add can-calc-bit-timing

Add the tool as sent by Wolfgang via email
(<4BE152D2.6060306@grandegger.com>).

Signed-off-by: Wolfgang Grandegger <wg@grandegger.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
pull/7/head
Marc Kleine-Budde 2010-07-20 13:42:57 +00:00
parent 5655d53acb
commit fa9c05021c
1 changed files with 432 additions and 0 deletions

View File

@ -0,0 +1,432 @@
/* can-calc-bit-timing.c: Calculate CAN bit timing parameters
*
* Copyright (C) 2008 Wolfgang Grandegger <wg@grandegger.com>
*
* Derived from:
* can_baud.c - CAN baudrate calculation
* Code based on LinCAN sources and H8S2638 project
* Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
* Copyright 2005 Stanislav Marek
* email:pisa@cmp.felk.cvut.cz
*
* This software is released under the GPL-License.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <getopt.h>
#define do_div(a,b) a = (a) / (b)
static void print_usage(char* cmd)
{
printf("Usage: %s [options] [<CAN-contoller-name>]\n"
"\tOptions:\n"
"\t-q : don't print header line\n"
"\t-l : list all support CAN controller names\n"
"\t-b <bitrate> : bit-rate in bits/sec\n"
"\t-s <samp_pt> : sample-point in one-tenth of a percent\n"
"\t or 0 for CIA recommended sample points\n"
"\t-c <clock> : real CAN system clock in Hz\n",
cmd);
exit(1);
}
struct can_bittime {
uint32_t brp;
uint8_t prop_seg;
uint8_t phase_seg1;
uint8_t phase_seg2;
uint8_t sjw;
uint32_t tq;
uint32_t error;
int sampl_pt;
};
struct can_bittiming_const {
char name[32];
int prop_seg_min;
int prop_seg_max;
int phase_seg1_min;
int phase_seg1_max;
int phase_seg2_min;
int phase_seg2_max;
int sjw_max;
int brp_min;
int brp_max;
int brp_inc;
void (*printf_btr)(struct can_bittime *bt, int hdr);
};
static void printf_btr_sja1000(struct can_bittime *bt, int hdr)
{
uint8_t btr0, btr1;
if (hdr) {
printf("BTR0 BTR1");
} else {
btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6);
btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) |
(((bt->phase_seg2 - 1) & 0x7) << 4);
printf("0x%02x 0x%02x", btr0, btr1);
}
}
static void printf_btr_at91(struct can_bittime *bt, int hdr)
{
if (hdr) {
printf("CAN_BR");
} else {
uint32_t br = ((bt->phase_seg2 - 1) |
((bt->phase_seg1 - 1) << 4) |
((bt->prop_seg - 1) << 8) |
((bt->sjw - 1) << 12) |
((bt->brp - 1) << 16));
printf("0x%08x", br);
}
}
static void printf_btr_mcp2510(struct can_bittime *bt, int hdr)
{
uint8_t cnf1, cnf2, cnf3;
if (hdr) {
printf("CNF1 CNF2 CNF3");
} else {
cnf1 = ((bt->sjw - 1) << 6) | bt->brp;
cnf2 = 0x80 | ((bt->phase_seg1 - 1) << 3) | (bt->prop_seg - 1);
cnf3 = bt->phase_seg2 - 1;
printf("0x%02x 0x%02x 0x%02x", cnf1, cnf2, cnf3);
}
}
static void printf_btr_rtcantl1(struct can_bittime *bt, int hdr)
{
uint16_t bcr0, bcr1;
if (hdr) {
printf("__BCR0 __BCR1");
} else {
bcr1 = ((((bt->prop_seg + bt->phase_seg1 - 1) & 0x0F) << 12) |
(((bt->phase_seg2 - 1) & 0x07) << 8) |
(((bt->sjw - 1) & 0x03) << 4));
bcr0 = ((bt->brp - 1) & 0xFF);
printf("0x%04x 0x%04x", bcr0, bcr1);
}
}
struct can_bittiming_const can_calc_consts[] = {
{
"sja1000",
/* Note: only prop_seg + bt->phase_seg1 matters */
.phase_seg1_min = 1,
.phase_seg1_max = 16,
.phase_seg2_min = 1,
.phase_seg2_max = 8,
.sjw_max = 4,
.brp_min = 1,
.brp_max = 64,
.brp_inc = 1,
.printf_btr = printf_btr_sja1000,
},
{
"mscan",
/* Note: only prop_seg + bt->phase_seg1 matters */
.phase_seg1_min = 4,
.phase_seg1_max = 16,
.phase_seg2_min = 2,
.phase_seg2_max = 8,
.sjw_max = 4,
.brp_min = 1,
.brp_max = 64,
.brp_inc = 1,
.printf_btr = printf_btr_sja1000,
},
{
"at91",
.prop_seg_min = 1,
.prop_seg_max = 8,
.phase_seg1_min = 1,
.phase_seg1_max = 8,
.phase_seg2_min = 2,
.phase_seg2_max = 8,
.sjw_max = 4,
.brp_min = 1,
.brp_max = 128,
.brp_inc = 1,
.printf_btr = printf_btr_at91,
},
{
"mcp2510",
.prop_seg_min = 1,
.prop_seg_max = 8,
.phase_seg1_min = 1,
.phase_seg1_max = 8,
.phase_seg2_min = 2,
.phase_seg2_max = 8,
.sjw_max = 4,
.brp_min = 1,
.brp_max = 64,
.brp_inc = 1,
.printf_btr = printf_btr_mcp2510,
},
{
"rtcantl1",
.prop_seg_min = 2,
.prop_seg_max = 8,
.phase_seg1_min = 2,
.phase_seg1_max = 8,
.phase_seg2_min = 2,
.phase_seg2_max = 8,
.sjw_max = 4,
.brp_min = 1,
.brp_max = 256,
.brp_inc = 1,
.printf_btr = printf_btr_rtcantl1,
},
};
static long common_bitrates[] = {
1000000,
800000,
500000,
250000,
125000,
100000,
50000,
20000,
10000
};
static int can_update_spt(const struct can_bittiming_const *btc,
int sampl_pt, int tseg, int *tseg1, int *tseg2)
{
*tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
if (*tseg2 < btc->phase_seg2_min)
*tseg2 = btc->phase_seg2_min;
if (*tseg2 > btc->phase_seg2_max)
*tseg2 = btc->phase_seg2_max;
*tseg1 = tseg - *tseg2;
if (*tseg1 > btc->prop_seg_max + btc->phase_seg1_max) {
*tseg1 = btc->prop_seg_max + btc->phase_seg1_max;
*tseg2 = tseg - *tseg1;
}
return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
}
int can_calc_bittiming(struct can_bittime *bt, long bitrate,
int sampl_pt, long clock,
const struct can_bittiming_const *btc)
{
long best_error = 1000000000, error;
int best_tseg = 0, best_brp = 0, brp = 0;
int spt_error = 1000, spt = 0;
long rate, best_rate = 0;
int tseg = 0, tseg1 = 0, tseg2 = 0;
uint64_t v64;
if (sampl_pt == 0) {
/* Use CIA recommended sample points */
if (bitrate > 800000)
sampl_pt = 750;
else if (bitrate > 500000)
sampl_pt = 800;
else
sampl_pt = 875;
}
#ifdef DEBUG
printf("tseg brp bitrate biterror\n");
#endif
/* tseg even = round down, odd = round up */
for (tseg = (btc->prop_seg_max + btc->phase_seg1_max +
btc->phase_seg2_max) * 2 + 1;
tseg >= (btc->prop_seg_min + btc->phase_seg1_min +
btc->phase_seg2_min) * 2; tseg--) {
/* Compute all posibilities of tseg choices (tseg=tseg1+tseg2) */
brp = clock / ((1 + tseg / 2) * bitrate) + tseg % 2;
/* chose brp step which is possible in system */
brp = (brp / btc->brp_inc) * btc->brp_inc;
if ((brp < btc->brp_min) || (brp > btc->brp_max))
continue;
rate = clock / (brp * (1 + tseg / 2));
error = bitrate - rate;
/* tseg brp biterror */
#if DEBUG
printf("%4d %3d %7ld %8ld %03d\n", tseg, brp, rate, error,
can_update_spt(btc, sampl_pt, tseg / 2,
&tseg1, &tseg2));
#endif
if (error < 0)
error = -error;
if (error > best_error)
continue;
best_error = error;
if (error == 0) {
spt = can_update_spt(btc, sampl_pt, tseg / 2,
&tseg1, &tseg2);
error = sampl_pt - spt;
//printf("%d %d %d\n", sampl_pt, error, spt_error);
if (error < 0)
error = -error;
if (error > spt_error)
continue;
spt_error = error;
//printf("%d\n", spt_error);
}
//printf("error=%d\n", best_error);
best_tseg = tseg / 2;
best_brp = brp;
best_rate = rate;
if (error == 0)
break;
}
if (best_error && (bitrate / best_error < 10))
return -1;
spt = can_update_spt(btc, sampl_pt, best_tseg,
&tseg1, &tseg2);
if (tseg2 > tseg1) {
/* sample point < 50% */
bt->phase_seg1 = tseg1 / 2;
} else {
/* keep phase_seg{1,2} equal around the sample point */
bt->phase_seg1 = tseg2;
}
bt->prop_seg = tseg1 - bt->phase_seg1;
/* Check prop_seg range if necessary */
if (btc->prop_seg_min || btc->prop_seg_max) {
if (bt->prop_seg < btc->prop_seg_min)
bt->prop_seg = btc->prop_seg_min;
else if (bt->prop_seg > btc->prop_seg_max)
bt->prop_seg = btc->prop_seg_max;
bt->phase_seg1 = tseg1 - bt->prop_seg;
}
bt->phase_seg2 = tseg2;
bt->sjw = 1;
bt->brp = best_brp;
bt->error = best_error;
bt->sampl_pt = spt;
v64 = (uint64_t)bt->brp * 1000000000UL;
v64 /= clock;
bt->tq = (int)v64;
return 0;
}
void print_bit_timing(const struct can_bittiming_const *btc,
long bitrate, int sampl_pt, long ref_clk, int quiet)
{
struct can_bittime bt;
memset(&bt, 0, sizeof(bt));
if (!quiet) {
printf("Bit timing parameters for %s using %ldHz\n",
btc->name, ref_clk);
printf("Bitrate TQ[ns] PrS PhS1 PhS2 SJW BRP SampP Error ");
btc->printf_btr(&bt, 1);
printf("\n");
}
if (can_calc_bittiming(&bt, bitrate, sampl_pt, ref_clk, btc)) {
printf("%7ld ***bitrate not possible***\n", bitrate);
return;
}
printf("%7ld %6d %3d %4d %4d %3d %3d %2d.%d%% %4.1f%% ",
bitrate, bt.tq, bt.prop_seg, bt.phase_seg1,
bt.phase_seg2, bt.sjw, bt.brp,
bt.sampl_pt / 10, bt.sampl_pt % 10,
(double)100 * bt.error / bitrate);
btc->printf_btr(&bt, 0);
printf("\n");
}
int main(int argc, char *argv[])
{
long bitrate = 0;
long ref_clk = 8000000;
int sampl_pt = 0;
int quiet = 0;
int list = 0;
char *name = NULL;
int i, opt;
const struct can_bittiming_const *btc = NULL;
while ((opt = getopt(argc, argv, "b:c:lps:")) != -1) {
switch (opt) {
case 'b':
bitrate = atoi(optarg);
break;
case 'c':
ref_clk = atoi(optarg);
break;
case 'l':
list = 1;
break;
case 'q':
quiet = 1;
break;
case 's':
sampl_pt = atoi(optarg);
break;
default:
print_usage(argv[0]);
break;
}
}
if (argc > optind + 1)
print_usage(argv[0]);
if (argc == optind + 1)
name = argv[optind];
if (list) {
for (i = 0; i < sizeof(can_calc_consts) /
sizeof(struct can_bittiming_const); i++)
printf("%s\n", can_calc_consts[i].name);
return 0;
}
if (sampl_pt && (sampl_pt >= 1000 || sampl_pt < 100))
print_usage(argv[0]);
if (name) {
for (i = 0; i < sizeof(can_calc_consts) /
sizeof(struct can_bittiming_const); i++) {
if (!strcmp(can_calc_consts[i].name, name)) {
btc = &can_calc_consts[i];
break;
}
}
if (!btc)
print_usage(argv[0]);
} else {
btc = &can_calc_consts[0];
}
if (bitrate) {
print_bit_timing(btc, bitrate, sampl_pt, ref_clk, quiet);
} else {
for (i = 0; i < sizeof(common_bitrates) / sizeof(long); i++)
print_bit_timing(btc, common_bitrates[i], sampl_pt,
ref_clk, i);
}
return 0;
}