#include #include #if defined(_WIN32) || defined(_WIN64) #include #else #include #endif /** * @brief Sleeps for a specified number of milliseconds. * * Sleeps for a specified number of milliseconds using Sleep() on Windows and sleep() on *nix. * * @param ms The number of milliseconds to sleep. */ void sleep_ms(uint32_t ms) { #if defined(_WIN32) || defined(_WIN64) Sleep(ms); #else sleep(ms / 1000); #endif } /** * @brief Prints an error message with the given string and error code. * * If the error code is not icsneo_error_success, prints the error string for the given error code * and returns the error code. * * @param message The message to print. * @param error The error code to print. * @return error as int */ int print_error_code(const char* message, icsneo_error_t error) { char error_str[256] = {0}; uint32_t error_length = 256; icsneo_error_t res = icsneo_get_error_code(error, error_str, &error_length); if (res != icsneo_error_success) { printf("%s: Failed to get string for error code %d with error code %d\n", message, error, res); return res; } printf("%s: \"%s\" (%u)\n", message, error_str, error); return (int)error; } /** * @brief Processes a list of messages from a device. * * This function iterates over a given array of messages received from a specified device. * For each message in the array, it retrieves and prints the message type and bus type. * If an error occurs while retrieving these details, an error message is printed. * * @param device A pointer to the icsneo_device_t structure representing the device. * @param messages An array of pointers to icsneo_message_t structures containing the messages to process. * @param messages_count The number of messages in the messages array. * * @return An icsneo_error_t value indicating success or failure of the message processing. */ int process_messages(icsneo_device_t* device, icsneo_message_t** messages, uint32_t messages_count); void print_device_events(icsneo_device_t* device, const char* device_description); int transmit_can_messages(icsneo_device_t* device); int main(int argc, char* argv[]) { (void)argc; (void)argv; icsneo_device_t* devices[255] = {0}; uint32_t devices_count = 255; icsneo_error_t res = icsneo_device_find_all(devices, &devices_count, NULL); if (res != icsneo_error_success) { return print_error_code("Failed to find devices", res); }; printf("Found %u devices\n", devices_count); // Loop over each device for (uint32_t i = 0; i < devices_count; i++) { icsneo_device_t* device = devices[i]; // Get description of the device const char description[255] = {0}; uint32_t description_length = 255; res = icsneo_device_get_description(device, description, &description_length); if (res != icsneo_error_success) { print_device_events(device, description); return print_error_code("Failed to get device description", res); }; // Get timestamp resolution of the device uint32_t timestamp_resolution = 0; res = icsneo_device_get_timestamp_resolution(device, ×tamp_resolution); if (res != icsneo_error_success) { print_device_events(device, description); return print_error_code("Failed to get timestamp resolution", res); } printf("%s timestamp resolution: %uns\n", description, timestamp_resolution); // Get/Set open options icsneo_open_options_t options = icsneo_open_options_none; res = icsneo_device_get_open_options(device, &options); if (res != icsneo_error_success) { print_device_events(device, description); return print_error_code("Failed to get open options", res); } // Disable Syncing RTC options &= ~icsneo_open_options_sync_rtc; res = icsneo_device_set_open_options(device, options); if (res != icsneo_error_success) { print_device_events(device, description); return print_error_code("Failed to set open options", res); } // Open the device printf("Opening device: %s...\n", description); res = icsneo_device_open(device); if (res != icsneo_error_success) { print_device_events(device, description); return print_error_code("Failed to open device", res); }; // Get/Set baudrate for HSCAN uint64_t baudrate = 0; res = icsneo_device_get_baudrate(device, icsneo_netid_hscan, &baudrate); res += icsneo_device_set_baudrate(device, icsneo_netid_hscan, baudrate, true); if (res != icsneo_error_success) { print_device_events(device, description); return print_error_code("Failed to transmit CAN messages", res); }; printf("HSCAN baudrate: %llu\n", baudrate); // Get/Set CAN FD baudrate for HSCAN res = icsneo_device_get_canfd_baudrate(device, icsneo_netid_hscan, &baudrate); res += icsneo_device_set_canfd_baudrate(device, icsneo_netid_hscan, baudrate, true); if (res != icsneo_error_success) { print_device_events(device, description); return print_error_code("Failed to transmit CAN messages", res); }; printf("HSCAN CANFD baudrate: %llu\n", baudrate); // Transmit CAN messages res = transmit_can_messages(device); if (res != icsneo_error_success) { print_device_events(device, description); return print_error_code("Failed to transmit CAN messages", res); } // Wait for the bus to collect some messages, requires an active bus to get messages printf("Waiting 1 second for messages...\n"); sleep_ms(1000); // Get the messages icsneo_message_t* messages[20000] = {0}; uint32_t message_count = 20000; printf("Getting messages from device with timeout of 3000ms on %s...\n", description); res = icsneo_device_get_messages(device, messages, &message_count, 3000); if (res != icsneo_error_success) { print_device_events(device, description); return print_error_code("Failed to get messages from device", res); }; // Process the messages res = process_messages(device, messages, message_count); if (res != icsneo_error_success) { print_device_events(device, description); return print_error_code("Failed to process messages", res); } // Finally, close the device. printf("Closing device: %s...\n", description); res = icsneo_device_close(device); if (res != icsneo_error_success) { print_device_events(device, description); return print_error_code("Failed to close device", res); }; // Print device events print_device_events(device, description); } return 0; } void print_device_events(icsneo_device_t* device, const char* device_description) { // Get device events icsneo_event_t* events[1024] = {0}; uint32_t events_count = 1024; icsneo_error_t res = icsneo_device_get_events(device, events, &events_count); if (res != icsneo_error_success) { (void)print_error_code("Failed to get device events", res); return; } // Loop over each event and describe it. for (uint32_t i = 0; i < events_count; i++) { const char event_description[255] = {0}; uint32_t event_description_length = 255; res = icsneo_event_get_description(events[i], event_description, &event_description_length); if (res != icsneo_error_success) { print_error_code("Failed to get event description", res); continue; } printf("\t%s: Event %u: %s\n", device_description, i, event_description); } // Get global events icsneo_event_t* global_events[1024] = {0}; uint32_t global_events_count = 1024; res = icsneo_get_events(global_events, &global_events_count); if (res != icsneo_error_success) { (void)print_error_code("Failed to get global events", res); return; } // Loop over each event and describe it. for (uint32_t i = 0; i < global_events_count; i++) { const char event_description[255] = {0}; uint32_t event_description_length = 255; res = icsneo_event_get_description(global_events[i], event_description, &event_description_length); if (res != icsneo_error_success) { print_error_code("Failed to get global event description", res); continue; } printf("\t%s: Global Event %u: %s\n", device_description, i, event_description); } printf("%s: Received %u events and %u global events\n", device_description, events_count, global_events_count); } int process_messages(icsneo_device_t* device, icsneo_message_t** messages, uint32_t messages_count) { printf("Received %u messages\n", messages_count); // Print the type and bus type of each message for (uint32_t i = 0; i < messages_count; i++) { icsneo_message_t* message = messages[i]; icsneo_msg_type_t msg_type = 0; icsneo_error_t res = icsneo_message_get_type(device, message, &msg_type); if (res != icsneo_error_success) { return print_error_code("Failed to get message type", res); } icsneo_msg_bus_type_t bus_type = 0; res = icsneo_message_get_bus_type(device, message, &bus_type); if (res != icsneo_error_success) { return print_error_code("Failed to get message bus type", res); } const char bus_name[128] = {0}; uint32_t bus_name_length = 128; res = icsneo_get_bus_type_name(&bus_type, bus_name, &bus_name_length); if (res != icsneo_error_success) { return print_error_code("Failed to get message bus type name", res); } printf("\t%d) Message type: %u bus type: %s (%u)\n", i, msg_type, bus_name, bus_type); if (bus_type == icsneo_msg_bus_type_can) { uint32_t arbid = 0; uint32_t dlc = 0; icsneo_netid_t netid = 0; bool is_remote = false; bool is_canfd = false; bool is_extended = false; bool is_tx = false; uint8_t data[64] = {0}; uint32_t data_length = 64; const char netid_name[128] = {0}; uint32_t netid_name_length = 128; uint32_t result = icsneo_message_get_netid(device, message, &netid); result += icsneo_get_netid_name(netid, netid_name, &netid_name_length); result += icsneo_can_message_get_arbid(device, message, &arbid); result += icsneo_can_message_get_dlc(device, message, &dlc); result += icsneo_can_message_is_remote(device, message, &is_remote); result += icsneo_can_message_is_canfd(device, message, &is_canfd); result += icsneo_can_message_is_extended(device, message, &is_extended); result += icsneo_message_get_data(device, message, data, &data_length); result += icsneo_message_is_transmit(device, message, &is_tx); if (result != icsneo_error_success) { printf("\tFailed get get CAN parameters (error: %u) for index %u\n", result, i); continue; } printf("\t NetID: %s (0x%x)\tArbID: 0x%x\t DLC: %u\t TX: %d\t Remote: %d\t CANFD: %d\t Extended: %d\t Data length: %u\n", netid_name, netid, arbid, dlc, is_tx, is_remote, is_canfd, is_extended, data_length); printf("\t Data: ["); for (uint32_t x = 0; x < data_length; x++) { printf(" 0x%x", data[x]); } printf(" ]\n"); // Lets transmit the message back with an Arbitration ID 1 higher than the original. result = icsneo_can_message_set_arbid(device, message, arbid + 1); if (result != icsneo_error_success) { printf("\tFailed to set CAN Arbitration ID (error: %u) for index %u\n", result, i); continue; } uint32_t tx_msg_count = 1; result = icsneo_device_transmit_messages(device, &message, &tx_msg_count); if (result != icsneo_error_success) { printf("\tFailed to transmit CAN message (error: %u) for index %u\n", result, i); continue; } continue; } } return icsneo_error_success; } int transmit_can_messages(icsneo_device_t* device) { uint64_t counter = 0; for (uint32_t i = 0; i < 100; i++) { // Create the message icsneo_message_t* message = NULL; uint32_t message_count = 1; icsneo_error_t res = icsneo_can_messages_create(device, &message, message_count); if (res != icsneo_error_success) { return print_error_code("Failed to create messages", res); } // Set the message attributes res = icsneo_message_set_netid(device, message, icsneo_netid_hscan); res += icsneo_can_message_set_arbid(device, message, 0x10); res += icsneo_can_message_set_canfd(device, message, true); res += icsneo_can_message_set_extended(device, message, true); res += icsneo_can_message_set_baudrate_switch(device, message, true); // Create the payload uint8_t data[8] = {0}; data[0] = (uint8_t)(counter >> 56); data[1] = (uint8_t)(counter >> 48); data[2] = (uint8_t)(counter >> 40); data[3] = (uint8_t)(counter >> 32); data[4] = (uint8_t)(counter >> 24); data[5] = (uint8_t)(counter >> 16); data[6] = (uint8_t)(counter >> 8); data[7] = (uint8_t)(counter >> 0); res += icsneo_message_set_data(device, message, data, sizeof(data)); res += icsneo_can_message_set_dlc(device, message, -1); if (res != icsneo_error_success) { return print_error_code("Failed to modify message", res); } res = icsneo_device_transmit_messages(device, &message, &message_count); res += icsneo_can_message_free(device, message); if (res != icsneo_error_success) { return print_error_code("Failed to transmit messages", res); } counter++; } return icsneo_error_success; }