libicsneo/communication/encoder.cpp

168 lines
5.6 KiB
C++

#include "icsneo/communication/encoder.h"
using namespace icsneo;
bool Encoder::encode(std::vector<uint8_t>& result, const std::shared_ptr<Message>& message) {
bool shortFormat = false;
bool useResultAsBuffer = false; // Otherwise it's expected that we use message->data
result.clear();
switch(message->network.getType()) {
case Network::Type::CAN: {
useResultAsBuffer = true;
auto canmsg = std::dynamic_pointer_cast<CANMessage>(message);
if(!canmsg)
return false; // The message was not a properly formed CANMessage
if(!supportCANFD && canmsg->isCANFD)
return false; // This device does not support CAN FD
if(canmsg->isCANFD && canmsg->isRemote)
return false; // RTR frames can not be used with CAN FD
const size_t dataSize = canmsg->data.size();
if(dataSize > 64 || (dataSize > 8 && !canmsg->isCANFD))
return false; // Too much data for the protocol
uint8_t lengthNibble = uint8_t(canmsg->data.size());
if(lengthNibble > 8) {
switch(lengthNibble) {
case 12:
lengthNibble = 0x9;
break;
case 16:
lengthNibble = 0xA;
break;
case 20:
lengthNibble = 0xB;
break;
case 24:
lengthNibble = 0xC;
break;
case 32:
lengthNibble = 0xD;
break;
case 48:
lengthNibble = 0xE;
break;
case 64:
lengthNibble = 0xF;
break;
default:
return false; // CAN FD frame may have had an incorrect byte count
}
}
// Pre-allocate as much memory as we will possibly need for speed
result.reserve(17 + dataSize);
result.push_back(0 /* byte count here later */ << 4 | (uint8_t(canmsg->network.getNetID()) & 0xF));
result.insert(result.end(), {0,0}); // Two bytes for Description ID, big endian, not used in API currently
// Next 2-4 bytes are ArbID
if(canmsg->isExtended) {
if(canmsg->arbid >= 0x20000000) // Extended messages use 29-bit arb IDs
return false;
result.insert(result.end(), {
(uint8_t)(canmsg->arbid >> 21),
(uint8_t)((((canmsg->arbid & 0x001C0000) >> 13) & 0xFF) + (((canmsg->arbid & 0x00030000) >> 16) & 0xFF) | 8),
(uint8_t)(canmsg->arbid >> 8),
(uint8_t)canmsg->arbid
});
} else {
if(canmsg->arbid >= 0x800) // Standard messages use 11-bit arb IDs
return false;
result.insert(result.end(), {
(uint8_t)(canmsg->arbid >> 3),
(uint8_t)((canmsg->arbid & 0x7) << 5)
});
}
// Status and DLC bits
if(canmsg->isCANFD) {
result.push_back(0x0F); // FD Frame
uint8_t fdStatusByte = lengthNibble;
if(canmsg->baudrateSwitch)
fdStatusByte |= 0x80; // BRS status bit
result.push_back(fdStatusByte);
} else {
// TODO Support high voltage wakeup, bitwise-or in 0x8 here to enable
uint8_t statusNibble = canmsg->isRemote ? 0x4 : 0x0;
result.push_back((statusNibble << 4) | lengthNibble);
}
// Now finally the payload
result.insert(result.end(), canmsg->data.begin(), canmsg->data.end());
result.push_back(0);
// Fill in the length byte from earlier
result[0] |= result.size() << 4;
break;
} // End of Network::Type::CAN
default:
switch(message->network.getNetID()) {
case Network::NetID::Device:
shortFormat = true;
break;
case Network::NetID::Main51:
if(message->data.size() > 0xF) {
// Main51 can be sent as a long message without setting the NetID to RED first
// Size in long format is the size of the entire packet
// So +1 for AA header, +1 for short format header, and +2 for long format size
uint16_t size = uint16_t(message->data.size()) + 1 + 1 + 2;
size += 1; // Even though we are not including the NetID bytes, the device expects them to be counted in the length
message->data.insert(message->data.begin(), {
(uint8_t)Network::NetID::Main51, // 0x0B for long message
(uint8_t)size, // Size, little endian 16-bit
(uint8_t)(size >> 8)
});
result = packetizer->packetWrap(message->data, shortFormat);
return true;
} else {
shortFormat = true;
}
break;
case Network::NetID::RED_OLDFORMAT: {
// See the decoder for an explanation
// We expect the network byte to be populated already in data, but not the length
uint16_t length = uint16_t(message->data.size()) - 1;
message->data.insert(message->data.begin(), {(uint8_t)length, (uint8_t)(length >> 8)});
break;
}
default:
return false;
}
}
auto& buffer = useResultAsBuffer ? result : message->data;
if(shortFormat) {
buffer.insert(buffer.begin(), (uint8_t(buffer.size()) << 4) | uint8_t(message->network.getNetID()));
} else {
// Size in long format is the size of the entire packet
// So +1 for AA header, +1 for short format header, +2 for long format size, and +2 for long format NetID
uint16_t size = uint16_t(buffer.size()) + 1 + 1 + 2 + 2;
buffer.insert(buffer.begin(), {
(uint8_t)Network::NetID::RED, // 0x0C for long message
(uint8_t)size, // Size, little endian 16-bit
(uint8_t)(size >> 8),
(uint8_t)message->network.getNetID(), // NetID, little endian 16-bit
(uint8_t)(uint16_t(message->network.getNetID()) >> 8)
});
}
result = packetizer->packetWrap(buffer, shortFormat);
return true;
}
bool Encoder::encode(std::vector<uint8_t>& result, Command cmd, std::vector<uint8_t> arguments) {
auto msg = std::make_shared<Message>();
msg->network = Network::NetID::Main51;
msg->data.reserve(arguments.size() + 1);
msg->data.push_back((uint8_t)cmd);
msg->data.insert(msg->data.end(), std::make_move_iterator(arguments.begin()), std::make_move_iterator(arguments.end()));
return encode(result, msg);
}