libicsneo/communication/packet/ethernetpacket.cpp

99 lines
3.7 KiB
C++

#include "icsneo/communication/packet/ethernetpacket.h"
#include <cstring> // memcpy
#include <iostream>
using namespace icsneo;
std::shared_ptr<EthernetMessage> HardwareEthernetPacket::DecodeToMessage(const std::vector<uint8_t>& bytestream, const device_eventhandler_t& report) {
const HardwareEthernetPacket* packet = (const HardwareEthernetPacket*)((const void*)bytestream.data());
const uint16_t* rawWords = (const uint16_t*)bytestream.data();
// Make sure we have enough to read the packet length first
if(bytestream.size() < sizeof(HardwareEthernetPacket))
return nullptr;
// packet->Length will also encompass the two uint16_t's at the end of the struct, make sure that at least they are here
if(packet->Length < 4)
return nullptr;
const size_t fcsSize = packet->header.FCS_AVAIL ? 4 : 0;
const size_t bytestreamExpectedSize = sizeof(HardwareEthernetPacket) + packet->Length;
const size_t bytestreamActualSize = bytestream.size();
if(bytestreamActualSize < bytestreamExpectedSize)
return nullptr;
// Check for oversized packets, noting that some devices will send an extra byte to have an even number of bytes
if(bytestreamActualSize > bytestreamExpectedSize + 1)
report(APIEvent::Type::PacketDecodingError, APIEvent::Severity::EventWarning);
auto messagePtr = std::make_shared<EthernetMessage>();
EthernetMessage& message = *messagePtr;
message.transmitted = packet->eid.TXMSG;
if(message.transmitted)
message.description = packet->stats;
message.preemptionEnabled = packet->header.PREEMPTION_ENABLED;
if(message.preemptionEnabled)
message.preemptionFlags = (uint8_t)((rawWords[0] & 0x03F8) >> 4);
message.frameTooShort = packet->header.RUNT_FRAME;
if(message.frameTooShort)
message.error = true;
// This timestamp is raw off the device (in timestampResolution increments)
// Decoder will fix as it has information about the timestampResolution increments
message.timestamp = packet->timestamp.TS;
const std::vector<uint8_t>::const_iterator databegin = bytestream.begin() + sizeof(HardwareEthernetPacket);
const std::vector<uint8_t>::const_iterator dataend = databegin + packet->Length - fcsSize;
message.data.insert(message.data.begin(), databegin, dataend);
if(fcsSize) {
uint32_t& fcs = message.fcs.emplace();
std::copy(dataend, dataend + fcsSize, (uint8_t*)&fcs);
}
return messagePtr;
}
bool HardwareEthernetPacket::EncodeFromMessage(const EthernetMessage& message, std::vector<uint8_t>& bytestream, const device_eventhandler_t&) {
const size_t unpaddedSize = message.data.size();
size_t paddedSize = unpaddedSize;
uint16_t description = message.description;
if(!message.noPadding && unpaddedSize < 60)
paddedSize = 60; // Pad out short messages
size_t sizeWithHeader = paddedSize + 4; // DescriptionID and Padded Count
// Description ID Most Significant bit is used to identify preemption frames
if(description & 0x8000)
return false;
if(message.preemptionEnabled) {
sizeWithHeader++; // Make space for the preemption flags
description |= 0x8000;
}
bytestream.reserve(sizeWithHeader + 8); // Also reserve space for the bytes we'll use later on
bytestream.resize(sizeWithHeader);
size_t index = 0;
// Padded size, little endian
bytestream[index++] = uint8_t(paddedSize);
bytestream[index++] = uint8_t(paddedSize >> 8);
// Description ID, big endian
bytestream[index++] = uint8_t(description >> 8);
bytestream[index++] = uint8_t(description);
// The header is one byte larger if preemption is enabled, shifting the data
if(message.preemptionEnabled)
bytestream[index++] = message.preemptionFlags;
// We only copy in the unpadded size, the rest will be 0
memcpy(bytestream.data() + index, message.data.data(), unpaddedSize);
return true;
}