libicsneo/platform/posix/pcap.cpp

317 lines
10 KiB
C++

#include "icsneo/platform/posix/pcap.h"
#include "icsneo/communication/network.h"
#include "icsneo/communication/communication.h"
#include "icsneo/communication/ethernetpacketizer.h"
#include "icsneo/communication/packetizer.h"
#include "icsneo/communication/decoder.h"
#include <codecvt>
#include <chrono>
#include <cstring>
#include <sys/types.h>
#include <sys/socket.h>
#ifdef __linux__
#include <netpacket/packet.h>
#else
#include <net/if_dl.h>
#endif
using namespace icsneo;
std::vector<PCAP::NetworkInterface> PCAP::knownInterfaces;
void PCAP::Find(std::vector<FoundDevice>& found) {
static bool warned = false; // Only warn once for failure to open devices
// First we ask PCAP to give us all of the devices
pcap_if_t* alldevs;
char errbuf[PCAP_ERRBUF_SIZE] = { 0 };
bool success = false;
// Calling pcap_findalldevs too quickly can cause various errors. Retry a few times in this case.
for(auto retry = 0; retry < 10; retry++) {
auto ret = pcap_findalldevs(&alldevs, errbuf);
if(ret == 0) {
success = true;
break;
}
}
if(!success) {
EventManager::GetInstance().add(APIEvent::Type::PCAPCouldNotFindDevices, APIEvent::Severity::Error);
return;
}
std::vector<NetworkInterface> interfaces;
for(pcap_if_t* dev = alldevs; dev != nullptr; dev = dev->next) {
if(dev->name == nullptr)
continue;
if(dev->addresses == nullptr) {
//std::cout << dev->name << " has no addresses" << std::endl;
continue;
}
NetworkInterface netif;
netif.nameFromPCAP = dev->name;
if(dev->description)
netif.descriptionFromPCAP = dev->description;
pcap_addr* currentAddress = dev->addresses;
bool hasAddress = false;
while(!hasAddress && currentAddress != nullptr) {
#ifdef __linux__
if(currentAddress->addr && currentAddress->addr->sa_family == AF_PACKET) {
struct sockaddr_ll* s = (struct sockaddr_ll*)currentAddress->addr;
memcpy(netif.macAddress, s->sll_addr, sizeof(netif.macAddress));
hasAddress = true;
break;
}
#else // macOS and likely other BSDs
if(currentAddress->addr && currentAddress->addr->sa_family == AF_LINK) {
struct sockaddr_dl* s = (struct sockaddr_dl*)currentAddress->addr;
if(s->sdl_alen == 6 && s->sdl_alen + s->sdl_nlen < sizeof(s->sdl_data)) {
const uint8_t* mac = (uint8_t*)(s->sdl_data) + s->sdl_nlen;
memcpy(netif.macAddress, mac, sizeof(netif.macAddress));
hasAddress = true;
break;
}
}
#endif
currentAddress = currentAddress->next;
}
if(!hasAddress)
continue;
interfaces.push_back(netif);
}
pcap_freealldevs(alldevs);
for(auto& iface : interfaces) {
bool exists = false;
for(auto& known : knownInterfaces)
if(memcmp(iface.macAddress, known.macAddress, sizeof(iface.macAddress)) == 0)
exists = true;
if(!exists)
knownInterfaces.emplace_back(iface);
}
for(size_t i = 0; i < knownInterfaces.size(); i++) {
auto& iface = knownInterfaces[i];
// if(iface.fullName.length() == 0)
// continue; // Win32 did not find this interface in the previous step
errbuf[0] = '\0';
iface.fp = pcap_open_live(iface.nameFromPCAP.c_str(), 65536, 1,
#ifdef __linux__ // -1 is required for instant reporting of new packets
-1, // to_ms
#else // macOS gives BIOCSRTIMEOUT for -1 and no packets for 0
1,
#endif
errbuf);
// TODO Handle warnings
// if(strlen(errbuf) != 0) { // This means a warning
// std::cout << "Warning for " << iface.nameFromPCAP << " " << errbuf << std::endl;
// }
if(iface.fp == nullptr) {
if (!warned) {
warned = true;
EventManager::GetInstance().add(APIEvent::Type::PCAPCouldNotFindDevices, APIEvent::Severity::EventWarning);
// std::cout << "pcap_open_live failed for " << iface.nameFromPCAP << " with " << errbuf << std::endl;
}
continue; // Could not open the interface
}
pcap_setnonblock(iface.fp, 1, errbuf);
EthernetPacketizer::EthernetPacket requestPacket;
memcpy(requestPacket.srcMAC, iface.macAddress, sizeof(requestPacket.srcMAC));
requestPacket.payload.reserve(4);
requestPacket.payload = {
((1 << 4) | (uint8_t)Network::NetID::Main51), // Packet size of 1 on NETID_MAIN51
(uint8_t)Command::RequestSerialNumber
};
requestPacket.payload.push_back(Packetizer::ICSChecksum(requestPacket.payload));
requestPacket.payload.insert(requestPacket.payload.begin(), 0xAA);
auto bs = requestPacket.getBytestream();
pcap_sendpacket(iface.fp, bs.data(), (int)bs.size());
auto timeout = std::chrono::high_resolution_clock::now() + std::chrono::milliseconds(50);
constexpr const size_t TempBufferSize = 4096;
RingBuffer tempBuffer(TempBufferSize);
while(std::chrono::high_resolution_clock::now() <= timeout) { // Wait up to 50ms for the response
struct pcap_pkthdr* header;
const uint8_t* data;
auto res = pcap_next_ex(iface.fp, &header, &data);
if(res == 0)
continue;
if(res < 0 || !header || !data) {
if (!warned) {
warned = true;
EventManager::GetInstance().add(APIEvent::Type::PCAPCouldNotFindDevices, APIEvent::Severity::EventWarning);
// std::cout << "pcapnextex failed with " << res << std::endl;
}
break;
}
EthernetPacketizer ethPacketizer([](APIEvent::Type, APIEvent::Severity) {});
memcpy(ethPacketizer.hostMAC, iface.macAddress, sizeof(ethPacketizer.hostMAC));
ethPacketizer.allowInPacketsFromAnyMAC = true;
if(!ethPacketizer.inputUp({ data, data + header->caplen }))
continue; // This packet is not for us
Packetizer packetizer([](APIEvent::Type, APIEvent::Severity) {});
tempBuffer.write(ethPacketizer.outputUp());
if(!packetizer.input(tempBuffer))
continue; // This packet was not well formed
EthernetPacketizer::EthernetPacket decoded(data, header->caplen);
Decoder decoder([](APIEvent::Type, APIEvent::Severity) {});
for(const auto& packet : packetizer.output()) {
std::shared_ptr<Message> message;
if(!decoder.decode(message, packet))
continue;
const auto serial = std::dynamic_pointer_cast<SerialNumberMessage>(message);
if(!serial || serial->deviceSerial.size() != 6)
continue;
FoundDevice foundDevice;
foundDevice.handle = (neodevice_handle_t)((i << 24) | (decoded.srcMAC[3] << 16) | (decoded.srcMAC[4] << 8) | (decoded.srcMAC[5]));
foundDevice.productId = decoded.srcMAC[2];
memcpy(foundDevice.serial, serial->deviceSerial.c_str(), sizeof(foundDevice.serial) - 1);
foundDevice.serial[sizeof(foundDevice.serial) - 1] = '\0';
if(std::any_of(found.begin(), found.end(), [&](const auto& found) { return ::strncmp(foundDevice.serial, found.serial, sizeof(foundDevice.serial)) == 0; }))
continue; // We already have this device on this interface
foundDevice.makeDriver = [](const device_eventhandler_t& report, neodevice_t& device) {
return std::unique_ptr<Driver>(new PCAP(report, device));
};
found.push_back(foundDevice);
}
}
pcap_close(iface.fp);
iface.fp = nullptr;
}
}
bool PCAP::IsHandleValid(neodevice_handle_t handle) {
uint8_t netifIndex = (uint8_t)(handle >> 24);
return (netifIndex < knownInterfaces.size());
}
PCAP::PCAP(device_eventhandler_t err, neodevice_t& forDevice) : Driver(err), device(forDevice), ethPacketizer(err) {
if(IsHandleValid(device.handle)) {
iface = knownInterfaces[(device.handle >> 24) & 0xFF];
iface.fp = nullptr; // We're going to open our own connection to the interface. This should already be nullptr but just in case.
deviceMAC[0] = 0x00;
deviceMAC[1] = 0xFC;
deviceMAC[2] = 0x70;
deviceMAC[3] = (device.handle >> 16) & 0xFF;
deviceMAC[4] = (device.handle >> 8) & 0xFF;
deviceMAC[5] = device.handle & 0xFF;
memcpy(ethPacketizer.deviceMAC, deviceMAC, 6);
memcpy(ethPacketizer.hostMAC, iface.macAddress, 6);
} else {
openable = false;
}
}
bool PCAP::open() {
if(!openable)
return false;
if(isOpen())
return false;
// Open the interface
iface.fp = pcap_open_live(iface.nameFromPCAP.c_str(), 65536, 1,
#ifdef __linux__ // -1 is required for instant reporting of new packets
-1, // to_ms
#else // macOS gives BIOCSRTIMEOUT for -1 and no packets for 0
1,
#endif
errbuf);
if(iface.fp == nullptr) {
report(APIEvent::Type::DriverFailedToOpen, APIEvent::Severity::Error);
return false;
}
pcap_setnonblock(iface.fp, 0, errbuf);
pcap_set_immediate_mode(iface.fp, 1);
// Create threads
readThread = std::thread(&PCAP::readTask, this);
writeThread = std::thread(&PCAP::writeTask, this);
return true;
}
bool PCAP::isOpen() {
return iface.fp != nullptr;
}
bool PCAP::close() {
if(!isOpen())
return false;
closing = true; // Signal the threads that we are closing
pcap_breakloop(iface.fp);
#ifndef __linux__
pthread_cancel(readThread.native_handle());
#endif
readThread.join();
writeThread.join();
closing = false;
pcap_close(iface.fp);
iface.fp = nullptr;
WriteOperation flushop;
readBuffer.clear();
while(writeQueue.try_dequeue(flushop)) {}
return true;
}
void PCAP::readTask() {
EventManager::GetInstance().downgradeErrorsOnCurrentThread();
while (!closing) {
pcap_dispatch(iface.fp, -1, [](uint8_t* obj, const struct pcap_pkthdr* header, const uint8_t* data) {
PCAP* driver = reinterpret_cast<PCAP*>(obj);
if(driver->ethPacketizer.inputUp({data, data + header->caplen})) {
const auto bytes = driver->ethPacketizer.outputUp();
driver->readBuffer.write(bytes.data(), bytes.size());
}
}, (uint8_t*)this);
}
}
void PCAP::writeTask() {
WriteOperation writeOp;
EventManager::GetInstance().downgradeErrorsOnCurrentThread();
while(!closing) {
if(!writeQueue.wait_dequeue_timed(writeOp, std::chrono::milliseconds(100)))
continue;
// If we have a bunch of small packets to send, try to pack them into a packet
// We use the average packet size to determine if we're likely to have enough room
size_t bytesPushed = 0;
size_t packetsPushed = 0;
do {
packetsPushed++;
bytesPushed += writeOp.bytes.size();
ethPacketizer.inputDown(std::move(writeOp.bytes));
} while(bytesPushed < (EthernetPacketizer::MaxPacketLength - (bytesPushed / packetsPushed * 2)) && writeQueue.try_dequeue(writeOp));
for(const auto& packet : ethPacketizer.outputDown()) {
pcap_sendpacket(iface.fp, packet.data(), (int)packet.size());
}
// TODO Handle packet send errors
}
}