can-calc-bit-timing: import bit timing calculation algorithm from v5.16

Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
pull/372/head
Marc Kleine-Budde 2022-03-17 13:50:23 +01:00
parent 18eb0ab784
commit 0654d4e711
3 changed files with 232 additions and 1 deletions

View File

@ -47,7 +47,8 @@ can_calc_bit_timing_SOURCES = \
EXTRA_DIST += \ EXTRA_DIST += \
calc-bit-timing/can-calc-bit-timing-v2_6_31.c \ calc-bit-timing/can-calc-bit-timing-v2_6_31.c \
calc-bit-timing/can-calc-bit-timing-v3_18.c \ calc-bit-timing/can-calc-bit-timing-v3_18.c \
calc-bit-timing/can-calc-bit-timing-v4_8.c calc-bit-timing/can-calc-bit-timing-v4_8.c \
calc-bit-timing/can-calc-bit-timing-v5_16.c
mcp251xfd_dump_SOURCES = \ mcp251xfd_dump_SOURCES = \
mcp251xfd/mcp251xfd-dev-coredump.c \ mcp251xfd/mcp251xfd-dev-coredump.c \

View File

@ -0,0 +1,216 @@
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* imported from v5.16-rc1~159^2~104^2~13
*
*/
/* Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
* Copyright (C) 2006 Andrey Volkov, Varma Electronics
* Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
*/
/* Bit-timing calculation derived from:
*
* Code based on LinCAN sources and H8S2638 project
* Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
* Copyright 2005 Stanislav Marek
* email: pisa@cmp.felk.cvut.cz
*
* Calculates proper bit-timing parameters for a specified bit-rate
* and sample-point, which can then be used to set the bit-timing
* registers of the CAN controller. You can find more information
* in the header file linux/can/netlink.h.
*/
static int
can_update_sample_point(const struct can_bittiming_const *btc,
unsigned int sample_point_nominal, unsigned int tseg,
unsigned int *tseg1_ptr, unsigned int *tseg2_ptr,
unsigned int *sample_point_error_ptr)
{
unsigned int sample_point_error, best_sample_point_error = UINT_MAX;
unsigned int sample_point, best_sample_point = 0;
unsigned int tseg1, tseg2;
int i;
for (i = 0; i <= 1; i++) {
tseg2 = tseg + CAN_SYNC_SEG -
(sample_point_nominal * (tseg + CAN_SYNC_SEG)) /
1000 - i;
tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max);
tseg1 = tseg - tseg2;
if (tseg1 > btc->tseg1_max) {
tseg1 = btc->tseg1_max;
tseg2 = tseg - tseg1;
}
sample_point = 1000 * (tseg + CAN_SYNC_SEG - tseg2) /
(tseg + CAN_SYNC_SEG);
sample_point_error = abs(sample_point_nominal - sample_point);
if (sample_point <= sample_point_nominal &&
sample_point_error < best_sample_point_error) {
best_sample_point = sample_point;
best_sample_point_error = sample_point_error;
*tseg1_ptr = tseg1;
*tseg2_ptr = tseg2;
}
}
if (sample_point_error_ptr)
*sample_point_error_ptr = best_sample_point_error;
return best_sample_point;
}
int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
const struct can_bittiming_const *btc)
{
struct can_priv *priv = netdev_priv(dev);
unsigned int bitrate; /* current bitrate */
unsigned int bitrate_error; /* difference between current and nominal value */
unsigned int best_bitrate_error = UINT_MAX;
unsigned int sample_point_error; /* difference between current and nominal value */
unsigned int best_sample_point_error = UINT_MAX;
unsigned int sample_point_nominal; /* nominal sample point */
unsigned int best_tseg = 0; /* current best value for tseg */
unsigned int best_brp = 0; /* current best value for brp */
unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0;
u64 v64;
/* Use CiA recommended sample points */
if (bt->sample_point) {
sample_point_nominal = bt->sample_point;
} else {
if (bt->bitrate > 800 * CAN_KBPS)
sample_point_nominal = 750;
else if (bt->bitrate > 500 * CAN_KBPS)
sample_point_nominal = 800;
else
sample_point_nominal = 875;
}
/* tseg even = round down, odd = round up */
for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
tsegall = CAN_SYNC_SEG + tseg / 2;
/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
/* choose brp step which is possible in system */
brp = (brp / btc->brp_inc) * btc->brp_inc;
if (brp < btc->brp_min || brp > btc->brp_max)
continue;
bitrate = priv->clock.freq / (brp * tsegall);
bitrate_error = abs(bt->bitrate - bitrate);
/* tseg brp biterror */
if (bitrate_error > best_bitrate_error)
continue;
/* reset sample point error if we have a better bitrate */
if (bitrate_error < best_bitrate_error)
best_sample_point_error = UINT_MAX;
can_update_sample_point(btc, sample_point_nominal, tseg / 2,
&tseg1, &tseg2, &sample_point_error);
if (sample_point_error > best_sample_point_error)
continue;
best_sample_point_error = sample_point_error;
best_bitrate_error = bitrate_error;
best_tseg = tseg / 2;
best_brp = brp;
if (bitrate_error == 0 && sample_point_error == 0)
break;
}
if (best_bitrate_error) {
/* Error in one-tenth of a percent */
v64 = (u64)best_bitrate_error * 1000;
do_div(v64, bt->bitrate);
bitrate_error = (u32)v64;
if (bitrate_error > CAN_CALC_MAX_ERROR) {
netdev_err(dev,
"bitrate error %d.%d%% too high\n",
bitrate_error / 10, bitrate_error % 10);
return -EDOM;
}
netdev_warn(dev, "bitrate error %d.%d%%\n",
bitrate_error / 10, bitrate_error % 10);
}
/* real sample point */
bt->sample_point = can_update_sample_point(btc, sample_point_nominal,
best_tseg, &tseg1, &tseg2,
NULL);
v64 = (u64)best_brp * 1000 * 1000 * 1000;
do_div(v64, priv->clock.freq);
bt->tq = (u32)v64;
bt->prop_seg = tseg1 / 2;
bt->phase_seg1 = tseg1 - bt->prop_seg;
bt->phase_seg2 = tseg2;
/* check for sjw user settings */
if (!bt->sjw || !btc->sjw_max) {
bt->sjw = 1;
} else {
/* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
if (bt->sjw > btc->sjw_max)
bt->sjw = btc->sjw_max;
/* bt->sjw must not be higher than tseg2 */
if (tseg2 < bt->sjw)
bt->sjw = tseg2;
}
bt->brp = best_brp;
/* real bitrate */
bt->bitrate = priv->clock.freq /
(bt->brp * (CAN_SYNC_SEG + tseg1 + tseg2));
return 0;
}
/* Checks the validity of the specified bit-timing parameters prop_seg,
* phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
* prescaler value brp. You can find more information in the header
* file linux/can/netlink.h.
*/
static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
const struct can_bittiming_const *btc)
{
struct can_priv *priv = netdev_priv(dev);
unsigned int tseg1, alltseg;
u64 brp64;
tseg1 = bt->prop_seg + bt->phase_seg1;
if (!bt->sjw)
bt->sjw = 1;
if (bt->sjw > btc->sjw_max ||
tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
return -ERANGE;
brp64 = (u64)priv->clock.freq * (u64)bt->tq;
if (btc->brp_inc > 1)
do_div(brp64, btc->brp_inc);
brp64 += 500000000UL - 1;
do_div(brp64, 1000000000UL); /* the practicable BRP */
if (btc->brp_inc > 1)
brp64 *= btc->brp_inc;
bt->brp = (u32)brp64;
if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
return -EINVAL;
alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
return 0;
}

View File

@ -1175,6 +1175,8 @@ static const unsigned int common_data_bitrates[] = {
#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */ #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
#define CAN_CALC_SYNC_SEG 1 #define CAN_CALC_SYNC_SEG 1
#define CAN_SYNC_SEG 1
#define CAN_KBPS 1000
#define can_update_spt can_update_spt_v2_6_31 #define can_update_spt can_update_spt_v2_6_31
#define can_calc_bittiming can_calc_bittiming_v2_6_31 #define can_calc_bittiming can_calc_bittiming_v2_6_31
@ -1200,9 +1202,21 @@ static const unsigned int common_data_bitrates[] = {
#undef can_calc_bittiming #undef can_calc_bittiming
#undef can_fixup_bittiming #undef can_fixup_bittiming
#define can_update_sample_point can_update_sample_point_v5_16
#define can_calc_bittiming can_calc_bittiming_v5_16
#define can_fixup_bittiming can_fixup_bittiming_v5_16
#include "can-calc-bit-timing-v5_16.c"
#undef can_update_sample_point
#undef can_calc_bittiming
#undef can_fixup_bittiming
static const struct alg alg_list[] = { static const struct alg alg_list[] = {
/* 1st will be default */ /* 1st will be default */
{ {
.calc_bittiming = can_calc_bittiming_v5_16,
.fixup_bittiming = can_fixup_bittiming_v5_16,
.name = "v5.16",
}, {
.calc_bittiming = can_calc_bittiming_v4_8, .calc_bittiming = can_calc_bittiming_v4_8,
.fixup_bittiming = can_fixup_bittiming_v4_8, .fixup_bittiming = can_fixup_bittiming_v4_8,
.name = "v4.8", .name = "v4.8",