/* SPDX-License-Identifier: GPL-2.0-only */ /* * imported from v2.6.31-rc1~330^2~376 * * 39549eef3587 can: CAN Network device driver and Netlink interface * * cherry-picked for easier integration: * 61463a30f652 can: make function can_get_bittiming static * aabdfd6adb80 can: replace the dev_dbg/info/err/... with the new netdev_xxx macros * 08da7da41ea4 can: provide a separate bittiming_const parameter to bittiming functions * b25a437206ed can: dev: remove unused variable from can_calc_bittiming() function */ /* * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix * Copyright (C) 2006 Andrey Volkov, Varma Electronics * Copyright (C) 2008-2009 Wolfgang Grandegger * * This program is free software; you can redistribute it and/or modify * it under the terms of the version 2 of the GNU General Public License * as published by the Free Software Foundation * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* * Bit-timing calculation derived from: * * Code based on LinCAN sources and H8S2638 project * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz * Copyright 2005 Stanislav Marek * email: pisa@cmp.felk.cvut.cz * * Calculates proper bit-timing parameters for a specified bit-rate * and sample-point, which can then be used to set the bit-timing * registers of the CAN controller. You can find more information * in the header file linux/can/netlink.h. */ static int can_update_spt(const struct can_bittiming_const *btc, int sampl_pt, int tseg, int *tseg1, int *tseg2) { *tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000; if (*tseg2 < btc->tseg2_min) *tseg2 = btc->tseg2_min; if (*tseg2 > btc->tseg2_max) *tseg2 = btc->tseg2_max; *tseg1 = tseg - *tseg2; if (*tseg1 > btc->tseg1_max) { *tseg1 = btc->tseg1_max; *tseg2 = tseg - *tseg1; } return 1000 * (tseg + 1 - *tseg2) / (tseg + 1); } static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt, const struct can_bittiming_const *btc) { struct can_priv *priv = netdev_priv(dev); long best_error = 1000000000, error = 0; int best_tseg = 0, best_brp = 0, brp = 0; int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0; int spt_error = 1000, spt = 0, sampl_pt; long rate; u64 v64; /* Use CIA recommended sample points */ if (bt->sample_point) { sampl_pt = bt->sample_point; } else { if (bt->bitrate > 800000) sampl_pt = 750; else if (bt->bitrate > 500000) sampl_pt = 800; else sampl_pt = 875; } /* tseg even = round down, odd = round up */ for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1; tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) { tsegall = 1 + tseg / 2; /* Compute all possible tseg choices (tseg=tseg1+tseg2) */ brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2; /* chose brp step which is possible in system */ brp = (brp / btc->brp_inc) * btc->brp_inc; if ((brp < btc->brp_min) || (brp > btc->brp_max)) continue; rate = priv->clock.freq / (brp * tsegall); error = bt->bitrate - rate; /* tseg brp biterror */ if (error < 0) error = -error; if (error > best_error) continue; best_error = error; if (error == 0) { spt = can_update_spt(btc, sampl_pt, tseg / 2, &tseg1, &tseg2); error = sampl_pt - spt; if (error < 0) error = -error; if (error > spt_error) continue; spt_error = error; } best_tseg = tseg / 2; best_brp = brp; if (error == 0) break; } if (best_error) { /* Error in one-tenth of a percent */ error = (best_error * 1000) / bt->bitrate; if (error > CAN_CALC_MAX_ERROR) { netdev_err(dev, "bitrate error %ld.%ld%% too high\n", error / 10, error % 10); return -EDOM; } else { netdev_warn(dev, "bitrate error %ld.%ld%%\n", error / 10, error % 10); } } /* real sample point */ bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg, &tseg1, &tseg2); v64 = (u64)best_brp * 1000000000UL; do_div(v64, priv->clock.freq); bt->tq = (u32)v64; bt->prop_seg = tseg1 / 2; bt->phase_seg1 = tseg1 - bt->prop_seg; bt->phase_seg2 = tseg2; bt->sjw = 1; bt->brp = best_brp; /* real bit-rate */ bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1)); return 0; } /* * Checks the validity of the specified bit-timing parameters prop_seg, * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate * prescaler value brp. You can find more information in the header * file linux/can/netlink.h. */ static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt, const struct can_bittiming_const *btc) { struct can_priv *priv = netdev_priv(dev); int tseg1, alltseg; u64 brp64; tseg1 = bt->prop_seg + bt->phase_seg1; if (!bt->sjw) bt->sjw = 1; if (bt->sjw > btc->sjw_max || tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max || bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max) return -ERANGE; brp64 = (u64)priv->clock.freq * (u64)bt->tq; if (btc->brp_inc > 1) do_div(brp64, btc->brp_inc); brp64 += 500000000UL - 1; do_div(brp64, 1000000000UL); /* the practicable BRP */ if (btc->brp_inc > 1) brp64 *= btc->brp_inc; bt->brp = (u32)brp64; if (bt->brp < btc->brp_min || bt->brp > btc->brp_max) return -EINVAL; alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1; bt->bitrate = priv->clock.freq / (bt->brp * alltseg); bt->sample_point = ((tseg1 + 1) * 1000) / alltseg; return 0; }