/* SPDX-License-Identifier: GPL-2.0-only */ /* can-calc-bit-timing.c: Calculate CAN bit timing parameters * * Copyright (C) 2008 Wolfgang Grandegger * Copyright (C) 2016, 2021 Marc Kleine-Budde * * Derived from: * can_baud.c - CAN baudrate calculation * Code based on LinCAN sources and H8S2638 project * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz * Copyright 2005 Stanislav Marek * email:pisa@cmp.felk.cvut.cz * * This program is free software; you can redistribute it and/or modify * it under the terms of the version 2 of the GNU General Public License * as published by the Free Software Foundation */ #include #include #include #include #include #include #include #include #include #include #include enum { OPT_TQ = UCHAR_MAX + 1, OPT_PROP_SEG, OPT_PHASE_SEG1, OPT_PHASE_SEG2, OPT_SJW, OPT_BRP, OPT_TSEG1, OPT_TSEG2, }; /* imported from kernel */ /** * abs - return absolute value of an argument * @x: the value. If it is unsigned type, it is converted to signed type first. * char is treated as if it was signed (regardless of whether it really is) * but the macro's return type is preserved as char. * * Return: an absolute value of x. */ #define abs(x) __abs_choose_expr(x, long long, \ __abs_choose_expr(x, long, \ __abs_choose_expr(x, int, \ __abs_choose_expr(x, short, \ __abs_choose_expr(x, char, \ __builtin_choose_expr( \ __builtin_types_compatible_p(typeof(x), char), \ (char)({ signed char __x = (x); __x<0?-__x:__x; }), \ ((void)0))))))) #define __abs_choose_expr(x, type, other) __builtin_choose_expr( \ __builtin_types_compatible_p(typeof(x), signed type) || \ __builtin_types_compatible_p(typeof(x), unsigned type), \ ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other) /* * min()/max()/clamp() macros that also do * strict type-checking.. See the * "unnecessary" pointer comparison. */ #define min(x, y) ({ \ typeof(x) _min1 = (x); \ typeof(y) _min2 = (y); \ (void) (&_min1 == &_min2); \ _min1 < _min2 ? _min1 : _min2; }) #define max(x, y) ({ \ typeof(x) _max1 = (x); \ typeof(y) _max2 = (y); \ (void) (&_max1 == &_max2); \ _max1 > _max2 ? _max1 : _max2; }) /** * clamp - return a value clamped to a given range with strict typechecking * @val: current value * @lo: lowest allowable value * @hi: highest allowable value * * This macro does strict typechecking of lo/hi to make sure they are of the * same type as val. See the unnecessary pointer comparisons. */ #define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi) # define do_div(n,base) ({ \ uint32_t __base = (base); \ uint32_t __rem; \ __rem = ((uint64_t)(n)) % __base; \ (n) = ((uint64_t)(n)) / __base; \ __rem; \ }) /* */ #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0])) /* we don't want to see these prints */ #define netdev_err(dev, format, arg...) do { } while (0) #define netdev_warn(dev, format, arg...) do { } while (0) /* define in-kernel-types */ typedef __u64 u64; typedef __u32 u32; struct calc_ref_clk { __u32 clk; /* CAN system clock frequency in Hz */ char *name; }; struct calc_bittiming_const { struct can_bittiming_const bittiming_const; const struct calc_ref_clk ref_clk[16]; void (*printf_btr)(struct can_bittiming *bt, bool hdr); }; /* * minimal structs, just enough to be source level compatible */ struct can_priv { struct can_clock clock; }; struct net_device { struct can_priv priv; }; static inline void *netdev_priv(const struct net_device *dev) { return (void *)&dev->priv; } static void print_usage(char *cmd) { printf("%s - calculate CAN bit timing parameters.\n", cmd); printf("Usage: %s [options] []\n" "Options:\n" "\t-q don't print header line\n" "\t-l list all support CAN controller names\n" "\t-b bit-rate in bits/sec\n" "\t-s sample-point in one-tenth of a percent\n" "\t or 0 for CIA recommended sample points\n" "\t-c real CAN system clock in Hz\n" "\n" "Or supply low level bit timing parameters to decode them:\n" "\n" "\t--prop-seg Propagation segment in TQs\n" "\t--phase-seg1 Phase buffer segment 1 in TQs\n" "\t--phase-seg2 Phase buffer segment 2 in TQs\n" "\t--sjw Synchronisation jump width in TQs\n" "\t--brp Bit-rate prescaler\n" "\t--tseg1 Time segment 1 = prop-seg + phase-seg1\n" "\t--tseg2 Time segment 2 = phase_seg2\n", cmd); } static void printf_btr_sja1000(struct can_bittiming *bt, bool hdr) { uint8_t btr0, btr1; if (hdr) { printf("BTR0 BTR1"); } else { btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6); btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) | (((bt->phase_seg2 - 1) & 0x7) << 4); printf("0x%02x 0x%02x", btr0, btr1); } } static void printf_btr_at91(struct can_bittiming *bt, bool hdr) { if (hdr) { printf("%10s", "CAN_BR"); } else { uint32_t br = ((bt->phase_seg2 - 1) | ((bt->phase_seg1 - 1) << 4) | ((bt->prop_seg - 1) << 8) | ((bt->sjw - 1) << 12) | ((bt->brp - 1) << 16)); printf("0x%08x", br); } } static void printf_btr_flexcan(struct can_bittiming *bt, bool hdr) { if (hdr) { printf("%10s", "CAN_CTRL"); } else { uint32_t ctrl = (((bt->brp - 1) << 24) | ((bt->sjw - 1) << 22) | ((bt->phase_seg1 - 1) << 19) | ((bt->phase_seg2 - 1) << 16) | ((bt->prop_seg - 1) << 0)); printf("0x%08x", ctrl); } } static void printf_btr_mcp251x(struct can_bittiming *bt, bool hdr) { uint8_t cnf1, cnf2, cnf3; if (hdr) { printf("CNF1 CNF2 CNF3"); } else { cnf1 = ((bt->sjw - 1) << 6) | (bt->brp - 1); cnf2 = 0x80 | ((bt->phase_seg1 - 1) << 3) | (bt->prop_seg - 1); cnf3 = bt->phase_seg2 - 1; printf("0x%02x 0x%02x 0x%02x", cnf1, cnf2, cnf3); } } static void printf_btr_mcp251xfd(struct can_bittiming *bt, bool hdr) { if (hdr) { printf("NBTCFG"); } else { uint32_t nbtcfg = ((bt->brp - 1) << 24) | ((bt->prop_seg + bt->phase_seg1 - 1) << 16) | ((bt->phase_seg2 - 1) << 8) | (bt->sjw - 1); printf("0x%08x", nbtcfg); } } static void printf_btr_ti_hecc(struct can_bittiming *bt, bool hdr) { if (hdr) { printf("%10s", "CANBTC"); } else { uint32_t can_btc; can_btc = (bt->phase_seg2 - 1) & 0x7; can_btc |= ((bt->phase_seg1 + bt->prop_seg - 1) & 0xF) << 3; can_btc |= ((bt->sjw - 1) & 0x3) << 8; can_btc |= ((bt->brp - 1) & 0xFF) << 16; printf("0x%08x", can_btc); } } #define RCAR_CAN_BCR_TSEG1(x) (((x) & 0x0f) << 20) #define RCAR_CAN_BCR_BPR(x) (((x) & 0x3ff) << 8) #define RCAR_CAN_BCR_SJW(x) (((x) & 0x3) << 4) #define RCAR_CAN_BCR_TSEG2(x) ((x) & 0x07) static void printf_btr_rcar_can(struct can_bittiming *bt, bool hdr) { if (hdr) { printf("%10s", "CiBCR"); } else { uint32_t bcr; bcr = RCAR_CAN_BCR_TSEG1(bt->phase_seg1 + bt->prop_seg - 1) | RCAR_CAN_BCR_BPR(bt->brp - 1) | RCAR_CAN_BCR_SJW(bt->sjw - 1) | RCAR_CAN_BCR_TSEG2(bt->phase_seg2 - 1); printf("0x%08x", bcr << 8); } } static void printf_btr_bxcan(struct can_bittiming *bt, bool hdr) { if (hdr) { printf("%10s", "CAN_BTR"); } else { uint32_t btr; btr = (((bt->brp -1) & 0x3ff) << 0) | (((bt->prop_seg + bt->phase_seg1 -1) & 0xf) << 16) | (((bt->phase_seg2 -1) & 0x7) << 20) | (((bt->sjw -1) & 0x3) << 24); printf("0x%08x", btr); } } static void printf_btr_c_can(struct can_bittiming *bt, bool hdr) { if (hdr) { printf("%s", " BTR BRPEXT"); } else { uint32_t btr; uint32_t brpext; btr = (((bt->brp -1) & 0x3f) << 0) | (((bt->sjw -1) & 0x3) << 6) | (((bt->prop_seg + bt->phase_seg1 -1) & 0xf) << 8) | (((bt->phase_seg2 -1) & 0x7) << 12); brpext = ((bt->brp -1) >> 6) & 0xf; printf("0x%04x 0x%04x", btr, brpext); } } static void printf_btr_mcan(struct can_bittiming *bt, bool hdr) { if (hdr) { printf("%10s", "NBTP"); } else { uint32_t nbtp; nbtp = (((bt->brp -1) & 0x1ff) << 16) | (((bt->sjw -1) & 0x7f) << 25) | (((bt->prop_seg + bt->phase_seg1 -1) & 0xff) << 8) | (((bt->phase_seg2 -1) & 0x7f) << 0); printf("0x%08x", nbtp); } } static struct calc_bittiming_const can_calc_consts[] = { { .bittiming_const = { .name = "sja1000", .tseg1_min = 1, .tseg1_max = 16, .tseg2_min = 1, .tseg2_max = 8, .sjw_max = 4, .brp_min = 1, .brp_max = 64, .brp_inc = 1, }, .ref_clk = { { .clk = 8000000, }, }, .printf_btr = printf_btr_sja1000, }, { .bittiming_const = { .name = "mscan", .tseg1_min = 4, .tseg1_max = 16, .tseg2_min = 2, .tseg2_max = 8, .sjw_max = 4, .brp_min = 1, .brp_max = 64, .brp_inc = 1, }, .ref_clk = { { .clk = 32000000, }, { .clk = 33000000, }, { .clk = 33300000, }, { .clk = 33333333, }, { .clk = 66660000, .name = "mpc5121", }, { .clk = 66666666, .name = "mpc5121" }, }, }, { .bittiming_const = { .name = "at91", .tseg1_min = 4, .tseg1_max = 16, .tseg2_min = 2, .tseg2_max = 8, .sjw_max = 4, .brp_min = 2, .brp_max = 128, .brp_inc = 1, }, .ref_clk = { { .clk = 99532800, .name = "ronetix PM9263", }, { .clk = 100000000, }, }, .printf_btr = printf_btr_at91, }, { .bittiming_const = { .name = "flexcan", .tseg1_min = 4, .tseg1_max = 16, .tseg2_min = 2, .tseg2_max = 8, .sjw_max = 4, .brp_min = 1, .brp_max = 256, .brp_inc = 1, }, .ref_clk = { { .clk = 24000000, .name = "mx28" }, { .clk = 30000000, .name = "mx6" }, { .clk = 49875000, }, { .clk = 66000000, }, { .clk = 66500000, }, { .clk = 66666666, }, { .clk = 83368421, .name = "vybrid" }, }, .printf_btr = printf_btr_flexcan, }, { .bittiming_const = { .name = "mcp251x", .tseg1_min = 3, .tseg1_max = 16, .tseg2_min = 2, .tseg2_max = 8, .sjw_max = 4, .brp_min = 1, .brp_max = 64, .brp_inc = 1, }, .ref_clk = { /* The mcp251x uses half of the external OSC clock as the base clock */ { .clk = 8000000 / 2, .name = "8 MHz OSC" }, { .clk = 16000000 / 2, .name = "16 MHz OSC" }, { .clk = 20000000 / 2, .name = "20 MHz OSC" }, }, .printf_btr = printf_btr_mcp251x, }, { .bittiming_const = { .name = "mcp251xfd", .tseg1_min = 2, .tseg1_max = 256, .tseg2_min = 1, .tseg2_max = 128, .sjw_max = 128, .brp_min = 1, .brp_max = 256, .brp_inc = 1, }, .ref_clk = { { .clk = 20000000, }, { .clk = 40000000, }, }, .printf_btr = printf_btr_mcp251xfd, }, { .bittiming_const = { .name = "ti_hecc", .tseg1_min = 1, .tseg1_max = 16, .tseg2_min = 1, .tseg2_max = 8, .sjw_max = 4, .brp_min = 1, .brp_max = 256, .brp_inc = 1, }, .ref_clk = { { .clk = 13000000, }, }, .printf_btr = printf_btr_ti_hecc, }, { .bittiming_const = { .name = "rcar_can", .tseg1_min = 4, .tseg1_max = 16, .tseg2_min = 2, .tseg2_max = 8, .sjw_max = 4, .brp_min = 1, .brp_max = 1024, .brp_inc = 1, }, .ref_clk = { { .clk = 65000000, }, }, .printf_btr = printf_btr_rcar_can, }, { .bittiming_const = { .name = "bxcan", .tseg1_min = 1, .tseg1_max = 16, .tseg2_min = 1, .tseg2_max = 8, .sjw_max = 4, .brp_min = 1, .brp_max = 1024, .brp_inc = 1, }, .ref_clk = { { .clk = 48000000, }, }, .printf_btr = printf_btr_bxcan, }, { .bittiming_const = { .name = "c_can", .tseg1_min = 2, .tseg1_max = 16, .tseg2_min = 1, .tseg2_max = 8, .sjw_max = 4, .brp_min = 1, .brp_max = 1024, .brp_inc = 1, }, .ref_clk = { { .clk = 24000000, }, }, .printf_btr = printf_btr_c_can, }, { .bittiming_const = { .name = "mcan-v3.1+", .tseg1_min = 2, .tseg1_max = 256, .tseg2_min = 2, .tseg2_max = 128, .sjw_max = 128, .brp_min = 1, .brp_max = 512, .brp_inc = 1, }, .ref_clk = { { .clk = 40000000, }, }, .printf_btr = printf_btr_mcan, }, }; static long common_bitrates[] = { 1000000, 800000, 500000, 250000, 125000, 100000, 50000, 20000, 10000, }; #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */ #define CAN_CALC_SYNC_SEG 1 /* * Bit-timing calculation derived from: * * Code based on LinCAN sources and H8S2638 project * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz * Copyright 2005 Stanislav Marek * email: pisa@cmp.felk.cvut.cz * * Calculates proper bit-timing parameters for a specified bit-rate * and sample-point, which can then be used to set the bit-timing * registers of the CAN controller. You can find more information * in the header file linux/can/netlink.h. */ static int can_update_spt(const struct can_bittiming_const *btc, unsigned int spt_nominal, unsigned int tseg, unsigned int *tseg1_ptr, unsigned int *tseg2_ptr, unsigned int *spt_error_ptr) { unsigned int spt_error, best_spt_error = UINT_MAX; unsigned int spt, best_spt = 0; unsigned int tseg1, tseg2; int i; for (i = 0; i <= 1; i++) { tseg2 = tseg + CAN_CALC_SYNC_SEG - (spt_nominal * (tseg + CAN_CALC_SYNC_SEG)) / 1000 - i; tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max); tseg1 = tseg - tseg2; if (tseg1 > btc->tseg1_max) { tseg1 = btc->tseg1_max; tseg2 = tseg - tseg1; } spt = 1000 * (tseg + CAN_CALC_SYNC_SEG - tseg2) / (tseg + CAN_CALC_SYNC_SEG); spt_error = abs(spt_nominal - spt); if ((spt <= spt_nominal) && (spt_error < best_spt_error)) { best_spt = spt; best_spt_error = spt_error; *tseg1_ptr = tseg1; *tseg2_ptr = tseg2; } } if (spt_error_ptr) *spt_error_ptr = best_spt_error; return best_spt; } static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt, const struct can_bittiming_const *btc) { struct can_priv *priv = netdev_priv(dev); unsigned int rate; /* current bitrate */ unsigned int rate_error; /* difference between current and nominal value */ unsigned int best_rate_error = UINT_MAX; unsigned int spt_error; /* difference between current and nominal value */ unsigned int best_spt_error = UINT_MAX; unsigned int spt_nominal; /* nominal sample point */ unsigned int best_tseg = 0; /* current best value for tseg */ unsigned int best_brp = 0; /* current best value for brp */ unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0; u64 v64; /* Use CiA recommended sample points */ if (bt->sample_point) { spt_nominal = bt->sample_point; } else { if (bt->bitrate > 800000) spt_nominal = 750; else if (bt->bitrate > 500000) spt_nominal = 800; else spt_nominal = 875; } /* tseg even = round down, odd = round up */ for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1; tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) { tsegall = CAN_CALC_SYNC_SEG + tseg / 2; /* Compute all possible tseg choices (tseg=tseg1+tseg2) */ brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2; /* choose brp step which is possible in system */ brp = (brp / btc->brp_inc) * btc->brp_inc; if ((brp < btc->brp_min) || (brp > btc->brp_max)) continue; rate = priv->clock.freq / (brp * tsegall); rate_error = abs(bt->bitrate - rate); /* tseg brp biterror */ if (rate_error > best_rate_error) continue; /* reset sample point error if we have a better bitrate */ if (rate_error < best_rate_error) best_spt_error = UINT_MAX; can_update_spt(btc, spt_nominal, tseg / 2, &tseg1, &tseg2, &spt_error); if (spt_error > best_spt_error) continue; best_spt_error = spt_error; best_rate_error = rate_error; best_tseg = tseg / 2; best_brp = brp; if (rate_error == 0 && spt_error == 0) break; } if (best_rate_error) { /* Error in one-tenth of a percent */ rate_error = (best_rate_error * 1000) / bt->bitrate; if (rate_error > CAN_CALC_MAX_ERROR) { netdev_err(dev, "bitrate error %ld.%ld%% too high\n", rate_error / 10, rate_error % 10); return -EDOM; } netdev_warn(dev, "bitrate error %ld.%ld%%\n", rate_error / 10, rate_error % 10); } /* real sample point */ bt->sample_point = can_update_spt(btc, spt_nominal, best_tseg, &tseg1, &tseg2, NULL); v64 = (u64)best_brp * 1000 * 1000 * 1000; do_div(v64, priv->clock.freq); bt->tq = (u32)v64; bt->prop_seg = tseg1 / 2; bt->phase_seg1 = tseg1 - bt->prop_seg; bt->phase_seg2 = tseg2; /* check for sjw user settings */ if (!bt->sjw || !btc->sjw_max) { bt->sjw = 1; } else { /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */ if (bt->sjw > btc->sjw_max) bt->sjw = btc->sjw_max; /* bt->sjw must not be higher than tseg2 */ if (tseg2 < bt->sjw) bt->sjw = tseg2; } bt->brp = best_brp; /* real bit-rate */ bt->bitrate = priv->clock.freq / (bt->brp * (CAN_CALC_SYNC_SEG + tseg1 + tseg2)); return 0; } static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt, const struct can_bittiming_const *btc) { struct can_priv *priv = netdev_priv(dev); int tseg1, alltseg; u64 brp64, v64; tseg1 = bt->prop_seg + bt->phase_seg1; if (!bt->sjw) bt->sjw = 1; if (bt->sjw > btc->sjw_max || tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max || bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max) return -ERANGE; if (!bt->brp) { brp64 = (u64)priv->clock.freq * (u64)bt->tq; if (btc->brp_inc > 1) do_div(brp64, btc->brp_inc); brp64 += 500000000UL - 1; do_div(brp64, 1000000000UL); /* the practicable BRP */ if (btc->brp_inc > 1) brp64 *= btc->brp_inc; bt->brp = brp64; } v64 = bt->brp * 1000 * 1000 * 1000; do_div(v64, priv->clock.freq); bt->tq = v64; if (bt->brp < btc->brp_min || bt->brp > btc->brp_max) return -EINVAL; alltseg = CAN_CALC_SYNC_SEG + bt->prop_seg + bt->phase_seg1 + bt->phase_seg2; bt->bitrate = priv->clock.freq / (bt->brp * alltseg); bt->sample_point = ((CAN_CALC_SYNC_SEG + tseg1) * 1000) / alltseg; return 0; } static __u32 get_cia_sample_point(__u32 bitrate) { __u32 sampl_pt; if (bitrate > 800000) sampl_pt = 750; else if (bitrate > 500000) sampl_pt = 800; else sampl_pt = 875; return sampl_pt; } static void print_bit_timing(const struct calc_bittiming_const *btc, const struct can_bittiming *ref_bt, const struct calc_ref_clk *ref_clk, unsigned int bitrate_nominal, unsigned int spt_nominal, bool quiet) { struct net_device dev = { .priv.clock.freq = ref_clk->clk, }; struct can_bittiming bt = { .bitrate = bitrate_nominal, .sample_point = spt_nominal, }; long rate_error, spt_error; if (!quiet) { printf("Bit timing parameters for %s%s%s%s with %.6f MHz ref clock\n" "nominal real Bitrt nom real SampP\n" "Bitrate TQ[ns] PrS PhS1 PhS2 SJW BRP Bitrate Error SampP SampP Error ", btc->bittiming_const.name, ref_clk->name ? " (" : "", ref_clk->name ? ref_clk->name : "", ref_clk->name ? ")" : "", ref_clk->clk / 1000000.0); if (btc->printf_btr) btc->printf_btr(&bt, true); printf("\n"); } if (ref_bt) { bt = *ref_bt; if (can_fixup_bittiming(&dev, &bt, &btc->bittiming_const)) { printf("%7d ***parameters exceed controller's range***\n", bitrate_nominal); return; } } else { if (can_calc_bittiming(&dev, &bt, &btc->bittiming_const)) { printf("%7d ***bitrate not possible***\n", bitrate_nominal); return; } } /* get nominal sample point */ if (!spt_nominal) spt_nominal = get_cia_sample_point(bitrate_nominal); rate_error = abs(bitrate_nominal - bt.bitrate); spt_error = abs(spt_nominal - bt.sample_point); printf("%7d " /* Bitrate */ "%6d %3d %4d %4d " /* TQ[ns], PrS, PhS1, PhS2 */ "%3d %3d " /* SJW, BRP */ "%7d ", /* real Bitrate */ bitrate_nominal, bt.tq, bt.prop_seg, bt.phase_seg1, bt.phase_seg2, bt.sjw, bt.brp, bt.bitrate); if (100.0 * rate_error / bitrate_nominal > 99.9) printf("≥100%% "); else printf("%4.1f%% ", 100.0 * rate_error / bitrate_nominal); printf("%4.1f%% %4.1f%% ", /* nom SampP, real SampP */ spt_nominal / 10.0, bt.sample_point / 10.0); if (100.0 * spt_error / spt_nominal > 99.9) printf("≥100%% "); else printf("%4.1f%% ", /* SampP Error */ 100.0 * spt_error / spt_nominal); if (btc->printf_btr) btc->printf_btr(&bt, false); printf("\n"); } static void do_list(void) { unsigned int i; for (i = 0; i < ARRAY_SIZE(can_calc_consts); i++) printf("%s\n", can_calc_consts[i].bittiming_const.name); } static void do_calc(const char *name, const struct can_bittiming *opt_ref_bt, __u32 bitrate_nominal, unsigned int spt_nominal, struct calc_ref_clk *opt_ref_clk, bool quiet) { const struct calc_bittiming_const *btc; const struct calc_ref_clk *ref_clk; unsigned int i, j, k; bool found = false; for (i = 0; i < ARRAY_SIZE(can_calc_consts); i++) { if (name && strcmp(can_calc_consts[i].bittiming_const.name, name) != 0) continue; found = true; btc = &can_calc_consts[i]; for (j = 0; j < ARRAY_SIZE(btc->ref_clk); j++) { if (opt_ref_clk) ref_clk = opt_ref_clk; else ref_clk = &btc->ref_clk[j]; if (!ref_clk->clk) break; if (bitrate_nominal) { print_bit_timing(btc, opt_ref_bt, ref_clk, bitrate_nominal, spt_nominal, quiet); } else { for (k = 0; k < ARRAY_SIZE(common_bitrates); k++) print_bit_timing(btc, opt_ref_bt, ref_clk, common_bitrates[k], spt_nominal, k); } printf("\n"); if (opt_ref_clk) break; } } if (!found) { printf("error: unknown CAN controller '%s', try one of these:\n\n", name); do_list(); exit(EXIT_FAILURE); } } int main(int argc, char *argv[]) { __u32 bitrate_nominal = 0; unsigned int spt_nominal = 0; struct calc_ref_clk opt_ref_clk = { .name = "cmd-line", }; struct can_bittiming bt = { 0 }; bool quiet = false, list = false; const char *name = NULL; int opt; const struct option long_options[] = { { "tq", required_argument, 0, OPT_TQ, }, { "prop-seg", required_argument, 0, OPT_PROP_SEG, }, { "phase-seg1", required_argument, 0, OPT_PHASE_SEG1, }, { "phase-seg2", required_argument, 0, OPT_PHASE_SEG2, }, { "sjw", required_argument, 0, OPT_SJW, }, { "brp", required_argument, 0, OPT_BRP, }, { "tseg1", required_argument, 0, OPT_TSEG1, }, { "tseg2", required_argument, 0, OPT_TSEG2, }, { 0, 0, 0, 0 }, }; while ((opt = getopt_long(argc, argv, "b:c:lqs:?", long_options, NULL)) != -1) { switch (opt) { case 'b': bitrate_nominal = atoi(optarg); break; case 'c': opt_ref_clk.clk = strtoul(optarg, NULL, 10); break; case 'l': list = true; break; case 'q': quiet = true; break; case 's': spt_nominal = strtoul(optarg, NULL, 10); break; case '?': print_usage(basename(argv[0])); exit(EXIT_SUCCESS); break; case OPT_TQ: bt.tq = strtoul(optarg, NULL, 10); break; case OPT_PROP_SEG: bt.prop_seg = strtoul(optarg, NULL, 10); break; case OPT_PHASE_SEG1: bt.phase_seg1 = strtoul(optarg, NULL, 10); break; case OPT_PHASE_SEG2: bt.phase_seg2 = strtoul(optarg, NULL, 10); break; case OPT_SJW: bt.sjw = strtoul(optarg, NULL, 10); break; case OPT_BRP: bt.brp = strtoul(optarg, NULL, 10); break; case OPT_TSEG1: { __u32 tseg1; tseg1 = strtoul(optarg, NULL, 10); bt.prop_seg = tseg1 / 2; bt.phase_seg1 = tseg1 - bt.prop_seg; break; } case OPT_TSEG2: bt.phase_seg2 = strtoul(optarg, NULL, 10); break; default: print_usage(basename(argv[0])); exit(EXIT_FAILURE); break; } } if (argc > optind + 1) { print_usage(argv[0]); exit(EXIT_FAILURE); } if (argc == optind + 1) name = argv[optind]; if (list) { do_list(); exit(EXIT_SUCCESS); } if (spt_nominal && (spt_nominal >= 1000 || spt_nominal < 100)) { print_usage(argv[0]); exit(EXIT_FAILURE); } do_calc(name, bt.prop_seg ? &bt: NULL, bitrate_nominal, spt_nominal, opt_ref_clk.clk ? &opt_ref_clk : NULL, quiet); exit(EXIT_SUCCESS); }