/* SPDX-License-Identifier: GPL-2.0-only */ #include "compat.h" /* * imported from v6.3-rc1~162^2~124^2^2~1 * */ void can_sjw_set_default(struct can_bittiming *bt) { if (bt->sjw) return; /* If user space provides no sjw, use sane default of phase_seg2 / 2 */ bt->sjw = max(1U, min(bt->phase_seg1, bt->phase_seg2 / 2)); } int can_sjw_check(const struct net_device *dev, const struct can_bittiming *bt, const struct can_bittiming_const *btc, struct netlink_ext_ack *extack) { if (bt->sjw > btc->sjw_max) { NL_SET_ERR_MSG_FMT(extack, "sjw: %u greater than max sjw: %u", bt->sjw, btc->sjw_max); return -EINVAL; } if (bt->sjw > bt->phase_seg1) { NL_SET_ERR_MSG_FMT(extack, "sjw: %u greater than phase-seg1: %u", bt->sjw, bt->phase_seg1); return -EINVAL; } if (bt->sjw > bt->phase_seg2) { NL_SET_ERR_MSG_FMT(extack, "sjw: %u greater than phase-seg2: %u", bt->sjw, bt->phase_seg2); return -EINVAL; } return 0; } /* * can_bit_time() - Duration of one bit * * Please refer to ISO 11898-1:2015, section 11.3.1.1 "Bit time" for * additional information. * * Return: the number of time quanta in one bit. */ static inline unsigned int can_bit_time(const struct can_bittiming *bt) { return CAN_SYNC_SEG + bt->prop_seg + bt->phase_seg1 + bt->phase_seg2; } /* Copyright (C) 2005 Marc Kleine-Budde, Pengutronix * Copyright (C) 2006 Andrey Volkov, Varma Electronics * Copyright (C) 2008-2009 Wolfgang Grandegger */ /* Bit-timing calculation derived from: * * Code based on LinCAN sources and H8S2638 project * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz * Copyright 2005 Stanislav Marek * email: pisa@cmp.felk.cvut.cz * * Calculates proper bit-timing parameters for a specified bit-rate * and sample-point, which can then be used to set the bit-timing * registers of the CAN controller. You can find more information * in the header file linux/can/netlink.h. */ static int can_update_sample_point(const struct can_bittiming_const *btc, const unsigned int sample_point_nominal, const unsigned int tseg, unsigned int *tseg1_ptr, unsigned int *tseg2_ptr, unsigned int *sample_point_error_ptr) { unsigned int sample_point_error, best_sample_point_error = UINT_MAX; unsigned int sample_point, best_sample_point = 0; unsigned int tseg1, tseg2; int i; for (i = 0; i <= 1; i++) { tseg2 = tseg + CAN_SYNC_SEG - (sample_point_nominal * (tseg + CAN_SYNC_SEG)) / 1000 - i; tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max); tseg1 = tseg - tseg2; if (tseg1 > btc->tseg1_max) { tseg1 = btc->tseg1_max; tseg2 = tseg - tseg1; } sample_point = 1000 * (tseg + CAN_SYNC_SEG - tseg2) / (tseg + CAN_SYNC_SEG); sample_point_error = abs(sample_point_nominal - sample_point); if (sample_point <= sample_point_nominal && sample_point_error < best_sample_point_error) { best_sample_point = sample_point; best_sample_point_error = sample_point_error; *tseg1_ptr = tseg1; *tseg2_ptr = tseg2; } } if (sample_point_error_ptr) *sample_point_error_ptr = best_sample_point_error; return best_sample_point; } int can_calc_bittiming(const struct net_device *dev, struct can_bittiming *bt, const struct can_bittiming_const *btc, struct netlink_ext_ack *extack) { struct can_priv *priv = netdev_priv(dev); unsigned int bitrate; /* current bitrate */ unsigned int bitrate_error; /* difference between current and nominal value */ unsigned int best_bitrate_error = UINT_MAX; unsigned int sample_point_error; /* difference between current and nominal value */ unsigned int best_sample_point_error = UINT_MAX; unsigned int sample_point_nominal; /* nominal sample point */ unsigned int best_tseg = 0; /* current best value for tseg */ unsigned int best_brp = 0; /* current best value for brp */ unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0; u64 v64; int err; /* Use CiA recommended sample points */ if (bt->sample_point) { sample_point_nominal = bt->sample_point; } else { if (bt->bitrate > 800 * KILO /* BPS */) sample_point_nominal = 750; else if (bt->bitrate > 500 * KILO /* BPS */) sample_point_nominal = 800; else sample_point_nominal = 875; } /* tseg even = round down, odd = round up */ for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1; tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) { tsegall = CAN_SYNC_SEG + tseg / 2; /* Compute all possible tseg choices (tseg=tseg1+tseg2) */ brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2; /* choose brp step which is possible in system */ brp = (brp / btc->brp_inc) * btc->brp_inc; if (brp < btc->brp_min || brp > btc->brp_max) continue; bitrate = priv->clock.freq / (brp * tsegall); bitrate_error = abs(bt->bitrate - bitrate); /* tseg brp biterror */ if (bitrate_error > best_bitrate_error) continue; /* reset sample point error if we have a better bitrate */ if (bitrate_error < best_bitrate_error) best_sample_point_error = UINT_MAX; can_update_sample_point(btc, sample_point_nominal, tseg / 2, &tseg1, &tseg2, &sample_point_error); if (sample_point_error >= best_sample_point_error) continue; best_sample_point_error = sample_point_error; best_bitrate_error = bitrate_error; best_tseg = tseg / 2; best_brp = brp; if (bitrate_error == 0 && sample_point_error == 0) break; } if (best_bitrate_error) { /* Error in one-tenth of a percent */ v64 = (u64)best_bitrate_error * 1000; do_div(v64, bt->bitrate); bitrate_error = (u32)v64; if (bitrate_error > CAN_CALC_MAX_ERROR) { NL_SET_ERR_MSG_FMT(extack, "bitrate error: %u.%u%% too high", bitrate_error / 10, bitrate_error % 10); return -EINVAL; } NL_SET_ERR_MSG_FMT(extack, "bitrate error: %u.%u%%", bitrate_error / 10, bitrate_error % 10); } /* real sample point */ bt->sample_point = can_update_sample_point(btc, sample_point_nominal, best_tseg, &tseg1, &tseg2, NULL); v64 = (u64)best_brp * 1000 * 1000 * 1000; do_div(v64, priv->clock.freq); bt->tq = (u32)v64; bt->prop_seg = tseg1 / 2; bt->phase_seg1 = tseg1 - bt->prop_seg; bt->phase_seg2 = tseg2; can_sjw_set_default(bt); err = can_sjw_check(dev, bt, btc, extack); if (err) return err; bt->brp = best_brp; /* real bitrate */ bt->bitrate = priv->clock.freq / (bt->brp * can_bit_time(bt)); return 0; } /* Checks the validity of the specified bit-timing parameters prop_seg, * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate * prescaler value brp. You can find more information in the header * file linux/can/netlink.h. */ static int can_fixup_bittiming(const struct net_device *dev, struct can_bittiming *bt, const struct can_bittiming_const *btc, struct netlink_ext_ack *extack) { const unsigned int tseg1 = bt->prop_seg + bt->phase_seg1; const struct can_priv *priv = netdev_priv(dev); u64 brp64; int err; if (tseg1 < btc->tseg1_min) { NL_SET_ERR_MSG_FMT(extack, "prop-seg + phase-seg1: %u less than tseg1-min: %u", tseg1, btc->tseg1_min); return -EINVAL; } if (tseg1 > btc->tseg1_max) { NL_SET_ERR_MSG_FMT(extack, "prop-seg + phase-seg1: %u greater than tseg1-max: %u", tseg1, btc->tseg1_max); return -EINVAL; } if (bt->phase_seg2 < btc->tseg2_min) { NL_SET_ERR_MSG_FMT(extack, "phase-seg2: %u less than tseg2-min: %u", bt->phase_seg2, btc->tseg2_min); return -EINVAL; } if (bt->phase_seg2 > btc->tseg2_max) { NL_SET_ERR_MSG_FMT(extack, "phase-seg2: %u greater than tseg2-max: %u", bt->phase_seg2, btc->tseg2_max); return -EINVAL; } can_sjw_set_default(bt); err = can_sjw_check(dev, bt, btc, extack); if (err) return err; brp64 = (u64)priv->clock.freq * (u64)bt->tq; if (btc->brp_inc > 1) do_div(brp64, btc->brp_inc); brp64 += 500000000UL - 1; do_div(brp64, 1000000000UL); /* the practicable BRP */ if (btc->brp_inc > 1) brp64 *= btc->brp_inc; bt->brp = (u32)brp64; if (bt->brp < btc->brp_min) { NL_SET_ERR_MSG_FMT(extack, "resulting brp: %u less than brp-min: %u", bt->brp, btc->brp_min); return -EINVAL; } if (bt->brp > btc->brp_max) { NL_SET_ERR_MSG_FMT(extack, "resulting brp: %u greater than brp-max: %u", bt->brp, btc->brp_max); return -EINVAL; } bt->bitrate = priv->clock.freq / (bt->brp * can_bit_time(bt)); bt->sample_point = ((CAN_SYNC_SEG + tseg1) * 1000) / can_bit_time(bt); bt->tq = DIV_U64_ROUND_CLOSEST(mul_u32_u32(bt->brp, NSEC_PER_SEC), priv->clock.freq); return 0; }