#include "icsneo/communication/encoder.h" #include "icsneo/communication/message/ethernetmessage.h" #include "icsneo/communication/packet/ethernetpacket.h" #include "icsneo/communication/packet/canpacket.h" using namespace icsneo; bool Encoder::encode(std::vector& result, const std::shared_ptr& message) { bool shortFormat = false; bool useResultAsBuffer = false; // Otherwise it's expected that we use message->data result.clear(); switch(message->network.getType()) { case Network::Type::Ethernet: { auto ethmsg = std::dynamic_pointer_cast(message); if(!ethmsg) return false; // The message was not a properly formed EthernetMessage useResultAsBuffer = true; if(!HardwareEthernetPacket::EncodeFromMessage(*ethmsg, result)) return false; break; } // End of Network::Type::Ethernet case Network::Type::CAN: case Network::Type::SWCAN: case Network::Type::LSFTCAN: { auto canmsg = std::dynamic_pointer_cast(message); if(!canmsg) return false; // The message was not a properly formed CANMessage if(!supportCANFD && canmsg->isCANFD) return false; // This device does not support CAN FD useResultAsBuffer = true; if(!HardwareCANPacket::EncodeFromMessage(*canmsg, result)) return false; // The CANMessage was malformed break; } // End of Network::Type::CAN default: switch(message->network.getNetID()) { case Network::NetID::Device: shortFormat = true; break; case Network::NetID::Main51: if(message->data.size() > 0xF) { // Main51 can be sent as a long message without setting the NetID to RED first // Size in long format is the size of the entire packet // So +1 for AA header, +1 for short format header, and +2 for long format size uint16_t size = uint16_t(message->data.size()) + 1 + 1 + 2; size += 1; // Even though we are not including the NetID bytes, the device expects them to be counted in the length message->data.insert(message->data.begin(), { (uint8_t)Network::NetID::Main51, // 0x0B for long message (uint8_t)size, // Size, little endian 16-bit (uint8_t)(size >> 8) }); result = packetizer->packetWrap(message->data, shortFormat); return true; } else { shortFormat = true; } break; case Network::NetID::RED_OLDFORMAT: { // See the decoder for an explanation // We expect the network byte to be populated already in data, but not the length uint16_t length = uint16_t(message->data.size()) - 1; message->data.insert(message->data.begin(), {(uint8_t)length, (uint8_t)(length >> 8)}); break; } default: return false; } } auto& buffer = useResultAsBuffer ? result : message->data; if(shortFormat) { buffer.insert(buffer.begin(), (uint8_t(buffer.size()) << 4) | uint8_t(message->network.getNetID())); } else { // Size in long format is the size of the entire packet // So +1 for AA header, +1 for short format header, +2 for long format size, and +2 for long format NetID uint16_t size = uint16_t(buffer.size()) + 1 + 1 + 2 + 2; buffer.insert(buffer.begin(), { (uint8_t)Network::NetID::RED, // 0x0C for long message (uint8_t)size, // Size, little endian 16-bit (uint8_t)(size >> 8), (uint8_t)message->network.getNetID(), // NetID, little endian 16-bit (uint8_t)(uint16_t(message->network.getNetID()) >> 8) }); } result = packetizer->packetWrap(buffer, shortFormat); return true; } bool Encoder::encode(std::vector& result, Command cmd, std::vector arguments) { auto msg = std::make_shared(); msg->network = Network::NetID::Main51; msg->data.reserve(arguments.size() + 1); msg->data.push_back((uint8_t)cmd); msg->data.insert(msg->data.end(), std::make_move_iterator(arguments.begin()), std::make_move_iterator(arguments.end())); return encode(result, msg); }