libicsneo/communication/ethernetpacketizer.cpp

192 lines
7.4 KiB
C++

#include "icsneo/communication/ethernetpacketizer.h"
#include <algorithm>
#include <iterator>
#include <cstring>
#include <cassert>
using namespace icsneo;
const size_t EthernetPacketizer::MaxPacketLength = 1490; // MTU - overhead
static const uint8_t BROADCAST_MAC[6] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
EthernetPacketizer::EthernetPacket& EthernetPacketizer::newSendPacket(bool first) {
processedDownPackets.emplace_back();
EthernetPacket& ret = processedDownPackets.back();
if(first) {
ret.packetNumber = sequenceDown++;
} else {
ret.firstPiece = false;
if(processedDownPackets.size() > 1)
ret.packetNumber = (processedDownPackets.rbegin() + 1)->packetNumber;
else
assert(false); // This should never be called with !first if there are no packets in the queue
}
std::copy(std::begin(hostMAC), std::end(hostMAC), std::begin(ret.srcMAC));
std::copy(std::begin(deviceMAC), std::end(deviceMAC), std::begin(ret.destMAC));
return ret;
}
void EthernetPacketizer::inputDown(std::vector<uint8_t> bytes, bool first) {
EthernetPacket* sendPacket = nullptr;
if(first && !processedDownPackets.empty()) {
// We have some packets already, let's see if we can add this to the last one
if(processedDownPackets.back().payload.size() + bytes.size() <= MaxPacketLength)
sendPacket = &processedDownPackets.back();
}
if(sendPacket == nullptr)
sendPacket = &newSendPacket(first);
if(sendPacket->payload.empty())
sendPacket->payload = std::move(bytes);
else
sendPacket->payload.insert(sendPacket->payload.end(), bytes.begin(), bytes.end());
// Split packets larger than MTU
std::vector<uint8_t> extraData;
if(sendPacket->payload.size() > MaxPacketLength) {
extraData.insert(extraData.end(), sendPacket->payload.begin() + MaxPacketLength, sendPacket->payload.end());
sendPacket->payload.resize(MaxPacketLength);
sendPacket->lastPiece = false;
inputDown(std::move(extraData), false);
}
}
std::vector< std::vector<uint8_t> > EthernetPacketizer::outputDown() {
std::vector< std::vector<uint8_t> > ret;
ret.reserve(processedDownPackets.size());
for(auto&& packet : std::move(processedDownPackets))
ret.push_back(packet.getBytestream());
processedDownPackets.clear();
return ret;
}
bool EthernetPacketizer::inputUp(std::vector<uint8_t> bytes) {
EthernetPacket packet(bytes);
if(packet.errorWhileDecodingFromBytestream)
return false; // Bad packet
if(packet.etherType != 0xCAB2)
return false; // Not a packet to host
if(memcmp(packet.destMAC, hostMAC, sizeof(packet.destMAC)) != 0 &&
memcmp(packet.destMAC, BROADCAST_MAC, sizeof(packet.destMAC)) != 0)
return false; // Packet is not addressed to us or broadcast
if(!allowInPacketsFromAnyMAC && memcmp(packet.srcMAC, deviceMAC, sizeof(deviceMAC)) != 0)
return false; // Not a packet from the device we're concerned with
// Handle single packets
if(packet.firstPiece && packet.lastPiece) {
// Could ensure no out-of-order reassembly by checking reassembing here,
// not doing that here because it should be harmless if it ever happened.
processedUpBytes.insert(processedUpBytes.end(), std::make_move_iterator(packet.payload.begin()), std::make_move_iterator(packet.payload.end()));
return true;
}
if(packet.firstPiece) {
if(reassembling) {
//report(APIEvent::Type::FailedToRead, APIEvent::Severity::EventWarning);
reassemblingData.clear();
}
reassembling = true;
reassemblingId = packet.packetNumber;
reassemblingData = std::move(packet.payload);
return !processedUpBytes.empty(); // If there are other packets in the pipe
}
if(!reassembling || reassemblingId != packet.packetNumber) {
//report(APIEvent::Type::FailedToRead, APIEvent::Severity::EventWarning);
reassembling = false;
reassemblingData.clear();
return !processedUpBytes.empty(); // If there are other packets in the pipe
}
if(packet.lastPiece) {
processedUpBytes.insert(processedUpBytes.end(), std::make_move_iterator(reassemblingData.begin()), std::make_move_iterator(reassemblingData.end()));
reassemblingData.clear();
reassembling = false;
processedUpBytes.insert(processedUpBytes.end(), std::make_move_iterator(packet.payload.begin()), std::make_move_iterator(packet.payload.end()));
return true;
}
reassemblingData.insert(reassemblingData.end(), std::make_move_iterator(packet.payload.begin()), std::make_move_iterator(packet.payload.end()));
return !processedUpBytes.empty(); // If there are other packets in the pipe
}
std::vector<uint8_t> EthernetPacketizer::outputUp() {
std::vector<uint8_t> ret = std::move(processedUpBytes);
processedUpBytes.clear();
return ret;
}
EthernetPacketizer::EthernetPacket::EthernetPacket(const std::vector<uint8_t>& bytestream) {
loadBytestream(bytestream);
}
EthernetPacketizer::EthernetPacket::EthernetPacket(const uint8_t* data, size_t size) {
std::vector<uint8_t> bs(data, data + size);
loadBytestream(bs);
}
int EthernetPacketizer::EthernetPacket::loadBytestream(const std::vector<uint8_t>& bytestream) {
errorWhileDecodingFromBytestream = 0;
if (bytestream.size() < 24) {
errorWhileDecodingFromBytestream = 1;
return errorWhileDecodingFromBytestream;
}
for(size_t i = 0; i < 6; i++)
destMAC[i] = bytestream[i];
for(size_t i = 0; i < 6; i++)
srcMAC[i] = bytestream[i + 6];
etherType = (bytestream[12] << 8) | bytestream[13];
icsEthernetHeader = (bytestream[14] << 24) | (bytestream[15] << 16) | (bytestream[16] << 8) | bytestream[17];
payloadSize = bytestream[18] | (bytestream[19] << 8);
packetNumber = bytestream[20] | (bytestream[21] << 8);
uint16_t packetInfo = bytestream[22] | (bytestream[23] << 8);
firstPiece = packetInfo & 1;
lastPiece = (packetInfo >> 1) & 1;
bufferHalfFull = (packetInfo >> 2) & 2;
payload = std::vector<uint8_t>(bytestream.begin() + 24, bytestream.end());
size_t payloadActualSize = payload.size();
if(payloadActualSize > payloadSize)
payload.resize(payloadSize);
return errorWhileDecodingFromBytestream;
}
std::vector<uint8_t> EthernetPacketizer::EthernetPacket::getBytestream() const {
uint16_t actualPayloadSize = uint16_t(payload.size());
std::vector<uint8_t> bytestream;
bytestream.reserve(6 + 6 + 2 + 4 + 2 + 2 + 2 + actualPayloadSize);
for(size_t i = 0; i < 6; i++)
bytestream.push_back(destMAC[i]);
for(size_t i = 0; i < 6; i++)
bytestream.push_back(srcMAC[i]);
// EtherType should be put into the bytestream as big endian
bytestream.push_back((uint8_t)(etherType >> 8));
bytestream.push_back((uint8_t)(etherType));
// Our Ethernet header should be put into the bytestream as big endian
bytestream.push_back((uint8_t)(icsEthernetHeader >> 24));
bytestream.push_back((uint8_t)(icsEthernetHeader >> 16));
bytestream.push_back((uint8_t)(icsEthernetHeader >> 8));
bytestream.push_back((uint8_t)(icsEthernetHeader));
uint16_t declaredPayloadSize = payloadSize ? payloadSize : actualPayloadSize;
// The payload size comes next, it's little endian
bytestream.push_back((uint8_t)(declaredPayloadSize));
bytestream.push_back((uint8_t)(declaredPayloadSize >> 8));
// Packet number is little endian
bytestream.push_back((uint8_t)(packetNumber));
bytestream.push_back((uint8_t)(packetNumber >> 8));
// Packet info gets assembled into a bitfield
uint16_t packetInfo = 0;
packetInfo |= firstPiece & 1;
packetInfo |= (lastPiece & 1) << 1;
packetInfo |= (bufferHalfFull & 1) << 2;
packetInfo |= 1 << 8; // Protocol version 1
bytestream.push_back((uint8_t)(packetInfo));
bytestream.push_back((uint8_t)(packetInfo >> 8));
bytestream.insert(bytestream.end(), payload.begin(), payload.end());
return bytestream;
}