/* can-calc-bit-timing.c: Calculate CAN bit timing parameters * * Copyright (C) 2008 Wolfgang Grandegger * * Derived from: * can_baud.c - CAN baudrate calculation * Code based on LinCAN sources and H8S2638 project * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz * Copyright 2005 Stanislav Marek * email:pisa@cmp.felk.cvut.cz * * This software is released under the GPL-License. */ #include #include #include #include #include #define do_div(a,b) a = (a) / (b) static void print_usage(char* cmd) { printf("Usage: %s [options] []\n" "\tOptions:\n" "\t-q : don't print header line\n" "\t-l : list all support CAN controller names\n" "\t-b : bit-rate in bits/sec\n" "\t-s : sample-point in one-tenth of a percent\n" "\t or 0 for CIA recommended sample points\n" "\t-c : real CAN system clock in Hz\n", cmd); exit(1); } struct can_bittime { uint32_t brp; uint8_t prop_seg; uint8_t phase_seg1; uint8_t phase_seg2; uint8_t sjw; uint32_t tq; uint32_t error; int sampl_pt; }; struct can_bittiming_const { char name[32]; int prop_seg_min; int prop_seg_max; int phase_seg1_min; int phase_seg1_max; int phase_seg2_min; int phase_seg2_max; int sjw_max; int brp_min; int brp_max; int brp_inc; void (*printf_btr)(struct can_bittime *bt, int hdr); }; static void printf_btr_sja1000(struct can_bittime *bt, int hdr) { uint8_t btr0, btr1; if (hdr) { printf("BTR0 BTR1"); } else { btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6); btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) | (((bt->phase_seg2 - 1) & 0x7) << 4); printf("0x%02x 0x%02x", btr0, btr1); } } static void printf_btr_at91(struct can_bittime *bt, int hdr) { if (hdr) { printf("CAN_BR"); } else { uint32_t br = ((bt->phase_seg2 - 1) | ((bt->phase_seg1 - 1) << 4) | ((bt->prop_seg - 1) << 8) | ((bt->sjw - 1) << 12) | ((bt->brp - 1) << 16)); printf("0x%08x", br); } } static void printf_btr_mcp2510(struct can_bittime *bt, int hdr) { uint8_t cnf1, cnf2, cnf3; if (hdr) { printf("CNF1 CNF2 CNF3"); } else { cnf1 = ((bt->sjw - 1) << 6) | bt->brp; cnf2 = 0x80 | ((bt->phase_seg1 - 1) << 3) | (bt->prop_seg - 1); cnf3 = bt->phase_seg2 - 1; printf("0x%02x 0x%02x 0x%02x", cnf1, cnf2, cnf3); } } static void printf_btr_rtcantl1(struct can_bittime *bt, int hdr) { uint16_t bcr0, bcr1; if (hdr) { printf("__BCR0 __BCR1"); } else { bcr1 = ((((bt->prop_seg + bt->phase_seg1 - 1) & 0x0F) << 12) | (((bt->phase_seg2 - 1) & 0x07) << 8) | (((bt->sjw - 1) & 0x03) << 4)); bcr0 = ((bt->brp - 1) & 0xFF); printf("0x%04x 0x%04x", bcr0, bcr1); } } struct can_bittiming_const can_calc_consts[] = { { "sja1000", /* Note: only prop_seg + bt->phase_seg1 matters */ .phase_seg1_min = 1, .phase_seg1_max = 16, .phase_seg2_min = 1, .phase_seg2_max = 8, .sjw_max = 4, .brp_min = 1, .brp_max = 64, .brp_inc = 1, .printf_btr = printf_btr_sja1000, }, { "mscan", /* Note: only prop_seg + bt->phase_seg1 matters */ .phase_seg1_min = 4, .phase_seg1_max = 16, .phase_seg2_min = 2, .phase_seg2_max = 8, .sjw_max = 4, .brp_min = 1, .brp_max = 64, .brp_inc = 1, .printf_btr = printf_btr_sja1000, }, { "at91", .prop_seg_min = 1, .prop_seg_max = 8, .phase_seg1_min = 1, .phase_seg1_max = 8, .phase_seg2_min = 2, .phase_seg2_max = 8, .sjw_max = 4, .brp_min = 1, .brp_max = 128, .brp_inc = 1, .printf_btr = printf_btr_at91, }, { "mcp2510", .prop_seg_min = 1, .prop_seg_max = 8, .phase_seg1_min = 1, .phase_seg1_max = 8, .phase_seg2_min = 2, .phase_seg2_max = 8, .sjw_max = 4, .brp_min = 1, .brp_max = 64, .brp_inc = 1, .printf_btr = printf_btr_mcp2510, }, { "rtcantl1", .prop_seg_min = 2, .prop_seg_max = 8, .phase_seg1_min = 2, .phase_seg1_max = 8, .phase_seg2_min = 2, .phase_seg2_max = 8, .sjw_max = 4, .brp_min = 1, .brp_max = 256, .brp_inc = 1, .printf_btr = printf_btr_rtcantl1, }, }; static long common_bitrates[] = { 1000000, 800000, 500000, 250000, 125000, 100000, 50000, 20000, 10000 }; static int can_update_spt(const struct can_bittiming_const *btc, int sampl_pt, int tseg, int *tseg1, int *tseg2) { *tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000; if (*tseg2 < btc->phase_seg2_min) *tseg2 = btc->phase_seg2_min; if (*tseg2 > btc->phase_seg2_max) *tseg2 = btc->phase_seg2_max; *tseg1 = tseg - *tseg2; if (*tseg1 > btc->prop_seg_max + btc->phase_seg1_max) { *tseg1 = btc->prop_seg_max + btc->phase_seg1_max; *tseg2 = tseg - *tseg1; } return 1000 * (tseg + 1 - *tseg2) / (tseg + 1); } int can_calc_bittiming(struct can_bittime *bt, long bitrate, int sampl_pt, long clock, const struct can_bittiming_const *btc) { long best_error = 1000000000, error; int best_tseg = 0, best_brp = 0, brp = 0; int spt_error = 1000, spt = 0; long rate, best_rate = 0; int tseg = 0, tseg1 = 0, tseg2 = 0; uint64_t v64; if (sampl_pt == 0) { /* Use CIA recommended sample points */ if (bitrate > 800000) sampl_pt = 750; else if (bitrate > 500000) sampl_pt = 800; else sampl_pt = 875; } #ifdef DEBUG printf("tseg brp bitrate biterror\n"); #endif /* tseg even = round down, odd = round up */ for (tseg = (btc->prop_seg_max + btc->phase_seg1_max + btc->phase_seg2_max) * 2 + 1; tseg >= (btc->prop_seg_min + btc->phase_seg1_min + btc->phase_seg2_min) * 2; tseg--) { /* Compute all posibilities of tseg choices (tseg=tseg1+tseg2) */ brp = clock / ((1 + tseg / 2) * bitrate) + tseg % 2; /* chose brp step which is possible in system */ brp = (brp / btc->brp_inc) * btc->brp_inc; if ((brp < btc->brp_min) || (brp > btc->brp_max)) continue; rate = clock / (brp * (1 + tseg / 2)); error = bitrate - rate; /* tseg brp biterror */ #if DEBUG printf("%4d %3d %7ld %8ld %03d\n", tseg, brp, rate, error, can_update_spt(btc, sampl_pt, tseg / 2, &tseg1, &tseg2)); #endif if (error < 0) error = -error; if (error > best_error) continue; best_error = error; if (error == 0) { spt = can_update_spt(btc, sampl_pt, tseg / 2, &tseg1, &tseg2); error = sampl_pt - spt; //printf("%d %d %d\n", sampl_pt, error, spt_error); if (error < 0) error = -error; if (error > spt_error) continue; spt_error = error; //printf("%d\n", spt_error); } //printf("error=%d\n", best_error); best_tseg = tseg / 2; best_brp = brp; best_rate = rate; if (error == 0) break; } if (best_error && (bitrate / best_error < 10)) return -1; spt = can_update_spt(btc, sampl_pt, best_tseg, &tseg1, &tseg2); if (tseg2 > tseg1) { /* sample point < 50% */ bt->phase_seg1 = tseg1 / 2; } else { /* keep phase_seg{1,2} equal around the sample point */ bt->phase_seg1 = tseg2; } bt->prop_seg = tseg1 - bt->phase_seg1; /* Check prop_seg range if necessary */ if (btc->prop_seg_min || btc->prop_seg_max) { if (bt->prop_seg < btc->prop_seg_min) bt->prop_seg = btc->prop_seg_min; else if (bt->prop_seg > btc->prop_seg_max) bt->prop_seg = btc->prop_seg_max; bt->phase_seg1 = tseg1 - bt->prop_seg; } bt->phase_seg2 = tseg2; bt->sjw = 1; bt->brp = best_brp; bt->error = best_error; bt->sampl_pt = spt; v64 = (uint64_t)bt->brp * 1000000000UL; v64 /= clock; bt->tq = (int)v64; return 0; } void print_bit_timing(const struct can_bittiming_const *btc, long bitrate, int sampl_pt, long ref_clk, int quiet) { struct can_bittime bt; memset(&bt, 0, sizeof(bt)); if (!quiet) { printf("Bit timing parameters for %s using %ldHz\n", btc->name, ref_clk); printf("Bitrate TQ[ns] PrS PhS1 PhS2 SJW BRP SampP Error "); btc->printf_btr(&bt, 1); printf("\n"); } if (can_calc_bittiming(&bt, bitrate, sampl_pt, ref_clk, btc)) { printf("%7ld ***bitrate not possible***\n", bitrate); return; } printf("%7ld %6d %3d %4d %4d %3d %3d %2d.%d%% %4.1f%% ", bitrate, bt.tq, bt.prop_seg, bt.phase_seg1, bt.phase_seg2, bt.sjw, bt.brp, bt.sampl_pt / 10, bt.sampl_pt % 10, (double)100 * bt.error / bitrate); btc->printf_btr(&bt, 0); printf("\n"); } int main(int argc, char *argv[]) { long bitrate = 0; long ref_clk = 8000000; int sampl_pt = 0; int quiet = 0; int list = 0; char *name = NULL; int i, opt; const struct can_bittiming_const *btc = NULL; while ((opt = getopt(argc, argv, "b:c:lps:")) != -1) { switch (opt) { case 'b': bitrate = atoi(optarg); break; case 'c': ref_clk = atoi(optarg); break; case 'l': list = 1; break; case 'q': quiet = 1; break; case 's': sampl_pt = atoi(optarg); break; default: print_usage(argv[0]); break; } } if (argc > optind + 1) print_usage(argv[0]); if (argc == optind + 1) name = argv[optind]; if (list) { for (i = 0; i < sizeof(can_calc_consts) / sizeof(struct can_bittiming_const); i++) printf("%s\n", can_calc_consts[i].name); return 0; } if (sampl_pt && (sampl_pt >= 1000 || sampl_pt < 100)) print_usage(argv[0]); if (name) { for (i = 0; i < sizeof(can_calc_consts) / sizeof(struct can_bittiming_const); i++) { if (!strcmp(can_calc_consts[i].name, name)) { btc = &can_calc_consts[i]; break; } } if (!btc) print_usage(argv[0]); } else { btc = &can_calc_consts[0]; } if (bitrate) { print_bit_timing(btc, bitrate, sampl_pt, ref_clk, quiet); } else { for (i = 0; i < sizeof(common_bitrates) / sizeof(long); i++) print_bit_timing(btc, common_bitrates[i], sampl_pt, ref_clk, i); } return 0; }