libicsneo/include/icsneo/device/tree/radgigastar/radgigastar.h

243 lines
7.9 KiB
C++

#ifndef __RADGIGASTAR_H_
#define __RADGIGASTAR_H_
#ifdef __cplusplus
#include "icsneo/device/device.h"
#include "icsneo/device/devicetype.h"
#include "icsneo/disk/extextractordiskreaddriver.h"
#include "icsneo/disk/neomemorydiskdriver.h"
#include "icsneo/device/tree/radgigastar/radgigastarsettings.h"
namespace icsneo {
class RADGigastar : public Device {
public:
// Serial numbers start with GS
// USB PID is 0x1204, standard driver is DXX
// Ethernet MAC allocation is 0x0F, standard driver is Raw
ICSNEO_FINDABLE_DEVICE(RADGigastar, DeviceType::RADGigastar, "GS");
size_t getEthernetActivationLineCount() const override { return 1; }
bool getEthPhyRegControlSupported() const override { return true; }
bool supportsTC10() const override { return true; }
bool supportsGPTP() const override { return true; }
ProductID getProductID() const override {
return ProductID::RADGigastar;
}
const std::vector<ChipInfo>& getChipInfo() const override {
static std::vector<ChipInfo> chips = {
{ChipID::RADGigastar_ZYNQ, true, "ZCHIP", "RADGigastar_SW_bin", 1, FirmwareType::Zip},
{ChipID::RADGigastar_FFG_ZYNQ, false, "ZCHIP", "RADGigastar_FFG_SW_bin", 1, FirmwareType::Zip},
{ChipID::RADGigastar_USBZ_ZYNQ, true, "USB ZCHIP", "RADGigastar_USBz_SW_bin", 2, FirmwareType::Zip},
{ChipID::RADGigastar_USBZ_Z7010_ZYNQ, false, "USB ZCHIP", "RADGigastar_USBz_Z7010_SW_bin", 2, FirmwareType::Zip},
{ChipID::RADGigastar_USBZ_Z7007S_ZYNQ, false, "USB ZCHIP", "RADGigastar_USBz_Z7007s_SW_bin", 2, FirmwareType::Zip},
};
return chips;
}
BootloaderPipeline getBootloader() override {
if(supportsComponentVersions()) {
// main: 16.1, usb: 14.0
auto chipVersions = getChipVersions();
auto mainVersion = std::find_if(chipVersions.begin(), chipVersions.end(), [](const auto& ver) { return ver.name == "ZCHIP"; });
auto usbVersion = std::find_if(chipVersions.begin(), chipVersions.end(), [](const auto& ver) { return ver.name == "USB ZCHIP"; });
bool useNewBootloader = false;
if(mainVersion != chipVersions.end()) {
static constexpr uint8_t NewBootloaderMajor = 16;
static constexpr uint8_t NewBootloaderMinor = 1;
if(
mainVersion->major > NewBootloaderMajor ||
(mainVersion->major == NewBootloaderMajor && mainVersion->minor >= NewBootloaderMinor)
) {
useNewBootloader = true;
}
} else if(usbVersion != chipVersions.end()) {
static constexpr uint8_t NewBootloaderMajorUSB = 14;
static constexpr uint8_t NewBootloaderMinorUSB= 0;
if(
usbVersion->major > NewBootloaderMajorUSB ||
(usbVersion->major == NewBootloaderMajorUSB && usbVersion->minor >= NewBootloaderMinorUSB)
) {
useNewBootloader = true;
}
}
if(useNewBootloader) {
auto mainChip = std::find_if(chipVersions.begin(), chipVersions.end(), [](const auto& chip) { return chip.name == "ZCHIP"; });
auto usbChip = std::find_if(chipVersions.begin(), chipVersions.end(), [](const auto& chip) { return chip.name == "USB ZCHIP"; });
ChipID mainChipID;
if(mainChip != chipVersions.end()) {
mainChipID = mainChip->id;
} else if(usbChip != chipVersions.end()) {
mainChipID = usbChip->id;
} else {
return {};
}
BootloaderPipeline pipeline;
for(const auto& version : chipVersions) {
pipeline.add<FlashPhase>(version.id, BootloaderCommunication::RADMultiChip);
}
pipeline.add<EnterApplicationPhase>(mainChipID);
pipeline.add<WaitPhase>(std::chrono::milliseconds(3000));
pipeline.add<ReconnectPhase>();
return pipeline;
}
}
// If we've reached this point, then we use the legacy flashing
if(com->driver->isEthernet()) {
return BootloaderPipeline()
.add<FlashPhase>(ChipID::RADGigastar_ZYNQ, BootloaderCommunication::RAD)
.add<WaitPhase>(std::chrono::milliseconds(3000))
.add<ReconnectPhase>();
}
return BootloaderPipeline()
.add<FlashPhase>(ChipID::RADGigastar_USBZ_ZYNQ, BootloaderCommunication::RAD)
.add<WaitPhase>(std::chrono::milliseconds(3000))
.add<ReconnectPhase>();
}
std::vector<VersionReport> getChipVersions(bool refreshComponents = true) override {
if(refreshComponents) {
refreshComponentVersions();
}
if(supportsComponentVersions()) {
return Device::getChipVersions(false);
}
static constexpr size_t MainPeriphIndex = 1;
static constexpr size_t USBPeriphIndex = 2;
std::vector<VersionReport> chipVersions;
auto& appVersions = getVersions();
if(appVersions.size() < 3 && !appVersions.empty()) {
if(appVersions[0]) {
chipVersions.push_back({ChipID::RADGigastar_ZYNQ, "ZCHIP", appVersions[0]->major, appVersions[0]->minor, 0, 0});
}
} else {
if(MainPeriphIndex < appVersions.size()) {
if(appVersions[MainPeriphIndex]) {
chipVersions.push_back({ChipID::RADGigastar_ZYNQ, "ZCHIP", appVersions[MainPeriphIndex]->major, appVersions[MainPeriphIndex]->minor, 0, 0});
}
}
if(USBPeriphIndex < appVersions.size()) {
if(appVersions[USBPeriphIndex]) {
chipVersions.push_back({ChipID::RADGigastar_USBZ_ZYNQ, "USB ZCHIP", appVersions[USBPeriphIndex]->major, appVersions[USBPeriphIndex]->minor, 0, 0});
}
}
}
return chipVersions;
}
protected:
RADGigastar(neodevice_t neodevice, const driver_factory_t& makeDriver) : Device(neodevice) {
initialize<RADGigastarSettings, Disk::ExtExtractorDiskReadDriver, Disk::NeoMemoryDiskDriver>(makeDriver);
}
void setupPacketizer(Packetizer& packetizer) override {
Device::setupPacketizer(packetizer);
packetizer.disableChecksum = true;
packetizer.align16bit = false;
}
void setupDecoder(Decoder& decoder) override {
Device::setupDecoder(decoder);
decoder.timestampResolution = 10; // Timestamps are in 10ns increments instead of the usual 25ns
}
void setupEncoder(Encoder& encoder) override {
Device::setupEncoder(encoder);
encoder.supportCANFD = true;
encoder.supportEthPhy = true;
}
void setupSupportedRXNetworks(std::vector<Network>& rxNetworks) override {
static std::vector<Network> supportedRxNetworks = {
Network::NetID::DWCAN_01,
Network::NetID::DWCAN_08,
Network::NetID::DWCAN_02,
Network::NetID::DWCAN_03,
Network::NetID::DWCAN_04,
Network::NetID::DWCAN_05,
Network::NetID::ETHERNET_01,
Network::NetID::ETHERNET_02,
Network::NetID::AE_01,
Network::NetID::AE_02,
Network::NetID::LIN_01,
Network::NetID::FLEXRAY_01A,
Network::NetID::FLEXRAY_01B,
Network::NetID::I2C_01,
Network::NetID::I2C_02,
Network::NetID::I2C_03,
Network::NetID::MDIO_01,
Network::NetID::MDIO_02,
};
rxNetworks.insert(rxNetworks.end(), supportedRxNetworks.begin(), supportedRxNetworks.end());
}
void setupSupportedTXNetworks(std::vector<Network>& txNetworks) override {
static std::vector<Network> supportedTxNetworks = {
Network::NetID::DWCAN_01,
Network::NetID::DWCAN_08,
Network::NetID::DWCAN_02,
Network::NetID::DWCAN_03,
Network::NetID::DWCAN_04,
Network::NetID::DWCAN_05,
Network::NetID::ETHERNET_01,
Network::NetID::ETHERNET_02,
Network::NetID::AE_01,
Network::NetID::AE_02,
Network::NetID::LIN_01,
// FlexRay is Receive Only
Network::NetID::I2C_01,
Network::NetID::I2C_02,
Network::NetID::I2C_03,
Network::NetID::MDIO_01,
Network::NetID::MDIO_02,
};
txNetworks.insert(txNetworks.end(), supportedTxNetworks.begin(), supportedTxNetworks.end());
}
void handleDeviceStatus(const std::shared_ptr<RawMessage>& message) override {
if(message->data.size() < sizeof(radgigastar_status_t))
return;
std::lock_guard<std::mutex> lk(ioMutex);
const radgigastar_status_t* status = reinterpret_cast<const radgigastar_status_t*>(message->data.data());
ethActivationStatus = status->ethernetActivationLineEnabled;
}
std::optional<MemoryAddress> getCoreminiStartAddressFlash() const override {
return 512*4;
}
std::optional<MemoryAddress> getCoreminiStartAddressSD() const override {
return 0;
}
size_t getDiskCount() const override {
return 1;
}
};
}
#endif // __cplusplus
#endif