libicsneo/communication/decoder.cpp

467 lines
18 KiB
C++

#include "icsneo/communication/decoder.h"
#include "icsneo/communication/communication.h"
#include "icsneo/communication/message/serialnumbermessage.h"
#include "icsneo/communication/message/resetstatusmessage.h"
#include "icsneo/communication/message/readsettingsmessage.h"
#include "icsneo/communication/message/canerrorcountmessage.h"
#include "icsneo/communication/message/neoreadmemorysdmessage.h"
#include "icsneo/communication/message/extendedresponsemessage.h"
#include "icsneo/communication/message/wiviresponsemessage.h"
#include "icsneo/communication/message/scriptstatusmessage.h"
#include "icsneo/communication/message/a2bmessage.h"
#include "icsneo/communication/message/flexray/control/flexraycontrolmessage.h"
#include "icsneo/communication/message/i2cmessage.h"
#include "icsneo/communication/message/linmessage.h"
#include "icsneo/communication/message/mdiomessage.h"
#include "icsneo/communication/message/extendeddatamessage.h"
#include "icsneo/communication/message/livedatamessage.h"
#include "icsneo/communication/message/diskdatamessage.h"
#include "icsneo/communication/message/hardwareinfo.h"
#include "icsneo/communication/message/tc10statusmessage.h"
#include "icsneo/communication/command.h"
#include "icsneo/device/device.h"
#include "icsneo/communication/packet/canpacket.h"
#include "icsneo/communication/packet/a2bpacket.h"
#include "icsneo/communication/packet/ethernetpacket.h"
#include "icsneo/communication/packet/flexraypacket.h"
#include "icsneo/communication/packet/iso9141packet.h"
#include "icsneo/communication/packet/versionpacket.h"
#include "icsneo/communication/packet/ethphyregpacket.h"
#include "icsneo/communication/packet/logicaldiskinfopacket.h"
#include "icsneo/communication/packet/wivicommandpacket.h"
#include "icsneo/communication/packet/i2cpacket.h"
#include "icsneo/communication/packet/scriptstatuspacket.h"
#include "icsneo/communication/packet/linpacket.h"
#include "icsneo/communication/packet/componentversionpacket.h"
#include "icsneo/communication/packet/supportedfeaturespacket.h"
#include "icsneo/communication/packet/mdiopacket.h"
#include "icsneo/communication/packet/genericbinarystatuspacket.h"
#include "icsneo/communication/packet/livedatapacket.h"
#include "icsneo/communication/packet/hardwareinfopacket.h"
#include <iostream>
using namespace icsneo;
uint64_t Decoder::GetUInt64FromLEBytes(const uint8_t* bytes) {
uint64_t ret = 0;
for(int i = 0; i < 8; i++)
ret |= (uint64_t(bytes[i]) << (i * 8));
return ret;
}
bool Decoder::decode(std::shared_ptr<Message>& result, const std::shared_ptr<Packet>& packet) {
switch(packet->network.getType()) {
case Network::Type::Ethernet: {
result = HardwareEthernetPacket::DecodeToMessage(packet->data, report);
if(!result) {
report(APIEvent::Type::PacketDecodingError, APIEvent::Severity::Error);
return false; // A nullptr was returned, the packet was not long enough to decode
}
// Timestamps are in (resolution) ns increments since 1/1/2007 GMT 00:00:00.0000
// The resolution depends on the device
EthernetMessage& eth = *static_cast<EthernetMessage*>(result.get());
eth.timestamp *= timestampResolution;
eth.network = packet->network;
return true;
}
case Network::Type::CAN:
case Network::Type::SWCAN:
case Network::Type::LSFTCAN: {
if(packet->data.size() < 24) {
report(APIEvent::Type::PacketDecodingError, APIEvent::Severity::Error);
return false;
}
result = HardwareCANPacket::DecodeToMessage(packet->data);
if(!result) {
report(APIEvent::Type::PacketDecodingError, APIEvent::Severity::Error);
return false; // A nullptr was returned, the packet was malformed
}
// Timestamps are in (resolution) ns increments since 1/1/2007 GMT 00:00:00.0000
// The resolution depends on the device
result->timestamp *= timestampResolution;
switch(result->type) {
case Message::Type::Frame: {
CANMessage& can = *static_cast<CANMessage*>(result.get());
can.network = packet->network;
break;
}
case Message::Type::CANErrorCount: {
CANErrorCountMessage& can = *static_cast<CANErrorCountMessage*>(result.get());
can.network = packet->network;
break;
}
default: {
report(APIEvent::Type::PacketDecodingError, APIEvent::Severity::Error);
return false; // An unknown type was returned, the packet was malformed
}
}
return true;
}
case Network::Type::FlexRay: {
if(packet->data.size() < 24) {
report(APIEvent::Type::PacketDecodingError, APIEvent::Severity::Error);
return false;
}
result = HardwareFlexRayPacket::DecodeToMessage(packet->data);
if(!result) {
report(APIEvent::Type::PacketDecodingError, APIEvent::Severity::Error);
return false; // A nullptr was returned, the packet was malformed
}
// Timestamps are in (resolution) ns increments since 1/1/2007 GMT 00:00:00.0000
// The resolution depends on the device
FlexRayMessage& fr = *static_cast<FlexRayMessage*>(result.get());
fr.timestamp *= timestampResolution;
fr.network = packet->network;
return true;
}
case Network::Type::ISO9141: {
if(packet->data.size() < sizeof(HardwareISO9141Packet)) {
report(APIEvent::Type::PacketDecodingError, APIEvent::Severity::Error);
return false;
}
result = iso9141decoder.decodeToMessage(packet->data);
if(!result)
return false; // A nullptr was returned, more data is required to decode this packet
// Timestamps are in (resolution) ns increments since 1/1/2007 GMT 00:00:00.0000
// The resolution depends on the device
ISO9141Message& iso = *static_cast<ISO9141Message*>(result.get());
iso.timestamp *= timestampResolution;
iso.network = packet->network;
return true;
}
case Network::Type::I2C: {
if(packet->data.size() < sizeof(HardwareI2CPacket)) {
report(APIEvent::Type::PacketDecodingError, APIEvent::Severity::Error);
return false;
}
result = HardwareI2CPacket::DecodeToMessage(packet->data);
if(!result) {
report(APIEvent::Type::PacketDecodingError, APIEvent::Severity::Error);
return false; //malformed packet indicated by a nullptr return
}
return true;
}
case Network::Type::A2B: {
result = HardwareA2BPacket::DecodeToMessage(packet->data);
if(!result) {
report(APIEvent::Type::PacketDecodingError, APIEvent::Severity::Error);
return false; // A nullptr was returned, the packet was not long enough to decode
}
A2BMessage& msg = *static_cast<A2BMessage*>(result.get());
msg.network = packet->network;
msg.timestamp *= timestampResolution;
return true;
}
case Network::Type::LIN: {
result = HardwareLINPacket::DecodeToMessage(packet->data);
if(!result) {
report(APIEvent::Type::PacketDecodingError, APIEvent::Severity::Error);
return false; // A nullptr was returned, the packet was not long enough to decode
}
LINMessage& msg = *static_cast<LINMessage*>(result.get());
msg.network = packet->network;
return true;
}
case Network::Type::MDIO: {
result = HardwareMDIOPacket::DecodeToMessage(packet->data);
if(!result) {
report(APIEvent::Type::PacketDecodingError, APIEvent::Severity::Error);
return false; // A nullptr was returned, the packet was not long enough to decode
}
MDIOMessage& msg = *static_cast<MDIOMessage*>(result.get());
msg.network = packet->network;
return true;
}
case Network::Type::Internal: {
switch(packet->network.getNetID()) {
case Network::NetID::Reset_Status: {
// We can deal with not having the last two fields (voltage and temperature)
if(packet->data.size() < (sizeof(HardwareResetStatusPacket) - (sizeof(uint16_t) * 2))) {
report(APIEvent::Type::PacketDecodingError, APIEvent::Severity::Error);
return false;
}
HardwareResetStatusPacket* data = (HardwareResetStatusPacket*)packet->data.data();
auto msg = std::make_shared<ResetStatusMessage>();
msg->mainLoopTime = data->main_loop_time_25ns * 25;
msg->maxMainLoopTime = data->max_main_loop_time_25ns * 25;
msg->justReset = data->status.just_reset;
msg->comEnabled = data->status.com_enabled;
msg->cmRunning = data->status.cm_is_running;
msg->cmChecksumFailed = data->status.cm_checksum_failed;
msg->cmLicenseFailed = data->status.cm_license_failed;
msg->cmVersionMismatch = data->status.cm_version_mismatch;
msg->cmBootOff = data->status.cm_boot_off;
msg->hardwareFailure = data->status.hardware_failure;
msg->usbComEnabled = data->status.usbComEnabled;
msg->linuxComEnabled = data->status.linuxComEnabled;
msg->cmTooBig = data->status.cm_too_big;
msg->hidUsbState = data->status.hidUsbState;
msg->fpgaUsbState = data->status.fpgaUsbState;
if(packet->data.size() >= sizeof(HardwareResetStatusPacket)) {
msg->busVoltage = data->busVoltage;
msg->deviceTemperature = data->deviceTemperature;
}
result = msg;
return true;
}
case Network::NetID::Device: {
// These are neoVI network messages
// They come in as CAN but we will handle them in the device rather than
// passing them onto the user.
if(packet->data.size() < 24) {
auto rawmsg = std::make_shared<RawMessage>(Network::NetID::Device);
result = rawmsg;
rawmsg->data = packet->data;
return true;
}
result = HardwareCANPacket::DecodeToMessage(packet->data);
if(!result) {
report(APIEvent::Type::PacketDecodingError, APIEvent::Severity::Error);
return false; // A nullptr was returned, the packet was malformed
}
// Timestamps are in (resolution) ns increments since 1/1/2007 GMT 00:00:00.0000
// The resolution depends on the device
auto* raw = dynamic_cast<RawMessage*>(result.get());
if(raw == nullptr) {
report(APIEvent::Type::PacketDecodingError, APIEvent::Severity::Error);
return false; // A nullptr was returned, the packet was malformed
}
raw->timestamp *= timestampResolution;
raw->network = packet->network;
return true;
}
case Network::NetID::DeviceStatus: {
// Just pass along the data, the device needs to handle this itself
result = std::make_shared<RawMessage>(packet->network, packet->data);
return true;
}
case Network::NetID::NeoMemorySDRead: {
if(packet->data.size() != 512 + sizeof(uint32_t)) {
report(APIEvent::Type::PacketDecodingError, APIEvent::Severity::Error);
return false; // Should get enough data for a start address and sector
}
const auto msg = std::make_shared<NeoReadMemorySDMessage>();
result = msg;
msg->startAddress = *reinterpret_cast<uint32_t*>(packet->data.data());
msg->data.insert(msg->data.end(), packet->data.begin() + 4, packet->data.end());
return true;
}
case Network::NetID::ExtendedCommand: {
if(packet->data.size() < sizeof(ExtendedResponseMessage::PackedGenericResponse))
break; // Handle as a raw message, might not be a generic response
const auto& resp = *reinterpret_cast<ExtendedResponseMessage::PackedGenericResponse*>(packet->data.data());
switch(resp.header.command) {
case ExtendedCommand::GetComponentVersions:
result = ComponentVersionPacket::DecodeToMessage(packet->data);
return true;
case ExtendedCommand::GetSupportedFeatures:
result = SupportedFeaturesPacket::DecodeToMessage(packet->data);
return true;
case ExtendedCommand::GenericBinaryInfo:
result = GenericBinaryStatusPacket::DecodeToMessage(packet->data);
return true;
case ExtendedCommand::GenericReturn:
result = std::make_shared<ExtendedResponseMessage>(resp.command, resp.returnCode);
return true;
case ExtendedCommand::LiveData:
result = HardwareLiveDataPacket::DecodeToMessage(packet->data, report);
return true;
case ExtendedCommand::GetTC10Status:
result = TC10StatusMessage::DecodeToMessage(packet->data);
return true;
default:
// No defined handler, treat this as a RawMessage
break;
}
break;
}
case Network::NetID::ExtendedData: {
if(packet->data.size() < sizeof(ExtendedDataMessage::ExtendedDataHeader))
break;
const auto& header = *reinterpret_cast<ExtendedDataMessage::ExtendedDataHeader*>(packet->data.data());
switch(header.subCommand) {
case ExtendedDataSubCommand::GenericBinaryRead: {
result = std::make_shared<ExtendedDataMessage>(header);
auto extDataMsg = std::static_pointer_cast<ExtendedDataMessage>(result);
size_t numRead = std::min(ExtendedDataMessage::MaxExtendedDataBufferSize, (size_t)header.length);
extDataMsg->data.resize(numRead);
std::copy(packet->data.begin() + sizeof(header), packet->data.begin() + sizeof(header) + numRead, extDataMsg->data.begin());
extDataMsg->network = Network(static_cast<uint16_t>(Network::NetID::ExtendedData), false);
return true;
}
default:
break;
}
break;
}
case Network::NetID::FlexRayControl: {
auto frResult = std::make_shared<FlexRayControlMessage>(*packet);
if(!frResult->decoded) {
report(APIEvent::Type::PacketDecodingError, APIEvent::Severity::Error);
return false;
}
result = frResult;
return true;
}
case Network::NetID::Main51: {
switch((Command)packet->data[0]) {
case Command::RequestSerialNumber: {
auto msg = std::make_shared<SerialNumberMessage>();
uint64_t serial = GetUInt64FromLEBytes(packet->data.data() + 1);
// The device sends 64-bits of serial number, but we never use more than 32-bits.
msg->deviceSerial = Device::SerialNumToString((uint32_t)serial);
msg->hasMacAddress = packet->data.size() >= 15;
if(msg->hasMacAddress)
memcpy(msg->macAddress, packet->data.data() + 9, sizeof(msg->macAddress));
msg->hasPCBSerial = packet->data.size() >= 31;
if(msg->hasPCBSerial)
memcpy(msg->pcbSerial, packet->data.data() + 15, sizeof(msg->pcbSerial));
result = msg;
return true;
}
case Command::GetMainVersion: {
result = HardwareVersionPacket::DecodeMainToMessage(packet->data);
if(!result) {
report(APIEvent::Type::PacketDecodingError, APIEvent::Severity::Error);
return false;
}
return true;
}
case Command::GetSecondaryVersions: {
result = HardwareVersionPacket::DecodeSecondaryToMessage(packet->data);
if(!result) {
report(APIEvent::Type::PacketDecodingError, APIEvent::Severity::Error);
return false;
}
return true;
}
case Command::GetHardwareInfo: {
result = HardwareInfoPacket::DecodeToMessage(packet->data);
if(!result) {
report(APIEvent::Type::PacketDecodingError, APIEvent::Severity::Error);
return false;
}
return true;
}
default:
auto msg = std::make_shared<Main51Message>();
msg->command = Command(packet->data[0]);
msg->data.insert(msg->data.begin(), packet->data.begin() + 1, packet->data.end());
result = msg;
return true;
}
}
case Network::NetID::RED_OLDFORMAT: {
/* So-called "old format" messages are a "new style, long format" wrapper around the old short messages.
* They consist of a 16-bit LE length first, then the 8-bit length and netid combo byte, then the payload
* with no checksum. The upper-nibble length of the combo byte should be ignored completely, using the
* length from the first two bytes in its place. Ideally, we never actually send the oldformat messages
* out to the rest of the application as they can recursively get decoded to another message type here.
* Feed the result back into the decoder in case we do something special with the resultant netid.
*/
uint16_t length = packet->data[0] | (packet->data[1] << 8);
packet->network = Network(packet->data[2] & 0xF);
packet->data.erase(packet->data.begin(), packet->data.begin() + 3);
if(packet->data.size() != length)
packet->data.resize(length);
return decode(result, packet);
}
case Network::NetID::ReadSettings: {
auto msg = std::make_shared<ReadSettingsMessage>();
msg->response = ReadSettingsMessage::Response(packet->data[0]);
if(msg->response == ReadSettingsMessage::Response::OK) {
// The global settings structure is the payload of the message in this case
msg->data.insert(msg->data.begin(), packet->data.begin() + 10, packet->data.end());
uint16_t resp_len = msg->data[8] | (msg->data[9] << 8);
if(msg->data.size() - 1 == resp_len) // There is a padding byte at the end
msg->data.pop_back();
result = msg;
return true;
}
// We did not get a successful response, so the payload is all of the data
msg->data.insert(msg->data.begin(), packet->data.begin(), packet->data.end());
result = msg;
return true;
}
case Network::NetID::LogicalDiskInfo: {
result = LogicalDiskInfoPacket::DecodeToMessage(packet->data);
if(!result) {
report(APIEvent::Type::PacketDecodingError, APIEvent::Severity::EventWarning);
return false;
}
return true;
}
case Network::NetID::WiVICommand: {
result = WiVI::CommandPacket::DecodeToMessage(packet->data);
if(!result) {
report(APIEvent::Type::PacketDecodingError, APIEvent::Severity::EventWarning);
return false;
}
return true;
}
case Network::NetID::EthPHYControl: {
result = HardwareEthernetPhyRegisterPacket::DecodeToMessage(packet->data, report);
if(!result) {
report(APIEvent::Type::PacketDecodingError, APIEvent::Severity::EventWarning);
return false;
}
return true;
}
case Network::NetID::ScriptStatus: {
result = ScriptStatus::DecodeToMessage(packet->data);
if(!result) {
report(APIEvent::Type::PacketDecodingError, APIEvent::Severity::EventWarning);
return false;
}
return true;
}
case Network::NetID::DiskData: {
result = std::make_shared<DiskDataMessage>(std::move(packet->data));
return true;
}
default:
break;
}
break;
}
}
// For the moment other types of messages will automatically be decoded as raw messages
result = std::make_shared<RawMessage>(packet->network, packet->data);
return true;
}