can-utils/src/libsocketcan.c

1124 lines
28 KiB
C

/* libsocketcan.c
*
* (C) 2009 Luotao Fu <l.fu@pengutronix.de>
*
* This library is free software; you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by the Free
* Software Foundation; either version 2.1 of the License, or (at your option)
* any later version.
*
* This library is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* @file
* @brief library code
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <fcntl.h>
#include <net/if.h>
#include <linux/rtnetlink.h>
#include <linux/netlink.h>
#include <libsocketcan.h>
#define parse_rtattr_nested(tb, max, rta) \
(parse_rtattr((tb), (max), RTA_DATA(rta), RTA_PAYLOAD(rta)))
#define NLMSG_TAIL(nmsg) \
((struct rtattr *) (((void *) (nmsg)) + NLMSG_ALIGN((nmsg)->nlmsg_len)))
#define IFLA_CAN_MAX (__IFLA_CAN_MAX - 1)
#define IF_UP 1
#define IF_DOWN 2
#define GET_STATE 1
#define GET_RESTART_MS 2
#define GET_BITTIMING 3
#define GET_CTRLMODE 4
#define GET_CLOCK 5
#define GET_BITTIMING_CONST 6
#define GET_BERR_COUNTER 7
struct get_req {
struct nlmsghdr n;
struct rtgenmsg g;
};
struct set_req {
struct nlmsghdr n;
struct ifinfomsg i;
char buf[1024];
};
struct req_info {
__u8 restart;
__u8 disable_autorestart;
__u32 restart_ms;
struct can_ctrlmode *ctrlmode;
struct can_bittiming *bittiming;
};
static void
parse_rtattr(struct rtattr **tb, int max, struct rtattr *rta, int len)
{
memset(tb, 0, sizeof(*tb) * max);
while (RTA_OK(rta, len)) {
if (rta->rta_type <= max) {
tb[rta->rta_type] = rta;
}
rta = RTA_NEXT(rta, len);
}
}
static int addattr32(struct nlmsghdr *n, size_t maxlen, int type, __u32 data)
{
int len = RTA_LENGTH(4);
struct rtattr *rta;
if (NLMSG_ALIGN(n->nlmsg_len) + len > maxlen) {
fprintf(stderr,
"addattr32: Error! max allowed bound %zu exceeded\n",
maxlen);
return -1;
}
rta = NLMSG_TAIL(n);
rta->rta_type = type;
rta->rta_len = len;
memcpy(RTA_DATA(rta), &data, 4);
n->nlmsg_len = NLMSG_ALIGN(n->nlmsg_len) + len;
return 0;
}
static int addattr_l(struct nlmsghdr *n, size_t maxlen, int type,
const void *data, int alen)
{
int len = RTA_LENGTH(alen);
struct rtattr *rta;
if (NLMSG_ALIGN(n->nlmsg_len) + RTA_ALIGN(len) > maxlen) {
fprintf(stderr,
"addattr_l ERROR: message exceeded bound of %zu\n",
maxlen);
return -1;
}
rta = NLMSG_TAIL(n);
rta->rta_type = type;
rta->rta_len = len;
memcpy(RTA_DATA(rta), data, alen);
n->nlmsg_len = NLMSG_ALIGN(n->nlmsg_len) + RTA_ALIGN(len);
return 0;
}
/**
* @ingroup intern
* @brief send_mod_request - send a linkinfo modification request
*
* @param fd decriptor to a priorly opened netlink socket
* @param n netlink message containing the request
*
* sends a request to setup the the linkinfo to netlink layer and awaits the
* status.
*
* @return 0 if success
* @return negativ if failed
*/
static int send_mod_request(int fd, struct nlmsghdr *n)
{
int status;
struct sockaddr_nl nladdr;
struct nlmsghdr *h;
struct iovec iov = {
.iov_base = (void *)n,
.iov_len = n->nlmsg_len
};
struct msghdr msg = {
.msg_name = &nladdr,
.msg_namelen = sizeof(nladdr),
.msg_iov = &iov,
.msg_iovlen = 1,
};
char buf[16384];
memset(&nladdr, 0, sizeof(nladdr));
nladdr.nl_family = AF_NETLINK;
nladdr.nl_pid = 0;
nladdr.nl_groups = 0;
n->nlmsg_seq = 0;
n->nlmsg_flags |= NLM_F_ACK;
status = sendmsg(fd, &msg, 0);
if (status < 0) {
perror("Cannot talk to rtnetlink");
return -1;
}
iov.iov_base = buf;
while (1) {
iov.iov_len = sizeof(buf);
status = recvmsg(fd, &msg, 0);
for (h = (struct nlmsghdr *)buf; (size_t) status >= sizeof(*h);) {
int len = h->nlmsg_len;
int l = len - sizeof(*h);
if (l < 0 || len > status) {
if (msg.msg_flags & MSG_TRUNC) {
fprintf(stderr, "Truncated message\n");
return -1;
}
fprintf(stderr,
"!!!malformed message: len=%d\n", len);
return -1;
}
if (h->nlmsg_type == NLMSG_ERROR) {
struct nlmsgerr *err =
(struct nlmsgerr *)NLMSG_DATA(h);
if ((size_t) l < sizeof(struct nlmsgerr)) {
fprintf(stderr, "ERROR truncated\n");
} else {
errno = -err->error;
if (errno == 0)
return 0;
perror("RTNETLINK answers");
}
return -1;
}
status -= NLMSG_ALIGN(len);
h = (struct nlmsghdr *)((char *)h + NLMSG_ALIGN(len));
}
}
return 0;
}
/**
* @ingroup intern
* @brief send_dump_request - send a dump linkinfo request
*
* @param fd decriptor to a priorly opened netlink socket
* @param family rt_gen message family
* @param type netlink message header type
*
* @return 0 if success
* @return negativ if failed
*/
static int send_dump_request(int fd, int family, int type)
{
struct get_req req;
memset(&req, 0, sizeof(req));
req.n.nlmsg_len = sizeof(req);
req.n.nlmsg_type = type;
req.n.nlmsg_flags = NLM_F_REQUEST | NLM_F_ROOT | NLM_F_MATCH;
req.n.nlmsg_pid = 0;
req.n.nlmsg_seq = 0;
req.g.rtgen_family = family;
return send(fd, (void *)&req, sizeof(req), 0);
}
/**
* @ingroup intern
* @brief open_nl_sock - open a netlink socket
*
* opens a netlink socket and returns the socket descriptor
*
* @return 0 if success
* @return negativ if failed
*/
static int open_nl_sock()
{
int fd;
int sndbuf = 32768;
int rcvbuf = 32768;
unsigned int addr_len;
struct sockaddr_nl local;
fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
if (fd < 0) {
perror("Cannot open netlink socket");
return -1;
}
setsockopt(fd, SOL_SOCKET, SO_SNDBUF, (void *)&sndbuf, sizeof(sndbuf));
setsockopt(fd, SOL_SOCKET, SO_RCVBUF, (void *)&rcvbuf, sizeof(rcvbuf));
memset(&local, 0, sizeof(local));
local.nl_family = AF_NETLINK;
local.nl_groups = 0;
if (bind(fd, (struct sockaddr *)&local, sizeof(local)) < 0) {
perror("Cannot bind netlink socket");
return -1;
}
addr_len = sizeof(local);
if (getsockname(fd, (struct sockaddr *)&local, &addr_len) < 0) {
perror("Cannot getsockname");
return -1;
}
if (addr_len != sizeof(local)) {
fprintf(stderr, "Wrong address length %d\n", addr_len);
return -1;
}
if (local.nl_family != AF_NETLINK) {
fprintf(stderr, "Wrong address family %d\n", local.nl_family);
return -1;
}
return fd;
}
/**
* @ingroup intern
* @brief do_get_nl_link - get linkinfo
*
* @param fd socket file descriptor to a priorly opened netlink socket
* @param acquire which parameter we want to get
* @param name name of the can device. This is the netdev name, as ifconfig -a
* shows in your system. usually it contains prefix "can" and the numer of the
* can line. e.g. "can0"
* @param res pointer to store the result
*
* This callback send a dump request into the netlink layer, collect the packet
* containing the linkinfo and fill the pointer res points to depending on the
* acquire mode set in param acquire.
*
* @return 0 if success
* @return -1 if failed
*/
static int do_get_nl_link(int fd, __u8 acquire, const char *name, void *res)
{
struct sockaddr_nl peer;
char cbuf[64];
char nlbuf[1024 * 8];
int ret = -1;
struct iovec iov = {
.iov_base = (void *)nlbuf,
.iov_len = sizeof(nlbuf),
};
struct msghdr msg = {
.msg_name = (void *)&peer,
.msg_namelen = sizeof(peer),
.msg_iov = &iov,
.msg_iovlen = 1,
.msg_control = &cbuf,
.msg_controllen = sizeof(cbuf),
.msg_flags = 0,
};
struct nlmsghdr *nl_msg;
ssize_t msglen;
struct rtattr *linkinfo[IFLA_INFO_MAX + 1];
struct rtattr *can_attr[IFLA_CAN_MAX + 1];
if (send_dump_request(fd, AF_PACKET, RTM_GETLINK) < 0) {
perror("Cannot send dump request");
return ret;
}
if ((msglen = recvmsg(fd, &msg, 0)) <= 0) {
perror("Receive error");
return ret;
}
size_t u_msglen = (size_t) msglen;
/* Check to see if the buffers in msg get truncated */
if (msg.msg_namelen != sizeof(peer) ||
(msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))) {
fprintf(stderr, "Uhoh... truncated message.\n");
return ret;
}
for (nl_msg = (struct nlmsghdr *)nlbuf;
NLMSG_OK(nl_msg, u_msglen);
nl_msg = NLMSG_NEXT(nl_msg, u_msglen)) {
int type = nl_msg->nlmsg_type;
int len;
if (type != RTM_NEWLINK)
continue;
struct ifinfomsg *ifi = NLMSG_DATA(nl_msg);
struct rtattr *tb[IFLA_MAX + 1];
len =
nl_msg->nlmsg_len - NLMSG_LENGTH(sizeof(struct ifaddrmsg));
parse_rtattr(tb, IFLA_MAX, IFLA_RTA(ifi), len);
if (strncmp
((char *)RTA_DATA(tb[IFLA_IFNAME]), name,
sizeof(name)) != 0)
continue;
if (tb[IFLA_LINKINFO])
parse_rtattr_nested(linkinfo,
IFLA_INFO_MAX, tb[IFLA_LINKINFO]);
else
continue;
if (!linkinfo[IFLA_INFO_DATA]) {
fprintf(stderr, "no link data found\n");
return ret;
}
parse_rtattr_nested(can_attr, IFLA_CAN_MAX,
linkinfo[IFLA_INFO_DATA]);
switch (acquire) {
case GET_STATE:
if (can_attr[IFLA_CAN_STATE]) {
*((int *)res) = *((__u32 *)
RTA_DATA(can_attr
[IFLA_CAN_STATE]));
ret = 0;
} else {
fprintf(stderr, "no state data found\n");
}
break;
case GET_RESTART_MS:
if (can_attr[IFLA_CAN_RESTART_MS]) {
*((__u32 *) res) = *((__u32 *)
RTA_DATA(can_attr
[IFLA_CAN_RESTART_MS]));
ret = 0;
} else
fprintf(stderr, "no restart_ms data found\n");
break;
case GET_BITTIMING:
if (can_attr[IFLA_CAN_BITTIMING]) {
memcpy(res,
RTA_DATA(can_attr[IFLA_CAN_BITTIMING]),
sizeof(struct can_bittiming));
ret = 0;
} else
fprintf(stderr, "no bittiming data found\n");
break;
case GET_CTRLMODE:
if (can_attr[IFLA_CAN_CTRLMODE]) {
memcpy(res,
RTA_DATA(can_attr[IFLA_CAN_CTRLMODE]),
sizeof(struct can_ctrlmode));
ret = 0;
} else
fprintf(stderr, "no ctrlmode data found\n");
break;
case GET_CLOCK:
if (can_attr[IFLA_CAN_CLOCK]) {
memcpy(res,
RTA_DATA(can_attr[IFLA_CAN_CLOCK]),
sizeof(struct can_clock));
ret = 0;
} else
fprintf(stderr,
"no clock parameter data found\n");
break;
case GET_BITTIMING_CONST:
if (can_attr[IFLA_CAN_BITTIMING_CONST]) {
memcpy(res,
RTA_DATA(can_attr[IFLA_CAN_BITTIMING_CONST]),
sizeof(struct can_bittiming_const));
ret = 0;
} else
fprintf(stderr, "no bittiming_const data found\n");
break;
case GET_BERR_COUNTER:
if (can_attr[IFLA_CAN_BERR_COUNTER]) {
memcpy(res,
RTA_DATA(can_attr[IFLA_CAN_BERR_COUNTER]),
sizeof(struct can_berr_counter));
ret = 0;
} else
fprintf(stderr, "no berr_counter data found\n");
break;
default:
fprintf(stderr, "unknown acquire mode\n");
}
}
return ret;
}
/**
* @ingroup intern
* @brief get_link - get linkinfo
*
* @param name name of the can device. This is the netdev name, as ifconfig -a shows
* in your system. usually it contains prefix "can" and the numer of the can
* line. e.g. "can0"
* @param acquire which parameter we want to get
* @param res pointer to store the result
*
* This is a wrapper for do_get_nl_link
*
* @return 0 if success
* @return -1 if failed
*/
static int get_link(const char *name, __u8 acquire, void *res)
{
int fd;
int err = -1;
fd = open_nl_sock();
if (fd < 0)
goto err_out;
err = do_get_nl_link(fd, acquire, name, res);
if (err < 0)
goto close_out;
close_out:
close(fd);
err_out:
return err;
}
/**
* @ingroup intern
* @brief do_set_nl_link - setup linkinfo
*
* @param fd socket file descriptor to a priorly opened netlink socket
* @param if_state state of the interface we want to put the device into. this
* parameter is only set if you want to use the callback to driver up/down the
* device
* @param name name of the can device. This is the netdev name, as ifconfig -a shows
* in your system. usually it contains prefix "can" and the numer of the can
* line. e.g. "can0"
* @param req_info request parameters
*
* This callback can do two different tasks:
* - bring up/down the interface
* - set up a netlink packet with request, as set up in req_info
* Which task this callback will do depends on which parameters are set.
*
* @return 0 if success
* @return -1 if failed
*/
static int do_set_nl_link(int fd, __u8 if_state, const char *name,
struct req_info *req_info)
{
struct set_req req;
const char *type = "can";
memset(&req, 0, sizeof(req));
req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ifinfomsg));
req.n.nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK;
req.n.nlmsg_type = RTM_NEWLINK;
req.i.ifi_family = 0;
req.i.ifi_index = if_nametoindex(name);
if (req.i.ifi_index == 0) {
fprintf(stderr, "Cannot find device \"%s\"\n", name);
return -1;
}
if (if_state) {
switch (if_state) {
case IF_DOWN:
req.i.ifi_change |= IFF_UP;
req.i.ifi_flags &= ~IFF_UP;
break;
case IF_UP:
req.i.ifi_change |= IFF_UP;
req.i.ifi_flags |= IFF_UP;
break;
default:
fprintf(stderr, "unknown state\n");
return -1;
}
}
if (req_info != NULL) {
/* setup linkinfo section */
struct rtattr *linkinfo = NLMSG_TAIL(&req.n);
addattr_l(&req.n, sizeof(req), IFLA_LINKINFO, NULL, 0);
addattr_l(&req.n, sizeof(req), IFLA_INFO_KIND, type,
strlen(type));
/* setup data section */
struct rtattr *data = NLMSG_TAIL(&req.n);
addattr_l(&req.n, sizeof(req), IFLA_INFO_DATA, NULL, 0);
if (req_info->restart_ms > 0 || req_info->disable_autorestart)
addattr32(&req.n, 1024, IFLA_CAN_RESTART_MS,
req_info->restart_ms);
if (req_info->restart)
addattr32(&req.n, 1024, IFLA_CAN_RESTART, 1);
if (req_info->bittiming != NULL) {
addattr_l(&req.n, 1024, IFLA_CAN_BITTIMING,
req_info->bittiming,
sizeof(struct can_bittiming));
}
if (req_info->ctrlmode != NULL) {
addattr_l(&req.n, 1024, IFLA_CAN_CTRLMODE,
req_info->ctrlmode,
sizeof(struct can_ctrlmode));
}
/* mark end of data section */
data->rta_len = (void *)NLMSG_TAIL(&req.n) - (void *)data;
/* mark end of link info section */
linkinfo->rta_len =
(void *)NLMSG_TAIL(&req.n) - (void *)linkinfo;
}
return send_mod_request(fd, &req.n);
}
/**
* @ingroup intern
* @brief set_link - open a netlink socket and setup linkinfo
*
* @param name name of the can device. This is the netdev name, as ifconfig -a
* shows in your system. usually it contains prefix "can" and the numer of the
* can line. e.g. "can0"
* @param if_state state of the interface we want to put the device into. this
* parameter is only set if you want to use the callback to driver up/down the
* device
* @param req_info request parameters
*
* This is a wrapper for do_set_nl_link. It opens a netlink socket and sends
* down the requests.
*
* @return 0 if success
* @return -1 if failed
*/
static int set_link(const char *name, __u8 if_state, struct req_info *req_info)
{
int fd;
int err = 0;
fd = open_nl_sock();
if (fd < 0)
goto err_out;
err = do_set_nl_link(fd, if_state, name, req_info);
if (err < 0)
goto close_out;
close_out:
close(fd);
err_out:
return err;
}
/**
* @ingroup extern
* can_do_start - start the can interface
* @param name name of the can device. This is the netdev name, as ifconfig -a shows
* in your system. usually it contains prefix "can" and the numer of the can
* line. e.g. "can0"
*
* This starts the can interface with the given name. It simply changes the if
* state of the interface to up. All initialisation works will be done in
* kernel. The if state can also be queried by a simple ifconfig.
*
* @return 0 if success
* @return -1 if failed
*/
int can_do_start(const char *name)
{
return set_link(name, IF_UP, NULL);
}
/**
* @ingroup extern
* can_do_stop - stop the can interface
* @param name name of the can device. This is the netdev name, as ifconfig -a shows
* in your system. usually it contains prefix "can" and the numer of the can
* line. e.g. "can0"
*
* This stops the can interface with the given name. It simply changes the if
* state of the interface to down. Any running communication would be stopped.
*
* @return 0 if success
* @return -1 if failed
*/
int can_do_stop(const char *name)
{
return set_link(name, IF_DOWN, NULL);
}
/**
* @ingroup extern
* can_do_restart - restart the can interface
* @param name name of the can device. This is the netdev name, as ifconfig -a shows
* in your system. usually it contains prefix "can" and the numer of the can
* line. e.g. "can0"
*
* This triggers the start mode of the can device.
*
* NOTE:
* - restart mode can only be triggerd if the device is in BUS_OFF and the auto
* restart not turned on (restart_ms == 0)
*
* @return 0 if success
* @return -1 if failed
*/
int can_do_restart(const char *name)
{
int fd;
int err = -1;
int state;
__u32 restart_ms;
/* first we check if we can restart the device at all */
if ((can_get_state(name, &state)) < 0) {
fprintf(stderr, "cannot get bustate, "
"something is seriously wrong\n");
goto err_out;
} else if (state != CAN_STATE_BUS_OFF) {
fprintf(stderr,
"Device is not in BUS_OFF," " no use to restart\n");
goto err_out;
}
if ((can_get_restart_ms(name, &restart_ms)) < 0) {
fprintf(stderr, "cannot get restart_ms, "
"something is seriously wrong\n");
goto err_out;
} else if (restart_ms > 0) {
fprintf(stderr,
"auto restart with %ums interval is turned on,"
" no use to restart\n", restart_ms);
goto err_out;
}
struct req_info req_info = {
.restart = 1,
};
fd = open_nl_sock();
if (fd < 0)
goto err_out;
err = do_set_nl_link(fd, 0, name, &req_info);
if (err < 0)
goto close_out;
close_out:
close(fd);
err_out:
return err;
}
/**
* @ingroup extern
* can_set_restart_ms - set interval of auto restart.
*
* @param name name of the can device. This is the netdev name, as ifconfig -a shows
* in your system. usually it contains prefix "can" and the numer of the can
* line. e.g. "can0"
* @param restart_ms interval of auto restart in milliseconds
*
* This sets how often the device shall automatically restart the interface in
* case that a bus_off is detected.
*
* @return 0 if success
* @return -1 if failed
*/
int can_set_restart_ms(const char *name, __u32 restart_ms)
{
struct req_info req_info = {
.restart_ms = restart_ms,
};
if (restart_ms == 0)
req_info.disable_autorestart = 1;
return set_link(name, 0, &req_info);
}
/**
* @ingroup extern
* can_set_ctrlmode - setup the control mode.
*
* @param name name of the can device. This is the netdev name, as ifconfig -a shows
* in your system. usually it contains prefix "can" and the numer of the can
* line. e.g. "can0"
*
* @param cm pointer of a can_ctrlmode struct
*
* This sets the control mode of the can device. There're currently three
* different control modes:
* - LOOPBACK
* - LISTEN_ONLY
* - TRIPPLE_SAMPLING
*
* You have to define the control mode struct yourself. a can_ctrlmode struct
* is declared as:
*
* @code
* struct can_ctrlmode {
* __u32 mask;
* __u32 flags;
* }
* @endcode
*
* You can use mask to select modes you want to control and flags to determine
* if you want to turn the selected mode(s) on or off. Every control mode is
* mapped to an own macro
*
* @code
* #define CAN_CTRLMODE_LOOPBACK 0x1
* #define CAN_CTRLMODE_LISTENONLY 0x2
* #define CAN_CTRLMODE_3_SAMPLES 0x4
* @endcode
*
* e.g. the following pseudocode
*
* @code
* struct can_ctrlmode cm;
* memset(&cm, 0, sizeof(cm));
* cm.mask = CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
* cm.flags = CAN_CTRLMODE_LOOPBACK;
* can_set_ctrlmode(candev, &cm);
* @endcode
*
* will turn the loopback mode on and listenonly mode off.
*
* @return 0 if success
* @return -1 if failed
*/
int can_set_ctrlmode(const char *name, struct can_ctrlmode *cm)
{
struct req_info req_info = {
.ctrlmode = cm,
};
return set_link(name, 0, &req_info);
}
/**
* @ingroup extern
* can_set_bittiming - setup the bittiming.
*
* @param name name of the can device. This is the netdev name, as ifconfig -a shows
* in your system. usually it contains prefix "can" and the numer of the can
* line. e.g. "can0"
* @param bt pointer to a can_bittiming struct
*
* This sets the bittiming of the can device. This is for advantage usage. In
* normal cases you should use can_set_bitrate to simply define the bitrate and
* let the driver automatically calculate the bittiming. You will only need this
* function if you wish to define the bittiming in expert mode with fully
* manually defined timing values.
* You have to define the bittiming struct yourself. a can_bittiming struct
* consists of:
*
* @code
* struct can_bittiming {
* __u32 bitrate;
* __u32 sample_point;
* __u32 tq;
* __u32 prop_seg;
* __u32 phase_seg1;
* __u32 phase_seg2;
* __u32 sjw;
* __u32 brp;
* }
* @endcode
*
* to define a customized bittiming, you have to define tq, prop_seq,
* phase_seg1, phase_seg2 and sjw. See http://www.can-cia.org/index.php?id=88
* for more information about bittiming and synchronizations on can bus.
*
* @return 0 if success
* @return -1 if failed
*/
int can_set_bittiming(const char *name, struct can_bittiming *bt)
{
struct req_info req_info = {
.bittiming = bt,
};
return set_link(name, 0, &req_info);
}
/**
* @ingroup extern
* can_set_bitrate - setup the bitrate.
*
* @param name name of the can device. This is the netdev name, as ifconfig -a shows
* in your system. usually it contains prefix "can" and the numer of the can
* line. e.g. "can0"
* @param bitrate bitrate of the can bus
*
* This is the recommended way to setup the bus bit timing. You only have to
* give a bitrate value here. The exact bit timing will be calculated
* automatically. To use this function, make sure that CONFIG_CAN_CALC_BITTIMING
* is set to y in your kernel configuration. bitrate can be a value between
* 1000(1kbit/s) and 1000000(1000kbit/s).
*
* @return 0 if success
* @return -1 if failed
*/
int can_set_bitrate(const char *name, __u32 bitrate)
{
struct can_bittiming bt;
memset(&bt, 0, sizeof(bt));
bt.bitrate = bitrate;
return can_set_bittiming(name, &bt);
}
/**
* @ingroup extern
* can_set_bitrate_samplepoint - setup the bitrate.
*
* @param name name of the can device. This is the netdev name, as ifconfig -a shows
* in your system. usually it contains prefix "can" and the numer of the can
* line. e.g. "can0"
* @param bitrate bitrate of the can bus
* @param sample_point sample point value
*
* This one is similar to can_set_bitrate, only you can additionally set up the
* time point for sampling (sample point) customly instead of using the
* CIA recommended value. sample_point can be a value between 0 and 999.
*
* @return 0 if success
* @return -1 if failed
*/
int can_set_bitrate_samplepoint(const char *name, __u32 bitrate,
__u32 sample_point)
{
struct can_bittiming bt;
memset(&bt, 0, sizeof(bt));
bt.bitrate = bitrate;
bt.sample_point = sample_point;
return can_set_bittiming(name, &bt);
}
/**
* @ingroup extern
* can_get_state - get the current state of the device
*
* @param name name of the can device. This is the netdev name, as ifconfig -a shows
* in your system. usually it contains prefix "can" and the numer of the can
* line. e.g. "can0"
* @param state pointer to store the state
*
* This one stores the current state of the can interface into the given
* pointer. Valid states are:
* - CAN_STATE_ERROR_ACTIVE
* - CAN_STATE_ERROR_WARNING
* - CAN_STATE_ERROR_PASSIVE
* - CAN_STATE_BUS_OFF
* - CAN_STATE_STOPPED
* - CAN_STATE_SLEEPING
*
* The first four states is determined by the value of RX/TX error counter.
* Please see relevant can specification for more information about this. A
* device in STATE_STOPPED is an inactive device. STATE_SLEEPING is not
* implemented on all devices.
*
* @return 0 if success
* @return -1 if failed
*/
int can_get_state(const char *name, int *state)
{
return get_link(name, GET_STATE, state);
}
/**
* @ingroup extern
* can_get_restart_ms - get the current interval of auto restarting.
*
* @param name name of the can device. This is the netdev name, as ifconfig -a shows
* in your system. usually it contains prefix "can" and the numer of the can
* line. e.g. "can0"
* @param restart_ms pointer to store the value.
*
* This one stores the current interval of auto restarting into the given
* pointer.
*
* The socketcan framework can automatically restart a device if it is in
* bus_off in a given interval. This function gets this value in milliseconds.
* restart_ms == 0 means that autorestarting is turned off.
*
* @return 0 if success
* @return -1 if failed
*/
int can_get_restart_ms(const char *name, __u32 *restart_ms)
{
return get_link(name, GET_RESTART_MS, restart_ms);
}
/**
* @ingroup extern
* can_get_bittiming - get the current bittimnig configuration.
*
* @param name name of the can device. This is the netdev name, as ifconfig -a shows
* in your system. usually it contains prefix "can" and the numer of the can
* line. e.g. "can0"
* @param bt pointer to the bittiming struct.
*
* This one stores the current bittiming configuration.
*
* Please see can_set_bittiming for more information about bit timing.
*
* @return 0 if success
* @return -1 if failed
*/
int can_get_bittiming(const char *name, struct can_bittiming *bt)
{
return get_link(name, GET_BITTIMING, bt);
}
/**
* @ingroup extern
* can_get_ctrlmode - get the current control mode.
*
* @param name name of the can device. This is the netdev name, as ifconfig -a shows
* in your system. usually it contains prefix "can" and the numer of the can
* line. e.g. "can0"
* @param cm pointer to the ctrlmode struct.
*
* This one stores the current control mode configuration.
*
* Please see can_set_ctrlmode for more information about control modes.
*
* @return 0 if success
* @return -1 if failed
*/
int can_get_ctrlmode(const char *name, struct can_ctrlmode *cm)
{
return get_link(name, GET_CTRLMODE, cm);
}
/**
* @ingroup extern
* can_get_clock - get the current clock struct.
*
* @param name: name of the can device. This is the netdev name, as ifconfig -a shows
* in your system. usually it contains prefix "can" and the numer of the can
* line. e.g. "can0"
* @param clock pointer to the clock struct.
*
* This one stores the current clock configuration. At the time of writing the
* can_clock struct only contains information about the clock frequecy. This
* information is e.g. essential while setting up the bit timing.
*
* @return 0 if success
* @return -1 if failed
*/
int can_get_clock(const char *name, struct can_clock *clock)
{
return get_link(name, GET_CLOCK, clock);
}
/**
* @ingroup extern
* can_get_bittiming_const - get the current bittimnig constant.
*
* @param name name of the can device. This is the netdev name, as ifconfig -a shows
* in your system. usually it contains prefix "can" and the numer of the can
* line. e.g. "can0"
* @param btc pointer to the bittiming constant struct.
*
* This one stores the hardware dependent bittiming constant. The
* can_bittiming_const struct consists:
*
* @code
* struct can_bittiming_const {
* char name[16];
* __u32 tseg1_min;
* __u32 tseg1_max;
* __u32 tseg2_min;
* __u32 tseg2_max;
* __u32 sjw_max;
* __u32 brp_min;
* __u32 brp_max;
* __u32 brp_inc;
* };
* @endcode
*
* The information in this struct is used to calculate the bus bit timing
* automatically.
*
* @return 0 if success
* @return -1 if failed
*/
int can_get_bittiming_const(const char *name, struct can_bittiming_const *btc)
{
return get_link(name, GET_BITTIMING_CONST, btc);
}
/**
* @ingroup extern
* can_get_berr_counter - get the tx/rx error counter.
*
* @param name name of the can device. This is the netdev name, as ifconfig -a shows
* in your system. usually it contains prefix "can" and the numer of the can
* line. e.g. "can0"
* @param bc pointer to the error counter struct..
*
* This one gets the current rx/tx error counter from the hardware.
*
* @code
* struct can_berr_counter {
* __u16 txerr;
* __u16 rxerr;
* };
* @endcode
*
* @return 0 if success
* @return -1 if failed
*/
int can_get_berr_counter(const char *name, struct can_berr_counter *bc)
{
return get_link(name, GET_BERR_COUNTER, bc);
}