqs2Tt92gzORXFhEZiLSiAhzn1d3bGcQ0rNpfDzzz/BL7/8DL/++gts3fK/fF6sJf8q8SHKEqb/keGRUFps5nxg/iXaPBgDfevGTR6H8JDp9ZPHj2Hw7iC0M53v6uyCU4ynnu4euH79Gvz991/w5x9/wO+//wa//vILfwb98MP3zK74lvNx984dKC+rgD3seTl1im9rcNPeuLjGRLWUxdfRMXnfP6UEa6aLsRvJSclgZnYuXvdyc5nUP9NXbMgZ+eD9j+HZs6fw22+/8vs4NDTE9yzpdTh2LdZyUFpwn2FnUDDvd1dZUQm9jAHi46unz7gfhzYqcvDHH//hbIh8IDcnuk7w+WPTZ1ukPsTjJeJeBO3tibFCeBxtHrEvktK5cvKYprWr1/HaQ2jbWkrLpVzX8eQDJTXlKPzn99/5ff3zzz/AaCyQ/oe1gDyp+U49D15FdlDXly9bCSuWr+J21KqVa2D1KnXH2Yt8UJ9Y+h/FTsn73ngSQzeStX/RPsG9nIK8Al4rGmMCSkzF0v6Or9lwxMh99iz8iz0j6Lm3YP7CFzh3xQjOvbjGNZI5mGq/y4+NZ0zKqySO9rIpFwjvpZwPT2NMaf3W1T6Ao16x0VHRYGG2JtbYqa6sYs/lVZKOjicf9N34vEMu/vvfv7lcv3ZNeh366c74oLr0I90XwdeLvQxRfJkz8qoK9coT+cBrjnqNxylOwls+6PPQNnNmT6Auib1i0XatKreA1VIFNVXVkJKcMm52las5pKCgUJo//vrrT0g7mv7COclz1cVeWt7eK/Gaj1dM/KsktLdFvY3oWtPfVL+cnlf4N8Vl07wykvsr7/Mhj4Md7rVQwnvJ2qw1UFdTC+9OmKQKNuSMoF/+8OFDzgbaWuiLzJ/3qXReFDuGzxkx18Nbkc8hOh++Y0Tsc0TPOsoLlOeDynN7RiLUX4bsAnkMLO8la61mXNig3lb3/+2dV3dU1xXH9zfJW3ritWzAGIztUGzTXDDGpghVJNECJka2aZJQ7wX1MuptJKHeUZcQohhMQowdxyYPTuwsJ+Qj5PzPsIczV3dm7hUzIGnuw16C0WjmztzzO7uevSkyImrJ6A49O2v37j2SC8Rd4K9r41naz+sLfa/au8/qzIgl/hN3++mBfUGyb3prcwu121spXbFXlgobetdTWFhE/3v4kB4+/K+MTba3X3bxv3zBhHYGiuWfB4bvw/9GzhT+eFtLK11uxZnoBjlP91n75EbtrGtCp4IN5EX+89NPdOzY457fen2zLAksMWM/IFal+uO/+uVvKF+wgnMWHZiReblD5j6Wqu7Qs7Pgdzx48J3MqSPnhfw612ctxt5djjXxlugL7GHkDY0yoo3nfhrzmeCiXdbTdHd20rkz55Y8G3rXB50BLlB/8u8ff6Q7t+8I3fI4zmuk/oTPZ0ICNX+40nwJru02wgjWiOqPY9Z4p7DXuzs6qaerm0qLS+S5yOXAhh4jNluVrBv68YcfZP3E1OSUy3M9zaJS2TAbG7TE3Jrl+j6uY1CF1zB8R70aK7OC1/HGiF4OcPOm16kLXHR2UV83+vm1iut+ZUn7HEYYmZ6aon8JNlAH/8/vv6fyssdnRbA36PUG8gcbas9s/OT7grXBPWjUxwPJ71V7yPB5CnVePb4XnrvMP/3JiNbnWL/uFdkbvbe7m/p7e2mwr5/2frhv2dhVnnyR3wod8fVXX9H3gg2cpUItnjbvo/rr/tIbiBFyrxn+Nx7H/UH8Ho/zzPpA5QPrFN+7NvanzZf7qr+hHiNYC2q9Beynmqpq6u/ppYG+PhoaGKDjSrxnubGhxwjOitz/8ktZm41zhziXG63UV7IO8adNpd5jNX8Y6HlFbf82sIG9Q9UTvuzf5o0RlQ+wAR9joFdw0T9Aw4ODFB8bv+zZ0Lv+w9FHJRf/gDx4IHs7REcddlmb/vQ3+Ewm12FzTCxQ+cDn576uzAfbmvwcPgPqLz60jKjfPdgoKymlwf5+yQVmxVbbbM7zmMvN5zDCCHQGuPgO8u23sg8K+qGosb/FsGHEZ1R7IPMeGch88LoEA3r2FddV4Xlsl+Ix3mc8cbeYa+H34sdiz8dKW2pkaIhGR0aEjVW14tjQYyT2Qrzk4u/fQL6hO7dvy55+7nwzb6LOfl+M/8G9LrneUT3LEAiM4DOr359aN8XcMCPaGis9we+0/qUngT2lPYsddyFOnk2+MjxMY1euSJ981QtrViQbeowUFRbLHnN/+/preYb681u3nIxwbA82qLezVTyvyopfLS3BPfFWS4T7DNHG+OFfMBfjo6PSJ8e58pXicxjx1yGFBYUyrvXV/fvCd78vz4xEhEe67Cue6lD4nIC1Hpem4N542mu0dgL6PF6Mi5e2FLiYHB+TvofaH3ylsuGOkUv5BbLfNXpw/PXePbr3l3uCEdeZsvgO9fQIvv+n2VeLfRNtvbYv6rif1EbS06HqHs79+rR2kz8F98adL6mdfQy/Ar73+OgVmhgbo6kJzBcecPbmCQQ23DGCvjeYmYDZCehT8+e7dyk8LMJln4H+VW1U9hWf5nW7m+XDPfzwONbD09Zp7mIKasyJ6/35DBP88sVybGZP4u/K070EG/C9HVyM0/TkpPDJBwOSDXeM5InvEH1u7n5xl+7e+UL2OsvOylmgR/S+c6M+vC/2TK6vUPsNmI1/8XlUvddVH1d75niyU4zwoc1xeOuF7u66wb96jtmIqHuZth8P/Io2u13YUuBigmanp6TvEchsuGPkj8dP0Bd37sg6xtuf35Z9ooqLSmTvTO09MrvfcXz9SeqAWTfwmazF8qF9jl4fHI69qnP69NYk10upr8fP8zUfEFwLPq/ZGJ+eL4IeHvC9pwQXM1NTdHVmmpobG2n1qhcDng13jISFhksu0CcT83JvCmm1ty7oCag9o+9tXWtzT4u1r3yRf9c+R68PjnY96/Vq5fyEthcFx6j9wYeawzVin3HsFmyofEQeipI+xszUJM0KLuZmZ6mluUnshb+z2PiZ59jv9m07xXc3KWeto98g+smOj47JvlBqbJBjwJ76mJq9n97sBLVGj9eb2hcN+7y32L8nPvh3Rtcz1+No9Qfv8yrPWn30JHEpb/sNx21xj1R7Cr5GUmKS9DFgS83NztC1uauUnpbmZGOl5jd8ychrr24ke4ud5ufm5VnEa1fnZH9OzMzT6hHsUXw/9PZ8X9arcI23Ef9B72/Bji/54NfVvi/bXe56gD5Jjgevw3uOuzwhenFoY/PwNerr6mhGcHEVXFydFXvfHMXFxrm1Jyxxzwj2E8R/wcXVmVmx38wKfTxD5aXltEozg1gvV8J7qxl/En/jr5gx7+tqD06IXh8ccKTGm6Cv/BnL1tZdGdGlPH9DfRy6Qhu7hURFRssaKvgYc4KLecHFxPgYhQSHWmw8oU8CnTE7PSPYmBZ6eUraXgN9A7Ifp/Zv0c90x7Ydzt4/erMevdkO/vxsnNNU/Vu9/MmzyFeY8bl5Bi1/v7Bxg4OCFjwP9lReTq64f9PSlpqfQ4/uazJmBRvBYsM3jGx9czsN9g/S5PgkTYxN0MTouOyLnpmepTtfw93+5s0vCORz7uDUzOfX6mftOVD0EkYeg32M6/Nzwqecp+KiIpeYpMWFbxgBByVFJdJXHxNsjI6Mytlh3R1dcg6N9t6x3aJ3PvFJ90+uiVzqtVqcFzTa68ion8a+Hus31faTOiM3T9hSj32MG4ILxHFDQ8IsneFnTg6FR1JPZzddGRqhkcFhGh4YkvMn83PzBQurXWwAx/PDXe6pO/vbTJ0j+6dLfW4cPpOZfAW4N/KZYEth39HuDzjPMzI85PAxHtlSt25cp/a2Nlqzeq3FxlNi5IXn11BBXgENCTZgd8Ef6e/tp76ePjoSfdTZ00KVT2McsS+9fhDcd9moHcLn3Yzabf6whfxxrVjvnljCXqMXT4f929jQ4PQxrgsubt6Yp89v3aBPYj5xG4OxxH/xLQhmUrYLm6BfcNHX3Uu9XT1Ct/RQS2ML7VF6hqly6sSJBZyYsa3M7slmnqfta+spfmRW1xm1BfX66YMLPTt19QsvUkpyiiNeCy6uOXyMWzdvUF1traUzloQuWU3JiSmSi+6ObuoS/kjn5U7qbO+gyrJK2rH9LY+cwEY304uUc29G/8boWuZcjRF9g2s2mu/k1zXqe6txCvSf0uMCPsb5s+dlvPbao3jtjevClrp5XebEUQfh6Z5Z8nQZgWze9AZVVVRJLtB3EjMx2+3t1NbSRqnJabR9606P6xd2g7dZcGpuzMh+jDVsdF2a4cNMHyqO5RnxvZkFd88FF6c++tMCH+Om8DFgSyXEX1wQm7K4WFqcHDwQQvU19ZKL1uZWsjfZyS7srZaGZjmDSy9vAuFZcMj9eprnY6aWy8w6NsMHODV6hpVrbDzFujm3qpfbgyAfm5yULM+CL/AxHtlSf3htk8XFMuEE/nlkeBTV2GpkD/xmwUZTfRM11jVSQ20DFeQWUGhwuHNGnSrgA/sofvLMEhaudTRqM+F5Ru1+M3yYsdsgnCtVbTLsAcileqr13PrGNsnFrKYmxOFjXJdc7Ni+07KllhEjLpyI9R8Rdohs5TbJBfRKXXUd1VbVUq1gp6aymk4e/0hwsFHX1uD6Ll4/nDM2avubWcNm+TATU+CaQugcfB5wAVtSyz/bUEH7D9LltnZn3bmLjyFsqbqaGouLFWRzQU+EhYRTeXHZIy5qqLqimqrKq8hWZqPK0krKTMuiPe99QM/9/nm3sSDum4a1BXvMl2vYH/qDe62BC+755a6Wc9e771FiQuKCunPVx6i1uFjxnLzz1i7KycxxclFRUiG4KaeyojIqLSylkoISij8fT7vffZ+ec2MbqXzEnjsjfXv8n30XXn/+5IN9aF7vbC/xNUH/4Zo81f9jrnSCYAf9cxxn+FzrzrkmJDMjQ7y2xUWg2F2QN7ZspdOnYqROKSsqFWyUCDaKqfhSERXlF1FhXqH0U86fuUAhQaH08rpXPL4P+y2qPcZ7PMdJ8TtmiH1i5kzlg89p8/kJ9fk8F4JfG0zAr1b9CHc1Ncir7tu7X/YJQa9nR58Qx9lWWXeu1ISAmZjTMS45DIuLwOME9tT7u/ZQalKqCxeXci5RfnY+5WXlUW5mLuVk5FBKQgodjT5Gb+98l9a/tMHwe6t9CXjeNXPBMSOVD87HYe2zjcR88E8j+X7khtCfMubjGKosr3D2IlT7hLCPwXXn6WnptGf3B4b0sSWBY3tB1qxaS6EHwygxLtGFi+z0bMoS/klmaiZlpGRQenI6pSWlUWpiKn188mPau2e/WMtv0UsvrveaQ/GXrF+3gXbueJsORx+RM8Dramqd/c7BBfdcc/YJgY/xqO68IP8ShRwMcTnf6mlPsSSwdQoEtRMfvr+XPjt9hrJSBRspgo1kwUaSYCNRsJGQSikXUyg5PpmS4pIoMTaREi4k0MXzF+lszFk6fOgIRYQcol3v7Kadgp11a1+WOkd7tsuIwG9CfmHja5tp+9YdskYzMiKS0lLSqCDvkpyp1PVoplJfT4/sd+7s6+zkYtTpYwwPDVJ+Xh4F6zBh6QpLzLLyi5//mt58fRuFBYfT2U/OuuUi/ly8FPwbjyfFJ0mbDDxlCJ0D/QNdlJuZQ/lCP8GGK8wrkD4P/J8y4QtVlJaTraySqiuqqMZWTXXVtdRQW09NdQ3U3NBE9qYWamuxy7mtHe2O+ZQ8U0nOjgEXA+h3PuTSixC90E+dPCVrCc1+fkssMbNW4A+8umGj1C9HIo+6cAFWwA0Ygv0FWwy6J1vYZ7DV8iQX+ZIL+DuICSA+UFFSTpVlFVRVYZN5mbqqGqqvqaNGyUWj4AKzvu3Ubm+T8ym75HzKLsdMpR7HTCW2pTBrKSsjU+oY9NFZ7Oe0xBIzrHhaR5iTBf/jPWFPhQaF0YmjJ+nCmQvSb8nJyBZc5Ep/H75/UX6h5KJUcIH4WWWp4KLcRtWVVXKut+QCOqO+Ueb/W5tbBBetMmfH8yl7hS2Vm50jz68eO3Kc9n24X84N9sVnscQSf/Oitc82rH9VCvz4A/uCZI764IFgCj4QIuPHoQeFBIcR8pjhoREy789+RtShKNq8cYucUbll0+t+vVZLLPE3M097LT7r97fEEl+tW1+K9R1bYoklllhiydKS/wNQSwECFwsUAAIACADaiD5b7izjAZI/AAAAcQIABAAJAAAAAAAAAAAAAIAAAAAAZGF0YVVUBQAHJQ7caFBLBQYAAAAAAQABADsAAADFPwAAAAA=</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #7</Name>
|
|
<Index>7</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPltVimEmIUAAAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J3nX5TH2sd/f8lzznlyTmLXWGKsMYmxE5UogmI3lkcMoIgFVAQUERWQ3qX3stSl96pgQbAklthiS9TkvM8z18Ass0txF5aycL/4fYAtN3eZ71xlrpn55z8+wT8VDZv+8T//q7eU+6VoLLR7Uzi+IkWD1U6Vc1Kk8KBfu1u5cjWX4xEnODo6ITAoDFeiE5jikZdfhMar19HYdB0NjS2ob2jmqqu/htq6q6itbUJNbSOqa5iqGxASEskUgeDgCBw/dhK2toewadNWLF26EjNnzDbo3JVnqWgwmOjtM19//R127NgNV7dziI1LRjVr2y032tB8/TautbQy3cLVZqZrN9F07Qbj4kYXF406XNQRF00aLqqq61FZxVRZh4qKWpRX1KC8vBplZdUoLa1CSUklUwWKi8sRERENT8+LsNlvhyXfLcf4cZMVXhQNKQ8TJ0zBBktruLt7Ii4hFTdu3eG6frMdLTfbNFw0cy5aJS6YBBdNLRqbQVzU1V/lbBAXNcRFDXHBJLiorGVsEBc1Gi5KSwUXFSgqKkdRYRkK1aVQq0ugLihGQX4x8vOKEBuTgLNnPLF96y7Mn/uVwoqiAXHR03tmZmtx7PhJqLILcPP2PdxsvYsbrV1ccDYEF8JmEBfN2lzk5BYiMioWEZGkGBw6dITr4EGSI5e9Pekw7O0Ow87Ogcud2aUg5psFBjIFhHKbQVwUExdFjIvC0g42Cko0XOTnFSIvV43cnALksPPOUeUjOysPSYxpN9ezsFhnhemfz1JYUdQvW2FpuRk+voGoZ+36Vts93NJwcbcbFy0SF9ExifC64IPDjsexfr0VVqz4ntucwTj/BfMXMT9qBXYy385mvy18fQKYvUhkXBQyLhgbggtVHlRZuVBl5iArIxuZ6dnISFMhPTULl9l3Nltvw+fTZiqsKOrTVggmGhgTrW33GRf3O7i4fbeDDeJC+FKMi3TW3k67emD79h+xaNHiEXN948dNwneLl2HfXhtmezy4zcjKyOngIl3F2MhibGQiLSUDqcnpSE1KR0piGrwv+mLTxi3dWFE4Gbu2YvYXc3HmrBdKmX/f2v6zDhf3NFyQMph/QjH4qpVrTO76yZdav84Sp0+5IzY6AWnJGR1cJKUhOTGVMZSCpPhkJMYlISE2EU7HTsB8zTqD/FBFo4cLS6vNCGcxwO07v3RwwdSNC6aQ0CiemxosH2m4NHfOAhywsUNwQEgnF8mMiyTEM/8snsX0cdHxiL0Sh1AW92zfsgPTps5QOBkDXOzatQ9lFbWci9udXGjZDGIijJjYM+qY6E3kT+1kPqI/8y0FFzFRsYhh/Ud0RAyuhEcjKuwKbBlPZG8VTkYXFxMnToWTkwsar93slYssFsvu2Dl2mOhNc2bPg73tIYQEhuJKBOMi/ApjIwqRoZGICIlAeHA4nJnv9dWCrxVOTDzu5lw4S1wIX6qTi/rGFnj7BPDxPeX+aWvcZxOx5ntznGXxveAiPCgcYYFhCA0IRQjzy447HsfC+YsUTkwwH0V+VJPEhWwzSsqq+XjGWLcV+opsxWF7R4QGdnAR7B+MYL8gBF0ORKBvAI46HMXUyZ8rnJgAF2Zm5iirrENbL1zsZD6Ucu/6p6lTpmP/XhsNFwE+/gjw9of/JT/4XbqMPezefvbpBIWREcgGxY1JKRkKF0PBCbMV+3b/H/y9O7i4fNEXvhd84OvlDU/mj60xW6vYkhFkMyjGaLv7QDvGaGfxRVML42Kvct8GSVMYJ2QziAuf85fg7XkRl85dwEUPLxxjPtf8uQsVRoaRDeFL6cYYVBOixBdDJ+Lg0E8HORtcnhfgzXjx8bqEbdbbFJ9riNgQv1Ne6qzHhR59qbDwaHyhk6NXNDRavmQFzjH/imyJ7wVv5nf5MP/LF2dPu2PBvK8URobAZnzzzRLk5BV12gztGMNMx+91Pe3GfQDlPg6eHA45Yr7U9slWkM3wYzGJP4tNAnz8WCzvz2L6AFhbbe61z1M0cDZs7Rx0YoyOmhD3M+e7+VKFhUX4+++/ERERpdzLQYw/Pnz4wO+z5YaNWu+RvfBwPYsg3wAE+wUixD8IoQHBcHdxw7Qp0xVbYmR/StRK6ealzFZp2wybffv4T3pe9NxIcv+myHhKTU3n97e+voH/bbVhA2ZMn6llS3Zt24VQ/2CEBYQgPCgUEcFh3J4sW7JcYcRI/hSvl9KpCaFxb9lmbN28udux6LnJz0+R8bRi+SpN/yNsx2TWj336n/FYsngJ/118lsYXL7K4PSI4HJGhEYgKi0R0eBT27d6nMDIANnbt2svnauvWhFhaWms+I/qrOV92j8nJbug+Q0XGkeh7yIbovif4kJ8J1asccTiCK51sxEReQWxUDNyYv0XvKTGJYWzQnAzdunOqIdTNTa1asarP4/p4+/Ln+PTpM+U+GzEmp3tKsUdfvmtPNt3KYiNiI6MRx9iIj45FQkwcAlnsPvfL+QojerAxccJUPodPt77W28dfy5+iOKMnm9FXDEmsKPd74DE59TWG3M+DtrZaf1ONcERIOBJj4pEUm4Dk+ERER1zBt1KdqMJIz2yoctXd5vAd+OlgN5vQ3/5OuecDk2yP9c2d/+tf0zQ5E9nf8va6hJT4JKQmJCMtKQXpyalY/4OFEpP0lKNitkGVo9bioq6hGRs2dMUawl5QbGho3pb8ZPqe0sYHpt0/7uVs0E992Zg+rxG7be7DymoPjxcphqf3xnfGJGlJqYyNNGSkpCMzLQMW6yzHPCNaOSpmVylXK89tra2/1m1eBuUPZZtAUtrs8PhYen92Ziy++PodZn31BJ98sqBbDphkd8AOmakZyErLhCo9C9mZKjgfcx6zjMjXSgxQTkrMbSVlqvK0Yg2ZC1lkQ/pjE0TuRfgJo318RB4LkvN5dN0ilpDz4MKHEj6pvrZCV+Mm2XE2SJ+Os9B6T4xTCZHNyM7IQg5jIzcrG3mqHJx0OjnmGOmJDXmdkMysLjZEPr2vfoz8JkP6M+Kpra1d8zeNs4/2uF3kuXXvE9XfCD9VxN3EDTEhPkuf6c/40b//s5zbDGJj4jTPbu+Tr0zPVrYlG9ZbcS7ys3NRkJMHdW4+XE64jBlG5OsjNii+kNcizMjStht0D+Vxpt7auyGxCD1/+XkTG2Mhr0X3iNo9Xbu4Xt1rp/eErentfhkScxAbn88p6fVzxIaub2BpsZFzUZhXgKJ8NYoLCnH61OlRn9fSzlNNQXFpldZahBlZuRo2erpvH4sZqZ9T+OjdzorckfCpqF8ZLD6mfpHJ2ZixoF2Tu+pLNJ5I0vjTlptQxLgoVhehpLAYpUUlsGUxymhlRJeNTFW+1lqEGZldbNCz7E/Nrb7foect+1fkn+nL1mjxr+j66T4QG7J/Ra+LuhHxWcqBkA+q7/+aMMVZE3OQj6XPd8hHIMlx4CYra85FWXEpykvKUFFajs2btow6Rrqzkae13nm6Dhv0jEiDWZc+1uJz4V/pxuHGjs+JB8EGcWLI+YkxKjknab1xM+OiDJVlFagqr0R1RRW2WG8dVYzI13DJ209rXef0jByteIP6LjHWPdiMKDKuyI8S8Tj5V/1ho6d6LrIZ1RWVqKmsQm1VNYqZLftq4TejghH53GndWs165zduo6qmUYuNM64uCiMmLIrDiQ2Ky/WJOfpi48edO7XyWnt370NddQ3qa2rRUFuHspJSzJr5pUnntORz3r5jdycXHXtk0N4vYr1zug+640UKI6Ylyt+KMUB9Y46P2Q3d3O85D0801NWjkfmATQ2NSE1O1fSvpsaHVh6XcUD7jXXsHdOxpxLtySc+SzncnuoMFUZMQzTuJ2IOGg80Bhui39TNYV6JjMLVxiZca7qK5qvXEBwYbJJ+lhyPqwvLtPZU2r+/6x5+LIcrM6LMcRp5onoREXNQHYmx2JAlz7WaOGEy0lPS0HKtGdebW3Cj5ToO2NiaFCPyOQYFh2vtT+nl5dOtj/jY8YgRka+XX6f8pFwPSvdc5POVuVBDIzEGSD/7E49/jA3RRuQaiq8XfYtaFovcvH4dt27cQOvNWzBbtdokYhH53Pbb2GntT5mSmqXxF39Ya67X3I2+JI9tUf6RfDCRz1fmnA++Jk0P1Ko7NPT7hvRhZD/keq0NFlaMi5u4fesW2lpb0dTYOOJjEZldir3l/SnLK2oxa9Yc/p6x4giZj97GgZV2PDgytwjRxBxbd4Ty+02icURh56nP6ul1Y+mM+1m03b6N9rY23GlvR5RUYzQSGZFjjtQ0Vde+rVev830q5X7D0JpChY+RI7nukGyIqOcS4/FirF3MERHP25Ax+L6euewX5OXk4m77Hdy7exf3793DQftDI5IR+VxcXM4wNm7wdRVoT2PP85e07KSIKfo7X0mwoPAx9Oqt7lDEgsJm0GsDreGSJeq0dZ8prUne0tyMn+/dxy8//4ybLB75cvbcEcWH7FfRXsZir++Gphbk5Kp7rTmka6ZYwdA5TqIGhfJaggk6hhx/yPXZiownMdfpW7P3WLmywycQtoHuPf1ubD6oD6XjC7tB63FQ/CreJ5vxgLHx8JcHePTgIbIys0aUDZHPITeviO+N3NDYgvqGZnZtZvz1vurUqW0bOleW2r5unkrJXw2u5LlO5VW/a+6xbKtlDozBhzw/RVdyfic2JhaPHj7E40eP8OTxYxx2cBwRjMj/28HhmIYL0omTrpr3dNcL+1gfoWjkxRyCjZDI11rriVF/RLEGtX/6KWw6/U02nX6SPTekRlr4U73VRVJbktcOmsT+plj9ya+/4umTJ7h75w5/baTwQbUw9Z1s1NVfgyo7HxPGd+Vy9b0nyvoJIzPmoHkcou5QzCWR/Vd6bvRab2NUhjxX6iP1jU0XLVykGRs57HAEz54+xfNnz/Di+XMkJyUPqw2R/2dEZAznoq7+KmrrrmJ5p19lCB9jSatYnEZjWs7HnXHS+SRcTp3u8CXCI1CoLkSAfwDOe3rB0/M8zp3zxIEDtvjBfD3zKeYP+bkaOtfJKHGOnrEj+SXy2GFubi5+e/ECL3/7Da9evoS5+bph4UOOydets+RsEBe1tU3w9Q3Q2ECFjU+w9LvlfO6bz0UfZGepeP0Q1UbQuO/d9nb8cv8+Hj98xPs+eq5v37zB+/fv8Ndff3J9eP8ef/zxO3/91auXePHiObKzc3DB6yL27N7XbT9yY0rUHRoy12moJdfvfbd4Gefi9atXePP6Nepqa4fFhsj/S6XKZ2w0oYaxUVhUhpmddce69ZdjRePHTYTFDxtwxtWdrzFQzOwBzX+juT31tXWcj8ICNRLiE+Dne1nLfhxxPIptW7fzWlXZfhQXFXO7Ivh4ylh6zOLQBw8e4P69+6gor+DjZVR7Yazr6G/d4XDwIbezy75+ePPmNd6+fYPff3/Lba9unz5UtmPvXhvORU1NI6prGmBvf1jzuZ7y1aNZa1eb48QxZ74WYCa7dlqnhvhIjEuAG2v7e1isuWLZKiO0h3nYbL2VM5WRnsH5oPHj262tuHn9BtT5BXA5eZrFhLMHFHP0p+5wOCRymWKcYPKkaazveMRt7rt3f7C+5Al/bahsiPgfE8ZPZvainHNB8znU6lL+msjLifrM0ZyXov0tNm/cwvdGojWXaT1Z4sPfxw/btmxn171w0M9h0sQpfD0DaiO1NbW8tpXmR5CtCg0Og/nadQYfs79znYZaxISYHyyPeTmxuI581A8f3uPPPz9wWzwUNkQ+vr29I6oZF1VV9aisqoO19bZu+Tl5DjM9v9EyZjeF9Ud7du3he4DTvi9RoRG4fMkXO7ftwufThtentFhviQC/AM5HdWU1KsrKkcyYJYb04k2qOxypMYcYT5HXENDNBd+5c4fHb//971/47bcXQ2JDZNtB9qKS2KisQ1qaSvMZmhsp15HoXocprwlK9sJynRXfo5X2niQ+nI84YbXZmhF3ruRfOR8/gbzcPJQUlaAwX42QoBAs/nZp79c3Yacm5qDfR9o1idyvbr8rtz3xu62tPWeDRJxQLDeYsbqW7bA7zLmoqKhFeUUNrDd1rSnR0zigWNNYXJcp7glIOdkLHl7wOe/N+Ths76C1J+tIFfVlP9nY8nWf87LzoGJxkesp1252Tp7rRDZkpF0H+exirpyYO6Lrj+jOmbh37y5ng3ys58+fDaoNkW1Hfn5xBxvlNUhN6VqrQnefB10R63SNpjQOSHtJOh11ZjFGIPwuXYbridP4pnPuvGnl1SbhhNNJzkcGa1vRLF6iNaZEPN7fuU5DJbHm0MdqT2lcXeSzbH+y42xQHEKiXOBgxSHieNabtnEuysqrUVZWhU0bu2xHX2vlyrGJqbSpZUtWIMA3EKGBoZyPjRYbtfa6N0XNm7sAfj5+SElMQUJsArclM+dGDmiukz5tW/hB9Pxln5t+p9fIx5Dtg+6alvQZfXxz3TGFO3faeaxOevLkyaD4WPKxUlMzGRfVKC2tQnJy1/zIo44O/To2+VpiHg1J+F6DPb/mYzpo54ArEdGICImEm4s7vuic3zVa9OPO3ZwP2gMwOCAOqzfc77bG+mDwobt+pVjLkZ6xiLHFGo79/X/yHgo/HbDFu3fveK6Xcr5ivvpg8LF27XrORWlpJUpKKtj/tjfIdvQkui9irESu1RmM+TV6+SGfTcRFFmPERcdzPnbv2juquNDy12fPw2XmM0aFRSEsKAxm0royg8WHWLNRPG+xfqWu3zQQPnTX/ae6RWKDxgtbW1uNakPkYwQGhDIuKlFcXAGVKk8z3tFf2yHsBNlVsQ6u8L+MOb9GX82dswDRUbFIjEtCWEgE969GKxtCHfvKHuV8BPkFYe+P+4x2bOrrxPid7F+JuTok4V8Zkw8S1TYJG+Jx9hx+f/uWj6m/efOG17IZm4+ZM2ajhHFRXFyOoqIyuJxy7zNnZYhETaiwJcPBx7y5CxEXk4CUpDQE+gUPSy3gcGrzpq2cDz9vP+Z77THKMSleoL5P3mOlN/+Knq/wr8ieDHSvSHndE8pbUf0a1Z28fv0KkUacqy6+f8TRiXHB2CgsQ6G6FAvmL9L0ERQz9HeMXPfeDcb8TH3YSIxPRjqLrXyYvzFe2o97LIly2MSHt5c3H+s0FiNyvN3f+Lw/ku1RVGQUr1ukGraXL19i0qSBzw+Rv5uYkMLacinU6hKEhWqPXxAbYm6roXtxiftizPk1hojOPSUpHVkZOfDzDeB50LHIhtDK5WacDy8PL2zbssPkzp9Yo7ZCfoic76I6G6rtpRppGk+nWlBj8bFm9Q/cZqgLSlCQXwwry468OdXf0xwV3f5CN5bQp40aa36NISIbmJ6WhZzsfAT4B495NoSWL13J+fBw88AWaex3JEv4MdT2hC9D/pXcPq+3tPD5ITR/qqKiYkA+lvydUyddUVBQzNgoQn5eoaYdkY/XW+whagFGaj0J5RYyM3PY9RQhODBMYUNHlJsgPtxOumGN2cicxyPGREQ70+2PiQ95Xyo3V3fOBs0xpPk2X86eZxQ+0tNUvB3l5Rbi7JnzGjZ0bYcpKTIyltvE2JhEhY1etGTxMs6H6wlXLF088moViYmPzaGg/lvUndDcgGfPnnI2aJ76xQuXBszH6u/NORd5uWrk5hTge7O1Js+Hm6sHH78h+6GsCfGRvNbGLZwPV+ZDzJox2+TOn9igNYHE32VlZXjy5Fc+JtLY0NAvH0v+7AlnF8aFmvnoBTyO7clumZLMzS14fQzxQXGVwsDHZWdjD093Txw/4mSS9TXyeCGt/fPr48d8LSDS4m+XDIiPlOQMHr9mq/LgzvxRwYe8voqpiOb+FqhLOB9HjzgrbV9P0fMm++FzwRs7tu40ufOX10OnmIO4oPWyHj54gEMH/5+98+6LItn6+Hk1m569d5NhkwHzqpiza2YVAVERUIIERVAQEAaGOIQh54yBYAIxJ8S8utnNd/fufQFP/cqp2bJ3YIahGbq1/zgfoJlQ3X2+XedUnRDsNh/IdwcXzY2Ii26lFbY6uiPdDxwrycsr4jkrxcXlht4PU7ymTOd8ZJnMNGWSly4ZF7/3XbjA2fjy8WOe1z9cG0u8Lmh3COeikdnpjfXNdj9W2R9OD7J+/WaeKw8+Juvw/mpBkDMJPlISk3U3djkGCvm2qNf7+OEjevTwIc9RdpUP+TXYEwAXDXXNlJH+d86M3vJkUQO4s+sc50OuIWHI8AS+B+aQglwLs7P0t3coZOGCxZwL1Hx/cP8BrbHlwQyHD8wV4KK+ronqaxtpmy1uTfSal+vaa/16BIeE8dqOjcxONPR8ZIIYX/CRn5M35rn2zkTeH0FshhwD/vD+A94XAbVIEb84XD7ms+sALhCTVFvdQNOnPffz5d5xch4wvht75lpbL0VfHvRaAB9Ll640dFwFiY6MprLiEtobvFdzY0O8EvbREZuk1FMwIl5XXVVN9+7eo3vsda3NrS77IOL/OwODOBe1VfVUU/VinzgwIHOpHMdwY7BGU5KOHuN8oAaqodvqyNTJ0zgftUzH3n9v5HOIMvbUUW1qZ/lyck0pWUQsvdLOQQ0g9J4auDNAd/rvuNSfTf7fkYQkzgXivRMOPc/bddRzF4KxYnwYt6PeG/K5yXn1Iv5feVwtQc4feoOCj7mfLTB0W0WJi43jfESERYz4s5S5HqKulXzMWb6csGvwOhEnq9Qn7BOKPW3UPx5gXNy53U/9t2/b+XGVj5pKxkZFLVWV19AO/532NTJ31q0wbhELINthch4ZOFc7Rnfv3kjOR2FRmaHTKgtqVICPlsamEcfnOMqFUtaCcpbvABac2fbKWqT9jI3bt27T7Zu3aN/ecJf5mOY1k6oqaqiyvJoqy6rsfW7Anzt7H3IsP9gGB8pzVPZIU0PO917mfGxUKZfBkBclnd0v8BHgt8Nt/3kwPpRziFr5QHLNdPSaQk3WmzduUKm11GXf/PM16xkX1VRRWkXlJZX2dQpnfW6cXQuR0yH6RYwmH5s3b6PrNweo/USXocujJMuXruR8lJeWuaUPYo4YLJdWrouoFh9y3EdKcirdvH6D19NHrUlnPro4HuAXyM65krFRQWXWcrtt5W48IuYM4U/JPdBGk4+c3ELOR+jeCEOXR1GqKyrp1PETNGfW8ON7oRMiZ1DWFeGTymuyauXL4fkunvEB/oG8XvE1JlevXOV9nlxZw4o7EM+5QA0P1LYZyjd3RcQ6lzg34TuJvEGRb6lWHtSECR/Trf77nI+XrS6P1iQyIpLzEXfAPX0VuXEyM8InVebGqZEvBx0W8bzz5nrTNcbF1ctXeN+JeTY/whEf8rH8HAuVMp+2pKiUdu/cY+fO3Ro+8nnLPpSoy6A8PlLZsmUb56O+odXQ4VGWBd6LOB/trfq71ljTBReXmVy6eMm+HuCMD3BhLSyh4gKrPQcZMVdyHL2WJS+/mPMRINXnMmT0pLG+ns6e7qbP5szT/FixhhUdGW7/G70gLjH75eKFPoraH+2UD8RpWgsYGxYrFTE9w16Q3u5X/8BDzodhW3lGYqNjOR97gvboYryyHVSQX0B9vX10oecC5edanK5dzZk1j9cNLMwv4nX1BB+wgeA7iTol+Cn2a7QUr+jtvZjz0dF51tBdD8ma1Ws5H5b8fM2OUfg5sKHkXjSmNBNjo5d6z/ewebBh0DUs8ffGdZs4FwW5BWTJsQz5ncJ3EMxoIfYqPCKa85F6LMPQXQ/JuPcncD4uXugd87HAz5Wf4eKn2HNT+vZBu4Op51wPX99Fj0hnfGxgfFhsbORnP38eYO1Kttm0LPnMZwIfOwKDDN31oNTV1HA+sCY01vOEs9dgDUvkEwbt2sPYOEfnzpxljJ91ykdUeBTnAvVY42L+riGql3yo7jO9nI/58xcbeutBSU1O4Xz4+wVofqxy7dE5s+dxLs50n6EzXaftNZcH2wPZH7af8sy5lJuZSxG2vTXsC+qll/nAvcecD0NnPSu7dwVxPmJjYjU/VswdYq97zuy5vEfj6a5u6u7sotm2fc7B+ECvpJzMHMrOyKbw0HA7b3qo5ePtvYTz0dl93tBZD8vSJcs4H9biYn3xweaL7s5u6uro4n0aHfEh/56WnEbZpizeL8lvm7/98/RgXwk+yivrDJ31sGDvA3zU1dZofqxyHDrqaHYxLjpPdlDHiVO0wz9wSD6y0rPInGbmvVnXrHzeExj7gnqodxURGcP5OBSfaOishwV6Bj6uX7uqC/9D7nXbwdg4xdg4efwkj8kaig9wkXksgzJSTXY+Rhpb4mk+wsOjDZ0dA9ELH0o5xbhA/+sTbcftsfqD8QEu0KfVxOys1Suex43pJbbE4MPgw9X5Q96vONF2go63Hqf21nby3x4wJB9gI52xkXb0GK2y1YNTQ0QMs8gblPujqPUdpowczkfgTn3EObxsUlVRwfnwnr9gxHoCET2dRd6s2NuQ++vIx4frg4jfwUV7Sxu1NbeSn6//0P454yItKZWOJabQqmWr+DHsOco9Zh2Jso+B8j04F5E7KHrUihwZtWoE1dQ1cT68vY29j7GQAotFVT7wu4gDEfvg0Cu5P5vcf0yIsieyI7FIPdbARWtTC7U0ttD2bX5D8gEuUo8kU8rho7TSVg8H+uuoNoQsyjGKHnKCbXHeyjwoZ/3eDT5ebT5EjJ+oW+BKXp08vwwm8meAi+aGZmpqaCLfrUPzkWJjg/Nhmz/kPI3BxNEch/MRrHuSj1W2/laG6IcPoQNKPpT1bVzhQ5lj5UjkOKxmxkVTfSM11jUwPrYPyUdyQhJnA3OI8D9Gsj8I7jGXyXzI9pXIR1fj/iSwcRv++dhJV2cH52Oa1/RhvU/oARhQ8iG4wbNW1MCR7SvRy2843yfn2EIa6xqpobaB6mvqaZst330wPsAFbCz4IKtXPOdjJPElIo/WE/65sX6l3/UrwchQ/rl4jo7UP8denryfBy7qq+uorqqWtvpsG9o/Z1ykMx8d67trbOu78PX10NPA4MNY33VH6qprqZaxUVNZQ19s2TokH1jbxRpvZqqJ1kr75/J+o1Zl564Qzgfyaw199ayM+2Ai5+P8Oe3npcEWkuv8gIvqimqqKq8in83/5EOWqPD9lHnMROa0DAoLCdPVPTLir8ZORPyVHuITZfn4w0+pmnFRVVZJlaUVtHb1uiH5CAveR1npmZRtMlOEreaiXuaPiRM+5nz0Xb5h6KyHZdtWX85Hltms+bHC9xD+9DSvGVTJ2KhgbJSXlJPX1BlD8hEeGkY5GVmUm5lNkfsidOV/QET+h6jHbYiHfL+wCM5HaIj2eh4oBeuxIn4XdYTBRZm1jEqLS3l9Ekd82Gsn+gZQXmYO5WflcjsLx8CGXvKjWtpOGvmDYyA5WdmcjxXLtd9jBfkaIr92yaJlVMa4KC0qoZJCK+/fORQf69eu52xYsvOpwFafAXwMFt8u9mKwFqeF+gxp6WbOR1hYlKG3HhRRn2GCrUbnWAl00Fk9Heiy2M/bvHELlTA2rIyN4oLif/Cg/Bt75gU5+VSYa6GivAJ6950P+HG5Ton8U+zZaKVvlI+PL+ejrFz7eToviyDnDnx0dXSM+Vigh8OpX4J4K3BRZCmiovxCp3yg3hW4KGavtbL3eE15Xv9KLz054aOL+nCG7npGAgMCOR+mtHTNjlFZ/0ocj4mKZVw8r/UWFTH4vpng40OmX+CihDFVyuacJQuX2n10vdQwQf45+Fhp278xZHQlI93E+Vi/boPmx6pca0rl/Xif17MKVcSgO+IDAj+ljNlk8Fu22HrLwF5zt3677Kd4oj513KFEzkdyisnQ31EW9I5CfWrwMX7cRM2PV7lXYeG9ePMpLzuP1q3d4NC2Uh47ejiJyq1lVFFSRvEH40c8JmXvBhFzpuxvoFYcL+J3wQf6Rxk6PLqyasVqzoe1SH8xC7DF8xkXqPWWa86lBfMWDsqHLPvD91NlaTlVlVVQTma2/fihAzFujUNe2xqsP47wo9Q6996+q7z/x4oV2u/PrmdJOZrC+djqs9Xtz5BjEpHvIeJXRa8Y8Ywdac4gJGD7drufMGvGHM6FqGc1+dOpQ/Ihjvts/oKqyyqppqKKaiurR3wN4ROJdQPBwWj3jzoYd5jzcTQ5zdDjURL0dkZ/NfAx7oMJqvAB/RC5qKLvsSs5g66K7EOvW7Oec5FlyiJzutmhLeWID/TRqa2oprrKGqqvrqUZ02by4/A/3KnzI3pWi5+u5rmMRLy8ZnI+0J9zvNHnYFRk545dnI8jCYdH9DkyH5gXxNwgdEQtXYFfLvseqH+YZTIzNjIpWlq7csbH+++O47HwiIlvqKmnDes22tlzJ87EUY4gnglyf2dHOewjFWtpJecjJEQftbX1JG+8/n9UUmTlfCxc4F6sgqOcQei98FVF/061+MDalVyHJyUphTLTMinjWAb5frHdqe8h/w/+eWNtPTXVNdp7wIONoer8gHvR21w+rsyXl3t1KvMn1byHmzZt5XycPtNrxGOpLFs2+fD+50UFhW69f7CcQUe670rOIDiCngl/xZFgDVbYV++w7wcXplQTpaek2/cxnPnmQuLY9zfXN1JLQxMVFxQ55APniPGI/pvCf1J7HhiJtJ/opEtXblJw8D5Dr1WcOyw5eZyPkcRbDZYzKHq5yjaFM/8cdruy/oKodyJegxhCEVcCH0KuZfXpx5Nd4sPeJ2f9JmptbKa2phZqb25l3I23zxHgVJyXUjDOoRj2tGzc6MP56Ow6R2+9acwhqlxTZm+XFZdQblaOZsYEnYNeys9pIVgHg17Kz+1tPr681vQxxkZqUqpT30P5f/CEukCom3W8tZ355mvs45C/G5yI9Sit3s/WtlPUd/Ea7d+v/dr7mp87XnuLzKZMzseyJcs1OUY8w8EC7BpR+0DoqnjNgagDnIuUxBQKCtwzbD4gWLtCTVLUJo2JirHPifhe0cNcD/d07twFnI+e3ss0WYf9RrUk/r4BVJBr4XvIehkzbCxR/4Tr8Nvvci6SjySz8zhKK2x13lzxPeTXHEk4wte2O06cpKryyhfWyfRQr/rFNQIr5yMnp8DQ8xE8l7EeCj5EHpFeRF53/Wz2PEo+zNhIOEpJ8Um8f+JwfHN5n7CT2W1dpzqou6PTvr8IP0cvsYpCxo/7kE6dOk1nz/Wxuc/P0PdhyuvMroJNAj4CbT0A9CT7QoPtv6OvTVJCEiUeSmTndNBl20r5OnDVfaqTTnd20ZmubtoVuNv+Gr3NHxBfdl3ARxvzRyZN8jL0fhiyecMW5sum8njXN15/S9fnEhcdR0cOHaHDcYdp07rNw36/zFFxYTHvW3i2+wyVMp/MEY96kpwcC50+3UOFBSW8p4uh+85l5vTZdCTuCOdjkkby4IYj2DMX9g7swiOMi4SDCZRwIJ7HYA1n7lAygr3Bc6fP8t7QPWfP0/gPtB/DPJSgTlNb60nq7DxDMdEHDf13Iu+/N54i90VyPtav1X5+hzPBfJFwIIHiY+PpUMwhux3kLh9TmB3Sc/Yc9Z47TxfO99jrvyO/XQ81fxwJevqCj5Mnumjzpi8MDgYR6E5oUCgd2H+AQnaH6PIcEC8o72nHRMRwLmBj+Uj33l0+IKht3dfTSxd7L1BVRaVL78faL9bU1Iw5VFN8tvhyPtqZL7LSiIH/pz/O2NizK5gOMv81cm+k5vxN6Bf2A53tu8lrrVMnTaO4mDh+TmB+5rTZbrGhZCQ4KIQuXuijS30X6fLFSzTVlpOurPMLwVozxo09Eq3UbBhMopl9BT5amtvJe/4igwtJtm/14zZ65L799P674zU5RjAi9gHxU7kfBxtHnjtgHwo2YiNj3batlHxgbRRcXLl0ma5evkKxMQde4NPZOLUsUftjOR8VZdX0yUeTDDbgz27eytc/wccH72mTDaVgHsFzGSKey3LNBPwuuIAg98Nd28rR+7COde3KVbp+9Rr1MF9EHBdxL+7Gl+D9IgZAzheTa9vLx9UW5E9nmXOpsb6F6moaaNlS7dc3GzWb6rW3aKf/Th53AT5mz/xMlc8dLB5djluX9cBRP7LhzCl4r4jxsNs1c+ZzLsDIQWY3TLGt77vLhpKRTRu30I1r1+jm9et068YNHt+sxrXD9RHnIfLF8DuulZiH4Meo2SfEESNHE1M4H9WVtbR0sTbjikZTEFcVw+ZSxHuDjzmz5qr22TIfsC9EbC7ioXCfcUyOa4WNLsf0uity7G7I7lBuW8E3D5PygdTiA9Lb00O3b96k/lu3mD1Sbj+OmGF3+0uJOGRRfw7XCcfl66PMjxkt2RcazvmoKK0kP9+AV4YN1HTCfIE806TDR1Vfw1fyIeIE5fuqzKEbCR+w+WV9/GjiJ3y9Cmu6h5nNuGzJClXYEJ8hPifu4CHGxm26099PA3fu8NrXYjzuxpvItU3AhmB+LPiA7AjYxfkoLS7jz1PkOrzMbCxeuIRzgRoemDfUrA+KeynsHdleEj33PMXH1s3buC+FPZyk+ES+NqcWH/LnTBz/EQ3036G7dwbo3t27ZEo3vTCHiJq/7swfso8lro+wr8T86ymdWbJoOeejyFJMmWlmu636MsmbjPs9u4N5rTPUDsS6J2wsNb8D903kXsh8iL7eIq9UaWeL3sdqsPGvt9/lcSSJjAvEI45kz8MVGys9zUT3796jB/fu08P7D3gNITEud/hQ+uciBtlT/vmgNgebk48lp5Elp4DXgEGdvNdf03fckZDp02ZSdmYOr+sPPrbZcq9HQ3A/Hfnbome4q/65q2uiylrqiBuD7YhY9tSkFLvtqBYbSkYWeC9iXNynRw8e0OOHj8ic+XddFLlu/FBrC1rKLxzSZ2XP2ED/nZyPrHQz8+3iaLrXTP3OGW+8zeOF6mvqeD8x1A5ErLcexo71KGe9wLGGK88dyPNIRi/mxBSeJxgSFKr63OHo8+pqaunxo0f05PFjevrll+xZ+5wJ+CCD8SHX/cJPPe2RIK4ffh3ylY8lplJQYJA9X1kP8tabb1OA3w6qqaqhpoYmzkdo8F7d+FbC3hJzy2B7z8q5Y+Xy1TymkvfUTDXZYyvVZkPJCOq5PGFcPH3yhL56+pRysnMGHSN8NGVuvZbqN7gqsK1Wr1jD+UB/+PTkY7QveJ89J0abXPyL5yQ0NzbzHNC25jYyZ5hpxrRZurv+Im9Vtrlhi4jnrPLZjPsFn8OUms58yAzaJ/XSHG0+II0NjfT1V1/RN19/Td9+8w0b2ycv+CHOzkevgjn7C+bjgQ9zWibvtRUdEUWLF2invxbiHaIio+nk8RN0pvs0dZ7qZL5GGa16CeLMHD1vYZso+fBlxzLQZxa9NDOynNYOVZuRRQuXcC6++/Zb+v677yg/L/8f6xbO5kNdc8I499vqx/lALyH0g0BfIeTWjUWcCup7bd7kQ9YiK48F6uu9QOfPnqfa6lpau/rzl279DTom1yoBM+LZi9pWqPuGXEfUj44Mixz1ucPR57e0tNAP339Hz374gX589oxmzZxjZ1zUi9ByXRM15J1/v08bPt9I6SlpVGEto5ryKmpgzwP0Iopi8wqeI6OVhzWd2Um7d+2hqsoqvid168ZNHv8DPkxpJlqq0foiaj6jYJOINWRxPGhnEGUzLnLNObw++5TJXh5hQ8nIzBmz6dkzxsaPz+inn36kE2w+l9fv3Fnv1fXcP2c+7WV+b7m1lNfVO97SxmtbnO7sZj5xPV8bDwkOpflzF5D3/IUuf+7HH33Kdd2f+dgHD8RRc3MLfcVs2y+ZD/jwwUO+FwU+GusbKMB/B7evXpVrjjUruWbv5ElTORd52blkyc2n6EjndXVHcw4psBTQzz//RL/88jP9+usvtHHD3/m8qCX/KvEhywKm/yFBIVSQZ+F8IP8SNg9ioG9cu87jEO4zvX788CH13+6nFqbz7W3tdJLx1NnRSVevXqG//vov/fnHH/T777/Rr7/8wp9BP/zwPbMrvuV83L51i4oKi2kXe15OnODZGtxib1xeYxK1lOXXiWPKvn9qCWqmy7EbcbFxZGF2Lq57kaXQ3j/TU2woGfnow0/p6dMn9Ntvv/L7ODAwwPcsxeswdj3WclBbsM+w3deP97srKS6hLsaA4OOrJ0+5HwcbFRz88cd/OBsyH+DmePtxPn+s+3yDvQ/xWIm8FyH29uRYIRyHzSP3RVI7V04Z07Ry+Speewi2rbWgyJ7rOpZ8QBLiD9N/fv+d39c///yDzOYs+/9QC8iVmu+i58GryA50ffGipbRk8TJuRy1buoKWL9N2nL3Mh+gTK/4nYqeUfW9ciaEbztq/bJ9gLycrI4vXikZMQH5Onn1/x9NsOGLkLnsW/pc9I8Rzb87suS9wPhQjmHuxxjWcOVjUflceG8uYlFdJHO1li1wg3EslH67GmIr126H2ARz1ig0LDSMrszVRY6e8pJQ9l5fZdXQs+RDfjecduPjf//7icvXKFfvr4KcPxoeoSz/cfRG8Xu5lCPFkzsirKqJXnswHrjn0GsdFnIS7fIjPg202mD0BXZJ7xcJ2LS2yUpm1lCpKyyk+Ln7M7Kr/b+9M/6Mqrzh+/pO+62ZbWwVUELWAIJsLIsoSspKErSDVqGxJyL4vZN/3ZZKQfSd7QgiLIC0VrVX6wlb7saX1L+jze4YzPHNzZ+beMBOSzH1xPsAwmcy99/k+Z33OcadDCguLHPrjxx//RynJqU7XpD2rrs7SWuizUu/5k6qJ9yfh3BbPNuJ7zf/m/uW8X+HfXJfNesXM89XO+dDWwdpnLZTJWbJN9Y1ka2ym3/121ZJgQ8sI/PJ79+5JNmBrwRfZsnmr47q4dgz7jHrWY6Gi1SEWH4vHiDrniPc6PheoPQ+qPdtjRni+DNsF2hpYOUu2vkFw0UQtTTYKD4tYMrpDz87avXuP5AJxF/jr2niW9nq9oe9Ve/dJnRmxxHfiaj89sC9A9k1vaWqmNlsLpSr2ylJhQ+/75OcX0H8fPKAHD/4jY5NtbZec/C9vMKGdgWL55/7h+/DfkTOFP97a3EKXWnAmul7O033SPrlRO+uq0KlgA3mRf//wAx079qjnt17fLEv8S8zYD4hVqf74L37+FOUKVnDOoh0zMi+1y9zHUtUdenYW/I7797+ROXXkvJBf5/qshdi7y7Em3hJ9gT2MvKFRRrTx3I+jPhFctMl6mq6ODjp7+uySZ0Pv+0FngAvUn/zr++/p9q3bQrc8ivMaqT/h85kQf80frjRfgmu7jTCCNaL645g13iHs9a72Duru7KLiwiJ5LnI5sKHHSEVFpawb+v6772T9xOTEpNN73c2iUtkwGxu0xNya5fo+rmNQhdcwfEe9Giuzgs/xxIheDnDTxs3UCS46Oqm3C/38WsT3fmlJ+xxGGJmanKR/CjZQB/+Pb7+l0pJHZ0WwN+j1BvIFG2rPbPzJzwVrg3vQqK/7k9+r9pDh8xTqvHrcF567zH/6khGtz7Fu7UuyN3pPVxf19fTQQG8f7X1v37Kxq9z5Ir8SOuLLL76gbwUbOEuFWjxt3kf1132lNxAj5F4z/He8jueD+D1e55n1/soH1inuuzb2p82Xe6u/oR4jWAtqvQXsp+rKKurr7qH+3l4a7O+n40q8Z7mxoccIzorc+/xzWZuNc4c4lxup1FeyDvGlTaU+YzV/6O95RW3/NrCBvUPVE97s3+aJEZUPsAEfo79HcNHXT0MDAxQbHbvs2dD7/ocjj0ou/g65f1/2doiMOOy0Nn3pb/CZTK7D5piYv/KB6+e+rswH25r8Hj4D6is+tIyo9x5slBQV00Bfn+QCs2KrKioc5zGXm89hhBHoDHDxDeTrr2UfFPRDUWN/C2HDiM+o9kDmPdKf+eB1CQb07Cuuq8L72C7Fa7zPuONuId+Ffxe/Fn0uWtpSw4ODNDI8LGysyhXHhh4j0edjJRd/+wryFd2+dUv29HPlm3kSdfb7QvwP7nXJ9Y7qWQZ/YATXrN4/tW6KuWFGtDVWeoL/0/qX7gT2lPYsdsz5GHk2+fLQEI1evix98lXPrlmRbOgxUpBfKHvM/fXLL+UZ6k9v3nQwwrE92KCezlbxvCorfrW0BM/EUy0RnjNEG+OHf8FcjI2MSJ8c58pXis9hxF+H5Ofly7jWF/fuCd/9njwzEhYa7rSvuKtD4XMC1npcmoJn426v0doJ6PN4ISZW2lLgYmJsVPoean/wlcqGK0Yu5ubJftfowfGXu3fp7p/vCkacZ8riHurpEdz/xeyrxb6Jtl7bG3Xcj2sj6elQdQ/nfn1au8mXgmfjypfUzj6GXwHfe2zkMo2PjtLkOOYL9zt68/gDG64YQd8bzEzA7AT0qfnTnTsUGhLmtM9A/6o2KvuKi/m9Xc3y4R5+eB3rYbF1mquYghpz4np/PsMEv3yhHJvZk/heuXuWYAO+t52LMZqamBA++YBfsuGKkRxxD9Hn5s5nd+jO7c9kr7PMjKx5ekTvnhv14b2xZ3J9hdpvwGz8i8+j6n2u+rraM8ednWKED22Ow1MvdFffG/yr55iNiLqXafvxwK9otdmELQUuxmlmalL6Hv7MhitG/nD8BH12+7asY7z16S3ZJ6qwoEj2ztQ+I7P7HcfXH6cOmHUDn8laKB/a9+j1weHYqzqnT29Ncr2U+nn8Pm/zAcF3wfWajfHp+SLo4QHfe1JwMT05SVemp6ipoYFWr3rO79lwxUhIcKjkAn0yMS/3hpAWW8u8noDaM/qe1rU297RQ+8ob+Xfte/T64GjXs16vVs5PaHtRcIzaF3yoOVwj9hnHbsGGykf4oQjpY0xPTtCM4GJ2ZoaamxrFXvhri42fuI/9bt+2U9y7CTlrHf0G0U92bGRU9oVSY4McA3bXx9Ts8/RkJ6g1erze1L5o2Oc9xf7d8cH/Z3Q9cz2OVn/wPq/yrNVHjxOX8rTfcNwWz0i1p+BrJMQnSB8DttTszDRdnb1CqSkpDjZWan7Dm4y88vIGsjXbaG52Tp5FvHplVvbnxMw8rR7BHsXPQ2/P92a9Ctd4G/Ef9H4W7HiTD/5c7e9lu8tVD9DHyfHgc3jPcZUnRC8ObWwevkZdbS1NCy6ugIsrM2Lvm6WY6BiX9oQlrhnBfoL4L7i4Mj0j9psZoY+nqbS4lFZpZhDr5Up4bzXjT+JnfBUz5n1d7cEJ0euDA47UeBP0lS9j2dq6KyO6lOdvqK9DV2hjt5CI8EhZQwUfY1ZwMSe4GB8bpaDAYIuNx/RJoDNmpqYFG1NCL09K26u/t1/249T+LPqZ7ti2w9H7R2/WoyfbwZfXxjlN1b/Vy588iXyFGZ+bZ9Dy/YWNGxgQMO99sKdysrLF85uSttTcLHp0X5UxK9gIFhveYWTra9tpoG+AJsYmaHx0nMZHxmRf9PTUDN35Gq72N09+gT+fcwenZq5fq5+150DRSxh5DPYxrs3NCp9yjgoLCpxikhYX3mEEHBQVFElffVSwMTI8ImeHdbV3yjk02mfHdove+cTH3T+5JnKp12pxXtBoryOjfhr7eqzfVNtP6ozsHGFLPfIxrgsuEMcNDgqxdIaPOTkUGk7dHV10eXCYhgeGaKh/UM6fzM3OFSysdrIB7O8PdXqmruxvM3WO7J8u9blxuCYz+Qpwb+SaYEth39HuDzjPMzw0aPcxHtpSN69fo7bWVlqz+nmLjUVi5Nln1lBeTh4NCjZgd8Ef6evpo97uXjoSedTR00KVj6PssS+9fhDcd9moHcLn3Yzabb6whXzxXbHe3bGEvUYvng77t6G+3uFjXBNc3Lg+R5/evE4fRX3kMgZjie/iWxDMpGwTNkGf4KK3q4d6OruFbumm5oZm2qP0DFPl1IkT8zgxY1uZ3ZPNvE/b19Zd/MisrjNqC+r10wcXenbq6mefo6TEJHu8FlxctfsYN29cp9qaGktnLAldspoS45MkF13tXdQp/JGOSx3U0dZO5SXltGP76245gY1uphcp596M/ozRtcy5GiP6Bt/ZaL6TP9eo763GKdB/So8L+BjnzpyT8dqrD+O1168JW+rGNZkTRx2Eu2dmyeIyAtm0cQtVllVKLtB3EjMx22xt1NrcSsmJKbR960636xd2g6dZcGpuzMh+jDVsdF2a4cNMHyqO5RnxvZkFV+8FF6fe/+M8H+OG8DFgS8XFXpgXm7K4WFqcHDwQRHXVdZKLlqYWsjXayCbsreb6JjmDSy9vAuFZcMj9upvnY6aWy8w6NsMHODV6hpVrbNzFujm3qpfbgyAfm5iQKM+Cz/MxHtpSv39lo8XFMuEE/nl4aARVV1TLHvhNgo3GukZqqG2g+pp6ysvOo+DAUMeMOlXAB/ZR/MkzS1i41tGozYT3GbX7zfBhxm6DcK5UtcmwByCX6q7Wc+uWbZKLGU1NiN3HuCa52LF9p2VLLSNGnDgR6z8s5BBVlFZILqBXaqtqqaayhmoEO9XlVXTy+PuCgw26tgbXd/H64ZyxUdvfzBo2y4eZmALXFELn4HrABWxJLf9sQwXsP0iXWtscdedOPoawpWqrqy0uVpDNBT0REhRKpYUlD7mopqqyKqosraSKkgoqLy6n9JQM2vP2u/T0b55xGQvivmlYW7DHvLmGfaE/uNcauOCeX65qOXe99TbFx8XPqztXfYwai4sVz8mbr++irPQsBxdlRWWCm1IqKSih4vxiKsorothzsbT7rXfoaRe2kcpH9NnT0rfHv9l34fXnSz7Yh+b1zvYSfyfoP3wnd/X/mCsdJ9hB/xz7GT7nunOuCUlPSxOfbXHhL3YXZMurW+nDU1FSp5QUFAs2igQbhVR4sYAKcgsoPydf+innTp+noIBgenHtS25/D/stqj3GezzHSfF/zBD7xMyZygef0+bzE+r7eS4EfzaYgF+t+hGuamqQV923d7/sE4Jez/Y+IfazrbLuXKkJATNRH0Y55TAsLvyPE9hT7+zaQ8kJyU5cXMy6SLmZuZSTkUPZ6dmUlZZFSXFJdDTyGL2x8y1a98J6w79b7UvA866ZC44ZqXxwPg5rn20k5oP/NJLvR24I/SmjPoii8tIyRy9CtU8I+xhcd56akkp7dr9rSB9b4j+2F2TNqucp+GAIxcfEO3GRmZpJGcI/SU9Op7SkNEpNTKWUhBRKjk+mD05+QHv37Bdr+XV64bl1HnMovpJ1a9fTzh1v0OHII3IGeG11jaPfObjgnmuOPiHwMR7WneflXqSgg0FO51vd7SmW+LdOgaB24r139tInH56mjGTBRpJgI1GwkSDYiBdsxCVT0oUkSoxNpISYBIqPjqe483F04dwFOhN1hg4fOkJhQYdo15u7aadgZ+3zL0qdoz3bZUTgNyG/sOGVTbR96w5ZoxkeFk4pSSmUl3NRzlTqfDhTqbe7W/Y7d/R1dnAx4vAxhgYHKDcnhwJ1mLB0hSVmWfnZT39Jr23eRiGBoXTmozMuuYg9GysFf8frCbEJ0iYDT2lC50D/QBdlp2dRrtBPsOHyc/KkzwP/p0T4QmXFpVRRUk5VZZVUXVFFtVU1VF9TR4219dRU30i2xmZqbbbJua3tbfb5lDxTSc6OARf96Hc+6NSLEL3QT508JWsJzV6/JZaYWSvwB15ev0HqlyPhR524ACvgBgzB/oItBt2TKewz2Go5kotcyQX8HcQEEB8oKyql8pIyqiyrkHmZ2spqqquupQbJRYPgArO+bdRma5XzKTvlfMpO+0ylbvtMJbalMGspIy1d6hj00VnodVpiiRlW3K0jzMmC//G2sKeCA0LoxNGTdP70eem3ZKVlCi6ypb8P378gN19yUSy4QPysvFhwUVpBVeWVcq635AI6o65B5v9bmpoFFy0yZ8fzKXuELZWdmSXPrx47cpz2vbdfzg32xrVYYomvedHaZ+vXvSwFfvyBfQEyR33wQCAFHgiS8ePgg0ICQwh5zNDgMJn3Zz8j4lAEbdrwqpxR+erGzT79rpZY4mtmFnstPunfb4kl3lq33hTrHltiiSWWWGLJ0pL/A1BLAQIXCxQAAgAIANqIPltVimEmIUAAAABxAgAEAAkAAAAAAAAAAAAAgAAAAABkYXRhVVQFAAclDtxoUEsFBgAAAAABAAEAOwAAAFRAAAAAAA==</Data>
|
|
</Bitmap>
|
|
<Bitmap>
|
|
<Filename>(embedded)</Filename>
|
|
<Name>New Image #8</Name>
|
|
<Index>8</Index>
|
|
<Width>200</Width>
|
|
<Height>200</Height>
|
|
<BPP>32</BPP>
|
|
<Data>UEsDBBQAAgAIANqIPlsedTp/OUAAAABxAgAEABEAZGF0YVVUDQAHJQ7caCUO3GglDtxo7J33X5THvsc/f8k959zck9g1lpjYYhJjJyqxgII9lqsGUMQCKgKCiApI7wLS61KX3quKBbElRmOLLVGT8/PNne/ALLMPILuwS31++LyAhy1Pmfd8y3xn5p//+Aj/VDVo+sd//bfBUu+XqtHQ7ofD56tSZa52qp6TKpUHw9rdsmUruJwOOcPJyRnBIRG4GJvIlID8gmI0Xb6GpuZraGxqQUPjVa76hiuoq7+Murpm1NY1oaaWqaYRYWHRTFEIDY3C0SPHYWd3ABs2bMKiRcswfdpMo85dfZaqzMFET6/56qtvsXXrDri5n0b8pRTUsLbdcr0NV6/dwpWWVqabuHyV6coNNF+5zri43slFk4KLeuKiWcdFdU0DqqqZqupRWVmHispaVFTUoLy8BmVl1SgtrWKqRElJBaKiYuHtfQ5799hj4bdLMHbMRJUXVQPKw/hxk7DOygYeHt64lJiG6zfvcF27cRstN9p0XFzlXLRKXDAJLppbdDaDuKhvuMzZIC5qiYta4oJJcFFVx9ggLmp1XJSVCS4qUVxcgeKichRpy6DVlkJbWILCghIU5BcjPi4Rnqe8sWXTdsyZ9aXKiqp+cdHd/ywsVuHI0ePQ5BTixq17uNF6F9dbO7ngbAguhM0gLq7qc5GbV4TomHhERZPicODAIa79+0lOXA4OpINwsD8Ie3tHLg9ml0KYbxYczBQUzm0GcVFCXBQzLorK2tkoLNVxUZBfhPw8LfJyC5HLzjtXU4Cc7HwkM6bd3TyxdrU1pn46Q2VFVZ9shZWVLfz8g9HA2vXNtnu4qePibhcuWiQuYuOS4HPWDwedjmLNGmssXfodtznmOP+5c+YzP2optjHfbu8eO/j7BTF7kcS4KGJcMDYEF5p8aLLzoMnKRXZmDrIycpCZrkFGWjYusPfY2mzGp1Omq6yo+qCtEEw0MiZa2+4zLu63c3HrbjsbxIXwpRgXGay9nXTzwpYtP2D+/AVD5vrGjpmAbxcsxu5de5nt8eI2Izszt52LDA1jI5uxkYX01EykpWQgLTkDqUnp8D3njw3rN3ZhReVk9NqKmZ/NwilPH5Qx/7719k8KLu7puCBlMv+EYvDly1YOu+snX2rNaiucPOGB+NhEpKdktnORnI6UpDTGUCqSE1KQdCkZifFJcD5yDJYrVxvlh6oaOVxYWdsiksUAt+783M4FUxcumMLCY3huylw+0mBp1hdzsW+vPUKDwjq4SGFcJCOB+WcJLKa/FJuA+IuXEM7ini0bt2LK5GkqJ6OAi+3bd6O8so5zcauDCz2bQUxEEBM7RxwTPYn8qW3MRwxkvqXgIi4mHnGs/4iNisPFyFjERFyEHeOJ7K3KycjiYvz4yXB2dkXTlRs9cpHNYtmt20YPEz3pi5mz4WB3AGHB4bgYxbiIvMjYiEF0eDSiwqIQGRoJF+Z7fTn3K5WTYR53cy5cJC6EL9XBRUNTC3z9gvj4nnr/9DXmk/FY+Z0lPFl8L7iIDIlERHAEwoPCEcb8sqNORzFvznyVk2GYjyI/qlniQrYZpeU1fDxjtNsKQ0W24qCDE8KD27kIDQxFaEAIQi4EI9g/CIcdD2PyxE9VToYBFxYWliivqkdbD1xsYz6Ueu/6psmTpmLPrr06LoL8AhHkG4jA8wEIOH8BO9m9/eTjcSojQ5ANihuTUzNVLgaCE2Yrdu/4XwT6tnNx4Zw//M/6wd/HF97MH1tpsUq1JUPIZlCM0Xb3gX6McZvFF80tjItd6n0zkyYxTshmEBd+Z87D1/sczp8+i3NePjjCfK45s+apjAwiG8KXUsYYVBOixhcDJ+LgwI/7ORtc3mfhy3jx8zmPzTabVZ9rgNgQv1NeytPrbLe+VERkLD5T5OhVDYyWLFyK08y/Ilvif9aX+V1+zP/yh+dJD8yd/aXKyADYjK+/Xojc/OIOm6EfY1go/F63k+7cB1Dvo/nkeMAJc6S2T7aCbEYAi0kCWWwS5BfAYvlAFtMHwcbatsc+T1X/2bCzd1TEGO01IR6nznTxpYqKivH3338jKipGvZdmjD8qqn/n99lq3Xq9/5G98HLzRIh/EEIDghEWGILwoFB4uLpjyqSpqi0xsT8laqWUeSmL5fo2Y+/u3fwnPS96biS5f1NlOi1anoDPvnoLq41X+N/W69Zh2tTperZk++btCA8MRURQGCJDwhEVGsHtyeKFS1RGTORP8XopRU0IjXvLNmOTrW2Xz2poaOR80E/13ppWc+cuwzcW7zgfYybY82MTWT/28b/HYuGChfx38VoaXzzH4vao0EhEh0chJiIasZEx2L1jt8pIP9jYvn0Xn6utrAmxsrLRvUb0V1983jUmJ7shbIjS/qvqn5auLOdsTJ3d1OV/gg/5mVC9yiHHQ7jYwUZc9EXEx8TBnflb9D81JjGODZqToaw7pxpCZW5q+dLlH/xcP19/zseTJ0/V+2wifbfiAGeD9PGYtT2+rjubbr12PeKjY3GJsZEQG4/EuEsIZrH7rM/nqIwYwMb4cZP5HD5lfa2vX6CeP0VxRnc2o7sY8v3795wRYkW93/2PyZevucvZmDQ93qD37Lez0/ubaoSjwiKRFJeA5PhEpCQkITbqIr6R6kRVRrpnQ5On7TKHb9+P+7vYBGO+g3KQxAdxot7z/mnBYh/OxowvH+Ojj+Ya9V7ZxyWfytfnPFITkpGWmIL05FRkpKRhzfdr1ZikuxwVsw2aXK0eF/WNV7FuXWesIezF0iXLjc7bpqVl8Pepbbzv+te/pmDa3Nucj/FTvI16Lz0v4oPiRYrh6djYjpgkPTmNsZGOzNQMZKVnYu1qq1HPiF6OitlVytXKc1vrGq50mZdB+UPZJpDUdjtwIiaIDWLEmPft+GEXH6sVz1DOAZPs99kjKy0T2elZ0GRkIydLA5cjLqOWEflaiQHKSYm5raQsTb5erCFzoeyT+mITRN5XxO0jfXxEHguS83l03XT94pjIg4uchvBJqX2TLyVi8k/GbTP4u+k7yHYrj4txKiGyGTmZ2chlbORl5yBfk4vjzsdHHSPdsSGvE5KV3cmGyKd/KFake29MDQnx1NbW2f/ROPtIj9tFnlt5n6hPF34q/Y9YIW6ICfFaeg1xM/mzLM7Gp1+UGhXL0/3t7vmQr0zPVrYl69ZYcy4KcvJQmJsPbV4BXI+5jhpG5OsjNii+kNcizMzWtxt0D+Vxpp7auzGxCD1/ebyQ2BgNeS26R9Tu6drF9Sqvnf4nbI18v6iGRNgOY2Ly3uw7saH0DazWrudcFOUXorhAi5LCIpw8cXLE57X081STUFJWrbcWYWZ2no6N7u6bof6tykf3/bjIHQmfitqtoXyssH7P2ZgwNdjg7zQmPqTxRJLOn7bagGLGRYm2GKVFJSgrLoXdPvsRy4iSjSxNgd5ahJlZnWzQs+xLza2h76HnLftX5J8ZytZI8a/o+uk+EBuyf0XHiRv5teMmuejyuZS/MvRZGNPnkI9AkuPADdY2nIvykjJUlJajsqwCths2jjhGurKRr7feeYaCDXpGJHPWpY+2+Fz4Oso4vLf4/M+//k9XY0WcmPP8xBiVbHNs1tsyLspRVV6J6ooq1FRWY6PNphHFiHwN530D9NZ1zsjM1Ys3qO8SY93mZkRV7yJ/qqcaK3OwQVLmushm1FRWobaqGnXVNShh8f6X874eEYzI507r1urWO79+C9W1TXpsnHJzVRkZQvqffy8xqMbKHGz8sG2bXl5r147dqK+pRUNtHRrr6lFeWoYZ0z8f1jkt+Zy3bN3RwUX7Hhm094tY75zug3K8SGVk8EV5XGKD8rqDYTeUud/TXt5orG9AE/MBmxubkJaSputfhxsfenlcxgHtN9a+d0z7nkq0J594LeVwu6szVBkZPNH4X19rrEzBhug3lTnMi9ExuNzUjCvNl3H18hWEBocOSz9Ljse1ReV6eyrt2dOZp+sthyszos5xGhj1p8bKVGzIkudajR83ERmp6Wi5chXXrrbgess17NtrN6wYkc8xJDRSb39KHx+/Ln1Eb59HjIh8vXyc8pNyPSjdc5HPV+dC9V1yjZWh+dy+8tEbG6KNyDUUX83/BnUsFrlx7RpuXr+O1hs3YbF8xbCIReRz27PXXm9/ytS0bJ2/+P0qS4PmbnxI8tgWjQ+SDyby+eqc876JfCnyqeQ5s+aSMX0Y2Q+5XmvdWmvGxQ3cunkTba2taG5qGvKxiMwuxd7y/pQVlXWYMeML/j9TxREyHz2NA6tt3jjRfCdDaqzkuhFRj0CiWitxnPqs7o6bSqc8PNF26xZut7Xhzu3biJFqjIYiI3LMkZau6dy39fI1vk+l3G8YW1Oo8mF+UQ5X5HMpt/uh18r3V9RzifF4YoGOk09MjIjnLY7395nLfkF+bh7u3r6De3fv4v69e9jvcGBIMiKfi6vrKcbGdb6uAu1p7H3mvJ6dFDFFX+crCRZUPkwrGgM0dM6s8v6KWFDYDDqmrOHqT35F1GkrnymtSd5y9Sp+uncfP//0E26weOTzmbOGFB+yX0V7GYu9vhubW5Cbp+2x5pCumey0sXOcRA0K5bUEE/QZcvwh12er6l0UaxhSYyXuqcyHsA107+l3U/NBfSh9vrAbtB4Hxa/i/2QzHjA2fvn5AR4++AXZWdlDyobI55CXX8z3Rm5sakFD41V2bRb8+Ifq1KltGztXVtS/qfmr/ot4EDF5bzVW1MbpWSn9K/G7zIEp+JDnpygl53fi4+Lx8Jdf8OjhQzx+9AgHHZ2GBCPydzs6HtFxQTp23E33P+V6Yb31EaoGTqLGypA5s8J2y+uJUX9EsQa1f/opbDr9Ta+ln2TPjamRFv4U+Ws95bPktYMmsL8pVn/866948vgx7t65w48NFT6oFqahg436hivQ5BRg3NjOXK6h90RdP2FgJc+ZNbTGSswlkf1Xem50rKcxKmOeq5iPa8h75s+brxsbOeh4CE+fPMGzp0/x/NkzpCSnDKoNkb8zKjqOc1HfcBl19ZexpMOvMoaP0aTlLE6jMS2Xoy447nIcridOtvsSkVEo0hYhKDAIZ7x94O19BqdPe2PfPjt8b7mG+RRzTHoeosbKmDmzAyFDY0fyS+Sxw7y8PPz2/Dle/PYbXr54AUvL1YPChxyTr15txdkgLurqmuHvH6SzgSobH2HRt0v43De/c37Iydbw+iGqjaBx37u3b+Pn+/fx6JeHvO+j5/rm9Wu8e/cWf/31J9f7d+/wxx+/8+MvX77A8+fPkJOTi7M+57Bzx+4u+5EbKjmfa64aq4GQXL/37YLFnItXL1/i9atXqK+rGxQbIn+XRlPA2GhGLWOjqLgc0zvqjpX1l6NFY8eMx9rv1+GUmwdfY6CE2QOa/0Zzexrq6jkfRYVaJCYkIsD/gp79OOR0GJs3beG1qrL9KCku4XZF8PGEsfSIxaEPHjzA/Xv3UVlRycfLqPbC0PM0d43VQPIht7ML/gF4/foV3rx5jd9/f8Ntr7JPHyjbsWvXXs5FbW0Tamob4eBwUPe67vLVI1mrVlji2BEXvhZgFrt2WqeG+Ei6lAh31vZ3slhz6eLlJmgPs2Frs4kzlZmRyfmg8eNbra24ce06tAWFcD1+ksWEM3v8DFFjZcyc2aEqkcsU4wQTJ0xhfcdDbnPfvv2D9SWP+bGBsiHiO8aNncjsRQXnguZzaLVl/JjIy4n6zJGcl6L9LWzXb+R7I9Gay7SeLPER6BeAzRu3sOueZ/780/hJfD0DaiN1tXW8tpXmR5CtCg+NgOWq1Xqvl/O55q6xMreICTE/WB7zcmZxHfmo79+/w59/vue2eCBsiPz5Dg5OqGFcVFc3oKq6HjY2m7vk5+Q1xuj5jZQxu0msP9q5fSffA5z2fYkJj8KF8/7Ytnk7Pp0yuD7l2jVWCAoI4nzUVNWgsrwCKYxZYoifu4E1VkNZYjxFXkNAmQu+c+cOj9/+85+/8NtvzwfEhsi2g+xFFbFRVY/0dI3uNTQ3Uq4jUV7HcF4TlOyF1Wprvkcr7T1JfLgccsYKi5VD7lzJv3I5egz5efkoLS5FUYEW4WGJWGP7yOxzZs0lkftV9rty2xO/29k5cDZIxAnFcuaM1fVsh/1BzkVlZR0qKmths6FzTYnuxgGJbXmdjOG4JyDlZM96+cDvjC/n46CDo96erENV1Jf9uNeOr/ucn5MPDYuLPD2TB93OGSvy2cVcOTF3ROmPKOdM3Lt3l7NBPtazZ0/NakNk21FQUNLORkUt0lI75ycr93lQilinaxxO44C0l6TzYRcWYwQj4PwFuB07ia875s4Pr7zaBBxzPs75yGRtK5bFS7TG1HA5f7HmUG+1pzSuLvJZdj/aczYoDiFRLtBccYj4PJsNmzkX5RU1KC+vxob1nbbjQ2vlyrHJcHkmixcuRZB/MMKDwzkf69eu19vrfjhq9qy5CPALQGpSKhLjE+F2wk1vfzNztW3hB9Hzl31u+p2OkY8h2wfl+nL0GkN8c+WYwp07t3msTnr8+LFZfCz5s9LSshgXNSgrq0ZKSuf8yMNOjn36bFHvJiR8L3PPr+lN++0dcTEqFlFh0XB39cBnHfO7Rop+2LaD80F7AIYEhPA9NAeCD+X6lWItR3rGIsYWazj29fvkPRR+3GeHt2/f8lwv5XzFfHVz8LFq1RrORVlZFUpLK9l3OxhlO7oT3RcxViLX6phjfo1BfgjrS8+xGONSbALnY8f2XSOKCz1/feZsXGA+Y0xEDCJCImAhrStjLj7Emo3ieYv1K5V+U3/4UK77T3WLxAaNF7a2tprUhsifERwUzrioQklJJTSafN14R19th7ATZFfFOrjC/zLl/BpDNeuLuYiNiUfSpWREhEVx/2qksiHUvq/sYc4H2ZFdP+w22WdTXyfG72T/SszVIQn/ypR8kKi2SdgQL8/T+P3NGz6m/vr1a17LZmo+pk+biVLGRUlJBYqLy+F6wuODOStjJGpChS0ZDD5mz5qHS3GJSE1OR3BAqMlrAYe6bDds4nwE+AYw32unST6T4gXq++Q9Vnryr+j5Cv+K7El/94qU1z2hvBXVr1HdyatXLxFtwrnq4v2HnJwZF4yNonIUacswd858XR9BMUNfx8iV984c8zMNYSMpIQUZLLbyY/7GWDPHq0NVlMMmPnx9fPlYp6kYkePtvsbnfZFsj2KiY3jdItWwvXjxAhMm9H9+iPzepMRU1pbLoNWWIiJcf/yC2BBzW3ua09Kbf2XK+TXGiM49NTkD2Zm5CPAP4nnQ0ciG0LIlFpwPHy8fbN64ddidP7FGbYX8EDnfRXU2VNtLNdI0nk61oKbiY+WK77nN0BaWorCgBNZW7Xlzqr+nOSrK/kIZSxjSRk01v8YYkQ3MSM9Gbk4BggJDRz0bQksWLeN8eLl7YaM09juUJfwYanvClyH/Sm6f11pa+PwQmj9VWVnZLx9Lfs+J424oLCxhbBSjIL9I147Ix+sp9hC1AEO1noRyC1lZuex6ihEaHKGyoRDlJogP9+PuWGkxNOfxiDER0c6U/THxIe9L5e7mwdmgOYY03+bzmbNNwkdGuoa3o/y8InieOqNjQ2k7hpOio+O5TYyPS1LZ6EELFyzmfLgdc8OiBUuG3PkRE73NoaD+W9Sd0NyAp0+fcDZonvq5s+f7zceK7yw5F/l5WuTlFuI7i1XDng93Ny8+fkP2Q10Tope81vqNnA835kPMmDZz2J0/sUFrAom/y8vL8fjxr3xMpKmxsU8+lvzaYy6ujAst89ELeRzbnd0aTrK0XMvrY4gPiqtUBnqX/V4HeHt44+gh52FZXyOPF9LaP78+esTXAiIt+GZhv/hITcnk8WuOJh8ezB8VfMjrqwwX0dzfQm0p5+PwIRe17Rsoet5kP/6fvfP+ayrb2vj6a6a9c+80yzQdu46KvTs2ZBQBURFQihRFUZAaCDX03ruFYgOxN8Repjv9zty5f8C7n212ZnsmISEcwjl6flgf8BiSnWR/z15r77WelXo0hbw3bNbd+GU9dMQc4AJ6WU8eP6bdQcFu84F6d3DR0oS86DZaYdXRHel54FhZXl4Rr1kpLq4w5v0wbepn0zkfWSbzqOZqjSbj4vf+8+c5G48fPeJ1/cP1scTjgnaFcC6amJ/e1NBii2OV/eH0YOvXe/NaefAxWYffrxYMNZPgIzkhSXdjl3OgUG8Lvd5HDx7SwwcPeI2yq3zIj8GZALhorG+hjPS/e8PrrU4WGsBd3Wc5H7KGhGHDM8QeWEMKci3Mz9Lf2aGwhQsWcy6g+X7/3n1aY62DGQ4fWCvARUN9MzXUNdFWa96a6DUv69pr/fMIDgnj2o5NzE805vnIDDm+4CM/J0/zNYjy+QhyM+Qc8Af37vO+CNAiRf7icPmYzz4HcIGcpLqaRpo+7XmcL/eOk+uA8do4M9fafin68qDXAvhYunSlMcdVsOjIaCovLqU9wXs0NzbkK+EcXegEywZGxONqqmvo7p27dJc9rq2lzeUYRPz/jsAgzkVddQPVVr/YJw4MyFwqxzHcHKzRtMSjqZwPaKAac1sdmzJ5Guejjs2x998b+RqizD21p03trF5O1pSSTeTSK/0caACh99Tg7UG6PXDbpf5s8v8diU/kXCDfO/7g87pdez13YRgrxodx2+u9Ib83ua5e5P8rr6tlqPlDb1DwMffzBcbcVtHiYuM4HxFhESN+LmWth9C1kq85q5cTfg0eJ/JklfMJ54TiTBv6x4OMi9u3Bmjg1i0bP67yUVvF2Kiso+qKWtruv8O2R+bOvhXGLXIBZD9MriMD52rn6O7ZE8n5KCwqN+a0ygaNCvDR2tQ84vwce7VQSi0oZ/UOYMGZb6/UIh1gbNy6eYtu3bhJe/eEu8zHtKkzqbqylqoqaqiqvNrW5wb8uXP2Iefyg21woHyPyh5pati5vkucj40q1TIY9qKls+8LfAT4bXc7fnbEh3INUaseSNZMR68paLLeuH6dykrKXI7Nv1iznnFRQ5Vl1VRR+rdWkrM+N84+C1HTIfpFjCYf3t5b6dqNQeo43m3M5VGy5UtXcj4qysrdmg9ijXBUSyvrIqrFh5z3kZyUQjeuXed6+tCadBaji+sBfoHsPVcxNiqpvKTC5lu5m48o9wOWe6CNJh85uYWcj9A9EcZcHkWrqayik8eO05xZw8/vxZwQNYPyXBExqbwnq1a9HO7v4h4f4B/I9YqvMrty+Qrv8+TKHlbc/kOcC2h4QNtmqNjcFRP7XOK9idhJ1A2Keku16qAmTPiYbg7c43y8bLo8WrPIiEjOR9x+9+arqI2TmRExqbI2To16Ocxhkc87b64XXWVcXLl0mfedmGeNI+zxIV/Lz7FQGYtpS4vKaNeO3Tbu3NXwkd+3HEMJXQbl9ZHa5s1bOR8NjW3GHB5lW+C1iPPR0aa/zxp7uuDiErOLFy7a9gOc8QEuSgpLqbigxFaDjJwrOY9ey5aXX8z5CJD0uQwbPWtqaKAzp3ro8znzND9W7GFFR4bb/o1eEBeZ/3LhfD9F7Yt2ygfyNEsKGBuWEipi8wxnQXr7vgYGH3A+DN/KMxYbHcv52B20Wxfjlf2ggvwC6u/rp/O95yk/1+J072rOrHlcN7Awv4jr6gk+4AMhdhI6Jfgpzmu0lK/o5bWY89HZdcaYux6yNavXcj4s+fmaHaOIc+BDyb1oTGkmxkYf9Z3rZetgo8M9LPHvjes2cS4KcgvIkmMZ8jVF7CCY0ULuVXhENOcjJTXDmLsesnHvT+B8XDjfN+ZjQZwr38PFT3Hmpoztg3YFU+/ZXr6/ix6RzvjYwPiwWNnIz35+P8DeleyzadnyWcwEPrYHBhlz14NWX1vL+cCe0FivE84egz0sUU8YtHM3Y+MsnT19hjF+xikfUeFRnAvoscbF/K0hqpd6qJ7TfZyP+fMXG/PWg5aSlMz58PcL0PxYZe3RObPncS5O95ym092nbJrLjs5A9oXtozxzLuVm5lKE9WwN54J66WU+ePcR58OYs561XTuDOB+xMbGaHyvWDnHWPWf2XN6j8VR3D/V0ddNs6zmnIz7QKyknM4eyM7IpPDTcxpsetHy8vJZwPrp6zhlz1sO2dMkyzkdJcbG++GDrRU9XD3V3dvM+jfb4kH9PS0qjbFMW75fkt9Xf9nx68K8EHxVV9cac9bDh7AN81NfVan6sch46dDS7GRddJzqp8/hJ2u4fOCQfWelZZE4z896sa1Y+7wmMc0E96F1FRMZwPg4eSjDmrIcN8wx8XLt6RRfxh9zrtpOxcZKxceLYCZ6TNRQf4CIzNYMyUkw2PkaaW+JpPsLDo405OwamFz6UdpJxgf7Xx9uP2XL1HfEBLtCn1cT8rNUrnueN6SW3xODD4MPV9UM+rzjefpyOtR2jjrYO8t8WMCQfYCOdsZF2NJVWWfXg1DCRwyzqBuX+KGq9hikjh/MRuEMfeQ4vm1VXVnI+vOYvGPE8gYmezqJuVpxtyP115OvDjUHE7+Cio7Wd2lvayM/Xf+j4nHGRlphCqQnJtGrZKn4NZ45yj1l7puxjoPwbvBdROyh61IoaGbU0gmrrmzkfXl7G2cdYWIHFoiof+F3kgYhzcMwruT+b3H9MmLInsj2zSD3WwEVbcyu1NrXStq1+Q/IBLlKOJFHy4aO00qqHg/lrTxtCNuUYRQ85wbZ438o6KGf93g0+Xm0+RI6f0C1wpa5OXl8cmfwc4KKlsYWaG5vJd8vQfCRb2eB8WNcPuU7Dkdlb4/B+BOue5GOVtb+VYfrhQ8wBJR9KfRtX+FDWWNkzOQ+rhXHR3NBETfWNjI9tQ/KRFJ/I2cAaIuKPkZwPgnusZTIfsn8l6tHV+H7i2biN+HzsrLurk/Mxber0Yf2dmAdgQMmH4Ab3WqGBI/tXopffcF5PrrGFNdU3UWNdIzXUNtBWa727Iz7ABXwsxCCrVzznYyT5JaKO1hPxubF/pd/9K8HIUPG5uI+OND7HWZ58ngcuGmrqqb66jrb4bB06PmdcpLMYHfu7a6z7u4j19dDTwODD2N91x+pr6qiOsVFbVUtfbt4yJB/Y28Ueb2aKidZK5+fyeaNWbcfOEM4H6muN+epZG/fBRM7HubPar0uDLyTr/ICLmsoaqq6oJh/vf/IhW1T4PspMNZE5LYPCQsJ09R0Z+VdjZyL/Sg/5ibJ9/OGnVMO4qC6voqqySlq7et2QfIQF76Ws9EzKNpkpwqq5qJf1Y+KEjzkf/ZeuG3PWw7Z1iy/nI8ts1vxYEXuIeHra1BlUxdioZGxUlFbQ1CkzhuQjPDSMcjKyKDczmyL3Rugq/oCJ+g+hx22Yh2K/sAjOR2iI9noeKA37sSJ/FzrC4KK8pJzKisu4Pok9Pmzaib4BlJeZQ/lZudzPwjWwoZf6qNb2E0b94BhYTlY252PFcu33WEG9hqivXbJoGZUzLsqKSqm0sIT37xyKj/Vr13M2LNn5VGDVZwAfjvLbxVkM9uK0oM+Qlm7mfISFRRnz1oMm9BkmWDU6x8owB53p6WAui/M8742bqZSxUcLYKC4o/gcPyn/jzLwgJ58Kcy1UlFdA777zAb8u65TIP8WZjVb6Rvn4+HI+yiu0X6fzshhq7sBHd2fnmI8F83A4+iXItwIXRZYiKsovdMoH9K7ARTF7bAn7m6mfPde/0ktPTsToQh/OmLuescCAQM6HKS1ds2NU6l+J6zFRsYyL51pvURGOz80EHx+y+QUuShlTZWzNWbJwqS1G14uGCerPwcdK6/mNYaNrGekmzsf6dRs0P1blXlMK78f7XM8qVJGDbo8PGOKUcuaTIW7ZbO0tA3/NXf12OU7xhD513MEEzkdSssmYv6Ns6B0FfWrwMX7cRM2PV3lWYeG9ePMpLzuP1q3dYNe3Ul47ejiRKkrKqbK0nA4dODTiMSl7N4icM2V/A7XyeJG/Cz7QP8qYw6Nrq1as5nyUFOkvZwG+eD7jAlpvueZcWjBvoUM+ZNsXvo+qyiqouryScjKzbdcP7o9xaxzy3paj/jgijlLrvff1X+H9P1as0H5/dj1b8tFkzscWny1uP4eck4h6D5G/KnrFiHvsSGsGYQHbttnihFkz5nAuhJ7V5E+nDMmHuO7j/SXVlFdRbWU11VXVjPgzREwk9g0EB6PdP+pA3GHOx9GkNGMej5KhtzP6q4GPcR9MUIUPzA9Riyr6HrtSM+iqyTH0ujXrORdZpiwyp5vt+lL2+EAfnbrKGqqvqqWGmjqaMW0mv474wx2dH9GzWvx0tc5lJDZ16kzOB/pzjjf6HIyK7di+k/NxJP7wiJ5H5gPrglgbxBxRa64gLpdjD+gfZpnMjI1Mipb2rpzx8f6743guPHLiG2sbaMO6jTb23MkzsVcjiHuC3N/ZXg37SK2krIrzERKiD21tPdkbr/8flRaVcD4WLnAvV8FezSDmvYhVRf9OtfjA3pWsw5OcmEyZaZmUkZpBvl9ucxp7yP+H+LyproGa65tsPeDBxlA6P+Be9DaXryvr5eVencr6STW/w02btnA+Tp3uM/KxVLbNm3x4//OigkK3/t5RzaC9ue9KzSA4wjwT8Yo9wx6s8K/eYa8PLkwpJkpPTredYziLzYXFsddvaWii1sZmKi4osssH3iPGI/pvivhJ7XVgJNZxvIsuXr5BwcF7jXmt4tphycnjfIwk38pRzaDo5Sr7FM7ic/jtSv0FoXciHoMcQpFXghhC1rL69OPJLvFh65OzfhO1NbVQe3MrdbS0Me7G29YIcCrel9IwzqEY9rRt3OjD+ejqPktvvWmsIap8pszfLi8updysHM2MCXMO81K+TwvDPhjmpXzf3urjy7WmUxkbKYkpTmMP5f+DJ+gCQTfrWFsHi83X2MYhvzY4EftRWv0+29pPUv+Fq7Rvn/a19zW/drz2FplNmZyPZUuWa3KMuIeDBfg1QvtAzFXxmP1R+zkXyQnJFBS4e9h8wLB3BU1SaJPGRMXY1kS8ruhhrofvdO7cBZyP3r5LNFmH/Ua1ZP6+AVSQa+FnyHoZM3wsoX/C5/Db73Iuko4ksfdxlFZYdd5ciT3kxxyJP8L3tjuPn6DqiqoX9sn0oFf94h5BCecjJ6fAmOcjuC9jPxR8iDoivZi87/r57HmUdJixEX+UEg8l8v6Jw4nN5XPCLua3dZ/spJ7OLtv5IuIcveQqChs/7kM6efIUnTnbz9Y+P2O+D9NeZ34VfBLwEWjtAaAn2xsabPsdfW0S4xMp4WACe08HXPatlI8DVz0nu+hUVzed7u6hnYG7bI/R2/oB82WfC/hoZ/HIpElTjXk/DPPesJnFsik83/WN19/S9XuJi46jIweP0OG4w7Rpnfew/17mqLiwmPctPNNzmspYTGaPRz1ZTo6FTp3qpcKCUt7TxZj7zm3m9Nl0JO4I52OSRurghmM4Mxf+DvzCI4yL+APxFL//EM/BGs7aoWQEZ4NnT53hvaF7z5yj8R9oP4d5KINOU3vbCerqOk0x0QeM+e/E3n9vPEXujeR8rF+r/foOZ4b1In5/PB2KPUQHYw7a/CB3+fiM+SG9Z85S39lzdP5cr03/HfXtetD8sWfo6Qs+ThzvJu9NXxocODDMndCgUNq/bz+F7ArR5XtAvqB8ph0TEcO5gI/lI3337vIBg7Z1f28fXeg7T9WVVS79PfZ+saemZs6hmuaz2Zfz0cFikZVGDvw/43HGxu6dwXSAxa+ReyI1F29ifuE80Nm5m7zXOmXSNIqLiePvCczPnDbbLTaUjAQHhdCF8/10sf8CXbpwkaZYa9KVOr8w7DVj3Dgj0YpmgyOLZv4V+Ght6SCv+YsMLiTbtsWP++iRe/fR+++O1+QYwYg4B8RP5XkcfBx57YB/KNiIjYx127dS8oG9UXBx+eIlunLpMsXG7H+BT2fj1LJF7YvlfFSW19AnH00y2EA8672F73+Cjw/e0yYbSsM6gvsyTNyXZc0E/C64gKH2w13fyt7fYR/r6uUrdO3KVeplsYi4LvJe3M0vwd+LHAC5XkzWtpevq22on84y51JTQyvV1zbSsqXa1zcbNZ/qtbdoh/8OnncBPmbP/FyV53WUjy7nrcvzwF4/suGsKfhbkeNh82vmzOdcgJEDzG/4zLq/7y4bSkY2bdxM169epRvXrtHN69d5frManx0+H/E+RL0YfsdnJdYhxDFq9gmxx8jRhGTOR01VHS1drM28otE05FXFsLUU+d7gY86suao9t8wH/AuRm4t8KHzPuCbntcJHl3N63TU5dzdkVyj3rRCbh0n1QGrxAevr7aVbN27QwM2bzB+psF1HzrC7/aVEHrLQn8PnhOvy56Osjxkt2xsazvmoLKsiP9+AV4YNaDphvUCdaeLho6rv4Sv5EHmC8veqrKEbCR/w+eX5+NHET/h+FfZ0DzOfcdmSFaqwIZ5DPE/cgYOMjVt0e2CABm/f5trXYjzu5pvI2iZgQzA/FnzAtgfs5HyUFZfz+ylqHV5mNhYvXMK5gIYH1g019UHxXQp/R/aXRM89T/GxxXsrj6VwhpN4KIHvzanFh/w8E8d/RIMDt+nO7UG6e+cOmdJNL6whQvPXnfVDjrHE5yP8K7H+emrOLFm0nPNRZCmmzDSzzVd9mexNxv3uXcFc6wzagdj3hI+l5mvgexO1FzIfoq+3qCtV+tmi97EabPzr7Xd5HkkC4wL5iCM583DFx0pPM9G9O3fp/t179ODefa4hJMblDh/K+FzkIHsqPnfoc7A1OTUpjSw5BVwDBjp5r7+m77wjYdOnzaTszByu6w8+tlprr0fD8H3ai7dFz3BX43NX90SVWurIG4PviFz2lMRkm++oFhtKRhZ4LWJc3KOH9+/TowcPyZz5ty6KrBs/1N6CluoLh4xZ2T020H8H5yMr3cxiuziaPnWmfteMN97m+UINtfW8nxi0A5HrrYexYz/KWS9w7OHKawfqPJLQizkhmdcJhgSFqr522Hu++to6evTwIT159IiePn7M7rXPmUAM4ogPWfcLP/V0RoK8fsR1qFdOTUihoMAgW72yHuytN9+mAL/tVFtdS82NzZyP0OA9uomthL8l1hZHZ8/KtWPl8tU8p5L31Ewx2XIr1WZDyQj0XJ4wLp4+eUJfPX1KOdk5DseIGE1ZW68l/QZXDb7V6hVrOB/oD5+elEp7g/faamK0ycW/eE1CS1MLrwFtb2knc4aZZkybpbvPX9Styj43fBFxn1Xem/F9IeYwpaSzGDKD9kq9NEebD1hTYxN9/dVX9M3XX9O333zDxvbJC3GIs/ejV8Oa/SWL8cCHOS2T99qKjoiixQu0018L+Q5RkdF04thxOt1zirpOdrFYo5xWvQR5Zvbut/BNlHz4smsZ6DOLXpoZWU61Q9VmZNHCJZyL7779lr7/7jvKz8v/x76Fs/VQ15wwzv22+HE+0EsI/SDQVwi1dWORpwJ9L+9NPlRSVMJzgfr7ztO5M+eorqaO1q7+4qXbf8Mck7VKwIy490LbCrpvqHWEfnRkWOSorx32nr+1tZV++P47evbDD/Tjs2c0a+YcG+NCL0LLuiZq2Dv/fp82fLGR0pPTqLKknGorqqmR3Q/QiyiKrSu4j4xWHdZ05ift2rmbqquq+ZnUzes3eP4P+DClmWipRvVF1LxHwScRe8jietCOIMpmXOSac7g++2eTp3qEDSUjM2fMpmfPGBs/PqOffvqRjrP1XN6/c2e/V9dr/5z5tIfFvRUlZVxX71hrO9e2ONXVw2LiBr43HhIcSvPnLiCv+Qtdft6PP/qUz3V/FmMf2B9HLS2t9BXzbR+zGPDB/Qf8LAp8NDU0UoD/du5fvSqfOfasZM3eyZOmcC7ysnPJkptP0ZHOdXVHcw0psBTQzz//RL/88jP9+usvtHHD3/W80JJ/lfiQbQGb/yFBIVSQZ+F8oP4SPg9yoK9fvcbzEO6xef3owQMauDVArWzOd7R30AnGU1dnF125cpn++uu/9Ocff9Dvv/9Gv/7yC78H/fDD98yv+JbzcevmTSoqLKad7H45cYJnNbjF2bi8xyS0lOXHiWvKvn9qGTTT5dyNuNg4sjA/F597kaXQ1j/TU2woGfnow0/p6dMn9Ntvv/LvcXBwkJ9Zisdh7HrUclDbcM6wzdeP97srLS6lbsaA4OOrJ095HAcfFRz88cd/OBsyH+DmWMcxvn6s+2KDrQ/xWJl8FiHO9uRcIVyHzyP3RVK7Vk6Z07Ry+SquPQTftqSgyFbrOpZ8wOIPHab//P47/17//PMPMpuzbP8HLSBXNN9Fz4NXkR3M9cWLltKSxcu4H7Vs6QpavkzbefYyH6JPrPg/kTul7HvjSg7dcPb+Zf8EZzlZGVlcKxo5Afk5ebbzHU+zYY+RO+xe+F92jxD3vTmz577A+VCMYO3FHtdw1mCh/a68NpY5Ka+S2TvLFrVA+C6VfLiaYyr2b4c6B7DXKzYsNIxKmK8JjZ2K0jJ2X15mm6NjyYd4bdzvwMX//vcXtyuXL9sehzjdER9Cl3645yJ4vNzLEObJmpFX1USvPJkPfOaY17gu8iTc5UM8H3wzR/4E5pLcKxa+a1lRCf1/e2f6H1V5xfHzn/RdN9vaKqCCqAUE2VwQUZaQlSRsBalGZUtC9n0h+74vk4TsO9kTQlgEaalordIXttqPLa1/QZ/fM5zhmZs7M/eGmZBk7ovzAYbJZO69z/c563NOfU0dNdY1UGJ84hOzq9zpkMLCIof++PHH/1FKcqrTNWnPqquztBb6rNR7/qRq4v1JOLfFs434XvO/uX8571f4N9dls14x83y1cz60dbD2WQtlcpZsU30j2Rqb6Xe/XbUk2NAyAr/83r17kg3YWvBFtmze6rgurh3DPqOe9VioaHWIxcfiMaLOOeK9js8Fas+Das/2mBGeL8N2gbYGVs6SrW8QXDRRS5ONwsMilozu0LOzdu/eI7lA3AX+ujaepb1eb+h71d59UmdGLPGduNpPD+wLkH3TW5qaqc3WQqmKvbJU2ND7Pvn5BfTfBw/owYP/yNhkW9slJ//LG0xoZ6BY/rl/+D78d+RM4Y+3NrfQpRacia6X83SftE9u1M66KnQq2EBe5N8//EDHjj3q+a3XN8sS/xIz9gNiVao//oufP0W5ghWcs2jHjMxL7TL3sVR1h56dBb/j/v1vZE4dOS/k17k+ayH27nKsibdEX2API29olBFtPPfjqE8EF22ynqaro4POnj675NnQ+37QGeAC9Sf/+v57un3rttAtj+K8RupP+HwmxF/zhyvNl+DabiOMYI2o/jhmjXcIe72rvYO6O7uouLBInotcDmzoMVJRUSnrhr7/7jtZPzE5Men0XnezqFQ2zMYGLTG3Zrm+j+sYVOE1DN9Rr8bKrOBzPDGilwPctHEzdYKLjk7q7UI/vxbxvV9a0j6HEUamJifpn4IN1MH/49tvqbTk0VkR7A16vYF8wYbaMxt/8nPB2uAeNOrr/uT3qj1k+DyFOq8e94XnLvOfvmRE63OsW/uS7I3e09VFfT09NNDbR3vf27ds7Cp3vsivhI748osv6FvBBs5SoRZPm/dR/XVf6Q3ECLnXDP8dr+P5IH6P13lmvb/ygXWK+66N/Wnz5d7qb6jHCNaCWm8B+6m6sor6unuov7eXBvv76bgS71lubOgxgrMi9z7/XNZm49whzuVGKvWVrEN8aVOpz1jNH/p7XlHbvw1sYO9Q9YQ3+7d5YkTlA2zAx+jvEVz09dPQwADFRscuezb0vv/hyKOSi79D7t+XvR0iIw47rU1f+ht8JpPrsDkm5q984Pq5ryvzwbYmv4fPgPqKDy0j6r0HGyVFxTTQ1ye5wKzYqooKx3nM5eZzGGEEOgNcfAP5+mvZBwX9UNTY30LYMOIzqj2QeY/0Zz54XYIBPfuK66rwPrZL8RrvM+64W8h34d/Fr0Wfi5a21PDgII0MDwsbq3LFsaHHSPT5WMnF376CfEW3b92SPf1c+WaeRJ39vhD/g3tdcr2jepbBHxjBNav3T62bYm6YEW2NlZ7g/7T+pTuBPaU9ix1zPkaeTb48NESjly9Ln3zVs2tWJBt6jBTkF8oec3/98kt5hvrTmzcdjHBsDzaop7NVPK/Kil8tLcEz8VRLhOcM0cb44V8wF2MjI9Inx7nyleJzGPHXIfl5+TKu9cW9e8J3vyfPjISFhjvtK+7qUPicgLUel6bg2bjba7R2Avo8XoiJlbYUuJgYG5W+h9offKWy4YqRi7l5st81enD85e5duvvnu4IR55myuId6egT3fzH7arFvoq3X9kYd9+PaSHo6VN3DuV+f1m7ypeDZuPIltbOP4VfA9x4buUzjo6M0OY75wv2O3jz+wIYrRtD3BjMTMDsBfWr+dOcOhYaEOe0z0L+qjcq+4mJ+b1ezfLiHH17HelhsneYqpqDGnLjen88wwS9fKMdm9iS+V+6eJdiA723nYoymJiaETz7gl2y4YiRH3EP0ubnz2R26c/sz2essMyNrnh7Ru+dGfXhv7JlcX6H2GzAb/+LzqHqfq76u9sxxZ6cY4UOb4/DUC93V9wb/6jlmI6LuZdp+PPArWm02YUuBi3GamZqUvoc/s+GKkT8cP0Gf3b4t6xhvfXpL9okqLCiSvTO1z8jsfsfx9cepA2bdwGeyFsqH9j16fXA49qrO6dNbk1wvpX4ev8/bfEDwXXC9ZmN8er4IenjA954UXExPTtKV6Slqamig1aue83s2XDESEhwquUCfTMzLvSGkxdYyryeg9oy+p3WtzT0t1L7yRv5d+x69Pjja9azXq5XzE9peFByj9gUfag7XiH3GsVuwofIRfihC+hjTkxM0I7iYnZmh5qZGsRf+2mLjJ+5jv9u37RT3bkLOWke/QfSTHRsZlX2h1Nggx4Dd9TE1+zw92QlqjR6vN7UvGvZ5T7F/d3zw/xldz1yPo9UfvM+rPGv10ePEpTztNxy3xTNS7Sn4GgnxCdLHgC01OzNNV2evUGpKioONlZrf8CYjr7y8gWzNNpqbnZNnEa9emZX9OTEzT6tHsEfx89Db871Zr8I13kb8B72fBTve5IM/V/t72e5y1QP0cXI8+Bzec1zlCdGLQxubh69RV1tL04KLK+DiyozY+2YpJjrGpT1hiWtGsJ8g/gsurkzPiP1mRujjaSotLqVVmhnEerkS3lvN+JP4GV/FjHlfV3twQvT64IAjNd4EfeXLWLa27sqILuX5G+rr0BXa2C0kIjxS1lDBx5gVXMwJLsbHRikoMNhi4zF9EuiMmalpwcaU0MuT0vbq7+2X/Ti1P4t+pju27XD0/tGb9ejJdvDltXFOU/Vv9fInTyJfYcbn5hm0fH9h4wYGBMx7H+ypnKxs8fympC01N4se3VdlzAo2gsWGdxjZ+tp2GugboImxCRofHafxkTHZFz09NUN3voar/c2TX+DP59zBqZnr1+pn7TlQ9BJGHoN9jGtzs8KnnKPCggKnmKTFhXcYAQdFBUXSVx8VbIwMj8jZYV3tnXIOjfbZsd2idz7xcfdProlc6rVanBc02uvIqJ/Gvh7rN9X2kzojO0fYUo98jOuCC8Rxg4NCLJ3hY04OhYZTd0cXXR4cpuGBIRrqH5TzJ3OzcwULq51sAPv7Q52eqSv720ydI/unS31uHK7JTL4C3Bu5JthS2He0+wPO8wwPDdp9jIe21M3r16ittZXWrH7eYmORGHn2mTWUl5NHg4IN2F3wR/p6+qi3u5eORB519LRQ5eMoe+xLrx8E9102aofweTejdpsvbCFffFesd3csYa/Ri6fD/m2or3f4GNcEFzeuz9GnN6/TR1EfuYzBWOK7+BYEMynbhE3QJ7jo7eqhns5uoVu6qbmhmfYoPcNUOXXixDxOzNhWZvdkM+/T9rV1Fz8yq+uM2oJ6/fTBhZ6duvrZ5ygpMckerwUXV+0+xs0b16m2psbSGUtCl6ymxPgkyUVXexd1Cn+k41IHdbS1U3lJOe3Y/rpbTmCjm+lFyrk3oz9jdC1zrsaIvsF3Nprv5M816nurcQr0n9LjAj7GuTPnZLz26sN47fVrwpa6cU3mxFEH4e6ZWbK4jEA2bdxClWWVkgv0ncRMzDZbG7U2t1JyYgpt37rT7fqF3eBpFpyaGzOyH2MNG12XZvgw04eKY3lGfG9mwdV7wcWp9/84z8e4IXwM2FJxsRfmxaYsLpYWJwcPBFFddZ3koqWphWyNNrIJe6u5vknO4NLLm0B4Fhxyv+7m+Zip5TKzjs3wAU6NnmHlGht3sW7Orerl9iDIxyYmJMqz4PN8jIe21O9f2WhxsUw4gX8eHhpB1RXVsgd+k2Cjsa6RGmobqL6mnvKy8yg4MNQxo04V8IF9FH/yzBIWrnU0ajPhfUbtfjN8mLHbIJwrVW0y7AHIpbqr9dy6ZZvkYkZTE2L3Ma5JLnZs32nZUsuIESdOxPoPCzlEFaUVkgvoldqqWqqprKEawU51eRWdPP6+4GCDrq3B9V28fjhnbNT2N7OGzfJhJqbANYXQObgecAFbUss/21AB+w/SpdY2R925k48hbKna6mqLixVkc0FPhASFUmlhyUMuqqmqrIoqSyupoqSCyovLKT0lg/a8/S49/ZtnXMaCuG8a1hbsMW+uYV/oD+61Bi6455erWs5db71N8XHx8+rOVR+jxuJixXPy5uu7KCs9y8FFWVGZ4KaUSgpKqDi/mIryiij2XCztfusdetqFbaTyEX32tPTt8W/2XXj9+ZIP9qF5vbO9xN8J+g/fyV39P+ZKxwl20D/HfobPue6ca0LS09LEZ1tc+IvdBdny6lb68FSU1CklBcWCjSLBRiEVXiyggtwCys/Jl37KudPnKSggmF5c+5Lb38N+i2qP8R7PcVL8HzPEPjFzpvLB57T5/IT6fp4LwZ8NJuBXq36Eq5oa5FX37d0v+4Sg17O9T4j9bKusO1dqQsBM1IdRTjkMiwv/4wT21Du79lByQrITFxezLlJuZi7lZORQdno2ZaVlUVJcEh2NPEZv7HyL1r2w3vDvVvsS8Lxr5oJjRiofnI/D2mcbifngP43k+5EbQn/KqA+iqLy0zNGLUO0Twj4G152npqTSnt3vGtLHlviP7QVZs+p5Cj4YQvEx8U5cZKZmUobwT9KT0yktKY1SE1MpJSGFkuOT6YOTH9DePfvFWn6dXnhunccciq9k3dr1tHPHG3Q48oicAV5bXePodw4uuOeao08IfIyHded5uRcp6GCQ0/lWd3uKJf6tUyConXjvnb30yYenKSNZsJEk2EgUbCQINuIFG3HJlHQhiRJjEykhJoHio+Mp7nwcXTh3gc5EnaHDh45QWNAh2vXmbtop2Fn7/ItS52jPdhkR+E3IL2x4ZRNt37pD1miGh4VTSlIK5eVclDOVOh/OVOrt7pb9zh19nR1cjDh8jKHBAcrNyaFAHSYsXWGJWVZ+9tNf0mubt1FIYCid+eiMSy5iz8ZKwd/xekJsgrTJwFOa0DnQP9BF2elZlCv0E2y4/Jw86fPA/ykRvlBZcSlVlJRTVVklVVdUUW1VDdXX1FFjbT011TeSrbGZWpttcm5re5t9PiXPVJKzY8BFP/qdDzr1IkQv9FMnT8laQrPXb4klZtYK/IGX12+Q+uVI+FEnLsAKuAFDsL9gi0H3ZAr7DLZajuQiV3IBfwcxAcQHyopKqbykjCrLKmRepraymuqqa6lBctEguMCsbxu12VrlfMpOOZ+y0z5Tqds+U4ltKcxaykhLlzoGfXQWep2WWGKGFXfrCHOy4H+8Leyp4IAQOnH0JJ0/fV76LVlpmYKLbOnvw/cvyM2XXBQLLhA/Ky8WXJRWUFV5pZzrLbmAzqhrkPn/lqZmwUWLzNnxfMoeYUtlZ2bJ86vHjhynfe/tl3ODvXEtlljia1609tn6dS9LgR9/YF+AzFEfPBBIgQeCZPw4+KCQwBBCHjM0OEzm/dnPiDgUQZs2vCpnVL66cbNPv6sllviamcVei0/691tiibfWrTfFuseWWGKJJZZYsrTk/1BLAQIXCxQAAgAIANqIPlsedTp/OUAAAABxAgAEAAkAAAAAAAAAAAAAgAAAAABkYXRhVVQFAAclDtxoUEsFBgAAAAABAAEAOwAAAGxAAAAAAA==</Data>
|
|
</Bitmap>
|
|
</BitmapList>
|
|
<SignalSpec>
|
|
<Description>Vehicle Speed Sensor (PID 0D) (Value [km/h])</Description>
|
|
<Equation>Int(({Vehicle Speed Sensor (PID 0D) (Value [km/h]) :in13-sig0-0}-160+2.5)/5)</Equation>
|
|
<Format>0</Format>
|
|
<Min>0</Min>
|
|
<Max>255</Max>
|
|
<Units>km/h</Units>
|
|
</SignalSpec>
|
|
</GraphicalDisplay>
|
|
<TextDisplay>
|
|
<Key>txt2</Key>
|
|
<Width>64</Width>
|
|
<Height>30</Height>
|
|
<Top>141</Top>
|
|
<Left>209</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>12</FontSize>
|
|
<FontName>Eurostile LT Bold</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>12632256</ForeColor>
|
|
<Caption>km/h</Caption>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt0</Key>
|
|
<Width>60</Width>
|
|
<Height>30</Height>
|
|
<Top>120</Top>
|
|
<Left>211</Left>
|
|
<BackColor>0</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>14</FontSize>
|
|
<FontName>Eurostile LT Bold</FontName>
|
|
<ForeColor>16777215</ForeColor>
|
|
<Caption>0</Caption>
|
|
<ShowCaption>1</ShowCaption>
|
|
<SignalSpec>
|
|
<Description>Vehicle Speed Sensor (PID 0D) (Value [km/h])</Description>
|
|
<Equation>{Vehicle Speed Sensor (PID 0D) (Value [km/h]) :in13-sig0-0}</Equation>
|
|
<Format>0</Format>
|
|
<Min>0</Min>
|
|
<Max>160</Max>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
</SignalSpec>
|
|
<NumDecimals>3</NumDecimals>
|
|
</TextDisplay>
|
|
</Dialog>
|
|
<Dialog>
|
|
<Caption>Signals</Caption>
|
|
<Key>dia3</Key>
|
|
<BackColor>0</BackColor>
|
|
<ForeColor>12632256</ForeColor>
|
|
<TextDisplay>
|
|
<Key>txt0</Key>
|
|
<Width>120</Width>
|
|
<Height>21</Height>
|
|
<Top>1</Top>
|
|
<Left>16</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>65280</ForeColor>
|
|
<Caption>MAP</Caption>
|
|
<Alignment>0</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt1</Key>
|
|
<Width>60</Width>
|
|
<Height>23</Height>
|
|
<Top>3</Top>
|
|
<Left>118</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>65280</ForeColor>
|
|
<Caption>0</Caption>
|
|
<Alignment>1</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
<SignalSpec>
|
|
<Description>Intake Manifold Absolute Pressure (PID 0B) (Value [kPa])</Description>
|
|
<Equation>{Intake Manifold Absolute Pressure (PID 0B) (Value [kPa]) :in11-sig0-0}</Equation>
|
|
<Format>0</Format>
|
|
<Min>0</Min>
|
|
<Max>255</Max>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
</SignalSpec>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt2</Key>
|
|
<Width>48</Width>
|
|
<Height>22</Height>
|
|
<Top>3</Top>
|
|
<Left>185</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>65280</ForeColor>
|
|
<Caption>kPa</Caption>
|
|
<Alignment>0</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt3</Key>
|
|
<Width>120</Width>
|
|
<Height>24</Height>
|
|
<Top>37</Top>
|
|
<Left>16</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>65535</ForeColor>
|
|
<Caption>MAF</Caption>
|
|
<Alignment>0</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt4</Key>
|
|
<Width>60</Width>
|
|
<Height>23</Height>
|
|
<Top>73</Top>
|
|
<Left>118</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>16776960</ForeColor>
|
|
<Caption>0</Caption>
|
|
<Alignment>1</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
<SignalSpec>
|
|
<Description>Fuel Pressure (Gauge) (PID 0A) (Value [kPa])</Description>
|
|
<Equation>{Fuel Pressure (Gauge) (PID 0A) (Value [kPa]) :in10-sig0-0}</Equation>
|
|
<Format>0</Format>
|
|
<Min>0</Min>
|
|
<Max>765</Max>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
</SignalSpec>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt5</Key>
|
|
<Width>49</Width>
|
|
<Height>27</Height>
|
|
<Top>37</Top>
|
|
<Left>185</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>65535</ForeColor>
|
|
<Caption>g/sec</Caption>
|
|
<Alignment>0</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt6</Key>
|
|
<Width>120</Width>
|
|
<Height>24</Height>
|
|
<Top>72</Top>
|
|
<Left>16</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>16776960</ForeColor>
|
|
<Caption>pFuel</Caption>
|
|
<Alignment>0</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt7</Key>
|
|
<Width>60</Width>
|
|
<Height>23</Height>
|
|
<Top>39</Top>
|
|
<Left>118</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>65535</ForeColor>
|
|
<Caption>0.00</Caption>
|
|
<Alignment>1</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
<SignalSpec>
|
|
<Description>Air Flow Rate from MAF Sensor (PID 10) (Value [g/s])</Description>
|
|
<Equation>{Air Flow Rate from MAF Sensor (PID 10) (Value [g/s]) :in16-sig0-0}</Equation>
|
|
<Format>0.00</Format>
|
|
<Min>0</Min>
|
|
<Max>655.35</Max>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
</SignalSpec>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt8</Key>
|
|
<Width>48</Width>
|
|
<Height>22</Height>
|
|
<Top>72</Top>
|
|
<Left>185</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>16776960</ForeColor>
|
|
<Caption>kPa</Caption>
|
|
<Alignment>0</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt9</Key>
|
|
<Width>133</Width>
|
|
<Height>26</Height>
|
|
<Top>108</Top>
|
|
<Left>16</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>65535</ForeColor>
|
|
<Caption>ThrottelPsAbs</Caption>
|
|
<Alignment>0</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt10</Key>
|
|
<Width>60</Width>
|
|
<Height>23</Height>
|
|
<Top>147</Top>
|
|
<Left>118</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>33023</ForeColor>
|
|
<Caption>0.0</Caption>
|
|
<Alignment>1</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
<SignalSpec>
|
|
<Description>EGR Percent (PID 2C) (Value [%])</Description>
|
|
<Equation>{EGR Percent (PID 2C) (Value [%]) :in44-sig0-0}</Equation>
|
|
<Format>0.0</Format>
|
|
<Min>0</Min>
|
|
<Max>100</Max>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
</SignalSpec>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt11</Key>
|
|
<Width>48</Width>
|
|
<Height>22</Height>
|
|
<Top>110</Top>
|
|
<Left>185</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>65535</ForeColor>
|
|
<Caption>%</Caption>
|
|
<Alignment>0</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt12</Key>
|
|
<Width>120</Width>
|
|
<Height>24</Height>
|
|
<Top>145</Top>
|
|
<Left>15</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>33023</ForeColor>
|
|
<Caption>EGRcomm</Caption>
|
|
<Alignment>0</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt13</Key>
|
|
<Width>60</Width>
|
|
<Height>23</Height>
|
|
<Top>184</Top>
|
|
<Left>118</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>65280</ForeColor>
|
|
<Caption>0.0</Caption>
|
|
<Alignment>1</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
<SignalSpec>
|
|
<Description>Remaining Battery Pack Charge (PID 5B) (Value [%])</Description>
|
|
<Equation>{Remaining Battery Pack Charge (PID 5B) (Value [%]) :in91-sig0-0}</Equation>
|
|
<Format>0.0</Format>
|
|
<Min>0</Min>
|
|
<Max>100</Max>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
</SignalSpec>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt14</Key>
|
|
<Width>48</Width>
|
|
<Height>22</Height>
|
|
<Top>147</Top>
|
|
<Left>185</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>33023</ForeColor>
|
|
<Caption>%</Caption>
|
|
<Alignment>0</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt15</Key>
|
|
<Width>132</Width>
|
|
<Height>26</Height>
|
|
<Top>180</Top>
|
|
<Left>16</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>65280</ForeColor>
|
|
<Caption>RemainBatPwr</Caption>
|
|
<Alignment>0</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt17</Key>
|
|
<Width>48</Width>
|
|
<Height>22</Height>
|
|
<Top>182</Top>
|
|
<Left>185</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>65280</ForeColor>
|
|
<Caption>%</Caption>
|
|
<Alignment>0</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt21</Key>
|
|
<Width>120</Width>
|
|
<Height>24</Height>
|
|
<Top>213</Top>
|
|
<Left>15</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>16776960</ForeColor>
|
|
<Caption>TCool</Caption>
|
|
<Alignment>0</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt22</Key>
|
|
<Width>60</Width>
|
|
<Height>23</Height>
|
|
<Top>244</Top>
|
|
<Left>118</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>16776960</ForeColor>
|
|
<Caption>0</Caption>
|
|
<Alignment>1</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
<SignalSpec>
|
|
<Description>Ambient Air Temperature (PID 46) (Value [°C])</Description>
|
|
<Equation>{Ambient Air Temperature (PID 46) (Value [°C]) :in70-sig0-0}</Equation>
|
|
<Format>0</Format>
|
|
<Min>-40</Min>
|
|
<Max>215</Max>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
</SignalSpec>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt23</Key>
|
|
<Width>48</Width>
|
|
<Height>22</Height>
|
|
<Top>215</Top>
|
|
<Left>185</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>16776960</ForeColor>
|
|
<Caption>C</Caption>
|
|
<Alignment>0</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt24</Key>
|
|
<Width>120</Width>
|
|
<Height>24</Height>
|
|
<Top>241</Top>
|
|
<Left>15</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>16776960</ForeColor>
|
|
<Caption>TAmbient</Caption>
|
|
<Alignment>0</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt26</Key>
|
|
<Width>48</Width>
|
|
<Height>22</Height>
|
|
<Top>245</Top>
|
|
<Left>185</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>16776960</ForeColor>
|
|
<Caption>C</Caption>
|
|
<Alignment>0</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt28</Key>
|
|
<Width>60</Width>
|
|
<Height>23</Height>
|
|
<Top>214</Top>
|
|
<Left>118</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>16776960</ForeColor>
|
|
<Caption>0</Caption>
|
|
<Alignment>1</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
<SignalSpec>
|
|
<Description>Engine Coolant Temperature (PID 05) (Value [°C])</Description>
|
|
<Equation>{Engine Coolant Temperature (PID 05) (Value [°C]) :in5-sig0-0}</Equation>
|
|
<Format>0</Format>
|
|
<Min>-40</Min>
|
|
<Max>215</Max>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
</SignalSpec>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt31</Key>
|
|
<Width>60</Width>
|
|
<Height>23</Height>
|
|
<Top>110</Top>
|
|
<Left>118</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>65535</ForeColor>
|
|
<Caption>0.0</Caption>
|
|
<Alignment>1</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
<SignalSpec>
|
|
<Description>Absolute Throttle Position (PID 11) (Value [%])</Description>
|
|
<Equation>{Absolute Throttle Position (PID 11) (Value [%]) :in17-sig0-0}</Equation>
|
|
<Format>0.0</Format>
|
|
<Min>0</Min>
|
|
<Max>100</Max>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
</SignalSpec>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt33</Key>
|
|
<Width>120</Width>
|
|
<Height>26</Height>
|
|
<Left>254</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>65280</ForeColor>
|
|
<Caption>nEngine</Caption>
|
|
<Alignment>0</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt34</Key>
|
|
<Width>60</Width>
|
|
<Height>23</Height>
|
|
<Left>366</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>65280</ForeColor>
|
|
<Caption>0</Caption>
|
|
<Alignment>1</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
<SignalSpec>
|
|
<Description>Engine RPM (PID 0C) (Value [rpm])</Description>
|
|
<Equation>{Engine RPM (PID 0C) (Value [rpm]) :in12-sig0-0}</Equation>
|
|
<Format>0</Format>
|
|
<Min>0</Min>
|
|
<Max>16383.75</Max>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
</SignalSpec>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt35</Key>
|
|
<Width>48</Width>
|
|
<Height>22</Height>
|
|
<Left>433</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>65280</ForeColor>
|
|
<Caption>rpm</Caption>
|
|
<Alignment>0</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt36</Key>
|
|
<Width>120</Width>
|
|
<Height>24</Height>
|
|
<Top>36</Top>
|
|
<Left>254</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>65535</ForeColor>
|
|
<Caption>vVehicle</Caption>
|
|
<Alignment>0</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt37</Key>
|
|
<Width>60</Width>
|
|
<Height>23</Height>
|
|
<Top>70</Top>
|
|
<Left>366</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>16776960</ForeColor>
|
|
<Caption>0</Caption>
|
|
<Alignment>1</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
<SignalSpec>
|
|
<Description>Fuel Rail Pressure (PID 23) (Value [kPa])</Description>
|
|
<Equation>{Fuel Rail Pressure (PID 23) (Value [kPa]) :in35-sig0-0}</Equation>
|
|
<Format>0</Format>
|
|
<Min>0</Min>
|
|
<Max>655350</Max>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
</SignalSpec>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt38</Key>
|
|
<Width>48</Width>
|
|
<Height>22</Height>
|
|
<Top>36</Top>
|
|
<Left>433</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>65535</ForeColor>
|
|
<Caption>km/h</Caption>
|
|
<Alignment>0</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt39</Key>
|
|
<Width>120</Width>
|
|
<Height>24</Height>
|
|
<Top>70</Top>
|
|
<Left>254</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>16776960</ForeColor>
|
|
<Caption>pFuelRail</Caption>
|
|
<Alignment>0</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt40</Key>
|
|
<Width>60</Width>
|
|
<Height>23</Height>
|
|
<Top>36</Top>
|
|
<Left>366</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>65535</ForeColor>
|
|
<Caption>0 km/h</Caption>
|
|
<Alignment>1</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
<SignalSpec>
|
|
<Description>Vehicle Speed Sensor (PID 0D) (Value [km/h])</Description>
|
|
<Equation>{Vehicle Speed Sensor (PID 0D) (Value [km/h]) :in13-sig0-0}</Equation>
|
|
<Format>0</Format>
|
|
<Min>0</Min>
|
|
<Max>255</Max>
|
|
<Units>km/h</Units>
|
|
</SignalSpec>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt41</Key>
|
|
<Width>48</Width>
|
|
<Height>22</Height>
|
|
<Top>70</Top>
|
|
<Left>433</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>16776960</ForeColor>
|
|
<Caption>kPa</Caption>
|
|
<Alignment>0</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt42</Key>
|
|
<Width>120</Width>
|
|
<Height>24</Height>
|
|
<Top>107</Top>
|
|
<Left>254</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>65535</ForeColor>
|
|
<Caption>UBat</Caption>
|
|
<Alignment>0</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt43</Key>
|
|
<Width>60</Width>
|
|
<Height>23</Height>
|
|
<Top>145</Top>
|
|
<Left>366</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>33023</ForeColor>
|
|
<Caption>0.0</Caption>
|
|
<Alignment>1</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
<SignalSpec>
|
|
<Description>EGR Error (PID 2D) (Value [%])</Description>
|
|
<Equation>{EGR Error (PID 2D) (Value [%]) :in45-sig0-0}</Equation>
|
|
<Format>0.0</Format>
|
|
<Min>-100</Min>
|
|
<Max>99.22</Max>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
</SignalSpec>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt44</Key>
|
|
<Width>48</Width>
|
|
<Height>22</Height>
|
|
<Top>107</Top>
|
|
<Left>433</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>65535</ForeColor>
|
|
<Caption>V</Caption>
|
|
<Alignment>0</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt45</Key>
|
|
<Width>120</Width>
|
|
<Height>24</Height>
|
|
<Top>145</Top>
|
|
<Left>254</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>33023</ForeColor>
|
|
<Caption>EGRError</Caption>
|
|
<Alignment>0</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt46</Key>
|
|
<Width>60</Width>
|
|
<Height>23</Height>
|
|
<Top>179</Top>
|
|
<Left>366</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>65280</ForeColor>
|
|
<Caption>0</Caption>
|
|
<Alignment>1</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
<SignalSpec>
|
|
<Description>Driver's Demand Engine - Percent Torque (PID 61) (Value [%])</Description>
|
|
<Equation>{Driver's Demand Engine - Percent Torque (PID 61) (Value [%]) :in97-sig0-0}</Equation>
|
|
<Format>0</Format>
|
|
<Min>-125</Min>
|
|
<Max>130</Max>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
</SignalSpec>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt47</Key>
|
|
<Width>48</Width>
|
|
<Height>22</Height>
|
|
<Top>145</Top>
|
|
<Left>433</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>33023</ForeColor>
|
|
<Caption>%</Caption>
|
|
<Alignment>0</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt48</Key>
|
|
<Width>120</Width>
|
|
<Height>24</Height>
|
|
<Top>179</Top>
|
|
<Left>254</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>65280</ForeColor>
|
|
<Caption>LoadDemand</Caption>
|
|
<Alignment>0</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt50</Key>
|
|
<Width>48</Width>
|
|
<Height>22</Height>
|
|
<Top>179</Top>
|
|
<Left>433</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>65280</ForeColor>
|
|
<Caption>%</Caption>
|
|
<Alignment>0</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt54</Key>
|
|
<Width>120</Width>
|
|
<Height>24</Height>
|
|
<Top>213</Top>
|
|
<Left>254</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>16776960</ForeColor>
|
|
<Caption>TOil</Caption>
|
|
<Alignment>0</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt55</Key>
|
|
<Width>60</Width>
|
|
<Height>23</Height>
|
|
<Top>241</Top>
|
|
<Left>366</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>16776960</ForeColor>
|
|
<Caption>0</Caption>
|
|
<Alignment>1</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
<SignalSpec>
|
|
<Description>Intake Air Temperature (PID 0F) (Value [°C])</Description>
|
|
<Equation>{Intake Air Temperature (PID 0F) (Value [°C]) :in15-sig0-0}</Equation>
|
|
<Format>0</Format>
|
|
<Min>-40</Min>
|
|
<Max>215</Max>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
</SignalSpec>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt56</Key>
|
|
<Width>48</Width>
|
|
<Height>22</Height>
|
|
<Top>215</Top>
|
|
<Left>433</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>16776960</ForeColor>
|
|
<Caption>C</Caption>
|
|
<Alignment>0</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt57</Key>
|
|
<Width>120</Width>
|
|
<Height>24</Height>
|
|
<Top>240</Top>
|
|
<Left>254</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>16776960</ForeColor>
|
|
<Caption>TIntake</Caption>
|
|
<Alignment>0</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt59</Key>
|
|
<Width>48</Width>
|
|
<Height>22</Height>
|
|
<Top>242</Top>
|
|
<Left>433</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>16776960</ForeColor>
|
|
<Caption>C</Caption>
|
|
<Alignment>0</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt61</Key>
|
|
<Width>60</Width>
|
|
<Height>23</Height>
|
|
<Top>214</Top>
|
|
<Left>366</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>16776960</ForeColor>
|
|
<Caption>0</Caption>
|
|
<Alignment>1</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
<SignalSpec>
|
|
<Description>Oil Temperature (PID 5C) (Value [°C])</Description>
|
|
<Equation>{Oil Temperature (PID 5C) (Value [°C]) :in92-sig0-0}</Equation>
|
|
<Format>0</Format>
|
|
<Min>-40</Min>
|
|
<Max>215</Max>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
</SignalSpec>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt64</Key>
|
|
<Width>60</Width>
|
|
<Height>23</Height>
|
|
<Top>106</Top>
|
|
<Left>365</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial Narrow</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ForeColor>65535</ForeColor>
|
|
<Caption>0.00</Caption>
|
|
<Alignment>1</Alignment>
|
|
<ShowCaption>1</ShowCaption>
|
|
<SignalSpec>
|
|
<Description>Module Voltage (PID 42) (Value [V])</Description>
|
|
<Equation>{Module Voltage (PID 42) (Value [V]) :in66-sig0-0}</Equation>
|
|
<Format>0.00</Format>
|
|
<Min>0</Min>
|
|
<Max>65.535</Max>
|
|
<UseCustomFormatting>True</UseCustomFormatting>
|
|
</SignalSpec>
|
|
</TextDisplay>
|
|
<LED>
|
|
<Key>led0</Key>
|
|
<Width>11</Width>
|
|
<Height>10</Height>
|
|
<Top>7</Top>
|
|
<Left>4</Left>
|
|
<BackColor>0</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontName>Arial Narrow</FontName>
|
|
<Caption></Caption>
|
|
<ShowCaption>0</ShowCaption>
|
|
<LEDOnColor>65280</LEDOnColor>
|
|
<LEDOffColor>128</LEDOffColor>
|
|
<SignalSpec>
|
|
<Description>PID 0B Supported (PID 00) (Value)</Description>
|
|
<Equation>{PID 0B Supported (PID 00) (Value) :in0-sig10-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<Min>0</Min>
|
|
<Max>1</Max>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</LED>
|
|
<LED>
|
|
<Key>led1</Key>
|
|
<Width>11</Width>
|
|
<Height>10</Height>
|
|
<Top>45</Top>
|
|
<Left>4</Left>
|
|
<BackColor>0</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontName>Arial Narrow</FontName>
|
|
<Caption></Caption>
|
|
<ShowCaption>0</ShowCaption>
|
|
<LEDOnColor>65280</LEDOnColor>
|
|
<LEDOffColor>128</LEDOffColor>
|
|
<SignalSpec>
|
|
<Description>PID 10 Supported (PID 00) (Value)</Description>
|
|
<Equation>{PID 10 Supported (PID 00) (Value) :in0-sig15-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<Min>0</Min>
|
|
<Max>1</Max>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</LED>
|
|
<LED>
|
|
<Key>led2</Key>
|
|
<Width>11</Width>
|
|
<Height>10</Height>
|
|
<Top>81</Top>
|
|
<Left>4</Left>
|
|
<BackColor>0</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontName>Arial Narrow</FontName>
|
|
<Caption></Caption>
|
|
<ShowCaption>0</ShowCaption>
|
|
<LEDOnColor>65280</LEDOnColor>
|
|
<LEDOffColor>128</LEDOffColor>
|
|
<SignalSpec>
|
|
<Description>Fuel Pressure (Gauge) (PID 0A) (Value [kPa])</Description>
|
|
<Equation>{Fuel Pressure (Gauge) (PID 0A) (Value [kPa]) :in10-sig0-0}</Equation>
|
|
<Format>0</Format>
|
|
<Min>0</Min>
|
|
<Max>765</Max>
|
|
<Units>kPa</Units>
|
|
</SignalSpec>
|
|
</LED>
|
|
<LED>
|
|
<Key>led3</Key>
|
|
<Width>11</Width>
|
|
<Height>10</Height>
|
|
<Top>116</Top>
|
|
<Left>4</Left>
|
|
<BackColor>0</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontName>Arial Narrow</FontName>
|
|
<Caption></Caption>
|
|
<ShowCaption>0</ShowCaption>
|
|
<LEDOnColor>65280</LEDOnColor>
|
|
<LEDOffColor>128</LEDOffColor>
|
|
<SignalSpec>
|
|
<Description>PID 11 Supported (PID 00) (Value)</Description>
|
|
<Equation>{PID 11 Supported (PID 00) (Value) :in0-sig16-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<Min>0</Min>
|
|
<Max>1</Max>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</LED>
|
|
<LED>
|
|
<Key>led4</Key>
|
|
<Width>11</Width>
|
|
<Height>10</Height>
|
|
<Top>154</Top>
|
|
<Left>4</Left>
|
|
<BackColor>0</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontName>Arial Narrow</FontName>
|
|
<Caption></Caption>
|
|
<ShowCaption>0</ShowCaption>
|
|
<LEDOnColor>65280</LEDOnColor>
|
|
<LEDOffColor>128</LEDOffColor>
|
|
<SignalSpec>
|
|
<Description>PID 2C Supported (PID 20) (Value)</Description>
|
|
<Equation>{PID 2C Supported (PID 20) (Value) :in32-sig11-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<Min>0</Min>
|
|
<Max>1</Max>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</LED>
|
|
<LED>
|
|
<Key>led5</Key>
|
|
<Width>11</Width>
|
|
<Height>10</Height>
|
|
<Top>187</Top>
|
|
<Left>4</Left>
|
|
<BackColor>0</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontName>Arial Narrow</FontName>
|
|
<Caption></Caption>
|
|
<ShowCaption>0</ShowCaption>
|
|
<LEDOnColor>65280</LEDOnColor>
|
|
<LEDOffColor>128</LEDOffColor>
|
|
<SignalSpec>
|
|
<Description>PID 5B Supported (PID 40) (Value)</Description>
|
|
<Equation>{PID 5B Supported (PID 40) (Value) :in64-sig26-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<Min>0</Min>
|
|
<Max>1</Max>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</LED>
|
|
<LED>
|
|
<Key>led6</Key>
|
|
<Width>11</Width>
|
|
<Height>10</Height>
|
|
<Top>221</Top>
|
|
<Left>4</Left>
|
|
<BackColor>0</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontName>Arial Narrow</FontName>
|
|
<Caption></Caption>
|
|
<ShowCaption>0</ShowCaption>
|
|
<LEDOnColor>65280</LEDOnColor>
|
|
<LEDOffColor>128</LEDOffColor>
|
|
<SignalSpec>
|
|
<Description>PID 05 Supported (PID 00) (Value)</Description>
|
|
<Equation>{PID 05 Supported (PID 00) (Value) :in0-sig4-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<Min>0</Min>
|
|
<Max>1</Max>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</LED>
|
|
<LED>
|
|
<Key>led7</Key>
|
|
<Width>11</Width>
|
|
<Height>10</Height>
|
|
<Top>249</Top>
|
|
<Left>4</Left>
|
|
<BackColor>0</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontName>Arial Narrow</FontName>
|
|
<Caption></Caption>
|
|
<ShowCaption>0</ShowCaption>
|
|
<LEDOnColor>65280</LEDOnColor>
|
|
<LEDOffColor>128</LEDOffColor>
|
|
<SignalSpec>
|
|
<Description>PID 4C Supported (PID 40) (Value)</Description>
|
|
<Equation>{PID 4C Supported (PID 40) (Value) :in64-sig11-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<Min>0</Min>
|
|
<Max>1</Max>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</LED>
|
|
<LED>
|
|
<Key>led8</Key>
|
|
<Width>11</Width>
|
|
<Height>10</Height>
|
|
<Top>9</Top>
|
|
<Left>238</Left>
|
|
<BackColor>0</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontName>Arial Narrow</FontName>
|
|
<Caption></Caption>
|
|
<ShowCaption>0</ShowCaption>
|
|
<LEDOnColor>65280</LEDOnColor>
|
|
<LEDOffColor>128</LEDOffColor>
|
|
<SignalSpec>
|
|
<Description>PID 0C Supported (PID 00) (Value)</Description>
|
|
<Equation>{PID 0C Supported (PID 00) (Value) :in0-sig11-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<Min>0</Min>
|
|
<Max>1</Max>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</LED>
|
|
<LED>
|
|
<Key>led9</Key>
|
|
<Width>11</Width>
|
|
<Height>10</Height>
|
|
<Top>46</Top>
|
|
<Left>238</Left>
|
|
<BackColor>0</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontName>Arial Narrow</FontName>
|
|
<Caption></Caption>
|
|
<ShowCaption>0</ShowCaption>
|
|
<LEDOnColor>65280</LEDOnColor>
|
|
<LEDOffColor>128</LEDOffColor>
|
|
<SignalSpec>
|
|
<Description>PID 0D Supported (PID 00) (Value)</Description>
|
|
<Equation>{PID 0D Supported (PID 00) (Value) :in0-sig12-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<Min>0</Min>
|
|
<Max>1</Max>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</LED>
|
|
<LED>
|
|
<Key>led10</Key>
|
|
<Width>11</Width>
|
|
<Height>10</Height>
|
|
<Top>83</Top>
|
|
<Left>239</Left>
|
|
<BackColor>0</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontName>Arial Narrow</FontName>
|
|
<Caption></Caption>
|
|
<ShowCaption>0</ShowCaption>
|
|
<LEDOnColor>65280</LEDOnColor>
|
|
<LEDOffColor>128</LEDOffColor>
|
|
<SignalSpec>
|
|
<Description>PID 23 Supported (PID 20) (Value)</Description>
|
|
<Equation>{PID 23 Supported (PID 20) (Value) :in32-sig2-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<Min>0</Min>
|
|
<Max>1</Max>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</LED>
|
|
<LED>
|
|
<Key>led11</Key>
|
|
<Width>11</Width>
|
|
<Height>10</Height>
|
|
<Top>118</Top>
|
|
<Left>238</Left>
|
|
<BackColor>0</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontName>Arial Narrow</FontName>
|
|
<Caption></Caption>
|
|
<ShowCaption>0</ShowCaption>
|
|
<LEDOnColor>65280</LEDOnColor>
|
|
<LEDOffColor>128</LEDOffColor>
|
|
<SignalSpec>
|
|
<Description>PID 42 Supported (PID 40) (Value)</Description>
|
|
<Equation>{PID 42 Supported (PID 40) (Value) :in64-sig1-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<Min>0</Min>
|
|
<Max>1</Max>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</LED>
|
|
<LED>
|
|
<Key>led12</Key>
|
|
<Width>11</Width>
|
|
<Height>10</Height>
|
|
<Top>152</Top>
|
|
<Left>237</Left>
|
|
<BackColor>0</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontName>Arial Narrow</FontName>
|
|
<Caption></Caption>
|
|
<ShowCaption>0</ShowCaption>
|
|
<LEDOnColor>65280</LEDOnColor>
|
|
<LEDOffColor>128</LEDOffColor>
|
|
<SignalSpec>
|
|
<Description>PID 2D Supported (PID 20) (Value)</Description>
|
|
<Equation>{PID 2D Supported (PID 20) (Value) :in32-sig12-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<Min>0</Min>
|
|
<Max>1</Max>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</LED>
|
|
<LED>
|
|
<Key>led13</Key>
|
|
<Width>11</Width>
|
|
<Height>10</Height>
|
|
<Top>189</Top>
|
|
<Left>238</Left>
|
|
<BackColor>0</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontName>Arial Narrow</FontName>
|
|
<Caption></Caption>
|
|
<ShowCaption>0</ShowCaption>
|
|
<LEDOnColor>65280</LEDOnColor>
|
|
<LEDOffColor>128</LEDOffColor>
|
|
<SignalSpec>
|
|
<Description>PID 61 Supported (PID 60) (Value)</Description>
|
|
<Equation>{PID 61 Supported (PID 60) (Value) :in96-sig0-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<Min>0</Min>
|
|
<Max>1</Max>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</LED>
|
|
<LED>
|
|
<Key>led14</Key>
|
|
<Width>11</Width>
|
|
<Height>10</Height>
|
|
<Top>222</Top>
|
|
<Left>237</Left>
|
|
<BackColor>0</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontName>Arial Narrow</FontName>
|
|
<Caption></Caption>
|
|
<ShowCaption>0</ShowCaption>
|
|
<LEDOnColor>65280</LEDOnColor>
|
|
<LEDOffColor>128</LEDOffColor>
|
|
<SignalSpec>
|
|
<Description>PID 5C Supported (PID 40) (Value)</Description>
|
|
<Equation>{PID 5C Supported (PID 40) (Value) :in64-sig27-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<Min>0</Min>
|
|
<Max>1</Max>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</LED>
|
|
<LED>
|
|
<Key>led15</Key>
|
|
<Width>11</Width>
|
|
<Height>10</Height>
|
|
<Top>251</Top>
|
|
<Left>238</Left>
|
|
<BackColor>0</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontName>Arial Narrow</FontName>
|
|
<Caption></Caption>
|
|
<ShowCaption>0</ShowCaption>
|
|
<LEDOnColor>65280</LEDOnColor>
|
|
<LEDOffColor>128</LEDOffColor>
|
|
<SignalSpec>
|
|
<Description>PID 0F Supported (PID 00) (Value)</Description>
|
|
<Equation>{PID 0F Supported (PID 00) (Value) :in0-sig14-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<Min>0</Min>
|
|
<Max>1</Max>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</LED>
|
|
</Dialog>
|
|
<Dialog>
|
|
<Caption>Setup</Caption>
|
|
<Key>dia4</Key>
|
|
<BarGraph>
|
|
<Key>bgr0</Key>
|
|
<Width>432</Width>
|
|
<Height>80</Height>
|
|
<Top>58</Top>
|
|
<Left>17</Left>
|
|
<BackColor>16777215</BackColor>
|
|
<Transparent>0</Transparent>
|
|
<BorderStyle>1</BorderStyle>
|
|
<FontSize>14</FontSize>
|
|
<FontName>Arial</FontName>
|
|
<Caption></Caption>
|
|
<ShowCaption>1</ShowCaption>
|
|
<Minimum>0</Minimum>
|
|
<BarColor>16711680</BarColor>
|
|
<IsSlider>1</IsSlider>
|
|
<IsInteger>1</IsInteger>
|
|
<SignalSpec>
|
|
<Description>{Backlight (Value) :sig3-0}</Description>
|
|
<Equation>{Backlight (Value) :sig3-0}</Equation>
|
|
<Format>0</Format>
|
|
<SetValueDescription>{Backlight (Value) :sig3-0}</SetValueDescription>
|
|
<SetValueKey>{Backlight (Value) :sig3-0}</SetValueKey>
|
|
</SignalSpec>
|
|
</BarGraph>
|
|
<TextDisplay>
|
|
<Key>txt0</Key>
|
|
<Width>230</Width>
|
|
<Height>30</Height>
|
|
<Top>150</Top>
|
|
<Left>105</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>16</FontSize>
|
|
<FontName>Arial</FontName>
|
|
<Caption>Display Brigthness</Caption>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt1</Key>
|
|
<Width>117</Width>
|
|
<Height>25</Height>
|
|
<Top>237</Top>
|
|
<Left>349</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontName>Arial</FontName>
|
|
<Caption>VC_OBD_Demo V1.5</Caption>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
</Dialog>
|
|
<Dialog>
|
|
<Caption>TC10</Caption>
|
|
<Key>dia7</Key>
|
|
<GraphicalDisplay>
|
|
<Key>gdp0</Key>
|
|
<Width>479</Width>
|
|
<Height>269</Height>
|
|
<Top>1</Top>
|
|
<Left>1</Left>
|
|
<BackColor>12615680</BackColor>
|
|
<Transparent>0</Transparent>
|
|
<BorderStyle>4</BorderStyle>
|
|
<FontName>Arial</FontName>
|
|
<ForeColor>12632256</ForeColor>
|
|
<TransparentColor>16777215</TransparentColor>
|
|
</GraphicalDisplay>
|
|
<GraphicalDisplay>
|
|
<Key>gdp1</Key>
|
|
<Width>220</Width>
|
|
<Height>250</Height>
|
|
<Top>10</Top>
|
|
<Left>10</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>0</Transparent>
|
|
<BorderStyle>1</BorderStyle>
|
|
<FontName>Arial</FontName>
|
|
<TransparentColor>16711935</TransparentColor>
|
|
</GraphicalDisplay>
|
|
<TxButton>
|
|
<Key>txb1</Key>
|
|
<Width>200</Width>
|
|
<Height>40</Height>
|
|
<Top>210</Top>
|
|
<Left>20</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<DataKey>out0</DataKey>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>15</FontSize>
|
|
<FontName>Eurostile</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ShowCaption>0</ShowCaption>
|
|
<OnText>TC10 Wake Request</OnText>
|
|
<OffText>TC10 Wake Request</OffText>
|
|
<ActionStyle>1</ActionStyle>
|
|
<Value>1</Value>
|
|
</TxButton>
|
|
<TxButton>
|
|
<Key>txb0</Key>
|
|
<Width>200</Width>
|
|
<Height>40</Height>
|
|
<Top>160</Top>
|
|
<Left>20</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<DataKey>out1</DataKey>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>15</FontSize>
|
|
<FontName>Eurostile</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ShowCaption>0</ShowCaption>
|
|
<OnText>TC10 Sleep Request</OnText>
|
|
<OffText>TC10 Sleep Request</OffText>
|
|
<ActionStyle>1</ActionStyle>
|
|
<Value>1</Value>
|
|
</TxButton>
|
|
<GraphicalDisplay>
|
|
<Key>gdp3</Key>
|
|
<Width>220</Width>
|
|
<Height>250</Height>
|
|
<Top>10</Top>
|
|
<Left>244</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>0</Transparent>
|
|
<BorderStyle>1</BorderStyle>
|
|
<FontName>Arial</FontName>
|
|
<TransparentColor>16711935</TransparentColor>
|
|
</GraphicalDisplay>
|
|
<TextDisplay>
|
|
<Key>txt2</Key>
|
|
<Width>200</Width>
|
|
<Height>60</Height>
|
|
<Top>30</Top>
|
|
<Left>20</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>17</FontSize>
|
|
<FontName>Eurostile</FontName>
|
|
<FontBold>True</FontBold>
|
|
<Caption>Zonal Backbone Ethernet Network 1</Caption>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<LED>
|
|
<Key>led0</Key>
|
|
<Width>40</Width>
|
|
<Height>40</Height>
|
|
<Top>110</Top>
|
|
<Left>30</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontName>Arial</FontName>
|
|
<Caption></Caption>
|
|
<ShowCaption>0</ShowCaption>
|
|
<LEDOffColor>128</LEDOffColor>
|
|
<SignalSpec>
|
|
<Description>SFP1 (Value)</Description>
|
|
<Equation>{SFP1 (Value) :sig75-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<Min>0</Min>
|
|
<Max>1</Max>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</LED>
|
|
<TextDisplay>
|
|
<Key>txt3</Key>
|
|
<Width>130</Width>
|
|
<Height>20</Height>
|
|
<Top>120</Top>
|
|
<Left>80</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>15</FontSize>
|
|
<FontName>Eurostile</FontName>
|
|
<FontBold>True</FontBold>
|
|
<Caption>TC10 Status</Caption>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<TextDisplay>
|
|
<Key>txt4</Key>
|
|
<Width>200</Width>
|
|
<Height>60</Height>
|
|
<Top>30</Top>
|
|
<Left>260</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>17</FontSize>
|
|
<FontName>Eurostile</FontName>
|
|
<FontBold>True</FontBold>
|
|
<Caption>Zonal Backbone Ethernet Network 2</Caption>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
<TxButton>
|
|
<Key>txb5</Key>
|
|
<Width>200</Width>
|
|
<Height>40</Height>
|
|
<Top>210</Top>
|
|
<Left>254</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<DataKey>out2</DataKey>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>15</FontSize>
|
|
<FontName>Eurostile</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ShowCaption>0</ShowCaption>
|
|
<OnText>TC10 Wake Request</OnText>
|
|
<OffText>TC10 Wake Request</OffText>
|
|
<ActionStyle>1</ActionStyle>
|
|
<Value>1</Value>
|
|
</TxButton>
|
|
<TxButton>
|
|
<Key>txb6</Key>
|
|
<Width>200</Width>
|
|
<Height>40</Height>
|
|
<Top>160</Top>
|
|
<Left>254</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<DataKey>out3</DataKey>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>15</FontSize>
|
|
<FontName>Eurostile</FontName>
|
|
<FontBold>True</FontBold>
|
|
<ShowCaption>0</ShowCaption>
|
|
<OnText>TC10 Sleep Request</OnText>
|
|
<OffText>TC10 Sleep Request</OffText>
|
|
<ActionStyle>1</ActionStyle>
|
|
<Value>1</Value>
|
|
</TxButton>
|
|
<LED>
|
|
<Key>led1</Key>
|
|
<Width>40</Width>
|
|
<Height>40</Height>
|
|
<Top>110</Top>
|
|
<Left>270</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontName>Arial</FontName>
|
|
<Caption></Caption>
|
|
<ShowCaption>0</ShowCaption>
|
|
<LEDOffColor>128</LEDOffColor>
|
|
<SignalSpec>
|
|
<Description>SFP2 (Value)</Description>
|
|
<Equation>{SFP2 (Value) :sig76-0}</Equation>
|
|
<Format>True=1/False=0</Format>
|
|
<Min>0</Min>
|
|
<Max>1</Max>
|
|
<IsDiscreteValue>True</IsDiscreteValue>
|
|
</SignalSpec>
|
|
</LED>
|
|
<TextDisplay>
|
|
<Key>txt5</Key>
|
|
<Width>130</Width>
|
|
<Height>20</Height>
|
|
<Top>120</Top>
|
|
<Left>320</Left>
|
|
<BackColor>12632256</BackColor>
|
|
<Transparent>1</Transparent>
|
|
<BorderStyle>0</BorderStyle>
|
|
<FontSize>15</FontSize>
|
|
<FontName>Eurostile</FontName>
|
|
<FontBold>True</FontBold>
|
|
<Caption>TC10 Status</Caption>
|
|
<ShowCaption>1</ShowCaption>
|
|
</TextDisplay>
|
|
</Dialog>
|
|
</Dialogs>
|
|
<J1939AddressManager>
|
|
<ClaimAtStartup>1</ClaimAtStartup>
|
|
<StatusAtStartup>1</StatusAtStartup>
|
|
</J1939AddressManager>
|
|
<CoreMini>
|
|
<LastCreationTime>23665405638720000</LastCreationTime>
|
|
<SDCardNumDivsions>3449</SDCardNumDivsions>
|
|
<SDCardPartitionLinkage>0</SDCardPartitionLinkage>
|
|
<UserFilesEnable>1</UserFilesEnable>
|
|
<UserFilesPaths></UserFilesPaths>
|
|
<SDCardSize>7</SDCardSize>
|
|
<CoreminiSize>47616</CoreminiSize>
|
|
<RetainOldData>False</RetainOldData>
|
|
</CoreMini>
|
|
<TCPIPManager>
|
|
<TCPIPStack>
|
|
<Key>tcp0</Key>
|
|
<EnableIPv4>True</EnableIPv4>
|
|
<MACAddress>00:00:00:00:00:00</MACAddress>
|
|
<IPAddress>192.168.2.100</IPAddress>
|
|
<SubnetMask>255.255.255.0</SubnetMask>
|
|
<EthernetNetworkKey>net72</EthernetNetworkKey>
|
|
<DHCPServer>
|
|
<DefaultSubnetMask>-256</DefaultSubnetMask>
|
|
<DefaultStartAddress>0</DefaultStartAddress>
|
|
<DefaultEndAddress>255</DefaultEndAddress>
|
|
<DefaultLeaseTime>86400</DefaultLeaseTime>
|
|
</DHCPServer>
|
|
</TCPIPStack>
|
|
</TCPIPManager>
|
|
<DoIP>
|
|
<AssertActivationLineAtStart>False</AssertActivationLineAtStart>
|
|
<SendTesterPresent>False</SendTesterPresent>
|
|
</DoIP>
|
|
<RemoteReflasher>
|
|
<JSONBase64>eyJ2ZXJzaW9uIjogMSwgImVjdXMiOiBbeyJhbGdvcml0aG0iOiAiZ2VuZXJpY19pc28xNDIyOSIsICJ2ZXJzaW9uIjogMSwgIm5hbWUiOiAiTmV3IEVDVSIsICJpc28xNTc2NSI6IHsibmV0d29yayI6ICIiLCAicGh5c2ljYWwiOiB7InJlcXVlc3RfaWQiOiAiIiwgInJlc3BvbnNlX2lkIjogIiIsICJmbG93X2NvbnRyb2xfdGltZW91dCI6IDAsICJmbG93X2NvbnRyb2xfd2FpdF90aW1lb3V0IjogMCwgInN0bWluIjogMCwgImJsb2NrX3NpemUiOiAwLCAicGFkZGluZyI6ICIiLCAicmVxdWVzdF9leHRlbmRlZF9hZGRyZXNzIjogIiIsICJyZXNwb25zZV9leHRlbmRlZF9hZGRyZXNzIjogIiIsICJyZXF1ZXN0X2lkX2lzXzI5Yml0IjogZmFsc2UsICJyZXNwb25zZV9pZF9pc18yOWJpdCI6IGZhbHNlLCAicmVxdWVzdF91c2VfZXh0ZW5kZWRfYWRkcmVzcyI6IGZhbHNlLCAicmVzcG9uc2VfdXNlX2V4dGVuZGVkX2FkZHJlc3MiOiBmYWxzZSwgInVzZV9zdG1pbiI6IGZhbHNlLCAidXNlX2Jsb2NrX3NpemUiOiBmYWxzZSwgInVzZV9wYWRkaW5nIjogZmFsc2UsICJ0eXBlIjogIiIsICJ0eF9kbCI6IDh9LCAiZnVuY3Rpb25hbCI6IHsicmVxdWVzdF9pZCI6ICIiLCAicmVzcG9uc2VfaWQiOiAiIiwgImZsb3dfY29udHJvbF90aW1lb3V0IjogMCwgImZsb3dfY29udHJvbF93YWl0X3RpbWVvdXQiOiAwLCAic3RtaW4iOiAwLCAiYmxvY2tfc2l6ZSI6IDAsICJwYWRkaW5nIjogIiIsICJyZXF1ZXN0X2V4dGVuZGVkX2FkZHJlc3MiOiAiIiwgInJlc3BvbnNlX2V4dGVuZGVkX2FkZHJlc3MiOiAiIiwgInJlcXVlc3RfaWRfaXNfMjliaXQiOiBmYWxzZSwgInJlc3BvbnNlX2lkX2lzXzI5Yml0IjogZmFsc2UsICJyZXF1ZXN0X3VzZV9leHRlbmRlZF9hZGRyZXNzIjogZmFsc2UsICJyZXNwb25zZV91c2VfZXh0ZW5kZWRfYWRkcmVzcyI6IGZhbHNlLCAidXNlX3N0bWluIjogZmFsc2UsICJ1c2VfYmxvY2tfc2l6ZSI6IGZhbHNlLCAidXNlX3BhZGRpbmciOiBmYWxzZSwgInR5cGUiOiAiIiwgInR4X2RsIjogOH19LCAiaXNvMTQyMjkiOiB7InRpbWVvdXQiOiAyMDAwfSwgInN0YWdlcyI6IFt7Im5hbWUiOiAiTmV3IFN0YWdlIiwgImFjdGlvbnMiOiBbeyJ0eXBlIjogIm5vbmUifV19XSwgImZhaWxfc3RhZ2UiOiB7Im5hbWUiOiAiZmFpbF9zdGFnZSIsICJhY3Rpb25zIjogW3sidHlwZSI6ICJub25lIn1dfX1dfQA=</JSONBase64>
|
|
</RemoteReflasher>
|
|
<InstrumentControl>
|
|
<InstrumentDB>
|
|
<CurrentDB>0</CurrentDB>
|
|
</InstrumentDB>
|
|
</InstrumentControl>
|
|
<GPSDevice>
|
|
<SignalSpecLongitude>
|
|
<Description>Longitude (Value [degrees])</Description>
|
|
<Equation>{Longitude (Value) :db5-sig0-0}</Equation>
|
|
<Format>0.0000000</Format>
|
|
<Units>degrees</Units>
|
|
</SignalSpecLongitude>
|
|
<SignalSpecLatitude>
|
|
<Description>Latitude (Value [degrees])</Description>
|
|
<Equation>{Latitude (Value) :db4-sig0-0}</Equation>
|
|
<Format>0.0000000</Format>
|
|
<Units>degrees</Units>
|
|
</SignalSpecLatitude>
|
|
<SignalSpecValid>
|
|
<Equation>1</Equation>
|
|
</SignalSpecValid>
|
|
</GPSDevice>
|
|
<Gateways>
|
|
<Gateway>
|
|
<Description>Gateway 1</Description>
|
|
</Gateway>
|
|
</Gateways>
|
|
<JLRMirroring>
|
|
<Enabled>True</Enabled>
|
|
</JLRMirroring>
|
|
<wBMSSystemMaintainer>
|
|
<SelectedWILVersion>WIL_3_1_0_9</SelectedWILVersion>
|
|
</wBMSSystemMaintainer>
|
|
<Desktops>
|
|
<Desktop>
|
|
<Description>Desktop 1</Description>
|
|
<Key>0</Key>
|
|
<ICONIndex>51</ICONIndex>
|
|
<LayoutString>QVFET0NLCAAAAACaBgAAvPv//6IKAADw/v//AgAAAAAAAAAAvAIAADQDAAAAAAAAAAAAAAAAAAAAAAAACAYAAAAAAACA1Hq4Ru70SIM1fakJBnUaAc8FAAADAAAAi6AxesdiY06oNqY2rRSC5CUDAAC/+v//DA0AALj///8AAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD//////////8IBAADIAAAA///////////CAQAAyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAKUAAAAAAAAAZYheWHVq60u2XsfC9K8ACSUDAADY+v//DA0AALj///8AAAAAAAAAAAAQAAAAR3JhcGhpY2FsIFBhbmVscwAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQMAAML6///nCQAA9gQAAP//////////WAIAACwBAAAAAAMAAAABZYheWHVq60u2XsfC9K8AEAAAAAAAAAAAAACkAAAAAAAAAGWIXlh1autLtl7HwvSvAAMlAwAA2Pr//wwNAAC4////AAAAAAAAAAAADwAAAEZ1bmN0aW9uIEJsb2NrcwAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA///////////CAQAAyAAAAP//////////WAIAACwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACoAAAAAAAAAGWIXlh1autLtl7HwvSvAAQlAwAA2Pr//wwNAAC4////AAAAAAAAAAAAEwAAAEFwcGxpY2F0aW9uIFNpZ25hbHMAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABiAAAA5wcAAN4DAADu////iAAAAFgCAAAsAQAAAAAAAAAAAWWIXlh1autLtl7HwvSvAAMAAAAAAAAAAAAAnQAAAAAAAABliF5YdWrrS7Zex8L0rwAMJQMAANj6//8MDQAAuP///wAAAAAAAAAAAAgAAABUeCBQYW5lbAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA///////////CAQAAyAAAAP//////////WAIAACwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACdAAAAAAAAAGWIXlh1autLtl7HwvSvAAAlAwAA2Pr//wwNAAC4////AAAAAAAAAAAACAAAAE1lc3NhZ2VzAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgQEAAOcHAAC/AgAACAQAAJMBAABYAgAALAEAAAAAAAAAAAGLoDF6x2JjTqg2pjatFILkAAQAAAAAAAAAAKYAAAAAAAAAZYheWHVq60u2XsfC9K8ACiUDAADY+v//DA0AALj///8AAAAAAAAAAAARAAAATmV0d29yayBEYXRhYmFzZXMAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP//////////wgEAAMgAAAD//////////1gCAAAsAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAAAAAAAAABliF5YdWrrS7Zex8L0rwAPJQMAANj6//8MDQAAuP///wAAAAAAAAAAAAsAAABEaWFnbm9zdGljcwAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA///////////CAQAAyAAAAP//////////WAIAACwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACkAAAAAAAAAGWIXlh1autLtl7HwvSvABAlAwAA2Pr//wwNAAC4////AAAAAAAAAAAADwAAAE1lc3NhZ2VzIEVkaXRvcgAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGIAAAA6BAAAMAQAAAAAAABiAAAAWAIAACwBAAAAAAAAAAABZYheWHVq60u2XsfC9K8ADwAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA=</LayoutString>
|
|
<LayoutStringChecksum>906244461</LayoutStringChecksum>
|
|
<DesktopForms>
|
|
<DesktopForm>
|
|
<FormKey>3</FormKey>
|
|
<FormData>PERlc2t0b3BEYXRhPg0KPEN1cnJlbnRGQmxvY2tLZXk+dHN0MTI8L0N1cnJlbnRGQmxvY2tLZXk+DQo8Q3VycmVudFNwbGl0U2l6ZT40NzY8L0N1cnJlbnRTcGxpdFNpemU+DQo8RkJTY3JpcHRHcmlkPg0KCTxOdW1PZkNvbHM+NjwvTnVtT2ZDb2xzPg0KCTxOdW1PZlJvd3M+MTg8L051bU9mUm93cz4NCgk8Q29sPjQ8L0NvbD4NCgk8Um93PjExPC9Sb3c+DQoJPENvbFNlbD40PC9Db2xTZWw+DQoJPFJvd1NlbD4xMTwvUm93U2VsPg0KCTxDT0w+DQoJCTxDb2xJbmRleD4wPC9Db2xJbmRleD4NCgkJPFdpZHRoPjYwMDwvV2lkdGg+DQoJPC9DT0w+DQoJPENPTD4NCgkJPENvbEluZGV4PjE8L0NvbEluZGV4Pg0KCQk8V2lkdGg+NjA8L1dpZHRoPg0KCTwvQ09MPg0KCTxDT0w+DQoJCTxDb2xJbmRleD4yPC9Db2xJbmRleD4NCgkJPFdpZHRoPjYwMDwvV2lkdGg+DQoJPC9DT0w+DQoJPENPTD4NCgkJPENvbEluZGV4PjM8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MzAwMDwvV2lkdGg+DQoJPC9DT0w+DQoJPENPTD4NCgkJPENvbEluZGV4PjQ8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTA3NTU8L1dpZHRoPg0KCTwvQ09MPg0KCTxDT0w+DQoJCTxDb2xJbmRleD41PC9Db2xJbmRleD4NCgkJPFdpZHRoPjMwMDA8L1dpZHRoPg0KCTwvQ09MPg0KPC9GQlNjcmlwdEdyaWQ+DQo8L0Rlc2t0b3BEYXRhPg0K</FormData>
|
|
</DesktopForm>
|
|
<DesktopForm>
|
|
<FormKey>4</FormKey>
|
|
<FormData>PERlc2t0b3BEYXRhPg0KPEVsVHJlZUl0ZW0+U1xFQ1UgRGV0ZWN0ZWRcc2lnMFw8L0VsVHJlZUl0ZW0+DQo8RWxUcmVlSXRlbT5TXEJ1ZmZlclxzaWcxXDwvRWxUcmVlSXRlbT4NCjxFbFRyZWVJdGVtPlNcU2xlZXBcc2lnNzRcPC9FbFRyZWVJdGVtPg0KPEVsVHJlZUl0ZW0+U1xCYWNrbGlnaHRcc2lnM1w8L0VsVHJlZUl0ZW0+DQo8RWxUcmVlSXRlbT5TXFNGUDFcc2lnNzVcPC9FbFRyZWVJdGVtPg0KPEVsVHJlZUl0ZW0+U1xTRlAyXHNpZzc2XDwvRWxUcmVlSXRlbT4NCjwvRGVza3RvcERhdGE+DQo=</FormData>
|
|
</DesktopForm>
|
|
<DesktopForm>
|
|
<FormKey>12</FormKey>
|
|
<FormData>PERlc2t0b3BEYXRhPg0KPFNpZ25hbHNQYW5lbFdpZHRoPjEzNzE8L1NpZ25hbHNQYW5lbFdpZHRoPg0KPFNlbGVjdGVkUHJvdG9jb2w+MTwvU2VsZWN0ZWRQcm90b2NvbD4NCjxTaWduYWxTY3JpcHRHcmlkPg0KCTxOdW1PZkNvbHM+OTwvTnVtT2ZDb2xzPg0KCTxOdW1PZlJvd3M+MTwvTnVtT2ZSb3dzPg0KCTxDb2w+MzwvQ29sPg0KCTxSb3c+MDwvUm93Pg0KCTxDb2xTZWw+MzwvQ29sU2VsPg0KCTxSb3dTZWw+MDwvUm93U2VsPg0KCTxDT0w+DQoJCTxDb2xJbmRleD4wPC9Db2xJbmRleD4NCgkJPFdpZHRoPjA8L1dpZHRoPg0KCTwvQ09MPg0KCTxDT0w+DQoJCTxDb2xJbmRleD4xPC9Db2xJbmRleD4NCgkJPFdpZHRoPjA8L1dpZHRoPg0KCTwvQ09MPg0KCTxDT0w+DQoJCTxDb2xJbmRleD4yPC9Db2xJbmRleD4NCgkJPFdpZHRoPjM3NTA8L1dpZHRoPg0KCTwvQ09MPg0KCTxDT0w+DQoJCTxDb2xJbmRleD4zPC9Db2xJbmRleD4NCgkJPFdpZHRoPjMwMDwvV2lkdGg+DQoJPC9DT0w+DQoJPENPTD4NCgkJPENvbEluZGV4PjQ8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MzAwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NTwvQ29sSW5kZXg+DQoJCTxXaWR0aD4zMDA8L1dpZHRoPg0KCTwvQ09MPg0KCTxDT0w+DQoJCTxDb2xJbmRleD42PC9Db2xJbmRleD4NCgkJPFdpZHRoPjk3NTwvV2lkdGg+DQoJPC9DT0w+DQoJPENPTD4NCgkJPENvbEluZGV4Pjc8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwMDwvV2lkdGg+DQoJPC9DT0w+DQoJPENPTD4NCgkJPENvbEluZGV4Pjg8L0NvbEluZGV4Pg0KCQk8V2lkdGg+OTYwPC9XaWR0aD4NCgk8L0NPTD4NCjwvU2lnbmFsU2NyaXB0R3JpZD4NCjxKb2JTY3JpcHRHcmlkPg0KCTxOdW1PZkNvbHM+MTk8L051bU9mQ29scz4NCgk8TnVtT2ZSb3dzPjc8L051bU9mUm93cz4NCgk8Q29sPjU8L0NvbD4NCgk8Um93PjE8L1Jvdz4NCgk8Q29sU2VsPjU8L0NvbFNlbD4NCgk8Um93U2VsPjE8L1Jvd1NlbD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MDwvQ29sSW5kZXg+DQoJCTxXaWR0aD4xNTwvV2lkdGg+DQoJPC9DT0w+DQoJPENPTD4NCgkJPENvbEluZGV4PjE8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MzYwMDwvV2lkdGg+DQoJPC9DT0w+DQoJPENPTD4NCgkJPENvbEluZGV4PjI8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MzAwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MzwvQ29sSW5kZXg+DQoJCTxXaWR0aD45NDU8L1dpZHRoPg0KCTwvQ09MPg0KCTxDT0w+DQoJCTxDb2xJbmRleD40PC9Db2xJbmRleD4NCgkJPFdpZHRoPjk0NTwvV2lkdGg+DQoJPC9DT0w+DQoJPENPTD4NCgkJPENvbEluZGV4PjU8L0NvbEluZGV4Pg0KCQk8V2lkdGg+NjAwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NjwvQ29sSW5kZXg+DQoJCTxXaWR0aD40NTA8L1dpZHRoPg0KCTwvQ09MPg0KCTxDT0w+DQoJCTxDb2xJbmRleD43PC9Db2xJbmRleD4NCgkJPFdpZHRoPjQ1MDwvV2lkdGg+DQoJPC9DT0w+DQoJPENPTD4NCgkJPENvbEluZGV4Pjg8L0NvbEluZGV4Pg0KCQk8V2lkdGg+NDUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+OTwvQ29sSW5kZXg+DQoJCTxXaWR0aD40NTA8L1dpZHRoPg0KCTwvQ09MPg0KCTxDT0w+DQoJCTxDb2xJbmRleD4xMDwvQ29sSW5kZXg+DQoJCTxXaWR0aD40NTA8L1dpZHRoPg0KCTwvQ09MPg0KCTxDT0w+DQoJCTxDb2xJbmRleD4xMTwvQ29sSW5kZXg+DQoJCTxXaWR0aD40NTA8L1dpZHRoPg0KCTwvQ09MPg0KCTxDT0w+DQoJCTxDb2xJbmRleD4xMjwvQ29sSW5kZXg+DQoJCTxXaWR0aD40NTA8L1dpZHRoPg0KCTwvQ09MPg0KCTxDT0w+DQoJCTxDb2xJbmRleD4xMzwvQ29sSW5kZXg+DQoJCTxXaWR0aD40NTA8L1dpZHRoPg0KCTwvQ09MPg0KCTxDT0w+DQoJCTxDb2xJbmRleD4xNDwvQ29sSW5kZXg+DQoJCTxXaWR0aD40NTA8L1dpZHRoPg0KCTwvQ09MPg0KCTxDT0w+DQoJCTxDb2xJbmRleD4xNTwvQ29sSW5kZXg+DQoJCTxXaWR0aD4xNjUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MTY8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTA1MDwvV2lkdGg+DQoJPC9DT0w+DQoJPENPTD4NCgkJPENvbEluZGV4PjE3PC9Db2xJbmRleD4NCgkJPFdpZHRoPjE2NTA8L1dpZHRoPg0KCTwvQ09MPg0KCTxDT0w+DQoJCTxDb2xJbmRleD4xODwvQ29sSW5kZXg+DQoJCTxXaWR0aD4xMDUwPC9XaWR0aD4NCgk8L0NPTD4NCjwvSm9iU2NyaXB0R3JpZD4NCjwvRGVza3RvcERhdGE+DQo=</FormData>
|
|
</DesktopForm>
|
|
<DesktopForm>
|
|
<FormKey>0</FormKey>
|
|
<FormData>PERlc2t0b3BEYXRhPg0KPEZpbHRlcldpZHRoPjIxMDwvRmlsdGVyV2lkdGg+DQo8RmlsdGVyQ29sdW1uV2lkdGhzPjQjMTIwLDIwLDIwLDI1IzAsMSwyLDMjMSwxLDEsMTwvRmlsdGVyQ29sdW1uV2lkdGhzPg0KPC9EZXNrdG9wRGF0YT4NCg==</FormData>
|
|
</DesktopForm>
|
|
<DesktopForm>
|
|
<FormKey>10</FormKey>
|
|
<FormData>PERlc2t0b3BEYXRhPg0KPC9EZXNrdG9wRGF0YT4NCg==</FormData>
|
|
</DesktopForm>
|
|
<DesktopForm>
|
|
<FormKey>15</FormKey>
|
|
<FormData>PERlc2t0b3BEYXRhPg0KPC9EZXNrdG9wRGF0YT4NCg==</FormData>
|
|
</DesktopForm>
|
|
<DesktopForm>
|
|
<FormKey>16</FormKey>
|
|
<FormData>PERlc2t0b3BEYXRhPg0KPEN1cnJlbnRWaWV3PjA8L0N1cnJlbnRWaWV3Pg0KPEN1cnJlbnROZXR3b3JrPjA8L0N1cnJlbnROZXR3b3JrPg0KPFNpZ25hbHNTY3JpcHRHcmlkPg0KCTxOdW1PZkNvbHM+MTIzPC9OdW1PZkNvbHM+DQoJPE51bU9mUm93cz4zNjwvTnVtT2ZSb3dzPg0KCTxDb2w+MDwvQ29sPg0KCTxSb3c+NDwvUm93Pg0KCTxDb2xTZWw+MDwvQ29sU2VsPg0KCTxSb3dTZWw+NDwvUm93U2VsPg0KCTxDT0w+DQoJCTxDb2xJbmRleD4wPC9Db2xJbmRleD4NCgkJPFdpZHRoPjI3NzU8L1dpZHRoPg0KCTwvQ09MPg0KCTxDT0w+DQoJCTxDb2xJbmRleD4xPC9Db2xJbmRleD4NCgkJPFdpZHRoPjE0NDA8L1dpZHRoPg0KCTwvQ09MPg0KCTxDT0w+DQoJCTxDb2xJbmRleD4yPC9Db2xJbmRleD4NCgkJPFdpZHRoPjkzMDwvV2lkdGg+DQoJPC9DT0w+DQoJPENPTD4NCgkJPENvbEluZGV4PjM8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NDwvQ29sSW5kZXg+DQoJCTxXaWR0aD4xNTA8L1dpZHRoPg0KCTwvQ09MPg0KCTxDT0w+DQoJCTxDb2xJbmRleD41PC9Db2xJbmRleD4NCgkJPFdpZHRoPjE1MDwvV2lkdGg+DQoJPC9DT0w+DQoJPENPTD4NCgkJPENvbEluZGV4PjY8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NzwvQ29sSW5kZXg+DQoJCTxXaWR0aD4xNTA8L1dpZHRoPg0KCTwvQ09MPg0KCTxDT0w+DQoJCTxDb2xJbmRleD44PC9Db2xJbmRleD4NCgkJPFdpZHRoPjE1MDwvV2lkdGg+DQoJPC9DT0w+DQoJPENPTD4NCgkJPENvbEluZGV4Pjk8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MTA8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MTE8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MTI8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MTM8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MTQ8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MTU8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MTY8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MTc8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MTg8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MTk8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MjA8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MjE8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MjI8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MjM8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MjQ8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MjU8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MjY8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+Mjc8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+Mjg8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+Mjk8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MzA8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MzE8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MzI8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MzM8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MzQ8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MzU8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MzY8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+Mzc8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+Mzg8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+Mzk8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NDA8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NDE8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NDI8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NDM8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NDQ8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NDU8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NDY8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NDc8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NDg8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NDk8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NTA8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NTE8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NTI8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NTM8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NTQ8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NTU8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NTY8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NTc8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NTg8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NTk8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NjA8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NjE8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NjI8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NjM8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NjQ8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NjU8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NjY8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+Njc8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+Njg8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+Njk8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NzA8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NzE8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NzI8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NzM8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NzQ8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NzU8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NzY8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+Nzc8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+Nzg8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+Nzk8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+ODA8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+ODE8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+ODI8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+ODM8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+ODQ8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+ODU8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+ODY8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+ODc8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+ODg8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+ODk8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+OTA8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+OTE8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+OTI8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+OTM8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+OTQ8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+OTU8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+OTY8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+OTc8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+OTg8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+OTk8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MTAwPC9Db2xJbmRleD4NCgkJPFdpZHRoPjE1MDwvV2lkdGg+DQoJPC9DT0w+DQoJPENPTD4NCgkJPENvbEluZGV4PjEwMTwvQ29sSW5kZXg+DQoJCTxXaWR0aD4xNTA8L1dpZHRoPg0KCTwvQ09MPg0KCTxDT0w+DQoJCTxDb2xJbmRleD4xMDI8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MTAzPC9Db2xJbmRleD4NCgkJPFdpZHRoPjE1MDwvV2lkdGg+DQoJPC9DT0w+DQoJPENPTD4NCgkJPENvbEluZGV4PjEwNDwvQ29sSW5kZXg+DQoJCTxXaWR0aD4xNTA8L1dpZHRoPg0KCTwvQ09MPg0KCTxDT0w+DQoJCTxDb2xJbmRleD4xMDU8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MTA2PC9Db2xJbmRleD4NCgkJPFdpZHRoPjE1MDwvV2lkdGg+DQoJPC9DT0w+DQoJPENPTD4NCgkJPENvbEluZGV4PjEwNzwvQ29sSW5kZXg+DQoJCTxXaWR0aD4xNTA8L1dpZHRoPg0KCTwvQ09MPg0KCTxDT0w+DQoJCTxDb2xJbmRleD4xMDg8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MTA5PC9Db2xJbmRleD4NCgkJPFdpZHRoPjE1MDwvV2lkdGg+DQoJPC9DT0w+DQoJPENPTD4NCgkJPENvbEluZGV4PjExMDwvQ29sSW5kZXg+DQoJCTxXaWR0aD4xNTA8L1dpZHRoPg0KCTwvQ09MPg0KCTxDT0w+DQoJCTxDb2xJbmRleD4xMTE8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MTEyPC9Db2xJbmRleD4NCgkJPFdpZHRoPjE1MDwvV2lkdGg+DQoJPC9DT0w+DQoJPENPTD4NCgkJPENvbEluZGV4PjExMzwvQ29sSW5kZXg+DQoJCTxXaWR0aD4xNTA8L1dpZHRoPg0KCTwvQ09MPg0KCTxDT0w+DQoJCTxDb2xJbmRleD4xMTQ8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MTE1PC9Db2xJbmRleD4NCgkJPFdpZHRoPjE1MDwvV2lkdGg+DQoJPC9DT0w+DQoJPENPTD4NCgkJPENvbEluZGV4PjExNjwvQ29sSW5kZXg+DQoJCTxXaWR0aD4xNTA8L1dpZHRoPg0KCTwvQ09MPg0KCTxDT0w+DQoJCTxDb2xJbmRleD4xMTc8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MTE4PC9Db2xJbmRleD4NCgkJPFdpZHRoPjE1MDwvV2lkdGg+DQoJPC9DT0w+DQoJPENPTD4NCgkJPENvbEluZGV4PjExOTwvQ29sSW5kZXg+DQoJCTxXaWR0aD4xNTA8L1dpZHRoPg0KCTwvQ09MPg0KCTxDT0w+DQoJCTxDb2xJbmRleD4xMjA8L0NvbEluZGV4Pg0KCQk8V2lkdGg+MTUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MTIxPC9Db2xJbmRleD4NCgkJPFdpZHRoPjE1MDwvV2lkdGg+DQoJPC9DT0w+DQoJPENPTD4NCgkJPENvbEluZGV4PjEyMjwvQ29sSW5kZXg+DQoJCTxXaWR0aD4xNTA8L1dpZHRoPg0KCTwvQ09MPg0KPC9TaWduYWxzU2NyaXB0R3JpZD4NCjxNZXNzYWdlc1NjcmlwdEdyaWQ+DQoJPE51bU9mQ29scz4xODwvTnVtT2ZDb2xzPg0KCTxOdW1PZlJvd3M+NjI8L051bU9mUm93cz4NCgk8Q29sPjA8L0NvbD4NCgk8Um93PjI8L1Jvdz4NCgk8Q29sU2VsPjA8L0NvbFNlbD4NCgk8Um93U2VsPjI8L1Jvd1NlbD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MDwvQ29sSW5kZXg+DQoJCTxXaWR0aD42MDA8L1dpZHRoPg0KCTwvQ09MPg0KCTxDT0w+DQoJCTxDb2xJbmRleD4xPC9Db2xJbmRleD4NCgkJPFdpZHRoPjQyOTA8L1dpZHRoPg0KCTwvQ09MPg0KCTxDT0w+DQoJCTxDb2xJbmRleD4yPC9Db2xJbmRleD4NCgkJPFdpZHRoPjE2NTA8L1dpZHRoPg0KCTwvQ09MPg0KCTxDT0w+DQoJCTxDb2xJbmRleD4zPC9Db2xJbmRleD4NCgkJPFdpZHRoPjkwMDwvV2lkdGg+DQoJPC9DT0w+DQoJPENPTD4NCgkJPENvbEluZGV4PjQ8L0NvbEluZGV4Pg0KCQk8V2lkdGg+OTAwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NTwvQ29sSW5kZXg+DQoJCTxXaWR0aD4xODAwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+NjwvQ29sSW5kZXg+DQoJCTxXaWR0aD40NTA8L1dpZHRoPg0KCTwvQ09MPg0KCTxDT0w+DQoJCTxDb2xJbmRleD43PC9Db2xJbmRleD4NCgkJPFdpZHRoPjQ1MDwvV2lkdGg+DQoJPC9DT0w+DQoJPENPTD4NCgkJPENvbEluZGV4Pjg8L0NvbEluZGV4Pg0KCQk8V2lkdGg+NDUwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+OTwvQ29sSW5kZXg+DQoJCTxXaWR0aD40NTA8L1dpZHRoPg0KCTwvQ09MPg0KCTxDT0w+DQoJCTxDb2xJbmRleD4xMDwvQ29sSW5kZXg+DQoJCTxXaWR0aD40NTA8L1dpZHRoPg0KCTwvQ09MPg0KCTxDT0w+DQoJCTxDb2xJbmRleD4xMTwvQ29sSW5kZXg+DQoJCTxXaWR0aD40NTA8L1dpZHRoPg0KCTwvQ09MPg0KCTxDT0w+DQoJCTxDb2xJbmRleD4xMjwvQ29sSW5kZXg+DQoJCTxXaWR0aD40NTA8L1dpZHRoPg0KCTwvQ09MPg0KCTxDT0w+DQoJCTxDb2xJbmRleD4xMzwvQ29sSW5kZXg+DQoJCTxXaWR0aD40NTA8L1dpZHRoPg0KCTwvQ09MPg0KCTxDT0w+DQoJCTxDb2xJbmRleD4xNDwvQ29sSW5kZXg+DQoJCTxXaWR0aD4xMjAwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MTU8L0NvbEluZGV4Pg0KCQk8V2lkdGg+OTAwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MTY8L0NvbEluZGV4Pg0KCQk8V2lkdGg+OTAwPC9XaWR0aD4NCgk8L0NPTD4NCgk8Q09MPg0KCQk8Q29sSW5kZXg+MTc8L0NvbEluZGV4Pg0KCQk8V2lkdGg+OTAwPC9XaWR0aD4NCgk8L0NPTD4NCjwvTWVzc2FnZXNTY3JpcHRHcmlkPg0KPC9EZXNrdG9wRGF0YT4NCg==</FormData>
|
|
</DesktopForm>
|
|
<DesktopForm>
|
|
<FormKey>9</FormKey>
|
|
<FormData>PERlc2t0b3BEYXRhPg0KPEN1cnJlbnRWaWV3PjQ8L0N1cnJlbnRWaWV3Pg0KPExvY2tDb250cm9scz5UcnVlPC9Mb2NrQ29udHJvbHM+DQo8U2hvd1Rvb2xiYXI+RmFsc2U8L1Nob3dUb29sYmFyPg0KPFNob3dQcm9wZXJ0aWVzPkZhbHNlPC9TaG93UHJvcGVydGllcz4NCjxTbmFwVG9HcmlkPkZhbHNlPC9TbmFwVG9HcmlkPg0KPFNob3dHcmlkPkZhbHNlPC9TaG93R3JpZD4NCjxHcmlkU2l6ZT4yPC9HcmlkU2l6ZT4NCjxHcmlkTXVsdD41PC9HcmlkTXVsdD4NCjxTaG93Vml2aWQ+VHJ1ZTwvU2hvd1ZpdmlkPg0KPEFzcFJhdGlvPjQ6MzwvQXNwUmF0aW8+DQo8L0Rlc2t0b3BEYXRhPg0K</FormData>
|
|
</DesktopForm>
|
|
</DesktopForms>
|
|
</Desktop>
|
|
</Desktops>
|
|
<SignalFilters>amb dist 21 mil 1f 0c 0d intake tintake</SignalFilters>
|
|
<ICSForms>
|
|
<ICSForm>
|
|
<FormType>0</FormType>
|
|
<Key>0</Key>
|
|
<WindowStyle>0</WindowStyle>
|
|
<Caption>Messages</Caption>
|
|
</ICSForm>
|
|
<ICSForm>
|
|
<FormType>9</FormType>
|
|
<Key>3</Key>
|
|
<WindowStyle>0</WindowStyle>
|
|
<Caption>Function Blocks</Caption>
|
|
</ICSForm>
|
|
<ICSForm>
|
|
<FormType>20</FormType>
|
|
<Key>4</Key>
|
|
<WindowStyle>0</WindowStyle>
|
|
<Caption>Application Signals</Caption>
|
|
</ICSForm>
|
|
<ICSForm>
|
|
<FormType>5</FormType>
|
|
<Key>12</Key>
|
|
<WindowStyle>0</WindowStyle>
|
|
<Caption>Tx Panel</Caption>
|
|
</ICSForm>
|
|
<ICSForm>
|
|
<FormType>6</FormType>
|
|
<Key>9</Key>
|
|
<WindowStyle>0</WindowStyle>
|
|
<Caption>Graphical Panels</Caption>
|
|
</ICSForm>
|
|
<ICSForm>
|
|
<FormType>16</FormType>
|
|
<Key>10</Key>
|
|
<WindowStyle>0</WindowStyle>
|
|
<Caption>Network Databases</Caption>
|
|
</ICSForm>
|
|
<ICSForm>
|
|
<FormType>10</FormType>
|
|
<Key>15</Key>
|
|
<WindowStyle>0</WindowStyle>
|
|
<Caption>Diagnostics</Caption>
|
|
</ICSForm>
|
|
<ICSForm>
|
|
<FormType>1</FormType>
|
|
<Key>16</Key>
|
|
<WindowStyle>0</WindowStyle>
|
|
<Caption>Messages Editor</Caption>
|
|
</ICSForm>
|
|
</ICSForms>
|
|
</VSpy3>
|